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The purpose of my lecture today will be to share with you a number of casual
observations on both the history and the mathematics of integral octonions, that
is, of the unique octonion algebra over the integers which is not split. Let me
begin with a little bit of history.

The standard reference to this topic is a paper by Coxeter [4], dating back to
1946 and published in the Duke Mathematical Journal under the title “Integral
Cayley numbers”. Upon close inspection, this paper reveals quite a few remarkable
properties. First of all, at least for an algebraist, it is awfully hard to read, but
this will be of no concern to my lecture. Secondly, it becomes quite clear from
the very beginning that Coxeter, when he started his investigation, was mainly
interested in understanding an earlier paper by Kirmse [8], Johannes Kirmse to be
precise, dating back to 1924 and published by the Saxonian Academy of Sciences
under a long and typically German title whose English translation reads roughly as
follows: “On the representability of natural integers as sums of eight squares and a
non-commutative, non-associative number system connected with this problem”.

Who was this Johannes Kirmse, and what did he accomplish? His name will
forever be associated either with Kirmse’s identities or with Kirmse’s mistake,
depending on whether you are mainly concerned with non-associative algebras or
with integral quadratic forms. The story behind Kirmse’s identities is very simple.
As you all know, they have the form x(x̄y) = nC(x)y = (yx̄)x and are valid, for
example, in an arbitrary composition algebra C over any commutative ring, where
nC is the norm of C and x 7→ x̄ is its conjugation. Also, they may be found in
Kirmse’s aforementioned paper, presumably for the first time, so it seems their
name correctly reflects the historical development of the subject.

On the other hand, the story behind Kirmse’s mistake is much more involved
and, strictly speaking, goes back to the year 1867, when Henry John Stephen Smith
[14] showed in a non-constructive manner that there exists what I call a positive
definite unimodular integral quadratic lattice of rank 8. The precise definition of
this concept will be given in a moment, but let me just add that, ten years later,
in 1877, Korkine and Zolotarev [9] gave an explicit description of this lattice and
connected it with the sphere packing problem.

Now what is a positive definite unimodular integral quadratic lattice of rank n,
say? By this I mean a pair (M,Q) with the following properties:

(i) M is a free additive abelian group of rank n.
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(ii) Q : M → Z is a positive definite quadratic form which is also non-singular
in the sense that its bilinearization Q(x, y) := Q(x + y) − Q(x) − Q(y)
induces an isomorphism from the Z-module M onto its dual in the usual
way, equivalently, that the matrix of Q(x, y) relative to any Z-basis of M ,
which is positive definite of size n with integral entries and even ones on the
diagonal, has determinant 1.

In this case, extending scalars to the reals by passing from M to MR := M ⊗ZR ∼=
Rn, it follows that M basically sits in Rn as an honest-to-goodness lattice, i.e.,
as an additive subgroup generated by a basis of the ambient space; moreover,
QR := Q⊗ZR basically becomes a positive definite inner product on Rn. We know
today, e.g., from the theory of modular forms [3], that the rank of any positive
definite unimodular integral quadratic lattice is divisible by 8, so 8 is the smallest
positive number where such a phenomenon can occur. We also know that the
Smith-Korkine-Zolotarev lattice is basically unique and, in modern terminology,
is nothing else than the E8-lattice, i.e., the lattice spanned by the roots of the root
system E8 in the ambient Euclidean space.

How do Johannes Kirmse and his work fit into this picture? Actually, not at
all, at least not explicitly. But before I go into the details of this, let me briefly
digress by saying a few words about Kirmse’s early life. Johannes Kirmse was born
on December 26, 1894, in the Thuringian town of Schmölln and began the study
of mathematics and physics at the University of Leipzig in 1914. He was drafted
into the German Army in 1915 and took part in the nightmare of World War I
till its very end, to be discharged from the army only as late as 1919. He resumed
his mathematical studies at Leipzig University and received his P.D. from there
in 1923. The title of his thesis (“Beitrag zur Theorie endlicher Körper im Gebiete
der Quaternionen”, i.e., ”Contribution to the theory of finite fields in the domain
of the quaternions” in English translation) strongly suggests that it belonged to
the field of algebra, which is all the more remarkable since his thesis advisor,
Gustav Herglotz, was not an algebraist but, instead, had built up a reputation
as an outstanding researcher by contributions to such diverse fields as analysis,
mathematical physics, and astronomy. The paper [8] was published in 1924 when
Kirmse had already taken up a position as a high school teacher in the Thuringian
town of Apolda. As an amusing side remark I would like to add that Max Koecher
was born in Apolda in exactly the same year, i.e., in 1924.

But let me now return to the subject of my lecture. What eventually would lead
to Kirmse’s mistake, originally started out as something completely different: as
the bold attempt of a young mathematician having just completed his Ph.D. and
entering into the career of a high school teacher to investigate the Graves-Cayley
octonions, a weird and bizarre topic even by today’s standards, let alone the ones
of a hundred years ago, in an arithmetic setting. One cannot be certain but it could
very well be that by doing so Kirmse inadvertently initiated the study of alternative
algebras. Because Emil Artin, one of the towering figures of twentieth century
mathematics, had received his Ph.D. also from Leipzig University two years prior
to Kirmse, in 1921, and his thesis adviser was none other than Gustav Herglotz.
So it is more than plausible that Artin and Kirmse knew each other personally, and
it wouldn’t be too far fetched to believe that Artin’s lifelong interest in alternative
algebras (just remember Artin’s theorem and his second Ph.D. student, Max Zorn)
was inspired by [8].

What, exactly, did Kirmse do in [8]? Inspired by earlier work of Hurwitz
[7], Kirmse, as I just mentioned, considered the real algebra O of Graves-Cayley
octonions, which he defined, as was customary at the time, by means of an explicit
multiplication table relative to a fixed basis of eight-dimensional Euclidean space.
By a judicious choice of a new set of basis vectors, he exhibited a lattice M ⊆ O
containing 1O on which the norm nO of O not only continues to be positive definite
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but also becomes non-singular. Thus (M,nO|M ) is a positive definite unimodular
integral quadratic lattice of rank 8, hence by what I said a few minutes ago, must
be isomorphic to the one exhibited by Smith-Korkine-Zolotarev more than fifty
years earlier. But Kirmse wasn’t aware of this; in fact, it is safe to assume that
he was not familiar with the papers [9, 14] at all. He then proceeded to claim
without proof that, in addition to the aforementioned properties, M is closed
under multiplication. Coxeter, when studying Kirmse’s paper, tried to verify this
assertion, and got stuck. Eventually, he was able to show thatKirmse’s assertion
is false, and Kirmse’s mistake was born. Coxeter then turned to Bruck, one of the
leading experts in non-associative systems at the time, who remedied the defect by
a modification of Kirmse’s original construction. Summing up, Coxeter had thus
exhibited on M the structure of a unital algebra over Z, endowed with a positive
definite non-singular quadratic form permitting composition; details may be found
in [4, §4].

This is an excellent moment for a brief interruption in order to introduce the
concept of an octonion algebra. By an octonion algebra over a commutative ring k,
I mean a unital algebra C over k which is finitely generated projective (e.g., free)
of rank 8 as a k-module and carries a non-singular quadratic form nC : C → k,
necessarily unique and called the norm of C, permitting composition; quaternion
algebras are defined analogously, rank 8 being replaced by rank 4. Many among the
standard properties of octonion algebras you are familiar with over fields continue
to hold over arbitrary commutative rings, but there are exceptions. A particularly
notorious one is the fact that octonion algebras cannot always be obtained from
of the Cayley-Dickson construction. For example, I claim that this is so for the
algebra constructed by Coxeter, which obviously is an octonion algebra over Z,
henceforth referred to as the integral (or Coxeter) octonions, and denoted by
Cox(O). Indeed, since positive definite unimodular integral quadratic lattices, as
I have mentioned before, exist only in ranks divisible by 8, there are no non-split
quaternion algebras over Z, let alone ones contained in Cox(O).

Just like Kirmse, Coxeter defines the Cayley-Graves octonions O by a multipli-
cation table relative to an appropriate basis and then proceeds to do the same for
the integral subalgebra of Coxeter octonions. I for one would find it much more
natural, to use the algebra H of Hamiltonian quaternions, with its standard basis
1, i, j,k subject to the relations i2 = j2 = k2 = ijk = −1, as a starting point in
order to reach O by means of the Cayley Dickson construction:

O = Cay(H,−1) = H⊕Hl, l2 = −1.

This has the advantage of allowing a fairly intrinsic description of the Coxeter
octonions as follows. Denoting by

Ga(H) := Z1⊕ Zi⊕ Zj⊕ Zk ⊆ H

what I call the Gaussian integers of H, which is obviously a sub-lattice (but a
singular one!) and an integral subalgebra, the Coxeter octonions may be described
as

Cox(O) = Ga(H)⊕Ga(H)p, p :=
1

2
(1 + i + j + l).

Using this description, which may be regarded as a non-orthogonal version of the
Cayley-Dickson construction, it is rather straightforward to check that Cox(O) is
indeed an integral octonion subalgebra of O. For the most general form of the
non-orthogonal Cayley-Dickson construction, see [12].

Coxeter’s paper [4] contains yet another remarkable feature. Right in the
middle of it, Coxeter refers to a paper by Mahler [10], dating back to 1942 and
published in the Proceedings of the Royal Irish Academy under the title “On ideals
in the Cayley-Dickson algebra”. A particularly puzzling aspect of Mahler’s paper is

3



January 1, 2019 ass.-rem.-int.-oct.tex

that it seems to be dealing with the integral octonions four years prior to Coxeter,
who not only published but also submitted his paper [4] in 1946. And indeed,
Mahler relied on a paper by Dickson [5], dating back to 1923 and published in the
Journal de Mathématiques pure et appliquée under the title“A new simple theory
of hypercomplex integers”. In this paper, Dickson constructs and investigates,
among other things, an algebra of integral octonions which is easily seen to be
isomorphic to Coxeter’s. Thus the Coxeter octonions are more than twenty years
older than is often assumed. To be fair, in a postscript almost at the very end
of the paper, Coxeter himself reports that, after having finished writing up his
results, he was informed by Olga Taussky Todd about Mahler’s paper [10], which
in turn directed him to Dickson’s paper [5]. Incidentally, it shouldn’t come as
too much of a surprise that this part of Dickson’s paper is so little known, and
so rarely quoted: though reviewed in zbMath by Emmy Noether, no mention is
made in this review of the connection with octonions. Moreover, the paper is not
even listed in Math. Reviews, even though they have presumably compiled all
of Dickson’s scientific publications, including the ones appearing before 1940, the
year when Math. Reviews were established.

Let us return again for a moment to Mahler’s paper [10]. In its main result,
Mahler describes the one-sided ideals of the integral octonions in a very explicit
but still incomplete manner, by showing that every such ideal is principal and, in
fact, can be generated by a multiple of an integral octonion having norm 1, 2, or
4. But the trouble is that, conversely, not every such integral octonion will lead
to a one-sided ideal in this way. Fortunately, one can do much better than that.

t.IDINOC
1. Theorem. Let C be an octonion algebra over the commutative ring k and
identify k = k1C ⊆ C canonically.Then the following statements hold.

(a) (Petersson-Racine [13, Exc. 87]) The assignments a 7→ aC and I 7→ I ∩ k
give inclusion preserving inverse bijections between the ideals of k and the
two-sided ideals of C.

(b) (Petersson-Racine [13, Exc. 107]) If k is a Dedekind domain, then every
one-sided ideal I ⊆ C is two-sided, hence has the form aC for some ideal
a ⊆ k.

Sketch of proof. (a) I confine myself to performing one of the key steps, which
consists in showing I = (I ∩ k)C for any two-sided ideal I ⊆ C. For this to hold
it is necessary that I ∩ k = {0} implies I = 0. In order to see this, I first assume
I = Ī, i.e., that I is stable under conjugation. Writing tC for the trace of C, and
letting x ∈ I, we have tC(x) = x+ x̄ ∈ I ∩ k = {0}. But I ⊆ C is an ideal, so we
may conclude tC(xy) = 0 for all y ∈ C, hence x = 0 by non-degeneracy. If I is
arbitrary, then what we had just proved implies I ∩ Ī = {0}. Now let 0 6= x ∈ I.
Then x̄ = tC(x) − x /∈ I, and we conclude tC(x) 6= 0. Hence tC is injective on
I. But the trace of C is an associative linear form, so we have tC(xy) = tC(yx),
tC((xy)z)) = tC(x(yz)) for all x ∈ I, y, z ∈ C, which by the injectivity just proved
implies that x belongs to the centre of C, which is k. Thus I ⊆ I ∩ k = {0}, as
desired. The general formula I = (I ∩ k)C now follows by applying the special
case just treated after reduction modulo I ∩ k, i.e., by passing to the base change
from k to k/(I ∩ k).

(b) Passing from C to Cop if necessary, it will be enough to show that any
right ideal I ⊆ C has the form as indicated. To this end, we consider the following
cases.

Case 1. k = F is a field. Then a routine argument involving standard properties of
octonion algebras, particularly the Zorn vector matrices, over fields shows I = {0}
or I = C.
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Case 2. k = o is a discrete valuation ring. We write p ⊆ o for the corresponding
valuation ideal and κ = o/p for the corresponding residue field. We may assume
I 6= {0} and must show I = prC, for some integer r ≥ 0. . Since

⋂
i≥0 p

i = {0}
and C is a free o-module of finite rank, we conclude

⋂
i≥0 p

iC = {0} as well. Thus
there exists a natural number r which is maximal with respect to the property
I ⊆ prC. In particular, I ′ := p−rI ⊆ o is a right ideal, and the assumption
I ′ ⊆ pC would imply the contradiction I = prI ′ ⊆ pr+1C. Hence I ′ * pC.
Consequently, (I ′ + pC)/pC is a non-zero right ideal in the octonion algebra C(p)
over the field κ, which by Case 1 must be all of C(p). Thus I ′ + pC = C, and
Nakayama’s lemma implies I ′ = C, hence I = prI ′ = prC.

Case 3. The general case. By (a) it will be enough to show that I ⊆ C is, in fact,
a two-sided ideal, equivalently, that Ip ⊆ Cp is a two-sided ideal for any prime
ideal p ⊆ k. But this follows immediately from Case 2. �

r.IDINOC
2. Remark. Part (a) of Thm. 1 underscores the analogy of octonions over com-
mutative rings with Azumaya algebras. Part (b) generalizes not only Mahler’s
aforementioned result but also a theorem of Van der Blij-Springer [15, p. 414],
which reaches the conclusion of (b) for the Coxeter octonions, see also Allcock
[1] for a different proof. It is an open question whether part (a) remains valid
for one-sided rather than two-sided ideals. The answer to the same question for
quaternion algebras is certainly negative, the split quaternions over a field serving
as a particularly easy counter example.

The ideal structure of the integral octonions as described in Thm. 1 suggests the
natural question of what happens when they are reduced mod m, for any positive
integer m. The answer is not hard to guess but still requires a proof. In fact, we
will be able to establish a much more general result.

p.RECOM
3. Proposition. Let K be an algebraic number field, i.e., a finite algebraic ex-
tension of the rationals, o its ring of integers, C an octonion algebra over o and a
a non-zero ideal in o. Then the octonion algebra over o/a obtained from C after
reduction mod a, i.e.,

C/aC = C ⊗o o/a,

is split.

Proof. Consider C ′ := C/aC as an octonion algebra over o/a. By the Chinese
Remainder Theorem, we are reduced to the case a = pr, for some non-zero prime
ideal p ⊆ o and some positive integer r. If r = 1, then C ′ becomes an octonion
algebra over the finite field o/p and hence is known to be split. If r is arbitrary,
we have to argue in a slightly different manner. Let ôp be the p-adic completion

of op, the localization of o at p. Then Ĉp := C ⊗o ôp is an octonion algebra over

ôp. On the other hand, K̂p = Quot(ôp) is a local field with finite residue field,

and it is well known [13, 25.13] that any octonion algebra over K̂p, in particular

Ĉp ⊗ôp
K̂p, is split. By a result of Van der Blij-Springer [15, (3.4)], therefore,

so is Ĉp, and we conclude that C ′ is split since a p-adic density argument shows

C ′ ∼= Ĉp ⊗ôp
(ôp/p

rôp). �

Let me close my talk by discussing an open problem. Paradoxically, this problem
starts out with a positive result related to one of the most important properties of
composition algebras over fields: two composition algebras over a field are ismor-
phic if and only if their norms are isometric. In my survey lectures at Ottawa and
Lens of 2012, I raised the question of whether this property extends to composi-
tion algebras over arbitrary commutative rings. This question has meanwhile been
answered in the negative by Gille [6], while a more recent result of Alsaody-Gille
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[2] yields a more detailed picture. In order to clarify their answers, I must remind
you of the notion of isotopy, due to McCrimmon [11], for alternative algebras.

Let A be a unital alternative algebra over a commutative ring k and suppose
p, q ∈ A are invertible. Write A(p,q) for the non-associative k-algebra living on the
k-module A under the multiplication (xp)(qy). McCrimmon [11] has shown that
A(p,q) is again a unital alternative algebra over k, called the (p, q)-isotope of A,
with identity element 1(p,q) = 1A(p,q) = (pq)−1.

For example, if C is an octonion algebra over k, then so is C(p,q), for all invert-
ible elements p, q ∈ C; in fact, one checks immediately that nC(p,q) := nC(pq)nC
is a non-singular quadratic form acting on C(p,q) and permitting composition. It
follows that the left multiplication operator Lpq : C(p,q) → C, x 7→ (pq)x, is an
isometry from nC(p,q) to nC preserving units but almost never an isomorphism.
McCrimmon [11] also provides examples showing that isotopes of alternative al-
gebras are in general not isomorphic. But these examples display pathologies in
characteristic 3, for which alternative algebras are notorious, and it has long been
suspected that examples avoiding such pathologies do not exist. This suspicion,
however, is confounded by the following results.

t.NOREQ
4. Theorem. (a) (Gille [6]) There exist non-isomorphic octonion algebras over
appropriate commutative base rings whose norms are isometric.

(b) (Alsaody-Gille [2]) Two octonion algebras C and C ′ over k have isometric
norms if and only if C ′ is isomorphic to an isotope of C. �

With regard to (a), Gille actually proves much more: there exist octonion algebras
over appropriate base rings which are hyperbolic as quadratic spaces but not split
as octonion algebras.. By (b), therefore, they are isotopic, but not isomorphic,
to the algebra of Zorn vector matrices. All these remarkable results are obtained
with a heavy dose of group scheme theory attached. Possibly for this reason, the
examples corroborating part (a) of Thm. 4 are not particularly explicit. On the
other hand, it would be nice to have examples at your disposal you could really
put your hands on.

Up to now, such examples have not been found. For instance, by a result of
Van der Blij-Springer [15], octonion algebras over the integers are either split or
isomorphic to the Coxeter octonions, so the isotopes of the latter are all isomorphic.
In view of this, a natural question presents itself.

pr.OCNUFI
5. Problem. Let K be an algebraic number field and let o ⊆ K be its ring of
integers. Classify the octonion algebras over o, (i) up to isomorphism, (ii) up to
isotopy, and decide whether the classification problems (i), (ii) are the same.

You are cordially invited to try your luck with this problem.

Acknowledgements. I am grateful to Winfried Hochstättler for having pro-
vided me with a short outline of Kirmse’s early life through the appropriate link
to the website of Deutsche Mathematiker-Vereinigung. Also, I would like to ex-
press my gratitude to Achim Schneider† for having gone out of his way to provide
me with hard-copies of [8, 10].
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