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In this lecture I intend to give a survey of what is presently known about composition algebras over
arbitrary commutative associative rings of scalars. I doing so, I hope I will be able to convince you
that this is an interesting topic indeed, and that there are many difficult problems just waiting to
be attacked. Rather than starting off from a formal definition, I prefer to postpone it for a while
and to embark instead on an informal tour de force through the fundamental features of

1. Composition algebras over fields.

Due to the informal character of this part of my lecture, I will occasionally be rather sloppy here in
phrasing my hypotheses. So for the time being suppose k is a field and C is a composition algebra
over k. I am, of course, assuming that you all know what a composition algebra is, although I
will demonstrate in moment that in actual fact you do not. Suffice it to say at this stage that
a composition algebra over k is a finite-dimensional unital k-algebra having a norm, i.e., a non-
singular quadratic from permitting composition. Let us begin by recalling some

1.1. Basic facts. Composition algebras over k

• have a unique norm n = nC ,

• are quadratic alternative,

• exist only in dimensions 1, 2, 4, 8,

• are associative iff the dimension is ≤ 4,

• are commutative associative iff the dimension is ≤ 2,

• are invariant under base field extensions, so if K/k is an extension field, then the extended
algebra CK continues to be a composition algebra, over K of course.

Let us now pass to
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1.2. Construction methods. The most popular method of constructing composition algebras
is, of course, the

Cayley-Dickson doubling process (abbreviated CD). Its
Input consists of an associative composition algebra B of dimension n over k and an invertible
scalar µ ∈ k, while its
Output is a composition algebra C = Cay(B,µ) of dimension 2n over k (hence the word doubling)
containing B as a composition subalgebra.
The most important property enjoyed by this construction is what I call
Completeness. If C is a composition algebra of dimension 2n over k, containing B as a composition
subalgebra of dimension n, there always exists a scalar µ ∈ k× such that the inclusion B ↪→ C
extends to an isomorphism Cay(B,µ) ∼→ C.

Distinctly less popular but also very important is the

Zorn quadrupling process (abbreviated Z). Here the
Input consists of a composition algebra D of dimension r ≤ 2, forcing D to be commutative asso-
ciative by 1.1, and a hermitian space of dimension 3 over D having determinant −1, while the
Output is a composition algebra C = Zor(D;V, h) of dimension 4r over k (hence the word quadru-
pling) containing D as a composition subalgebra. This construction enjoys the same completeness
property as the Cayley-Dickson doubling process. In the
Special case that D = k⊕ k splits, the Zorn quadrupling process reduces to the construction of the
Zorn vector matrix algebra that lives on the space

Zor(k) :=
(

k k3

k3 k

)
under ordinary matrix multiplication, modified appropriately by the usual vector product in 3-
space.

We are now ready for the

1.3. Enumeration of composition algebras. Here we will assume char k 6= 2 for simplicity.
Then the key fact is that compositions algebras over k are enumerated by the Cayley-Dickson
doubling process, so they may all be obtained from the base field by an iterated application of this
process; in particular, every octonion algebra over k has the form

C ∼= Cay(k;µ1, µ2, µ3), µ1, µ2, µ3 ∈ k×.

But this enumeration has huge redundancies. For example, the scalars µi above may be changed
trivially by multiplying them with invertible squares from the base field without changing the
isomorphism class of C. Distinctly less trivial is the fact that, for k the rationals, the octonion
algebras

Cay(Q;−µ1,−µ2,−µ3), µ1, µ2, µ3 ∈ Q×
+

are all isomorphic to the unique octonion division algebra over Q. These redundancies make it
imperative to address the

1.4. Classification of composition algebras. The key idea for solving this problem is to look
for classifying invariants of composition algebras which are exhibited by the following fundamental
theorem.
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Norm Equivalence Theorem. (Jacobson [1958], van der Blij-Springer [1960]) Composition
algebras over k are classified by their norms, so if C,C ′ are composition algebras over k, then

C ∼= C ′ ⇐⇒ nC
∼= nC′ .

The significance of this result derives from the fact that the exceedingly well developed algebraic
theory of quadratic forms over fields can now be applied to composition algebras. For example, we
immediately obtain the following

Corollary. For n = 2, 4, 8, there is a unique composition algebra with zero divisors of dimension
n over k, namely,

• k ⊕ k for n = 2,

• M2(k) for n = 4,

• Zor(k) for n = 8.

It should also be mentioned that the
Key tool for proving the norm equivalence theorem is
Witt cancellation of non-singular quadratic forms q, q1, q2 over k:

q ⊥ q1
∼= q ⊥ q2 =⇒ q1

∼= q2.

In the remainder of this talk, I will now examine the question of how the fundamental features of
composition algebras over fields may be extended to

2. Composition algebras over commutative rings.

So from now on, k will be an arbitrary commutative ring. We write

• k-alg for the category of unital commutative associative k-algebras, homomorphisms between
them always taking 1 into 1,

• Spec(k) = {p | p ⊆ k is a prime ideal} for the prime spectrum of k, equipped with the Zariski
topology.

For p ∈ Spec(k), f ∈ k, we write

• kp = S−1k, S = k − p, for the localization of k at p, which is a local ring with maximal ideal
pp and residue field κ(p) = kp/pp = Quot(k/p),

• kf = S−1k, S = {1, f, f2, . . . }.

In dealing with composition algebras over fields, we don’t have to worry about the underlying mod-
ule structures: All K-modules, K a field, are free. On the other hand, in dealing with composition
algebras over rings, we do have to worry about the underlying module structures and they definitely
should not be allowed to be completely arbitrary. We could of course insist that they all be free,
but this would be far too restrictive since, as we shall see in due course, there are many natural
constructions starting off from a situation where the underlying modules are free, and ending up
with a situation where this is no longer the case. It seems that the right balance between avoiding
the pitfalls of chaotic counter examples and at the same time allowing for the right amount of
flexibility, is struck by looking at
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2.1. Finitely generated projective modules. Let M be a k-module and, with p, f as before,
put

Mp := M ⊗ kp, M(p) := M ⊗ κ(p), Mf := M ⊗ kf .

M is said to be finitely generated projective if it is a direct summand of a free module of finite rank,
so M ⊕ M ′ ∼= kn for some k-module M ′ and some positive integer n. There are two important
characterizations of this concept.

(i) M is finitely generated projective iff, for all p ∈ Spec(k), Mp is a free kp-module of fine rank.
(ii) M is finitely generated projective iff there are finitely many elements f1, . . . , fm ∈ k such that
k =

∑
kfi and Mfi

is a free kfi
-module of finite rank for all i = 1, . . . ,m.

These characterizations allow us to define the rank of M as the continuous (= locally constant)
function

rk(M) : Spec(k) −→ Z, p 7−→ [rk(M)](p) := rkkp Mp = dimκ(p) M(p).

We say that M has rank n if the function rk(M) on Spec(k) is constant equal to n.

Now we are almost ready for the formal definition of composition algebras. There is just one thing
missing, namely, the concept of

2.2. Separable quadratic forms. This concept is due to Loos. Let M be a finitely generated
projective module over k. A quadratic form q : M → k is said to be

• non-singular if its induced symmetric bilinear form, defined by the expression

q(x, y) = q(x + y)− q(x)− q(y),

is non-singular in the sense that it induces an isomorphism from M onto its dual M∗ in the
usual way; q is called

• non-degenerate if for all x ∈ M the relations q(x) = q(x, y) = 0 for all y ∈ M imply x = 0.

Non-singularity of a quadratic form is a good notion since it is invariant under base change: for
every R ∈ k-alg, the extended quadratic form qR : MR → R continues to be non-singular over R.
Non-degeneracy of a quadratic form, on the other hand, is a bad notion since it is not invariant
under base change. Therefore we say that q is

• separable if the extended quadratic form qK : MK → K is non-degenerate for all fields
K ∈ k-alg.

We are now in a position to formally define

2.3. Composition algebras. In its present form, this concept is also due to Loos. A non-
associative algebra C over k is said to be a composition algebra if

(i) C contains an identity element,

(ii) C is faithful and finitely generated projective as a k-module, and

(iii) there exists a norm, i.e., a separable quadratic form n : C → k that permits composition:
n(xy) = n(x)n(y) for all x, y ∈ C.
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The composition algebras you encounter in the literature are invariable based on a concept that
either is not invariant under base change or prevents the base ring itself from being a composition
algebra unless it contains 1

2 . The present concept avoids these deficiencies: composition algebras
are always invariant under base change and k is always a composition algebra. We will now analyze
step-by-step to what extend the fundamental features of composition algebras over fields carry over
to arbitrary commutative base rings.

2.4. Basic facts. Ditto
A composition algebra C is said to be non-singular if its norm has this property. If C has rank n
this holds true provided n > 1 or k contains 1

2

2.5. Construction methods.

The absolute Cayley-Dickson doubling process.
Input : Ditto
Output : Ditto
Completeness: Let C be a composition algebra of rank 2n over k containing B as a non-singular
composition subalgebra of rank n. Then the inclusion B ↪→ C extends to an isomorphism
Cay(B,µ) ∼→ C iff

B⊥ ∩ C× 6= ∅.(2.5.1)

Condition (2.5.1) is what Bourbaki calls a dangerous bend. As we shall see in due course, it is not
automatic, so the question presents itself what to do with the Cayley-Dickson doubling if (2.5.1)
fails. An answer will now be given as follows.

For the time being, we fix an associative composition algebra B over k and write ιB, x 7→ x,
for its conjugation. The key notion we require is that of

2.6. Hermitian discriminant modules. A right B-module M is said to be locally free of rank
1 if Mp

∼= Bp as right Bp-modules for all p ∈ Spec(k), or equivalently, if there exist finitely many
f1, . . . , fm ∈ k such that k =

∑
kfi and Mfi

∼= Bfi
as right Bfi

-modules for all i = 1, . . . ,m. The
analogy to the characterization of finitely generated projective modules over commutative rings is
obvious. But while it has been shown by Knus [1991] that locally free right B-modules of rank 1
are always projective, the converse does not hold since B need not be commutative (simply put
B = M2(k) and M = k2 (row space) as a right B-module, which is finitely generated projective
but clearly not locally free of rank 1). By a hermitian discriminant module over B we men a pair
(M,h) consisting of a locally free right B-module M of rank 1 and a non-singular hermitian form
h : M ×M → B that is central in the sense that h(v, v) ∈ k1B for all v ∈ M , the latter condition
being automatic if 1

2 ∈ k. For example, if M is free as a right B-module, then (M,h) ∼= (B, 〈µ〉her)
for some µ ∈ k× and conversely. We are now ready for the

2.7. Relative Cayley-Dickson doubling process. The
Input consists of a non-singular associative composition algebra B of over k and a central hermitian
discriminant module (M,h) over B. The
Output is the algebra C = Cay(B,M, h) that lives on the k-module B⊕M under the multiplication

(u⊕ v)(u′ ⊕ v′) :=
(
uu′ + h(v′, v)

)
⊕ (v′.u + v.u′).

That C is indeed a composition algebra follows from two facts: (i) If (M,h) = (B, 〈µ〉her), µ ∈ k× is
a free hermitian discriminant module of rank 1 over B, then Cay(B,M, h) agrees with the ordinary
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Cayley-Dickson doubling Cay(B,µ), hence is a composition algebra. (ii) It suffices to check the
property of C being a composition algebra locally at every prime p ∈ Spec(k). Fortunately, we also
have
Completeness of the relative Cayley-Dickson doubling: If C is any composition algebra of rank 2n
over k containing B as a non-singular composition subalgebra of rank n, there exists a hermitian
discriminant module (M,h) over B such that the inclusion B ↪→ C extends to an isomorphism
Cay(B,M, h) ∼→ C.

It is a natural question to ask for non-trivial

2.8. Examples of central hermitian discriminant modules. These will be provided by an-
swering the following question.

• Which locally free right B-modules of rank 1 support central hermitian discriminant modules?

To answer this question, we require several auxiliary items.

• The Picard set. The set

Pic(B) := {[M ] |M is a locally free right B-module of rank 1}

of isomorphism classes of locally free right B-modules of rank 1 is a pointed set, with base
point equal to [B], called the Picard set of B; it is even a group, the Picard group of B (under
⊗B) if B is commutative.

• Non-abelian cohomology. Locally free right B-modules of rank 1 are classified by H1(k,GmB),
so

Pic(B) = H1(k,GmB) as pointed sets,

where GmB is the group scheme given by

GmB(R) = B×
R . (for R ∈ k-alg)

• The norm. The norm of B induces a homomorphism

nB : GmB −→ Gmk

of group schemes, which in turn gives rise to a homomorphism

nB : Pic(B) = H1(k,GmB) −→ H1(k,Gmk) = Pic(k)

of pointed sets. Hence if M ∈ Pic(B) is a locally free right B-module of rank 1, then
nB(M) ∈ Pic(k) is a line bundle, i.e., a finitely generated projective module of rank 1, over
k, called the norm of B.

• Hermitian maps into bimodules with involution. (Loos [1994]) Let (P, ι) be a bimodule with
involution over B, so P is a B-bimodule and ι : P → P, p 7→ p, a k-linear map satisfying
p = p, upu′ = u′p u for u ∈ B, p ∈ P . Then

Cent(P, ι) = {p ∈ P | p = p, up = pu (u ∈ B)} ⊆ P
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is a k-submodule, called the centre of (P, ι). For example, if L is a line bundle over k,

(P, ι) = (L⊗B,1L ⊗ ιB)

is a B-bimodule with involution satisfying

Cent(L⊗B,1L ⊗ ιB) ∼= L.

Now if M is any right B-module, (central non-singular) hermitian maps M × M → (P, ι)
make obvious sense.

By gluing local data, we can now prove the following

Theorem. Let M be a locally free right B-module of rank 1 and put L := nB(M). Then there
exists a non-singular central hermitian map h0 : M × M → (L ⊗ B,1L ⊗ ιB), unique up to an
invertible factor in k, that is universal in the sense that for any B-bimodule (P, ι) with involution
and any central hermitian map h : M × M → (P, ι), there exists a unique homomorphism ϕ of
B-bimodules with involution making a commutative diagram as shown.

M ×M
h0

//

h

%%LLLLLLLLLLLLLLLLLLLLLL (L⊗B,1L ⊗ ιB)

ϕ

���
�
�
�
�
�

(P, ι)

Corollary 1. For L′ ∈ Pic(k), the following conditions are equivalent.

(i) There exists a non-singular central hermitian map h : M ×M → (L′ ⊗B,1L′ ⊗ ιB).

(ii) nB(M) ∼= L′.

Proof. Since (ii) ⇒ (i) follows immediately from the theorem, we are left with (i) ⇒ (ii). Setting
L := nB(M), the theorem yields a commutative diagram

M ×M
h0

//

h

&&LLLLLLLLLLLLLLLLLLLLLL (L⊗B,1L ⊗ ιB)

ϕ

���
�
�
�
�
�

(L′ ⊗B,1L′ ⊗ ιB)

,

and since h, h0 are both non-singular, ϕ must be an isomorphism, which in turn induces an iso-
morphism

ϕ : L ∼= Cent(L⊗B,1L ⊗ ιB) ∼−→ Cent(L′ ⊗B,1L′ ⊗ ιB) ∼= L′.

�

Corollary 2. M supports a non-singular central hermitian form over B iff nB(M) ∼= k. �

We now apply the preceding considerations in the following
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Example. Let B = M2(k) be the algebra of 2-by-2 matrices over k, forcing ιB to be the symplectic
involution (

α β
γ δ

)
7−→

(
δ −β
−γ α

)
.

Now if N is any finitely generated projective k-module of rank 2, then

M := N ⊕N (row-2-space over N)

is a locally free right B-module of rank 1 under ordinary matrix multiplication. Put

L := det(M) =
2∧

(N) ∈ Pic(k)

and define

h : M ×M −→ (L⊗B,1L ⊗ ιB) =
(
M2(L), ιM2(L)

)
by

h
(
(v1, v2), (w1, w2)

)
:=

(
v2 ∧ w1 v2 ∧ w2

−v1 ∧ w1 −v1 ∧ w2

)
for vi, wi ∈ M , i = 1, 2. This may look a bit weird at first, but interchanging the v’s and the w’s, for
instance, amounts to the same as applying the symplectic involution to the right-hand side; indeed,
a straightforward verification shows that h is a non-singular central hermitian map, so Corollary 1
implies L ∼= nB(M).

We now come to the

The Zorn quadrupling process.
Input : Ditto
Output : Ditto
Completeness: Ditto
Special case: Suppose (V, h) is a ternary hermitian space over the split algebra D = k ⊕ k. Notice
that the determinant of (V, h) in this generality is a hermitian space of rank 1, so our condition
that it be −1 should be phrased here more accurately as

det (V, h) = (k ⊕ k, 〈−1〉her).

If this condition is fulfilled, the Zorn quadrupling process leads to a relative version of the Zorn
vector matrix algebra in the sense that

Zor(k ⊕ k, V, h) ∼= Zor(M, θ)

where

• M is a finitely generated projective k-module of rank 3,

• θ :
∧3(M) ∼→ k is an isomorphism (“volume element”), giving rise to a volume element

θ∗−1 :
3∧

(M∗) ∼=
( 3∧

(M)
)∗ ∼−→ k∗ ∼= k,
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• the associated vector products

×θ : M ×M −→ M∗, ×θ : M∗ ×M∗ −→ M

are defined by

〈w, u×θ v〉 = θ(u ∧ v ∧ w), 〈u∗ × v∗, w∗〉 = θ∗−1(u∗ ∧ v∗ ∧ w∗),

• we have

Zor(M, θ) =
(

k M∗

M k

)
and (

α1 v∗

v α2

) (
β1 w∗

w β2

)
=

(
α1β1 + 〈w, v∗〉 α1w

∗ + β2v
∗ + v ×θ w

β1v + α2w − v∗ ×θ w∗ 〈v, w∗〉+ α2β2

)
.

We now come to the really sticky points of our extension programme, which begin with the

2.9. Enumeration of composition algebras. Here we can only say

???

These question marks will be illuminated by the following

Examples. (Knus-Parimala-Sridharan[1994]) Let k = K[X1, . . . , Xn] be the polynomial ring in
n > 1 variables over a field K of characteristic not 2. Then there are infinitely many octonion
algebras over k such that (C0, n0

C), the trace zero elements in C equipped with the corresponding
restriction of the norm, is indecomposable as a quadratic space. (But observe in parantheses
that, thanks to the positive solution to Serre’s conjecture, C0 is free, hence decomposable, as a
k-module.) Therefore C contains no composition subalgebras of rank > 1, so in particular, it can
be realized neither by the absolute nor by the relative Cayley-Dickson doubling process nor by the
Zorn quadrupling process.

Things get even worse when looking at the

2.10. Classification of composition algebras. Here again we can only say

???

The simple reason is that the
key tool for dealing with composition algebras over fields, i.e.,
Witt cancellation, fails miserably not only with arbitrary non-singular quadratic forms, but also
with the ones attached to composition algebras. Here is an instructive

Example. For any line bundle M over k,

B =
(

k M∗

M k

)
= Endk(k ⊕M)

is a quaternion algebra. It is easy to see that B ∼= M2(k) if and only if there exists a line bundle L
over k that is generated by two elements and satisfies M ∼= L⊗ L. Suppose this holds true but M
is not free. Then

h ⊥ h ∼= nM2(k)
∼= nB

∼= h ⊥ hM ,
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where h is the ordinary hyperbolic plane and

hM : M ⊕M∗ −→ k, v ⊕ v∗ 7−→ 〈v, v∗〉,

is the hyperbolic plane twisted by M . But Ottmar has shown me a two-line proof that, if h ∼= hM ,
then M would be free, so h and hM cannot be isometric, and Witt cancellation does indeed fail.

2.11. Open problems. It follows from the failure of Witt cancellation that the proof of the norm
equivalence theorem that works over fields breaks down over rings. But it does not follow that the
theorem itself is false over rings. We therefore state the

Norm Equivalence Problem. (NEP) If C,C ′ are composition algebras over k, then

C ∼= C ′ ⇐⇒ nC
∼= nC′ ?

Here are a few comments.

• The direction “=⇒” follows trivially from the uniqueness of the norm.

• For rk(C) ≤ 2, the answer is easily seen to be yes.

• For rk(C) = 4, the answer has been shown by Knus [1991], using Clifford algebras, to be yes.

• For rk(C) = 8, ???

Closely related to the norm equivalence problem is what I call the

Isotopy Problem. (IP) If C is a composition algebra over k and a, b ∈ C×, then

C(a,b) ∼= C ?

To let you appreciate this problem, I will have to remind you of the notion of isotopy, due to
McCrimmon [1971]. In doing so, I restrict myself to composition algebras. So let C be a composition
algebra over k and a, b ∈ C×. Then C(a,b), the a, b-isotope of C, lives on the k-module C under the
multiplication

x .a,b y := (xa)(by). (x, y ∈ C)

It is a composition algebra over k satisfying

1C(a,b) = (ab)−1, nC(a,b) = nC(ab)nC , [C(a,b)]+ = [C+](ab).

Concerning the isotopy problem itself, the following comments seem to be in order.

• For rk(C) ≤ 4, the answer is yes since C is associative and

Lab : C(a,b) ∼−→ C

is an isomorphism.

• For rk(C) = 8, ???

• A positive solution to the norm equivalence problem implies a positive solution to the isotopy
problem since

Lab : nC(a,b)
∼−→ nC

is an isometry.
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• We may always assume b = a−1 since

Lab : C(a,b) ∼−→ C(a2b,b−1a−2)

is an isomorphism. We therefore put aC := C(a,a−1), which has the same unit, norm, Jordan
structure as C. We also have

a( bC)) = (ab)C,

and record the observations

• bC ∼= (a3b)C ∼= (aba2)C ∼= (ba6)C,

• bC ∼= C if k[b]⊥ ∩ C× 6= ∅,

• bC ∼= C if b has trace 0.

We close the discussion of the isotopy problem by looking at a

Special case. In fact, among the remaining open cases, this should presumably be the easiest one.
We put C = Zor(k) and consider an arbitrary element

b =
(

β1 v2

v1 β2

)
∈ C×.

Then we have the following partial affirmative answer to the isotopy problem.

Proposition. We have bC ∼= C if one of the following conditions are fulfilled.

(i) β1 or β2 is invertible.

(ii) v1 or v2 is unimodular, so there exists a vector u ∈ k3 satisfying utv1 = 1 or utv2 = 1.

(iii) There is a unimodular vector u ∈ k3 such that utv1 = 0 or utv2 = 0.

�

Let me close my lecture with another open problem which I regard as very important.

Coordinatization Problem. For i = 1, 2, let Mi be a finitely generated projective k-module
of rank 3 and θi :

∧3(Mi)
∼→ k a volume element. Find conditions in terms of (M1, θ1) and

(M2, θ2) that are necessary and sufficient for the octonion algebras Zor(M1, θ1) and Zor(M2, θ2) to
be isomorphic.
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