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1. Let K be a field and v : K → Z∞ := Z ∪ {∞} a discrete valuation. Writing K̂ for the
completion of K relative to v and v : K̂ → Z∞ also for the unique extension of v to a discrete
valuation of K̂, we will be concerned here with a question that has been raised by Richard Weiss
in an Email of December 29, 2005, to the author and may be phrased as follows.

Given a Jordan division algebra J of degree 3 and dimension at least 4 over K whose generic
trace is not identically zero, let us assume that for any cubic subfield E/K of any isotope of J , the
base change (E ⊗ K̂)/K̂ (⊗ = ⊗K) continues to be a field. Then the question is whether J ⊗ K̂ is
a Jordan division algebra over K̂. In the sequel, we wish to answer this question affirmatively.

2. We begin with a few preliminaries of a more general nature. To this end, let k be any field
and M = (W,N, ], 1) a finite-dimensional cubic norm structure over k. We write J = J(M) for its
associated Jordan algebra and T : J × J → k for the bilinear trace of M. Free use will be made of
the McCrimmon formalism [3].

Proposition 1. If J is a division algebra, then the following statements are equivalent.

(i) T is degenerate.

(ii) T = 0.

(iii) k has characteristic 3 and J/k is a purely inseparable field extension of exponent at most 1.

Proof. (i) =⇒ (ii). For x ∈ J we have T (x, x]) = 3N(x) [3, (13)], and since J is a division
algebra, k has characteristic 3. But then {0} 6= rad T ⊆ J , always being an outer ideal [2, 16.12],
is in fact an ideal, so (ii) holds.
(ii) =⇒ (iii). This direction is already implicit in the proof of [8, Theorem 3.1]. We claim that
N : J → k+ is a homomorphism of Jordan rings, i.e., of Jordan algebras over Z. Indeed, since
T = 0, N is additive, and the relations N(1) = 1, N(Uxy) = N(x)2N(y) = UN(x)N(y) prove the
assertion. Furthermore, 3 = T (1, 1) = 0 in k, so k has characteristic 3. Since J is a division
algebra, the homomorphism N must be injective, showing that J , being isomorphic to a (linear)
Jordan division subring of k+, must be a field. The minimum equation of any x ∈ J reduces to
x3 = N(x)1, so that field is purely inseparable of exponent at most 1 over k.
(iii) =⇒ (i). Obvious. �
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We say that J is separable if every field extension of J has nil radical equal to zero, this being
automatic if T is non-degenerate [7, Theorem 6]. J is called absolutely simple if all its base field
extensions are simple.

Proposition 2. If J is simple and separable of dimension at least 4, then J is absolutely simple.

Proof. Let ks be the separable closure of k. We must show that Js = J ⊗ ks is simple. If not,
[9, Theorem 1] combined with [2, 10.17] allows an identification Js = ks ⊕ J ′ as a direct sum of
ideals, where J ′ is the Jordan algebra of a non-degenerate quadratic form with base point having
dimension at least 3. Thus J ′ is simple, and c := 1ks⊕ 0 is the only absolutely primitive idempotent
of Js whose Peirce components (in the labelling of Loos [2, § 5]) satisfy the relation (Js)1(c) = {0}.
We conclude that c remains fixed under the action of the absolute Galois group of k and hence
belongs to J . Since we still have J1(c) = {0}, the Peirce rules imply J = kc⊕J0(c) as a direct sum
of ideals, contradicting the simplicity of J . �

3. After these preparations, we can now turn to the question raised in 1. and answer it as
follows.

Proposition 3. Notations being as in 1., let J be a finite-dimensional Jordan division algebra
of degree 3 and dimension at least 4 over K whose generic trace is not identically zero. If for any
cubic subfield E/K of any isotope of J the base change (E ⊗ K̂)/K̂ is a field, then J ⊗ K̂ is a
Jordan division algebra over K̂.

Proof. As in 2., we have J = J(M) for some cubic norm structure M = (W,N, ], 1) over K.
The map w : J → Q∞ := Q ∪ {∞} defined by

w(x) :=
1
3
v
(
N(x)

)
(1)

for x ∈ J satisfies w(x) = ∞ ⇔ x = 0 and w(Uxy) = 2w(x) + w(y) for all x, y ∈ J . Hence it
will be a discrete valuation in the sense of [5, §§ 2,3] once we have shown the non-archimedean
triangle inequality w(x + y) ≥ min (w(x), w(y)). To do so, we may assume y = 1J by passing
to an appropriate isotope and then that x belongs to some cubic subfield E/K of J . But since
Ê := E ⊗ K̂ is a field by hypothesis, (1) defines the unique valuation of Ê extending v on K̂. In
particular, the non-archimedean inequality holds in Ê, hence a fortiori in E, and we are done.

Summing up, we have shown that w is a discrete valuation of J extending v. On the other
hand, by Propositions 1,2 combined, J is absolutely simple, allowing us to argue as in [6, 2.,
p.126]. Accordingly, write Ĵ for the completion of J relative to w, which is a division algebra [4,
Satz 3.3.10], and observe that,thanks to the universal property of completions, the composite map
K → J → Ĵ extends to a homomorphism K̂ → Ĵ , giving Ĵ the structure of a K̂-algebra. Hence
the embedding J → Ĵ induces a K̂-homomorphism J ⊗ K̂ → Ĵ , which, by absolute simplicity, is
injective. Thus J ⊗ K̂, being a finite-dimensional K̂-subalgebra of a Jordan division algebra, must
be a Jordan division algebra itself. �

4. By Proposition 1, the only case excluded from Proposition 3 is the one of a purely inseparable
field extension F/K of exponent at most 1 over a field of characteristic 3. One can avoid this
exclusion by dealing with Henselizations instead of completions throughout, see [10] for the relevant
facts about Henselizations. In particular, the Henselization, KH , of K relative to v is separably
algebraic, so F⊗KH must be a field [1, Theorem 8.46]. Hence the Henselian analogue of Proposition
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3 holds for F . Unfortunately, it is not clear whether the same can be said about the algebras actually
allowed in Proposition 3, the difficulty being that Henselizations (in analogy to completions) of
Jordan division rings don’t seem to make sense at the moment, see [4, § 4] for further disussions.
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