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Let me begin by working my way through the various definitions that will be
needed in order to understand the questions I am going to ask and the answers I
am going to provide.

Throughout I let F be a field of arbitrary characteristic; in particular, I do
not exclude characteristic 2. All algebras over F are non-associative F -algebras,
always different from zero, possibly infinite-dimensional, and always containing an
identity element.

1. Basic concepts.

My first target will be

1.1. Conic algebras. By a conic algebra over F I mean an F -algebra C which
admits a quadratic form nC : C → F , necessarily unique and called the norm of
C, such that

x2 − tC(x)x+ nC(x)1C = 0.

HeretC is the trace of C, i.e., the linear form defined by tC(x) := (∂nC)(1C , x),
where ∂nC is the symmetric bilinear form belonging to the quadratic form nC , so
(∂nC)(x, y) = nC(x+ y)− nC(x)− nC(y).

Given a conic algebra C with norm nC and trace tC over F , we always have
nC(1C) = 1, tC(1C) = 2 and write x∗ := tC(x)1C − x for the conjugation of C,
which is a linear map of period two that fixes the identity element but in general
is not an algebra involution.

1.2. Examples of conic algebras. (a) The base field F , with norm given by
nF (α) = α2.

(b) Any two-dimensional F -algebra C, with norm given by nC(x) := det(Lx) in
terms of the left multiplication by x in C.

(c) Any pre-composition algebra C over F : there exists a quadratic form n : C → F
which

(i) permits composition: n(xy) = n(x)n(y),

(ii) is non-degenerate: n(x) = (∂n)(x, y) = 0 for all y implies x = 0).
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Then C is conic with norm nC = n. By a theorem of Kaplansky [7], C is a
pre-composition algebra if and only if either

(iii) C/F is a purely inseparable field extension of characteristic 2 and exponent
at most 1, so C2 ⊆ F ,

or

(iv) C is a composition algebra in the sense that it is finite-dimensional and the
symmetric bilinear form ∂nC is non-degenerate.

In case (iv), C has dimension 1, 2, 4 or 8, and the following subcases are relevant.

(v) dimF (C) = 2: C is commutative associative.

(vi) dimF (C) = 4: C is associative but not commutative; it is called a quaternion
algebra.

(vii) dimF (C) = 8: C is alternative (i.e., the associator [x, y, z] := (xy)z − x(yz)
is alternating) but not associative; it is called an octonion algebra.

My second target will be

1.3. Division algebras. By a division algebra over F I mean an F -algebra D
such that for all u, v ∈ D, u 6= 0, the equations ux = v and yu = v have unique
solutions x, y ∈ D. A division algebra D over F has no zero divisors, so for
all x, y ∈ D the relation xy = 0 implies x = 0 or y = 0. Conversely, an F -
algebra D without zero divisors is a division algebra provided it is locally finite-
dimensional in the sense that every subalgebra on a finite number of generators
is finite-dimensional over F .

My aim in this talk will be to indicate constructions of conic algebras which are
also division algebras. Classical examples are the real division algebras

(i) C of complex numbers,

(ii) H of Hamiltonian quaternions,

(iii) O of Graves-Cayley octonions.

In the general set-up, it is important to note a

1.4. Necessary condition. Let C be a conic algebra over F .

(i) If C is a division algebra, then its norm is anisotropic: nC(x) 6= 0 for all
x 6= 0.

This follows immediately from the fact that division algebras have no zero divisors,
combined with the relation xx∗ = nC(x)1C . However, the converse of (i) does not
hold. Counter examples exist in abundance and will be presented in due course.
On the other hand, the converse of (i) does hold if you are willing to throw in an
additional hypothesis:

(ii) If C is a pre-composition algebra with nC anisotropic, then C is a division
algebra.

Indeed, the hypotheses imply that C has no zero divisors and, by Kaplansky’s
theorem, C is either a purely inseparable field extension of characteristic 2 and
exponent at most 1 or finite-dimensional, so 1.3 applies.
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2. The ordinary Cayley-Dickson construction.

Most conic division algebras encountered in this talk will be derived from the
Cayley-Dickson construction. Let me remind you of its

2.1. Main ingredients. The input of the Cayley-Dickson construction consists
of a conic F -algebra B and a non-zero scalar µ ∈ F . The output is a conic
F -algebra

Cay(B,µ) = B ⊕Bj
that lives on the vector space direct sum of two copies of B as above under a
multiplication I won’t even bother to write down explicitly. Suffice it to say that
the norm of C is given by the formula

nC(u+ vj) = nB(u)− µnB(v) (1)

in terms of the norm of B. In other words, the norm of C is the orthogonal sum
of two copies of the norm of B, the second summand being adorned with a scalar
factor −µ. We may therefore speak of the orthogonal Cayley-Dickson construction
in the present context.

2.2. Invariance under the Cayley-Dickson construction. Unfortunately,
useful properties of conic algebras that remain invariant under the Cayley-Dickson
construction are in short supply. Well known examples are

(i) flexibility, that is, the identity (xy)x = x(yx), and

(ii) the property of the conjugation to be an algebra involution.

Less well known is

(iii) the property of the norm to be a Pfister quadratic form.

This is important because Pfister forms are a topic in the algebraic theory of
quadratic forms that is exceedingly well understood. Rather than going into fur-
ther details, let me just remark that

(iv) the norms of composition algebras are Pfister,

(v) if B is a conic F -algebra whose norm is Pfister (e.g., an octonion algebra) and
µ ∈ F is a non-zero scalar, then the norm of C := Cay(B,µ) is anisotropic
if and only if the scalar µ is not a norm of B.

On the negative side,

(vi) the property of the norm to permit composition is (of course) not preserved
by the Cayley-Dickson construction.

More precisely, this failure is nicely captured by the formula

nC
(
(u1 + v1j)(u2 + v2j)

)
= nC(u1 + v1j)nC(u2 + v2j) (2)

− µ∂nB([u1, u2, v2], v1),

where B is an octonion algebra over F , µ ∈ F is non-zero and C = Cay(B,µ).

2.3. Sedenion algebras. By a sedenion algebra over F I mean an F -algebra C
such that there exist an octonion algebra B over F and a non-zero scalar µ ∈ F
satisfying C ∼= Cay(B,µ). By 2.1, sedenion algebras are conic of dimension 16.
In view of 2.2 (v) it is also clear how to construct, at least in principle, sedenion
algebras whose norms are anisotropic. The question of whether these algebras will
automatically become conic division algebras is, however, another matter since by
(2) they are no longer composition algebras. In fact, this question has a negative
answer in an important special case.
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2.4. The physicists’ darling: the real sedenions. The real sedenion algebra
so much loved by physicists (see, e.g, [10], [3], [8], [9] for details) arises from
the real octonion division algebra O as S := Cay(O,−1)1. By (1), its norm is
positive definite, hence anisotropic. But, of course, S cannot be a division algebra
because, thanks to the Bott-Kervaire-Milnor theorem [4, Kap. 10, § 2], finite-
dimensional real division algebras exist only in dimensions 1, 2, 4, 8. (Some people
even seem to have gone one step further by claiming in book form that the only
finite-dimensional real division algebras up to isomorphism are R,C,H, or O, but
this is palpably false.) Since the Bott-Kervaire-Milnor theorem is basically a deep
result from algebraic topology, it seems desirable to ask for purely algebraic reasons
why S cannot be a division algebra. The answer to this question is given by

2.5. Theorem. Let B be an octonion algebra over F , µ ∈ F a non-zero scalar
and C := Cay(B,µ).

(a) If char(F ) = 2, then C is a division algebra if and only if µ is not the norm of
an element of B.

(b) (Brown [2, Theorem 3]) If char(F ) 6= 2, then C is a division algebra if and
only if µ is not the norm of an element of B and −µ is not the norm of a trace
zero element of B. �

2.6. Corollary. The algebra S = Cay(O,−1) of real sedenions has zero divisors.

Proof. In Theorem 2.5 (b), we have F = R, B = O and µ = −1, hence −µ = 1.
But the restriction of nB to the trace zero elements of B gives a positive definite
quadratic form of dimension 7 which, therefore, represents 1. �

Brown has used a combination of his theorem and the Cayley-Dickson construction
to exhibit conic division algebras of arbitrarily high dimension over iterated Lau-
rent series fields. These examples, a variant of which over rational function fields
has been presented by Flaut [5], can be put into the more general and systematic
framework of

3. λ-valued algebras.

λ-valued algebras are for local fields what absolute valued algebras in the sense
of Albert [1] (see also Rodriguez Palacios [11]) are for the real numbers. Let me
begin by saying a few words about

3.1. Local fields. By a local field I mean a field F together with a discrete
valuation, i.e., a map λ : F → Z ∪ {∞} which is

(i) surjective,

(ii) definite, so λ(α) =∞⇐⇒ α = 0,

(iii) multiplicative, so λ(αβ) = λ(α) + λ(β)),

(iv) ultra-metrically sub-additive, so λ(α+ β) ≥ min{λ(α), λ(β)},

Moreover, I require that

(v) F is complete with respect to the topology induced by λ.

I then write

(vi) o := {α ∈ F | λ(α) ≥ 0} ⊆ F for the valuation ring,

1I am indebted to Nils Waßmuth for having (re)drawn my attention to this algebra.
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(vii) p := {α ∈ F | λ(α) > 0} ⊆ o for the valuation ideal,

(viii) F̄ = o/p for the residue field, and

(ix) α 7→ ᾱ for the natural map from o to F̄ .

For the rest of this section, I fix a local field F , the discrete valuation λ and all
the rest being understood.

3.2. The concept of a λ-valued algebra. By a λ-valued algebra over F I mean
an F -algebra C satisfying the following conditions.

(i) C is conic and finite-dimensional.

(ii) The norm of C is an anisotropic Pfister form. Since Springer [13], basically,
this condition is known to imply

λ
(
nC(x+ y)

)
≥ min

{
λ
(
nC(x)

)
, λ
(
nC(y)

)}
.

(iii) λ(nC(xy)) = λ(nC(x)) + λ(nC(y)).

It follows from (ii), (iii) that λ-valued algebras have no zero divisors, hence by (i)
are division algebras.

3.3. Examples and comments. Composition division algebras over F are
clearly λ-valued since their norms permit composition. Conversely, let C be
a λ-valued algebra over F that is not a composition algebra. Then the norm
nC does not permit composition, but the map λ ◦ nC does. Moreover, turn-
ing things around a little bit, condition 3.2 (iii) can be written in the form
λ(nC(xy)) = λ(nC(x)nC(y)), and so one can also say that the failure of nC to
permit composition is not detected by λ. This looks like a pretty far-fetched
phenomenon but, in fact, turns out to be quite common.

3.4. Elementary properties. Let C be a λ-valued F -algebra. From 3.2 (ii),
(iii) we immediately deduce that

(i) oC :=
{
x ∈ C | λ

(
nC(x)

)
≥ 0
}
⊆ C is an o-subalgebra and

(ii) pC :=
{
x ∈ C | λ

(
nC(x)

)
> 0
}
⊆ oC is an ideal.

Moreover, one can show that

(iii) C̄ := oC/pC is a finite-dimensional conic algebra over F̄ such that

dimF̄ (C̄) =

{
dimF (C) , in which case we say C is unramified, or
1
2 dimF (C) , in which case we say C is ramified.

Time does not permit me to disentangle all the various possibilities under which
the Cayley-Dickson construction starting from an unramified λ-valued algebra and
a non-zero scalar as input will again lead to a λ-valued algebra. Instead, let me
just settle with stating the following result.

3.5. Theorem. (Garibaldi-Petersson [6, Corollary 10.14]) Suppose F̄ has char-
acteristic 2 and let B be a flexible unramified λ-valued algebra over F such that
B̄/F̄ is a purely inseparable field extension of exponent at most 1. Let µ ∈ o and
suppose µ̄ /∈ B̄2. Then C := Cay(B,µ) is a flexible unramified λ-valued F -algebra
such that C̄ = B̄(

√
µ̄). �
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3.6. Corollary. Suppose F has characteristic zero, F̄ has characteristic 2, and
[F̄ : F̄ 2] =∞. For any integer n ≥ 1 there are scalars µ1, . . . , µn ∈ o× such that

Cn := Cay(F ;µ1, . . . , µn)

is an unramified λ-valued algebra of dimension 2n over F and

C̄n = F̄ (
√
µ̄1, . . . ,

√
µ̄n)

is a purely inseparable field extension of exponent 1. �

4. The non-orthogonal Cayley-Dickson construction.

In my constructions of conic division algebras so far, I have become increasingly
prone to taking advantage of pathologies in characteristic 2. In this (final) section
of my talk, I will bring this tendency to its logical conclusion by assuming from
the very beginning that F be a field of characteristic 2.

4.1. The main ingredients. The input of the non-orthogonal Cayley-Dickson
construction consists of

(i) a purely inseparable field extension K/F , possibly of infinite degree, but
necessarily of exponent at most 1, so K2 ⊆ F ;

(ii) a scalar µ ∈ F , possibly equal to zero.

(iii) an F -linear form s : K → F which is unital in the sense that s(1) = 1.

The output is a unital F -algebra

Cay(K;µ, s) = K ⊕Kj

living on the vector space direct sum of two copies of K as above under a multi-
plication the details of which you don’t really want to know.

Just for the record, here they are: the multiplication

(iv) makes K ⊆ C a unital subalgebra through the first summand, and

(v) satisfies the multiplication rules

(vj)u =
(
s(u)v + uv

)
+ (uv)j,

u(vj) =
(
s(uv)1 + s(u)v + s(v)u+ uv

)
+ (uv)j,

(v1j)(v2j) =
(
s(v1v2)1 + s(v1)v2 + s(v2)v1 + (1 + µ)v1v2

)
+

(
s(v1v2)1 + s(v1)v2 + v1v2

)
j.

Instead, we record the following result.

4.2. Proposition. (Garibaldi-Petersson [6, Prop. 4.4]) C := Cay(K;µ, s) is a
flexible conic F -algebra with norm nC : C → F given by

nC(u+ vj) = u2 + s(uv) + µv2.

Moreover, if K/F has finite degree, then nC is a Pfister form. �

4.3. The Artin-Schreier map. In order to answer the question of when the
non-orthogonal Cayley-Dickson construction leads to division algebras, we need
an additional ingredient. Let K,µ, s be as in 4.1 (i)−(iii). Then

℘K,s : K −→ F, u 7−→ ℘K,s(u) := u2 + s(u)

is called the associated Artin-Schreier map. Note that, as the notation suggests,
the Artin-Schreier map does not depend on µ.
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4.4. Theorem. (Garibaldi-Petersson [6, Theorem 6.4]) With the notation and
assumptions of 4.1 and C := Cay(K;µ, s), the following conditions are equivalent.

(i) C is a conic division algebra.

(ii) The norm of C is anisotropic.

(iii) µ /∈ Im(℘K,s).

�

4.5. Corollary. For a Pfister quadratic form over F to be the norm of a conic
division algebra it is necessary and sufficient that it be anisotropic.

Proof. The condition is clearly necessary, by 1.4. Conversely, suppose Q is an
anisotropic Pfister form over F . Then it can be shown that Q has the form
described in Prop. 4.2. Hence Theorem 4.4 applies. �

4.6. Concluding remarks. (a) The preceding corollary fails in characteristic
not 2. For example, fixing n > 3, there is a unique anisotropic real Pfister form of
dimension 2n, but no real conic division algebra of that dimension, thanks to the
Bott-Kervaire-Milnor theorem.

(b) In view of the results presented in this talk, one might be tempted to suspect
that a flexible conic algebra over a field of characteristic 2 is a division algebra
if and only if its norm is anisotropic. However, this is not true. Easy counter
examples exist in dimension 3.

4.7. An open question. In view of the examples known from the literature, it
is a natural question to ask whether the dimension of a conic division algebra over
an arbitrary field is always a power of two. The answer to this question is not
known. I have shown a long time ago [12] that the dimension of a conic division
algebra over a field of characteristic not two is always even but that’s a far cry
from being a power of two.

Suppose the preceding question has a negative answer. Then a counter example
of the least possible dimension would be a conic division algebra of dimension 6.
Such a creature certainly does not exist over the reals, but does it exist over the
field Q of rational numbers?
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