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Abstract

Cyclic compositions in the sense of Springer [18] and Knus-Merkurjev-Rost-Tignol [5] are
investigated by means of cyclic trisotopies, a concept originally due to Albert [1]. Using the
quadrupling of composition algebras, we enumerate cyclic trisotopies and compositions in a
rational manner, i.e., without extending the base field. We relate cyclic trisotopies explicitly to
simple associative algebras of degree 3 with involution and to the Tits process of cubic Jordan
algebras.

0. Introduction

Cyclic compositions were introduced by Springer [18] under the name of twisted compositions
(verschränkte Kompositionsalgebren) in order to understand what are known today as Albert
algebras; more specifically, Springer was able to set up a two-to-one correspondence between cyclic
compositions of rank 8 and Albert division algebras containing a given cubic Galois extension of the
base field. A systematic up-to-date account of cyclic compositions, emphasizing their connections
with algebraic groups and Galois cohomology, may be found in Knus-Merkurjev-Rost-Tignol [5]
and Springer-Veldkamp [19], the latter calling them normal twisted composition algebras instead;
see also Engelberger [2] for additional information on the subject. Cyclic trisotopies, on the other
hand, were introduced by Albert [1] basically for the same purpose but under no name at all2.
They have never been treated in book form and seem to be largely forgotten. Yet, since both
concepts pretty much succeeded in the objectives they were designed for, they must be in some
sense equivalent.

Our principal aim in the present paper will be to describe a new approach to cyclic compositions
by working out this equivalence in full detail and taking advantage of it as much as possible. This
allows us to view cyclic trisotopies as a tool of co-ordinatizing cyclic compositions by means of base
points. We then develop a structure theory for cyclic trisotopies that is quite different from the
one originally due to Albert and has many applications. For example, we will be able to enumerate
“free” cyclic compositions in a rational manner, i.e., without the need of extending the base field.
In particular, contrary to the approach adopted in [19, Chapter 4] or [2, Chapter 2], we do not have
to distinguish between isotropic and anisotropic cyclic compositions in the process. For a summary
of our enumeration results, the reader is referred to Theorem 1.8 below. As another application, we
will be able to work out the connection with the Tits process of Petersson-Racine [15], generalizing
the second Tits construction as presented by McCrimmon [7], one of the most powerful tools in the
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structure theory of Albert algebras. These applications underscore the fact that cyclic trisotopies,
as compared to cyclic compositions, have the technical advantage of being more intimately tied up
with ordinary composition algebras, whose structure theory, well understood as it is, will play a
crucial role in our investigation. There are irrefutable reasons, however, to be explained in 10.1
below, why the Cayley-Dickson doubling process, the standard tool for describing composition
algebras, is not appropriate in the present context. Instead, a certain quadrupling procedure,
producing composition algebras of rank 4r out of composition algebras of rank r ≤ 2, will take its
place.

The content of the paper, as it unfolds along the preceding lines, may be summarized as follows.
Cyclic compositions and trisotopies are introduced in the first two sections. These concepts are
then brought together by the notion of a pointed cyclic composition in section 3. The connection
with cubic norm structures and their associated (quadratic) Jordan algebras is briefly recalled
in section 4 in a characteristic-free manner, allowing us to put isotopes of cyclic compositions
and trisotopies into context. Changing base points leads to hybrids and weak homomorphisms
of cyclic trisotopies in section 5. Using these concepts, we are able to set up an equivalence
of categories between cyclic trisotopies with weak homomorphisms and free cyclic compositions.
Cyclic trisotopies and compositions of rank at most 2 are then enumerated in section 6. We
also relate their associated cubic norm structures to simple associative algebras of degree 3 with
involution by a slight generalization of the étale Tits process, going back to Petersson-Racine [14],
the terminology being due to Petersson-Thakur [16]. The significance of these results derives from
the fact that every cyclic trisotopy of rank > 2 up to weak isomorphism contains a cyclic sub-
trisotopy of rank equal to 2. After having investigated the core of a cyclic trisotopy as a useful
technical tool in section 7, we turn to reduced cyclic compositions and trisotopies in section 8. In
particular, we relate these notions to the corresponding ones for Jordan algebras of degree 3 and
give a self-contained proof for the fact that all cyclic trisotopies of rank 4 are reduced, allowing us
as an immediate application to enumerate free cyclic compositions of rank 4. Finally, following a
brief sketch of the quadrupling procedure for composition algebras in section 9, cyclic trisotopies
of rank 8 are enumerated in section 10. More generally, we will present an explicit construction
that yields all cyclic trisotopies of rank 4r containing a given cyclic sub-trisotopy of rank r ≤ 2. It
is no accident that the ingredients required for this construction are exactly the same as the ones
needed for the Tits process. Indeed, using these ingredients and the simple associative algebra of
degree 3 with involution attached to the given cyclic sub-trisotopy of rank r, the Tits process yields
a Jordan algebra of degree 3 whose corresponding cubic norm structure will be seen to agree with
the one belonging to the ambient cyclic trisotopy of rank 4r.

After appropriate modifications, the techniques developed in this paper can also be used for
a new approach to the structure theory of symmetric (rather than cyclic) compositions [5, § 34].
The reader is referred to a forthcoming paper by Stenger for details. As yet another application,
we intend to investigate twisted compositions [5, § 36] by means of unitary involutions on cyclic
trisotopies and to describe the obstructions to the validity of the Skolem-Noether theorem for cubic
étale subalgebras of Albert algebras. Throughout this article, we fix a base field k of arbitrary
characteristic. We will occasionally use elementary facts about alternative and Jordan algebras.
Standard references are Jacobson [4] and McCrimmon [9].
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1. Cyclic compositions

In this section, we adopt the terminology of [5, § 36.B] to define cyclic compositions and to recall
their most important elementary properties.

1.1. Cyclic cubic étale algebras. By a cyclic cubic étale k-algebra we mean a pair (E, ρ)
consisting of an étale algebra E of dimension 3 over k and a k-automorphism ρ of E having order 3,
so ρ3 = 1E 6= ρ. A homomorphism ϕ : (E, ρ) → (E′, ρ′) of cyclic cubic étale k-algebras is a (unital)
homomorphism ϕ : E → E′ of k-algebras satisfying ϕ ◦ ρ = ρ′ ◦ ϕ. A cyclic cubic étale k-algebra
(E, ρ) is either indecomposable, i.e., E/k is a cubic Galois extension, with ρ being one of the two
generators of the corresponding Galois group, or it splits, i.e., it is isomorphic to the 3-shift

(k ⊕ k ⊕ k, α1 ⊕ α2 ⊕ α3 7−→ α2 ⊕ α3 ⊕ α1) .

It follows that all cyclic cubic étale algebras are central simple as algebras with automorphism,
so there are no ρ-stable ideals other than the trivial ones and the only elements of E remaining
fixed under ρ are scalars. In particular, every homomorphism of cyclic cubic étale algebras is an
isomorphism.

1.2. The concept of a cyclic composition. Following [5, § 36.B] or [19, Definition 4.1.1], a
quintuple

S = (E, ρ,M,Q, ∗)

is said to be a cyclic composition over k if the following conditions hold.

CC1 (E, ρ) is a cyclic cubic étale k-algebra.

CC2 (M,Q) is a quadratic space over E, so M is a finitely generated (automatically projective)
E-module and Q : M → E is a quadratic form over E which is non-singular in the sense that
it induces an isomorphism from M onto its dual in the usual way.

CC3 (M, ∗) is a non-associative k-algebra.

CC4 Q permits twisted composition, so

Q(x ∗ y) = ρ
(
Q(x)

)
ρ2

(
Q(y)

)
. (x, y ∈M)(1.2.1)

CC5 Q is twisted associative, so if the bilinearization of Q is again denoted by

Q : M ×M −→ E , (x, y) 7−→ Q(x, y) = Q(x+ y)−Q(x)−Q(y) ,

we have

Q(x ∗ y, z) = ρ
(
Q(y ∗ z, x)

)
. (x, y, z ∈M)(1.2.2)

Given another cyclic composition S ′ = (E′, ρ′,M ′, Q′, ∗′) over k, a homomorphism (ϕ, φ) : S → S ′
consists of a homomorphism ϕ : (E, ρ) → (E′, ρ′) of cyclic cubic étale k-algebras and a ϕ-semi-linear
isometry φ : (M,Q) → (M ′, Q′) such that φ(x ∗ y) = φ(x) ∗′ φ(y) for all x, y ∈ V .

In the following lemma, the first part follows immediately from the non-degeneracy of Q com-
bined with (1.2.2), while the second and third part are due to Springer (cf. [19, Lemma 4.1.3]).
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1.3. Lemma. Let S = (E, ρ,M,Q, ∗) be a cyclic composition over k.

a) The k-bilinear product ∗ on M is ρ-semi-linear in the first variable, ρ2-semi-linear in the
second.

b) The relations

x ∗ (y ∗ x) = ρ
(
Q(x)

)
y ,(1.3.1)

(x ∗ y) ∗ x = ρ2
(
Q(x)

)
y(1.3.2)

hold for all x, y ∈M .

c) There is a unique cubic form NS : M → k over k such that

Q(x, x ∗ x) = NS(x)1E . (x ∈M)(1.3.3)

Moreover, the relation

(x ∗ x) ∗ (x ∗ x) = NS(x)x−Q(x)(x ∗ x)(1.3.4)

holds for all x ∈M .

�

1.4. Composition algebras. Let R be a commutative associative ring of scalars. Following
Petersson [11, 1.4], a composition algebra over R is a non-associative R-algebra C that is finitely
generated projective and has full support as an R-module (so, in particular, Cp 6= {0} for all
p ∈ SpecR), contains a unit element and admits a quadratic form NC : C → R uniquely determined
by the following conditions: NC is non-singular and permits composition, soNC(xy) = NC(x)NC(y)
for all x, y ∈ C. We call NC the norm and TC = NC(1C ,−) the trace of C. They are related by
the universal quadratic equation

x2 − TC(x)x+NC(x)1C = 0 . (x ∈ C)(1.4.1)

We also recall the conjugation of C,

ι = ιC : C −→ C , x 7−→ ι(x) = x = TC(x)1C − x ,(1.4.2)

which is an algebra involution in the usual sense. Recall from loc. cit. that composition algebras
are alternative of rank 1,2,4 or 8, and that an element x ∈ C is invertible in C if and only if NC(x)
is invertible in R, in which case x−1 = NC(x)−1x. Also, R itself is a composition algebra over R
(with norm NR(α) = α2) if and only if 1

2 ∈ R. Other standard properties of composition algebras
will be used without further comment from now on.

1.5. Cyclic compositions and composition algebras. Let S = (E, ρ,M,Q, ∗) be a cyclic
composition over k and suppose a, b ∈M are strongly anisotropic relative to Q, so Q(a) and Q(b)
are both units in E. Following Springer (cf. [19, p. 72]), the E-module M becomes a composition
algebra over E under the multiplication

xy = (a ∗ x) ∗ (y ∗ b) , (x, y ∈M)(1.5.1)

dependence of the left-hand side on a, b being understood. This composition algebra will be denoted
by S(a,b). Its unit element and norm are given by

1S(a,b) =
(
Q(b)−1b

)
∗

(
Q(a)−1a

)
, NS(a,b) = 〈ρ2

(
Q(a)

)
ρ
(
Q(b)

)
〉 . Q .(1.5.2)
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1.6. Free cyclic compositions and base points. A cyclic composition S = (E, ρ,M,Q, ∗) over
k is said to be free if M 6= {0} is a free E-module. In this case, the rank of M as a free E-module is
called the rank of S. By a base point for S, we mean an element a ∈M that is strongly anisotropic
relative to Q, so Q(a) ∈ E×.

1.7. Proposition. A cyclic composition over k is free if and only if it admits a base point.
Proof. Both conditions are fulfilled for S as in 1.6 if E is a field. On the other hand, if (E, ρ)

is split, their equivalence can be easily verified directly. �

Combining Proposition 1.7 with 1.4, 1.5, we conclude that the rank of a free cyclic composition
is 1, 2, 4 or 8. More precisely, we can now summarize our enumeration results for cyclic compositions
in the following theorem. For the proof, the reader is referred to 6.4, 8.7, 10.11 below.

1.8. Enumeration theorem for free cyclic compositions. Up to isomorphism, all free cyclic
compositions of rank r over k have the form S = (E, ρ,M,Q, ∗) where (E, ρ) is a cyclic cubic étale
k-algebra and precisely one of the following conditions holds.

a) r ≤ 2 and there exist an r-dimensional composition algebra L0 over k as well as elements
d ∈ L×0 , v ∈ E× such that, setting σ = 1L0 ⊗ ρ on L0 ⊗ E,

M = L0 ⊗ E, (as E-modules)

Q = 〈NL0(d)v
]〉 . (NL0 ⊗ E),

x ∗ y = σ(x)σ2(y)(d⊗ v)

for all x, y ∈M .

b) r = 4 and there exist a quaternion algebra C0 over k as well as an element v ∈ E× such that,
setting ϕ = 1C0 ⊗ ρ on C0 ⊗ E,

M = C0 ⊗ E, (as E-modules)

Q = 〈v]〉 . (NC0 ⊗ E),

x ∗ y = vϕ(x)ϕ2(y)

for all x, y ∈M .

c) r = 8 and there exist a quadratic étale k-algebra L0 as well as elements d ∈ L×0 , v ∈ E×, T ∈
SL3(L) (L = L0 ⊗ E), P ∈ M3(L0) such that, letting the maps σ = 1L0 ⊗ ρ, ιL0 ⊗ 1E act
componentwise on matrices of any size over L and writing × for the ordinary vector product
in 3-space,

T = T
t is hermitian,

detP = dd−1, P 3 = dd−113, P
t
TP = σ(T ),(1.8.1)

M = L⊕ L3, (as E-modules)

Q(a⊕ x) = NL0(d)v
]
(
(NL0 ⊗ E)(a) + xtTx

)
,

(a⊕ x) ∗ (b⊕ y) =
(
σ(a)σ2(b)− σ

(
xtTPσ(y)

))
(d⊗ v)⊕(

− P
(
σ(x)σ2(b) + Pσ2(y)σ(a)

)
(d⊗ v) +

(
TPσ(x)× TP 2σ2(y)

)
(d⊗ v)

)
for all a, b ∈ L, x, y ∈ L3.
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Part c) of this theorem generalizes the construction of isotropic cyclic compositions of rank 8
given in [19, Theorem 4.6.2] to the (possibly) non-isotropic case in a unified manner. The most
delicate ingredient of our construction is (1.8.1). As we shall see in Section 10 below, particularly
10.8, this set of relations can be fully understood by the notion of admissible pairs (see 6.9) and
their connections with the Tits process.

2. Cyclic trisotopies

Isolating the principal ingredients of Albert’s approach [1] to Albert division algebras containing a
given cubic Galois extension of the base field from their original surroundings will lead us in this
section to the concept of a cyclic trisotopy. We begin with a digression into alternative algebras
that was not available to Albert at the time.

2.1. Isotopes of alternative algebras. Let R be a commutative associative ring of scalars and
C a unital alternative algebra over R. Given invertible elements a, b ∈ C, we follow McCrimmon
[8] to define the (a, b)-isotope of C as the R-algebra C(a,b) living on the same R-module as C by
the multiplication

x .a,b y = (xa)(by)(2.1.1)

for all x, y ∈ C. The algebra C(a,b) is again unital alternative with identity element

1(a,b) = (ab)−1 .(2.1.2)

Unital alternative algebras C,C ′ are said to be isotopic if C ′ ∼= C(a,b) for some a, b ∈ C×. If C is a
composition algebra as in 1.4 , so is C(a,b), with norm

NC(a,b) = 〈NC(ab)〉 . NC .(2.1.3)

This formula immediately implies that Lab, the left multiplication by ab in C, is an isometry
from NC(a,b) onto NC , so isotopic composition algebras over fields, having isometric norms, are
isomorphic.

2.2. The concept of a cyclic trisotopy. By a cyclic trisotopy over k, we mean a quintuple

A = (E, ρ, C, g, b)

such that the following conditions hold.

CT1 (E, ρ) is a cyclic cubic étale k-algebra in the sense of 1.1.

CT2 C is a composition algebra over E.

CT3 b is an invertible element of C.

CT4 g : C → C is a ρ-semi-linear map satisfying the functional equation

g(xy) = [g(x)b][b−1g(y)]. (x, y ∈ C)(2.2.1)

CT5 g stabilizes the line through b and

g3(x) = bxb−1. (x ∈ C)(2.2.2)
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Given another cyclic trisotopy A′ = (E′, ρ′, C ′, g′, b′) over k, a homomorphism (ϕ, φ) : A → A′

consists of a homomorphism ϕ : (E, ρ) → (E′, ρ′) of cyclic cubic étale k-algebras and a ϕ-semi-
linear homomorphism φ : C → C ′ of unital algebras satisfying φ ◦ g = g′ ◦ φ, NC′ ◦ φ = ϕ ◦NC and
φ(b) = b′. In the presence of the remaining conditions, the relation NC′ ◦ φ = ϕ ◦NC is equivalent
to φ being injective.

Comparing (2.1.1) with (2.2.1), we see that CT4, (2.2.2) amount to g : C ∼→ C(b,b−1) being a
ρ-semi-linear isomorphism that cubes to conjugation by b; in particular, (g, b, b−1) belongs to the
structure group of C as a k-algebra in the sense of Petersson [12, 2.2, 2.3]. Summing up, g may
thus be viewed as a “trialitarian isotopy” of C.

2.3. Lemma. Let A = (E, ρ, C, g, b) be a cyclic trisotopy over k. Then the following statements
hold.

a) g(1C) = 1C .

b) NC ◦ g = ρ ◦NC , TC ◦ g = ρ ◦ TC .

c) g(x) = g(x) for all x ∈ C.

d) g(xy)b = g(x)
(
g(y)b

)
for all x, y ∈ C.

e) g : C+ ∼→ C+ is a ρ-semi-linear isomorphism of unital quadratic Jordan algebras over E. In
particular, g preserves all powers whenever they make sense.

Proof. As we have just noted, g may be viewed as a ρ-semi-linear isomorphism from C onto C(b,b−1).
But using (2.1.2), (2.1.3), C(b,b−1) turns out to be a composition algebra over E with unit 1C and
norm NC . This implies a), b), hence c) by (1.4.2), while d) is a special case of [12, 2.6]. Finally, e)
is an immediate consequence of the equation C(b,b−1)+ = C+ [8, (19)]. �

Remark. By [12, 2.6], Lemma 2.3 d) is actually equivalent to (2.2.1).

2.4. Albert’s approach to cyclic trisotopies. Cyclic trisotopies are intimately tied up with
Jordan algebras of degree 3 by means of their associated cubic norm structures, see 4.6 below for
details. In [1, sections 7 – 10] they arise in a different manner; we merely sketch the details. Let J be
an Albert algebra over k, E/k a cubic Galois extension that at the same time is a unital subalgebra
of J and ρ a generator of the corresponding Galois group. Then J ′ = J ⊗ E is a reduced Albert
algebra over E, containing E′ = E ⊗E ∼= E ⊕E ⊕E as a subalgebra and acted upon semi-linearly
by ρ through the second factor. Co-ordinatizing appropriately, we may thus assume J ′ = H3(C,Γ)
(the Jordan algebra of Γ-hermitian 3-by-3 matrices with entries in C and scalars (in E) down the
diagonal), for some octonion algebra C over E and some diagonal matrix Γ ∈ GL3(E), in such a
way that E′ sits diagonally in J ′. Inspecting [1, (45), (47), (61), Lemmata 10 – 13], the action of
ρ on J ′ is seen to be completely determined by an element b ∈ C× and a ρ-semi-linear bijection
g : C → C satisfying g(b) ∈ Eb, Lemma 2.3 d) and 2.2 CT5, thus making (E, ρ, C, g, b) a cyclic
trisotopy over k by the remark following Lemma 2.3. In [1, Lemma 12], matters are normalized
still further by the condition g(b) = b. This, however, may be assumed only up to isotopy, see 4.8
below.

2.5. Proposition. Let A = (E, ρ, C, g, b) be a cyclic trisotopy over k. Then there is a unique
element u ∈ E× such that the quantities

b0 := ρ(u)b ∈ C×, u0 := ρ(u)u−1 ∈ E×(2.5.1)
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satisfy the relations

NE(u) = NC(b0) ,(2.5.2)

g(b) = ρ(u0)−1b .(2.5.3)

Furthermore, the element b0 remains fixed under g.
Proof. By 2.2 CT5, we find a unique element u0 ∈ E satisfying (2.5.3), and (2.2.2) combined

with the ρ-semi-linearity of g (2.2 CT4) implies NE(u0) = 1. Hence Hilbert’s Theorem 90 yields
an element u ∈ E× satisfying the second equation of (2.5.1). Notice that u is unique only up to a
non-zero factor in k. On the other hand, g(b0) = ρ2(u)g(b) = ρ2(u)ρ(u0)−1b = ρ(u)b = b0, proving
the final assertion of the proposition. Also, NC(b0) by Lemma 2.3 b) remains fixed under ρ and
hence belongs to k. But since the first (resp. second) term of the expression NE(u) − NC(b0) is
cubic (resp. quadratic) in u, we find a unique element γ ∈ k× such that all of (2.5.2) – (2.5.3) hold
with u replaced by γu. �

2.6. The multiplier of a cyclic trisotopy. Let A = (E, ρ, C, g, b) be a cyclic trisotopy over k.
Then the unique element u ∈ E× exhibited in Proposition 2.5 is called the multiplier of A. It is
preserved by homomorphisms of cyclic trisotopies in the obvious way.

3. Connecting pointed cyclic compositions with cyclic trisotopies

In this section, cyclic compositions and cyclic trisotopies will be brought together by the following
concept.

3.1. Pointed cyclic compositions. A pointed cyclic composition is a pair (S, a) consisting of a
cyclic composition S and a base point a for S. Homomorphisms of pointed cyclic compositions are
homomorphisms of the underlying cyclic compositions preserving base points.

In what follows, we wish to set up an equivalence (actually, an isomorphism) of categories
between pointed cyclic compositions and cyclic trisotopies. We begin with the easier direction from
cyclic trisotopies to cyclic compositions.

3.2. Theorem. Let A = (E, ρ, C, g, b) be a cyclic trisotopy over k. Writing u for the multiplier
of A and setting u0 = ρ(u)u−1 as in (2.5.1), we put M = C as an E-module and

Q = 〈u〉 . NC ,(3.2.1)

x ∗ y = u0g(x)[g2(y)b], (x, y ∈ C)(3.2.2)

A0 = (E, ρ,M,Q, ∗) ,(3.2.3)

a0 = u−11C .(3.2.4)

Then Spr(A) = (A0, a0) is a pointed cyclic composition over k.
Proof. Among the defining conditions 1.2 CC1 – CC5 for a cyclic composition, only the last

two are not obvious, so we must show that Q permits twisted composition and is twisted associa-
tive. While the former may be derived from Lemma 2.3 and Proposition 2.5 by a straightforward
computation, twisted associativity is more troublesome. Using the formulae

TC(x, y) : = TC(xy) = NC(x, y) ,(3.2.5)
TC(x, y) = TC(y, x), TC(xy, z) = TC(x, yz) ,(3.2.6)

TC

(
g(x), g(y)

)
= ρ

(
TC(x, y)

)
,(3.2.7)
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the first two being valid in arbitrary composition algebras, the last one following from Lemma 2.3
b), we let x, y, z ∈ C and compute

Q(x ∗ y, z) = uNC

(
u0g(x)[g2(y)b], z

)
(by (3.2.1), (3.2.2))

= uu0NC

(
g
(
xg(y)

)
b, z

)
(by Lemma 2.3 d))

= ρ(u)TC

(
g
(
xg(y)

)
b, z

)
(by (2.5.1), (3.2.5))

= ρ(u)TC

(
g
(
xg(y)

)
, (bzb−1)b

)
(by (3.2.6))

= ρ(u)TC

(
g
(
xg(y)

)(
g3(z)b

))
(by (2.2.2), (3.2.5))

= ρ(u)TC

(
g
(
[xg(y)]g2(z)

)
, b

)
(by Lemma 2.3 d), (3.2.5))

= ρ(u)TC

(
ρ(u0)g

(
[xg(y)]g2(z)

)
, g(b)

)
(by (2.5.3))

= ρ(u)TC

(
g
(
u0[xg(y)]g2(z)

)
, g(b)

)
= ρ

(
uTC

(
u0[xg(y)]g2(z), b

))
(by (3.2.7))

= ρ
(
uTC

(
x, u0g(y)[g2(z)b]

))
(by (3.2.6))

= ρ
(
uNC(y ∗ z, x)

)
(by (3.2.2), (3.2.5))

= ρ
(
Q(y ∗ z, x)

)
. (by (3.2.1))

Hence Q is twisted associative, and we have shown that A0 as defined in (3.2.3) is a cyclic composi-
tion. Since the base points for A0 by (3.2.1) agree with the invertible elements of C, this completes
the proof. �

3.3. The rank of a cyclic trisotopy. Let A = (E, ρ, C, g, b) be a cyclic trisotopy over k.
Applying Proposition 1.7 to (A0, a0), the pointed cyclic composition attached to A via Theorem
3.2, we see that C is free as an E-module, allowing us to call

rankA := rankE C ∈ {1, 2, 4, 8}

the rank of A. By 1.4, rankA = 1 can occur only for char k 6= 2.

3.4. Example. Let C0 be a composition algebra over k. Then A = (E, ρ, C, g, 1C), where C =
C0 ⊗ E, g = 1C0 ⊗ ρ, is a cyclic trisotopy over k with multiplier 1E , and (3.2.2) collapses to
x ∗ y = g(x)g2(y) for x, y ∈ C, which agrees with [19, (4.9)] and hence relates to Springer’s notion
of reduced cyclic compositions [19, Definition 4.1.8]. This topic will be taken up more systematically
in Section 8 below.

Turning to the converse of the preceding discussion, we wish to attach a cyclic trisotopy to any
pointed cyclic composition in an explicit manner. This will require considerably more effort. We
begin with a straightforward consequence of Lemma 1.3 and the definitions.

3.5. Lemma. Let S = (E, ρ,M,Q, ∗) be a cyclic composition over k. If a ∈M is a base point for
S, so is a ∗ a and the map

LS(a) : M −→M , x 7−→ a ∗ x, (resp. RS(a) : M −→M , x 7−→ x ∗ a )

9



is ρ2- (resp. ρ-) semi-linear bijective. Moreover, we have

LS(a)−1 = RS
(
Q(a)−1a

)
, (resp. RS(a)−1 = LS

(
Q(a)−1a

)
) .

�

3.6. Theorem. Let (S, a) be a pointed cyclic composition over k. We set3

S = (E, ρ,M,Q, ∗) ,

d = ρ2
(
Q(a)

)−1(a ∗ a) ,(3.6.1)

C = S(d,a) ,

b = ρ2
(
Q(a)

)−1
Q(a)−1(a ∗ a) = Q(a)−1d ,(3.6.2)

g = Q(a)−1LS(a)2 ,(3.6.3)

so g : C → C is given by

g(x) = Q(a)−1[a ∗ (a ∗ x)] . (x ∈ C)(3.6.4)

Then Alb(S, a) := (E, ρ, C, g, b) is a cyclic trisotopy over k with multiplier u = Q(a)−1.
As a key ingredient of the proof, we first establish a formula allowing us to show later on that

the pointed cyclic composition attached to Alb(S, a) via Theorem 3.2 is (S, a) itself. As in (1.5.1),
we write

xy = (d ∗ x) ∗ (y ∗ a) (x, y ∈M)(3.6.5)

for the product in C and recall the well known relations

NC(xy, z) = NC(x, zy) = NC(y, xz) . (x, y, z ∈ C)(3.6.6)

3.7. Some useful identities. Notations being as above, setting

c := a ∗ a ,(3.7.1)

and using (1.4.2), (1.5.2) as well as Lemma 1.3, the following formulae may be derived by routine
computations, for all x, y ∈ C.

Q(c) = ρ
(
Q(a)

)
ρ2

(
Q(a)

)
,(3.7.2)

Q(d) = ρ
(
Q(a)

)
ρ2

(
Q(a)

)−1
,

1C = Q(a)−1a ,(3.7.3)
NC = 〈Q(a)〉 . Q ,(3.7.4)

g(1C) = 1C ,(3.7.5)
g(c) = c ,(3.7.6)

TC(x) = Q(a, x) ,(3.7.7)

x = Q(a)−1Q(a, x)a− x ,(3.7.8)

g(x) = Q(a)−1(x ∗ c) ,(3.7.9)
NC

(
g(x)

)
= ρ

(
NC(x)

)
,(3.7.10)

g(x) = g(x) ,(3.7.11)
xc = (c ∗ x) ∗ a .(3.7.12)

3The simple expression for the map g in (3.6.3), (3.6.4) below is due to U. Stenger; the one I had originally
proposed was more complicated.

10



Noting that g is ρ-semi-linear bijective by Lemma 3.5, we are now prepared to derive the key
formula.

3.8. Lemma. Keeping the previous notations, the formula(
Q(a)x

)
∗

(
Q(a)y

)
= g(x)[g2(y)c]

holds for all x, y ∈M .

Proof. We first show

g(x)c = ρ
(
Q(a)

)
(x ∗ a)(3.8.1)

for all x ∈M . Indeed,

g(x)c =
(
c ∗ g(x)

)
∗ a (by (3.7.12))

= [c ∗
(
Q(a)−1(x ∗ c)

)
] ∗ a (by (3.7.9))

= Q(a)−1
(
[c ∗ (x ∗ c)] ∗ a

)
= Q(a)−1ρ2

(
Q(c)

)
(x ∗ a) (by (1.3.1))

= ρ
(
Q(a)

)
(x ∗ a). (by (3.7.2))

Next we show

g2(y)c = ρ2
(
Q(a)

)
(a ∗ y)(3.8.2)

for all y ∈M . Indeed,

g2(y)c = ρ
(
Q(a)

)(
g(y) ∗ a

)
(by (3.7.11), (3.8.1))

= ρ
(
Q(a)

)((
Q(a)−1( y ∗ c)

)
∗ a

)
(by (3.7.9))

= (y ∗ c) ∗ a
= ρ2

(
Q(a, y )

)
c− (a ∗ c) ∗ y (by (1.3.2) linearized)

= ρ2
(
Q(a, y )

)
c− ρ2

(
Q(a)

)
(a ∗ y ). (by (1.3.1), (3.7.1))

But Q(a, y) = Q(a, y) by (3.7.7), so

g2(y)c = ρ2
(
Q(a, y)

)
c− ρ2

(
Q(a)

)(
a ∗

(
Q(a)−1Q(a, y)a− y

))
(by (3.7.8))

= ρ2
(
Q(a)

)
(a ∗ y), (by (3.7.1))

giving (3.8.2). Hence

g(x)[g2(y)c] =
(
Q(a)−1(x ∗ c)

)(
ρ2

(
Q(a)

)
(a ∗ y)

)
(by (3.7.9), (3.8.2))

= Q(a)−1ρ2
(
Q(a)

)(
d ∗ (x ∗ c)

)
∗

(
(a ∗ y) ∗ a

)
(by (3.6.5))

= Q(a)−1ρ2
(
Q(a)

)
ρ
(
Q(a)

)−1(
c ∗ (x ∗ c)

)
∗

(
(a ∗ y) ∗ a

)
(by (3.6.1))

= Q(a)−1ρ
(
Q(a)

)−1
ρ2

(
Q(a)

)
ρ2

(
Q(c)

)
ρ
(
Q(a)

)
(x ∗ y) (by (1.3.1), (1.3.2))

= ρ
(
Q(a)

)
ρ2

(
Q(a)

)
(x ∗ y), (by (3.7.2))

which proves the lemma. �
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3.9. We are now ready to enter into the proof of Theorem 3.6. The idea is to express twisted
associativity of Q in terms of g, using Lemma 3.8. Indeed, given x, y, z ∈M , Lemma 3.8 implies

Q
((
Q(a)x

)
∗

(
Q(a)y

)
, Q(a)z

)
= Q(a)−1NC

(
g(x)[g2(y)c], Q(a)z

)
(by (3.7.4))

= NC

(
g(x)[g2(y)c], z

)
= NC

(
g(x), z[ cg2(y)]

)
. (by (3.6.6))

Here (1.2.2) tells us that, at the expense of an application of ρ, the expression

NC

(
g(x)[g2(y)c], z

)
= NC

(
g(x), z[ cg2(y)]

)
remains unaffected by a cyclic change of variables. Hence we obtain

NC

(
g(x), z[ cg2(y)]

)
= ρ

(
NC

(
g(y)[g2(z)c], x

))
= NC

(
g
(
g(y)[g2(z)c]

)
, g(x)

)
(by (3.7.10))

= NC

(
g
(
[ cg2(z)]g(y)

)
, g(x)

)
. (by (3.7.11))

Since NC is non-singular, this implies

g
((
cg2(x)

)
g(y)

)
= x

(
cg2(y)

)
(3.9.1)

for all x, y ∈ C. Observing (3.7.11), applying the canonical involution to (3.9.1) and replacing x
by y, y by g−1(x), we obtain

g
(
x
(
g2(y)c

))
=

(
g(x)c

)
y(3.9.2)

for all x, y ∈ C. Setting y = 1, (3.7.5) yields

g(xc) = g(x)c.(3.9.3)

Setting x = 1 in (3.9.2) therefore implies g3(y)c = cy, hence

g3(y) = cyc−1,(3.9.4)

and we have (2.2.2) (by (3.6.2), (3.7.1)). Finally, given x, y ∈ C, we determine y′ ∈ C such that
g2(y′)c = y and obtain

[g(x)b][b−1g(y)] =
(
g(x)c

)
[c−1g

(
g2(y′)c

)
]

=
(
g(x)c

)(
c−1g3(y′)c

)
(by (3.9.3))

=
(
g(x)c

)
y′ (by (3.9.4))

= g(xy) . (by (3.9.2))

This gives (2.2.1), and we have shown that Alb(S, a) as defined in Theorem 3.6 is indeed a cyclic
trisotopy over k. To prove that its multiplier is u = Q(a)−1, i.e., that this element satisfies the
conditions of Proposition 2.5, one uses (3.7.2), (3.7.4), (3.7.6). Details are left to the reader. �

Our final aim in this section will be to show that the two constructions presented in the preceding
theorems are inverses of one another. As indicated earlier, the hardest part of the job has been
done already in Lemma 3.8.
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3.10. Theorem. Keeping the previous notations, the following statements hold.

a) Let (S, a) be a pointed cyclic composition over k. Then Spr
(
Alb(S, a)

)
= (S, a).

b) Let A be a cyclic trisotopy over k. Then Alb
(
Spr(A)

)
= A.

Proof. a) We write
S = (E, ρ,M,Q, ∗) , A := Alb(S, a) = (E, ρ, C, g, b)

and must show that
(A0, a0) = Spr(A) , A0 =: (E, ρ,M0, Q0, ∗0)

agrees with (S, a). First of all, M0 = C = M as E-modules. Furthermore, by Theorem 3.6,
u = Q(a)−1 is the multiplier of A, whence Q0 = Q by (3.2.1),(3.7.4), a0 = a by (3.2.4), (3.7.3),
and it remains to prove ∗0 = ∗. To this end, we set c = a ∗ a as in (3.7.1) and u0 = ρ(u)u−1 =
Q(a)ρ(Q(a))−1 as in (2.5.1) to obtain, for x, y ∈M ,

x ∗ y = g
(
Q(a)−1x

)
[g2

(
Q(a)−1y

)
c] (by Lemma 3.8)

= ρ
(
Q(a)

)−1
ρ2

(
Q(a)

)−1
ρ2

(
Q(a)

)
Q(a)g(x)[g2(y)b] (by (3.6.2))

= u0g(x)[g2(y)b]

= x ∗0 y. (by (3.2.2))

Hence (A0, a0) = (S, a), as claimed.
b) By a) it suffices to show that Spr(A) =

(
(E, ρ,M,Q, ∗), a0

)
determines A = (E, ρ, C, g, b)

uniquely. Since Q(a0) = uNC(u−11C) (by (3.2.1),(3.2.4)) = u−1, u being the multiplier of A, we
obtain

u = Q(a0)−1,

1C = ua0, (by (3.2.4))

NC = 〈u−1〉 . Q, (by (3.2.1))
TC = NC(1C ,−),
x = TC(x)1C − x, (x ∈ C)

u0 = ρ(u)u−1, (by (2.5.1))

b = u−1
0 (1C ∗ 1C) , (by (3.2.2) and Lemma 2.3 a))

g(x) = u−2
0 NC(b)−1(x ∗ b), (x ∈ C) (by (3.2.2) and since NE(u0) = 1)

xb = u−1
0

(
g−1(x) ∗ 1C

)
. (x ∈ C)

Thanks to the last equation, Rb, the right multiplication by b in C, only depends on Spr(A). Hence
so does its inverse R−1

b = Rb−1 . But now the relation

xy = u−1
0

(
g−1(x) ∗ g−2(yb−1)

)
(x, y ∈ C)

shows that also the product of C is completely determined by Spr(A), and we are done. �

4. Isotopes

This section serves as a brief digression into isotopes, giving us the opportunity to recall the well
known connection of cyclic compositions with cubic norm structures and their associated Jordan
algebras in a characteristic-free manner. We then proceed to define isotopes of pointed cyclic
compositions and to translate this concept into the setting of cyclic trisotopies by means of the
correspondence set up in the previous section.
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4.1. Cubic norm structures and their associated Jordan algebras. Let R be an arbitrary
commutative associative ring of scalars. Following McCrimmon [7], adopting the terminology of [15]
at the same time, a cubic norm structure overR is a quadruple (W,N, ], 1) consisting of anR-module
W , a cubic form N : W → R, called the norm, a quadratic map ] : W → W , called the adjoint,
and a distinguished element 1 ∈W , called the base point, such that the relations x]] = N(x)x (the
adjoint identity), N(1) = 1 (the base point identity), T (x], y) = (DN)(x)y (the gradient identity),
1] = 1, 1×y = T (y)1−y hold under all scalar extensions. Here T = −(D2logN)(1) : W×W −→W
stands for the associated trace form, x× y = (x+ y)]− x]− y] for the bilinearization of the adjoint
and T (y) = T (y, 1). A homomorphism of cubic norm structures is a linear map of the underlying
R-modules preserving norms, adjoints and base points in the obvious sense. The argument given
in [7, p. 507] shows that, given two cubic norm structures over R whose associated trace forms are
non-degenerate, every linear surjection of the underlying modules preserving norms and units is,
in fact, an isomorphism of cubic norm structures.

If (W,N, ], 1) is a cubic norm structure over R, then the U -operator defined by Uxy = T (x, y)x−
x]×y for all x, y ∈W and the base point 1 giveW the structure of a unital quadratic Jordan algebra,
which we denote by J = J(W,N, ], 1) and call the Jordan algebra associated with (W,N, ], 1).
Assigning to a cubic norm structure its associated Jordan algebra is clearly functorial.

As an easy example, let (E, ρ) be a cyclic cubic étale k-algebra. Viewing E merely as a vector
space over k, NE : E → k, v 7→ NE(v) = vρ(v)ρ2(v), ] : E → E, v 7→ v] = ρ(v)ρ2(v), and the unit
element of E define a cubic norm structure (E,N, ], 1) over k satisfying J(E,N, ], 1) = E+. In
particular, the associated trace form is given by (v, w) 7→ TE(v, w) := TE(vw).

4.2. The cubic norm structure of a cyclic composition. Let S = (E, ρ,M,Q, ∗) be a cyclic
composition over k. Then the cubic form NS defined in (1.3.3) lies at the core of the cubic norm
structure that may be attached to S as follows (see [5, (38.6)] or, in characteristic not two, [19, 6.3]
for a generalization). Regarding W = E ⊕M merely as a vector space over k, we define a cubic
form N : W → k, an adjoint ] : W →W and a base point 1 ∈W by the formulae

N(v ⊕ x) = NE(v)− TE

(
v,Q(x)

)
+NS(x) ,(4.2.1)

(v ⊕ x)] =
(
v] −Q(x)

)
⊕ (−vx+ x ∗ x) ,(4.2.2)

1 = 1E ⊕ 0

for v ∈ E, x ∈M to obtain a cubic norm structure Cube(S) = (W,N, ], 1) over k. The correspond-
ing Jordan algebra of degree 3 will be denoted by J(S) = J

(
Cube(S)

)
= J(W,N, ], 1). Clearly, E+

identifies canonically with a subalgebra of J(S) through the first factor. The trace form associated
with Cube(S), which agrees with the generic trace of J(S), is given by

T (v ⊕ x,w ⊕ y) = TE(v, w) + TE

(
Q(x, y)

)
(4.2.3)

for all v, w ∈ E, x, y ∈ M . It follows that J(S) is nonsingular as a Jordan algebra of degree 3 in
the sense that its generic trace is a nonsingular symmetric bilinear form over k.

4.3. Isotopes of cyclic compositions. Let S = (E, ρ,M,Q, ∗) be a cyclic composition over k
and w ∈ E an invertible element. Following [19, p. 70] or, in a slightly different context, [5, (36.1)],
we define

Q(w) = 〈w]〉 . Q
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as a quadratic form over E and a k-bilinear product ∗(w) on M by the formula

x ∗(w) y = w(x ∗ y)

for all x, y ∈M . Then it follows easily that

S(w) = (E, ρ,M,Q(w), ∗(w))

is again a cyclic composition over k, called the w-isotope of S. It is also straightforward to check
that the cubic form attached to S(w) via (1.3.3) is related to the one attached to S by the formula

NS(w)(x) = NE(w)NS(x) . (x ∈M)

Using this formula, the connection between isotopes of cyclic compositions and those of their
associated Jordan algebras (cf. 4.2) can be described immediately as follows.

4.4. Proposition. Let S = (E, ρ,M,Q, ∗) be a cyclic composition over k and w ∈ E×. Then the
map

ϕw : J(S)(w) ∼−→ J(S(w)), v ⊕ x 7−→ ϕw(v ⊕ x) := (wv)⊕ x,

for v ∈ E, x ∈M is an isomorphism of Jordan algebras. �

4.5. Isotopes of pointed cyclic compositions. Let (S, a) be a pointed cyclic composition over
k, S = (E, ρ,M,Q, ∗) as usual, and w ∈ E×. Then

(S, a)(w) := (S(w), a(w)), a(w) := w]−1a ,

is again a pointed cyclic composition, called the w-isotope of (S, a).
Thanks to the equivalence of pointed cyclic compositions and cyclic trisotopies, it should be

possible to transfer the preceding concepts to cyclic trisotopies. In fact, this turns out to be so
easy that we state the results mostly without proof.

4.6. The cubic norm structure of a cyclic trisotopy. Let A = (E, ρ, C, g, b) be a cyclic
trisotopy with multiplier u over k and, as in Theorem 3.2, write Spr(A) = (A0, a0) for its associated
pointed cyclic composition. Then we put

NA := NA0 , Cube(A) := Cube(A0), J(A) := J(A0) .(4.6.1)

The cubic form NA can be described quite easily in terms of A alone because, observing (2.5.1),
we have

NA(x)1E = NC

(
g2(x)[g(x)x], b0

)
. (x ∈ C)(4.6.2)

Indeed, since g commutes with the canonical involution of C by Lemma 2.3 c), we may use
(1.3.3),(4.6.1) to compute

NA(x)1E = uNC(x, u0g(x)[ g2(x)b]) (by (3.2.1), (3.2.2))

= uu0NC(g2(x)[g(x)x], b) (by (3.6.6))

and (2.5.1) yields (4.6.2).
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4.7. Proposition. Let A = (E, ρ, C, g, b) be a cyclic trisotopy with multiplier u over k. Then, for
all w ∈ E×,

A(w) := (E, ρ, C, g, b(w)), b(w) := ρ(w)b ,(4.7.1)

is a cyclic trisotopy over k with multiplier u(w) := w]u. We call A(w) the w-isotope of A and have
the relation Spr(A(w)) = Spr(A)(w). Also, extending the notations of (2.5.1) to the present set-up
in the obvious way, (b(w))0 = NE(w)b0, (u(w))0 = wρ(w)−1u0. �

4.8. Corollary. Notations being as in 4.7, A(u) = (E, ρ, C, g, b(u)), the u-isotope of A, satisfies
the relation g(b(u)) = b(u).

Proof. Since b(u) = ρ(u)b by (4.7.1), this follows immediately from Propositions 2.5, 4.7. �

Remark. Returning to Albert’s approach to cyclic trisotopies (2.4), we conclude from Corollary
4.8 that passing to the u-isotope of A allows us with Albert to make the additional assumption
g(b) = b.

4.9. Corollary. Let (S, a), S = (E, ρ,M,Q, ∗), be a pointed cyclic composition over k and w ∈
E×. Then Alb

(
(S, a)(w)

)
=

(
Alb(S, a)

)(w). �

5. Hybrids and weak homomorphisms

We now describe in detail how changing base points of pointed cyclic compositions affects their
associated cyclic trisotopies. This will enable us to introduce the concept of a weak homomorphism
and to set up an equivalence of categories between cyclic trisotopies with weak homomorphisms
and cyclic compositions admitting a base point.

5.1. Changing base points. Let A = (E, ρ, C, g, b) be a cyclic trisotopy with multiplier u over
k and write

Spr(A) = (A0, a0)(5.1.1)

for its associated pointed cyclic composition. It follows from (3.2.1) that the base points of A0

agree with the invertible elements of C. Hence as t runs through the base points of A0, so does
u−1t, and we are allowed to define a new cyclic trisotopy

A[t] := Alb(A0, u−1t )(5.1.2)

over k, depending on t and called the t-hybrid of A. Notice that (5.1.2) and Theorem 3.10 a) imply

Spr(A[t]) = (A0, u−1t ) , A[t]0 = A0 .(5.1.3)

For technical reasons, it will be important to describe the t-hybrid of A explicitly in terms of A
and t.

5.2. Theorem. Let A = (E, ρ, C, g, b) be a cyclic trisotopy with multiplier u over k and t ∈ C×.
We write A[t] = (E, ρ, C [t], g[t], b[t]) for the t-hybrid of A and put s := tg(t)−1. Then
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a) C [t] = C(s,g(t)) is the (s, g(t))-isotope of C. In particular, unit element and norm of C [t] are
given by

1C[t] = t−1 ,(5.2.1)
NC[t] = 〈NC(t)〉 . NC .(5.2.2)

b) b[t] ∈ C [t]× and g[t] : C [t] → C [t] are given by the formulae

b[t] = NC(t)−1g(t)[g2(t)−1b] = NC(t)−1g(t)[bg−1(t)−1] ,(5.2.3)

g[t](x) = g(t)[g(x)t−1] . (x ∈ C)

c) The multiplier of A[t] is

u[t] = NC(t)−1u .(5.2.4)

Proof. We confine ourselves to proving only those parts of this result that will be used later on,
and these are (5.2.1) – (5.2.4). Observing (5.1.1), (5.1.3), we put

A0 = A[t]0 = (E, ρ,M,Q, ∗)(5.2.5)

and systematically make use of the abbreviations

t− = u−1 t , t+ = ρ2
(
Q(t−)

)−1(t− ∗ t−) , c[t] = t− ∗ t− ,(5.2.6)

t+, c[t] being modelled after (3.6.1), (3.7.1), respectively. We now claim

Q(t−) = u−1NC(t) ,(5.2.7)

c[t] = ρ2(u)−1u−1g(t)[g2(t)b] ,(5.2.8)

Here (5.2.7) follows immediately from (3.2.1), (5.2.6). To prove (5.2.8), we compute

c[t] = ρ(u)−1ρ2(u)−1(t ∗ t) (by Lemma 1.3 a), (5.2.6))

= ρ(u)−1ρ2(u)−1u0g(t)[g2(t)b] (by (3.2.2))

= ρ2(u)−1u−1g(t)[g2(t)b] , (by (2.5.1))

and the proof of (5.2.8) is complete.
Now (5.2.4) follows immediately from (5.2.7) combined with (3.2.1), (5.1.3), (5.2.5) and Theorem
3.6. Combining (5.2.4) with (3.2.4), (3.2.1), we also obtain (5.2.1), (5.2.2). Finally, (5.2.3) derives
from the following computation:

b[t] = ρ2
(
Q(t−)

)−1
Q(t−)−1c[t] (by (3.6.2), (5.2.6))

= ρ2(u)ρ2
(
NC(t)

)−1
uNC(t)−1ρ2(u)−1u−1g(t)[g2(t)b] (by (5.2.7), (5.2.8))

= NC(t)−1g(t)[g2(t)−1b] (by 2.2 CT4, Lemma 2.3 e))

= NC(t)−1g(t)[g3g−1(t−1)b]

= NC(t)−1g(t)[bg−1(t )−1] . (by (2.2.2))

�
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5.3. Weak homomorphisms. Given two cyclic trisotopies

A = (E, ρ, C, g, b),A′ = (E′, ρ′, C ′, g′, b′)

over k, a weak homomorphism from A to A′ is a homomorphism in the sense of 2.2 from A to
A′ [t′] for some t′ ∈ C ′ ×, necessarily unique by (5.2.1). We say that A,A′ are weakly isomorphic
and write A ∼ A′ if there exists a weak isomorphism, i.e., a bijective weak homomorphism, from A
to A′. By our previous results, considering cyclic trisotopies under weak homomorphisms amounts
to considering cyclic compositions with (unspecified) base points under ordinary homomorphisms.
More precisely, we obtain the following theorem.

5.4. Theorem. The assignments (S, a) 7→ Alb(S, a) and A 7→ Spr(A) defined in Theorems 3.2,
3.6 above canonically induce an equivalence of categories between free cyclic compositions on the
one hand and cyclic trisotopies with weak homomorphisms on the other. �

5.5. Cyclic compositions and trisotopies over rings. O. Loos has made the interesting
observation that, aside from Proposition 1.7 and Theorem 1.8 above, all of our previous results
continue to hold if the base field k is replaced by an arbitrary commutative associative ring of scalars,
provided the pertinent modules are assumed throughout to be finitely generated projective. Indeed,
the only proof demanding special care over rings is the one of Proposition 2.5, where we make use
of Hilbert’s Theorem 90, which by the standard proof known from field theory [6, pp. 288-9] is
easily seen to hold locally, though it fails to hold globally. Therefore, given a cyclic trisotopy
A = (E, ρ, C, g, b) over any commutative ring k (assuming, in particular, that E be finitely gene-
rated projective as a k-module), elements u satisfying the conditions of Proposition 2.5 exist locally
and are unique, hence glue to give a unique global element of the desired kind.

5.6. Invariants of cyclic compositions. The preceding results enable us to find invariants
of cyclic compositions. For simplicity working with a fixed cyclic cubic étale k-algebra (E, ρ)
throughout, let S be a free cyclic composition of rank 2n, 0 ≤ n ≤ 3, over k and A = (E, ρ, C, g, b)
a cyclic trisotopy with multiplier u ∈ E× corresponding to S via Theorem 5.4. Since A is uniquely
determined by S up to weak isomorphism, it follows from (5.2.2) that the n-fold Pfister form
NC over E up to isometry only depends on S, as does the composition algebra C over E up to
isomorphism; for n = 3, these invariants may both be identified with the base change from k to E
of the 3-invariant mod 2 attached to the Albert algebra J(S) ([5, § 40] or [13, § 4]). Similarly, it
follows from (5.2.4) that the image of u in E×/NC(C×) only depends on S; it is called the multiplier
of S.

6. Cyclic trisotopies of low rank

6.1. In this section, we enumerate cyclic trisotopies of rank at most 2; rather than doing so
directly, which would have been quite easy, we prefer to derive a somewhat more general result
that turns out to be useful later on. As an application, we draw connections to the étale Tits
process and to simple associative algebras of degree 3 with involution.

6.2. Theorem. Let A = (E, ρ, C, g, b) be a cyclic trisotopy over k. Then the following statements
are equivalent.

(i) g : C → C is a (ρ-semi-linear) automorphism of C having order 3.
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(ii) There exist a composition algebra C0 over k as well as invertible elements d0 ∈ C0, w0 ∈ E
such that

A′ :=
(
E, ρ, C0 ⊗ E,1C0 ⊗ ρ, d0 ⊗ ρ(w0)−1

)
is a cyclic trisotopy isomorphic to A.

(iii) A has rank at most 2 or b ∈ E1C .

In this case, u = NC0(d0)NE(w0)−1w0 is the multiplier of A′ and in the terminology of Proposition
2.5 we have

u0 = ρ(w0)w−1
0 , b0 = NC0(d0)NE(w0)−1d0 ∈ C×

0 .

Proof. (i) =⇒ (ii). By hypothesis, C0 := {x ∈ C | g(x) = x} ⊆ C is a unital k-subalgebra, and
NC restricts to a quadratic form NC0 : C0 → k. It therefore suffices to show that the inclusion
C0 ↪→ C induces an isomorphism C0⊗E

∼→ C of E-modules. Here we are done if E is a field ([3, X,
Lemma 2]). On the other hand, if (E, ρ) splits, the assertion follows easily by direct computation.
(ii) =⇒ (iii). By (ii), we may assume that there are a composition algebra C0 over k and invertible
elements d0 ∈ C0, w0 ∈ E satisfying C = C0 ⊗E, g = 1C0 ⊗ ρ, b = d0 ⊗ ρ(w0)−1. In particular, g is
a ρ-semi-linear automorphism of C having order 3, which, by (2.2.1), (2.2.2), implies C(b,b−1) = C
and bxb−1 = x for all x ∈ C. The former condition, in turn, is equivalent to b belonging to the
nucleus of C [8, Proposition 7]. Since quaternion (resp. octonion) algebras over fields are known
to be central (resp. to have trivial nucleus), hence enjoy these properties over E as well, even if E
is not a field, (iii) holds.
(iii) =⇒ (i). If A has rank at most 2, C is commutative associative. Therefore, if (iii) holds, (2.2.1),
(2.2.2) tell us that g : C → C is a ρ-semi-linear automorphism of order 3.
The remaining assertions of the theorem now follow immediately from Proposition 2.5. �

The following corollary, enumerating cyclic trisotopies of rank ≤ 2, is an immediate consequence
of the preceding theorem.

6.3. Corollary. Up to isomorphism, the cyclic trisotopies of rank r ≤ 2 are precisely of the form

A =
(
E, ρ, L0 ⊗ E,1L0 ⊗ ρ, d0 ⊗ ρ(w0)−1

)
,

where (E, ρ) is a cyclic cubic étale k-algebra, L0 is a composition algebra of dimension r over k
and d0 ∈ L×0 , w0 ∈ E×. �

6.4. Proof of Theorem 1.8 a). Every free cyclic composition of rank r ≤ 2 by Theorem 5.4
corresponds to a cyclic trisotopy as in Corollary 6.3. Setting d := d0, v := w−1

0 and applying
Theorems 3.2, 6.2, the assertion follows. �

6.5. Algebras of degree 3 with involution. Let A be a cyclic trisotopy of rank r ≤ 2 over k.
Up to isomorphism, Corollary 6.3 allows us to assume

A = (E, ρ, L, σ, b) ,(6.5.1)

where (E, ρ) is a cyclic cubic étale k-algebra and

L = L0 ⊗ E, σ = 1L0 ⊗ ρ, b = d0 ⊗ ρ(w0)−1(6.5.2)
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for some composition algebra L0 of dimension r over k, d0 ∈ L×0 , w0 ∈ E×. By Theorem 6.2,
u = NL0(d0)NE(w0)−1w0 is the multiplier of A and

u0 = ρ(w0)w−1
0 , b0 = NL0(d0)NE(w0)−1d0 ∈ L×0 .(6.5.3)

We now put

λ = b b−1 = d0 d
−1
0 = b0 b

−1
0 ∈ L×0 ,(6.5.4)

forcing

λλ = 1L0 .(6.5.5)

Combining (2.5.2), (2.5.1) with (6.5.3), we also have

NE(u) = NL0(b0) .(6.5.6)

Furthermore, we regard (L, σ) as a cyclic cubic étale L0-algebra. Then B := (L, σ, λ) is a cyclic
Azumaya algebra of degree 3 over L0. We may write B = L⊕LY ⊕LY −1 as a free L-module with
basis (1L, Y, Y

−1) and have the relations

Y 3 = λ1L , Y a = σ(a)Y . (a ∈ L)(6.5.7)

In particular, Y is invertible in B with inverse Y −1 = λY 2. Now put

u′0 = ρ(u0)−1 = ρ2(u)−1ρ(u) (by (2.5.1))(6.5.8)

and observe that u0u
′
0 ∈ E has norm 1. Thus we find a unique L0/k-involution τ of B which

extends the conjugation of L over E and satisfies

τ(Y ) = u0u
′
0Y

−1 .(6.5.9)

Writing H(B, τ) = {x ∈ B| τ(x) = x} as usual for the Jordan algebra over k of τ -symmetric
elements in B, the following proposition is an immediate consequence of the definitions.

6.6. Proposition. Notations being as in 6.5, the involution τ satisfies the relations

τ(a0 + u′0a1Y + u′0a−1Y
−1) = a0 + u′0σ(a−1)Y + u′0σ

−1(a1)Y −1 (a0, a±1 ∈ L)(6.6.1)

and

H(B, τ) = {v + u′0σ
−1(a)Y + u′0σ(a)Y −1 | v ∈ E, a ∈ L} .(6.6.2)

�

From now on, the generic norm of an algebra will always be regarded as a polynomial law in
the sense of Roby [17], acting under the same notation on every base change of the algebra in the
natural way. In what follows, we need explicit formulae for the generic norms and traces of B and
H(B, τ). These may be derived along the approach suggested by Springer-Veldkamp [19, Lemma
4.7.4] or Engelberger [2, Lemma 2.1.10]. We omit the details.
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6.7. Proposition. Notations being as in 6.5, the generic norm and trace of B are given by the
formulae

NB(x) = NE(a0) + λNE(a1) + λ−1NE(a−1)− TE

(
a0σ(a1)σ−1(a−1)

)
,(6.7.1)

TB(x, x′) = TE(a0, a
′
0) + TE

(
a1, σ(a′−1)

)
+ TE

(
σ(a−1), a′1

)
(6.7.2)

for

x = a0 + a1Y + a−1Y
−1 , x′ = a′0 + a′1Y + a′−1Y

−1 ∈ B. (a0, a
′
0, a±1, a

′
±1 ∈ L)

�

6.8. Corollary. Observing (6.6.2), the relations

NB(x0) = NE(v) + λNE(a) + λNE(a)− TE(u′ −1
0 ava) ,(6.8.1)

TB(x0, x
′
0) = TE(v, v′) + TE(u′−1

0 a, a′) + TE(u′−1
0 a, a′)(6.8.2)

hold for all

x0 = v + u′0σ
−1(a)Y + u′0σ(a)Y −1 , x′0 = v′ + u′0σ

−1(a′)Y + u′0σ(a′)Y −1 ∈ H(B, τ) ,

with arbitrary elements v, v′ ∈ E, a, a′ ∈ L. �

Our final aim in this section will be to realize the Jordan algebra H(B, τ) above by a slight
generalization of the étale Tits process. Dispensing ourselves from the situation just discussed, here
are the relevant facts to understand the details.

6.9. The Tits process. Let K be a composition algebra of dimension r ≤ 2 over k, B a separable
associative algebra of degree 3 over K (with the obvious meaning if K ∼= k ⊕ k is split) and τ a
K/k-involution of B. Assume that we are given an admissible pair for (B, τ) in the sense of [5, §
39, p. 525], i.e., a pair of invertible elements u ∈ H(B, τ) and µ ∈ K satisfying NB(u) = NK(µ).
Then we may extend NB, ] (the adjoint of B+ as a Jordan algebra of degree 3), 1B as given on B
and H(B, τ) to the vector space W = H(B, τ)⊕B over k according to the rules

N(x0 ⊕ x) = NB(x0) + µNB(x) + µNB(x)− TB

(
x0, xuτ(x)

)
,(6.9.1)

(x0 ⊕ x)] =
(
x]

0 − xuτ(x)
)
⊕

(
µτ(x)]u−1 − x0x

)
,

1 = 1B ⊕ 0

for x0 ∈ H(B, τ), x ∈ B to obtain a cubic norm structure whose corresponding Jordan algebra (cf.
4.1) will be written as J = J(K,B, τ, u, µ). The associated trace form is given by

T (x0 ⊕ x, y0 ⊕ y) = TB(x0, y0) + TB

(
xu, τ(y)

)
+ TB

(
yu, τ(x)

)
for x0, y0 ∈ H(B, τ), x, y ∈ B. Furthermore, H(B, τ) identifies canonically with a subalgebra of J
through the first factor.

6.10. The étale Tits process. In the remainder of this section, we will be interested in a
specialization of the Tits process that is originally due to Petersson-Racine [14] and was taken
up later by Petersson-Thakur [16]. Let L (resp. E) be a quadratic (resp. cubic) étale k-algebra
and write ι for the non-trivial k-automorphism of L. Then we may specialize the Tits process to
K = L,B = E ⊗ L, τ = 1E ⊗ ι. Hence, given an admissible pair (u, µ) for (B, τ) , the Tits process
leads to the Jordan algebra

J(E,L, u, µ) = J(L,E ⊗ L,1E ⊗ ι, u, µ) = E ⊕ (E ⊗ L) ,

which is said to arise from the parameters E,L, u, µ by means of the étale Tits process.
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6.11. Theorem. Keeping the notations of 6.5, the Jordan algebra of degree 3 attached to A via
4.6 may be realized by means of the étale Tits process as

J(A) = J(E,L0, u, b0) .(6.11.1)

Furthermore, the map θ : H(B, τ) ∼−→ J(A) defined by (cf. (6.6.2))

θ
(
v + u′0σ

−1(a)Y + u′0σ(a)Y −1
)

:= v ⊕ ρ−1(u) b0 −1 a (v ∈ E, a ∈ L)(6.11.2)

is an isomorphism of Jordan algebras.
Proof. We first note that the right-hand side of (6.11.1) makes sense by (6.5.6). Furthermore,

thanks to 6.10, 4.2, (4.6.1), (6.5.2) both J(A) and J = J(E,L0, u, b0) live on the same vector space
over k, namely E ⊕ L. To complete the proof of (6.11.1), it therefore remains to show that they
have the same unit elements and the same norms. Since the unit elements both agree with 1E ⊕ 0,
we only need consider the norms. To do so, write A0 = (E, ρ,M,Q, ∗) for the cyclic composition
attached to A via Theorem 3.2 and let v ∈ E, a ∈ L. Then

NJ(A)(v ⊕ a) = NJ(A0)(v ⊕ a) (by (4.6.1))

= NE(v)− TE

(
v,Q(a)

)
+NA0(a) (by (4.2.1))

= NE(v)− TE

(
v, uNL0(a)

)
+NA(a) (by (3.2.1), (4.6.1))

= NE(v)− TE

(
v, uNL0(a)

)
+NL0

(
σ2(a)σ(a)a, b0

)
(by (4.6.2), (6.5.1))

= NE(v) +NL0

(
b0, NE(a)

)
− TE(v, aua)

= NE(v) + TL0

(
b0, NE(a)

)
− TE(v, aua)

= NE(v) + b0NE(a) + b0NE(a)− TE(v, aua)
= NJ(v ⊕ a) , (by (6.9.1))

and we have established (6.11.1). Since θ is a k-linear bijection preserving units, the proof of the
theorem will be complete once we have shown that θ preserves norms as well. To do so, we compute,
for v ∈ E, a ∈ L,

NJ(A) ◦ θ
(
v+u′0σ

−1(a)Y + u′0σ(a)Y −1
)

=NJ(E,L0,u,b0)

(
v ⊕ ρ−1(u) b0

−1
a

)
(by (6.11.1), (6.11.2))

=NE(v) + b0NE

(
ρ−1(u) b0

−1
a

)
+ b0NE

(
ρ−1(u) b0

−1
a

)
− TE

(
v, ρ−1(u) b0

−1
a uρ−1(u)b−1

0 a
)
. (by (6.9.1), 6.10)

The terms in the very last expression will now be treated separately as follows.

b0NE

(
ρ−1(u)b0

−1
a
)

= b0 b0
−3
NE(u)NE(a) = b0

−2
NL0(b0)NE(a) (by (6.5.6))

= b0b0
−1
NE(a) = λNE(a) , (by (6.5.4))

ρ−1(u) b0
−1
uρ−1(u)b−1

0 = ρ−1(u)2uNL0(b0)
−1 = ρ−1(u)2uNE(u)−1 (by (6.5.6))

= ρ−1(u)ρ(u)−1 = u′ −1
0 . (by (6.5.8))

Thus

NJ(A) ◦ θ
(
v + u′0σ

−1(a)Y + u′0σ(a)Y −1
)

=NE(v) + λNE(a) + λNE(a)

− TE(u′ −1
0 ava)

=NB

(
v + u′0σ

−1(a)Y + u′0σ(a)Y −1
)
, (by (6.8.1))

as claimed. �
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7. The core of a cyclic trisotopy

Our main concern in this section will be to introduce a number of technical concepts that will play
a significant role in the structure theory of cyclic trisotopies later on. In particular, these concepts
will permit the construction of sub-compositions and sub-trisotopies in the following sense.

7.1. Cyclic sub-compositions and sub-trisotopies. Let S = (E, ρ,M,Q, ∗) be a cyclic com-
position over k and M ′ ⊆M an E-submodule which is non-singular relative to Q and, at the same
time, a k-subalgebra of (M, ∗). Writing Q′ = Q|M ′ for the restriction of Q to M ′ and ∗′ for the
k-algebra structure induced by ∗ on M ′, then, clearly, S|M ′ = (E, ρ,M ′, Q′, ∗′) is again a cyclic
composition over k, called the restriction of S to M ′. Cyclic compositions of this kind are called
sub-compositions of S; we write S|M ′ ⊆ S. An element a′ ∈ M ′ is a base point for S|M ′ if and
only if it is one for S, in which case we call (S, a′)|M ′ := (S|M ′ , a′) the restriction of the pointed
cyclic composition (S, a′) to M ′. Similar conventions apply to cyclic trisotopies over k. We omit
the details. It is clear that passing to cyclic sub-compositions and -trisotopies is compatible with
all the major constructions we have encountered so far.

7.2. The core; unital and étale cyclic trisotopies. Let A = (E, ρ, C, g, b) be a cyclic trisotopy
over k. Then Core(A) := E[b], the unital E-subalgebra of C generated by b, which by (1.4.1) agrees
with the E-submodule of C spanned by 1C and b, is called the core of A. By Lemma 2.3 a) and
(2.5.3), the core of A is stabilized by g. We say that A is unital in case b ∈ E1C , which happens
if and only if Core(A) = E1C

∼= E is a free E-module of rank 1. At the other extreme, A is said
to be étale (resp. split étale) if Core(A) is a quadratic étale E-algebra (resp. Core(A) ∼= E ⊕E as
E-algebras). If A is étale, it can be restricted to its core, and

A|Core(A) = (E, ρ,Core(A), g|Core(A), b) ⊆ A

is a cyclic sub-trisotopy of rank 2 over k.

7.3. Convention. Until further notice, we fix a cyclic trisotopy A = (E, ρ, C, g, b) with multiplier
u ∈ E× over k.

7.4. Proposition. Notations being as in 7.3, put L := Core(A) and b0 := ρ(u)b as in (2.5.1).
Then Core0(A) := L0 := k[b0], the unital k-subalgebra of L generated by b0, has dimension at most
2, and the inclusion L0 ↪→ L induces identifications

L = L0 ⊗ E , g = 1L0 ⊗ ρ (on L) , b = b0 ⊗ ρ(u)−1 .(7.4.1)

Proof. We clearly have L = E[b0], and Proposition 2.5 yields g(b0) = b0. Combining this with
Lemma 2.3 b), we conclude NC(b0), TC(b0) ∈ k. Hence dimk L0 ≤ 2, and it suffices to show that, if
1C , b0 are free over k, they remain so over E. Accordingly, let v0, v1 ∈ E satisfy v01C + v1b0 = 0.
Multiplying this by any v ∈ E, applying g, g2 to the resulting equation and adding up, we obtain
TE(v0, v)1C + TE(v1, v)b0 = 0, which implies v0 = v1 = 0 since TE is a non-singular symmetric
bilinear form. �

7.5. Corollary. If A is not unital, Core(A) is a free E-module of rank 2 with basis 1C , b. �

The following statement is an immediate consequence of Proposition 4.7.
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7.6. Proposition. Notations being as in 7.3, Core(A(w)) = Core(A) for all w ∈ E×. In particu-
lar, A(w) is unital (resp. [split] étale) if and only if A is. �

7.7. Proposition. Notations being as in 7.3, let t ∈ C×. Then the t-hybrid A[t] is unital if and
only if (tg(t))g2(t) ∈ Eb.

Proof. By Lemma 2.3, g commutes with the inversion and the canonical involution of C; also,
x−1 ∈ E x for all x ∈ C×. Hence we obtain the following chain of equivalent statements.

A[t] is unital ⇐⇒ b[t] ∈ E1C[t] (by 7.2)

⇐⇒ g(t)[g2(t)−1b] ∈ Et−1 (by (5.2.1), (5.2.3))

⇐⇒ b ∈ Eg2(t)[g(t)t] = E
(
tg(t)

)
g2(t)

⇐⇒
(
tg(t)

)
g2(t) ∈ Eb .

�

7.8. Corollary. If TC(b) = 0, then A[b] is unital.

Proof. Setting t = b in Proposition 7.7 and observing 2.2 CT 5 as well as b = −b, we obtain
(bg(b))g2(b) ∈ Eb3 = Eb = Eb. �

7.9. Proposition. Notations being as in 7.3, the following statements are equivalent.

(i) A is neither unital nor étale.

(ii) Precisely one of the following holds.
a) k has characteristic 2, and b /∈ E1C satisfies TC(b) = 0.
b) k has characteristic not 2, and there are w ∈ E×, y ∈ C satisfying

b(w) = 1C + y , y 6= 0 = y2 , g(b(w)) = b(w) .(7.9.1)

Proof. (ii) =⇒ (i). Obvious by Proposition 7.6.
(i) =⇒ (ii). Replacing A by its u-isotope and observing Corollary 4.8, we may assume g(b) = b,
which by Lemma 2.3 b) implies TC(b), NC(b) ∈ k. By hypothesis and Corollary 7.5, E[b] is a
free E-module of rank 2 with basis 1C , b but not étale as an E-algebra, forcing the discriminant
4NC(b)− TC(b)2 ∈ k to be a non-unit in E. This implies TC(b)2 = 4NC(b). Hence, for char k = 2,
we are in case (ii) a). On the other hand, setting α = 1

2TC(b), y′ = b−α1C for char k 6= 2, we obtain
b = α1C + y′, y′ 6= 0 since A is not unital, and y′ 2 = 0. Hence, setting w = α−11E , y = α−1y′ and
observing (4.7.1), we end up with (7.9.1). �

7.10. Proposition. If A is not étale or NE : E ⊗Core0(A) → Core0(A) is surjective (in partic-
ular, if E is not a field or k is finite), then some hybrid of A is unital.

Proof. Assuming as we may that A is not unital, suppose first A is not étale. Then either a)
or b) of Proposition 7.9 (ii) holds. If a) holds, the assertion follows from Corollary 7.8. If b) holds,
we choose v ∈ E such that TE(v) = 1 and put t = 1C − vy. Since g, fixing 1C by Lemma 2.3 a)
and b(w) by (7.9.1), fixes y as well, we conclude(

tg(t)
)
g2(t) =

(
1C − vy

)(
1C − ρ(v)y

)(
1C − ρ2(v)y

)
= 1C −

(
v + ρ(v) + ρ2(v)

)
y (by (7.9.1))

= 1C − TE(v)y = 1C − y = b(w) ∈ Eb , (by (4.7.1))
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so by Proposition 7.7, A[t] is unital. Adopting the notations of Proposition 7.4, we are left with
the case that NE : L → L0 is surjective. In particular, there exists an element t ∈ L such that(
tg(t)

)
g2(t) = NE(t) (by (7.4.1)) = b0 ∈ Eb, forcing A[t] to be unital by Proposition 7.7. �

8. Reduced, isotropic, hyperbolic cyclic compositions and trisotopies

The concepts introduced in the previous section will now be used to characterize those cyclic
compositions and trisotopies whose associated cubic Jordan algebras are reduced. In particular, we
will present a self-contained proof for the fact that this holds always true if the rank is 1 or 4. We
then proceed to investigate isotropic and hyperbolic compositions, the latter being an elaborate
version of the former. Finally, we will show that every cyclic trisotopy A of rank > 1 up to weak
isomorphism contains a cyclic sub-trisotopy of rank 2 which one may choose to be isotropic if A
was isotropic to begin with.

Since the property of a cubic Jordan algebra to be reduced is equivalent to saying that its
associated norm form represents zero non-trivially, we are lead to the following natural definitions.

8.1. Reduced cyclic compositions and trisotopies. A cyclic composition S = (E, ρ,M,Q, ∗)
over k is said to be reduced if the cubic form NS of Lemma 1.3 c) is isotropic in the sense that some
non-zero element x ∈M satisfies NS(x) = 0. Notice that this concept does not formally agree with
the one introduced under the same name by Springer-Veldkamp [19, 4.1.8]. However, thanks to
Theorem 8.2 below, which should be regarded as an elaborate version of [19, Theorem 4.1.10], the
two are always equivalent unless the rank is 1.

A cyclic trisotopy A over k is said to be reduced if the cyclic composition A0 attached to A via
(3.2.3) is reduced.

8.2. Theorem. Given a cyclic trisotopy A = (E, ρ, C, g, b) over k and writing A0 =
(E, ρ,M,Q, ∗) for its associated cyclic composition in the sense of Theorem 3.2, consider the fol-
lowing conditions on A and A0.

(i) A0 is reduced.

(ii) A is reduced.

(iii) There exists a non-zero element x ∈M satisfying x ∗ x ∈ Ex.

(iv) There exists a non-zero element v ⊕ x ∈ E ⊕M satisfying v] = Q(x) and x ∗ x = vx.

(v) J(A) is reduced.

(vi) If E is a field, there exists a non-zero element x ∈Msatisfying x ∗ x ∈ Ex.

(vii) There exists a vector x ∈M which is strongly anisotropic relative to Q and satisfies x∗x ∈ Ex.

(viii) Some hybrid of A is unital.

(ix) There exist a composition algebra C0 over k and an invertible element w0 ∈ E satisfying

A ∼ A′ :=
(
E, ρ, C0 ⊗ E,1C0 ⊗ ρ, 1C0 ⊗ ρ(w0)−1

)
,(8.2.1)

i.e., A is weakly isomorphic to the unital cyclic trisotopy A′.
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Then the following implications hold.

(i) ⇐⇒ (ii) =⇒ (iii) ⇐⇒ (iv) ⇐⇒ (v) ⇐⇒ (vi) ⇐⇒ (vii) ⇐⇒ (viii) ⇐⇒ (ix) .

Furthermore, if A has rank > 1, then all statements (i) - (ix) are equivalent.
Proof. We proceed in several steps.

a) The first step consists in establishing the following set of implications.

(ii) ⇐⇒ (i) =⇒ (iii) =⇒ (vi) =⇒ (v) =⇒ (iv) =⇒(8.2.2)
(vi) =⇒ (vii) =⇒ (viii) =⇒ (ix) =⇒ (viii) =⇒ (vi)

(ii) ⇐⇒ (i). Obvious by 8.1.
(i) =⇒ (iii). Cf. [19, proof of Theorem 4.1.10, (ii) ⇒ (iii), p. 74]
(iii) =⇒ (vi). Trivial.
(vi) =⇒ (v). Assuming (vi), we must show that J = J(A) is reduced. Since J contains E+

as a subalgebra, we are done if E is not a field. Otherwise, (vi) produces a non-zero element
x ∈ M satisfying y := x ∗ x = vx for some v ∈ E. For y = 0, (4.2.1), (1.3.3) yield the relation
NJ(0⊕ x)1E = NA0(x)1E = Q(x, x ∗ x) = Q(x, y) = 0, which implies that J is reduced, so we may
assume y 6= 0. Setting v′ = Q(x), the element v′ ⊕ y ∈ J is non-zero as well and satisfies

(v′ ⊕ y)] =
(
v′ ] −Q(y)

)
⊕ (−v′y + y ∗ y) , (by (4.2.2))

where

v′ ] −Q(y) = ρ
(
Q(x)

)
ρ2

(
Q(x)

)
−Q(x ∗ x) = 0 , (by (1.2.1))

y ∗ y − v′y = (x ∗ x) ∗ (x ∗ x)−Q(x)(x ∗ x)
= NA0(x)x− 2Q(x)(x ∗ x) (by (1.3.4))
= Q(x, vx)x− 2Q(x)vx (by (1.3.3) and since x ∗ x = vx)
= 2vQ(x)x− 2vQ(x)x = 0 .

Summing up, we have thus obtained (v′ ⊕ y)] = 0 6= v′ ⊕ y, whence J is reduced, as claimed.
(v) =⇒ (iv). Since J(A) is reduced, some non-zero element v⊕ x ∈ J(A) satisfies (v⊕ x)] = 0. By
(4.2.2), this is (iv).
(iv) =⇒ (vi). For v ⊕ x as in (iv), the assumption x = 0 would imply v] = Q(x) = 0, hence v = 0
since E as in (vi) is a field. This contradiction shows x 6= 0, and we have (vi).
(vi) =⇒ (vii). If E is a field, the argument given in [19, pp. 74-6] yields (vii). On the other hand,
if E is not a field, Proposition 7.10 implies that some hybrid of A is unital. But since (vii) only
depends on A0, which remains unaffected by passing to a hybrid, we may assume that A itself is
unital to begin with. Then x = 1C is strongly anisotropic relative to Q and satisfies, using Lemma
2.3 a), (3.2.2) as well as the unitality of A, x ∗ x = u0b ∈ E1C = Ex.
(vii) =⇒ (viii). By (3.2.1), we have x ∈ C×, allowing us to put t = x−1. Since g, by Lemma 2.3,
commutes with the canonical involution of C as well as with taking inverses, we conclude from
(5.2.3) that

b[t] = NC(t)−1ρ2
(
NC(t)

)−1
g(t)[g2(t)b]

= u−1
0 NC(t)−1ρ2

(
NC(t)

)−1(t ∗ t) (by (3.2.2))

= u−1
0 NC(t)−1ρ

(
NC(t)

)
(t−1 ∗ t−1) (by Lemma 1.3 a))

∈ Et−1 (by (vii), since x = t−1)
= E1C[t] , (by (5.2.1))
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so the t-hybrid A[t] of A is unital.
(viii) =⇒ (ix). Let A[t], t ∈ C×, be a hybrid of A which is unital. Then Theorem 6.2 implies that
A[t] is isomorphic, hence A is weakly isomorphic, to A′ for some cyclic trisotopy A′ as indicated in
(ix).
(ix) =⇒ (viii). Obvious.
(viii) =⇒ (vi). Since A0 does not change when passing to a hybrid, we may assume that A is
unital. Then (3.2.2) and Lemma 2.3 a) yield 1C ∗ 1C = u0b ∈ E1C , and x = 1C satisfies (vi).
b) In the second step we wish to prove that, if A has rank > 1, all nine conditions are equivalent.
By (8.2.2), it suffices to establish the implication (ix) ⇒ (i). Again there is no harm in assuming
A = A′. Then one simply follows the argument of [19, Theorem 4.1.10, (i)⇒ (ii), p. 74] to complete
the proof.
c) In the final step, returning to the case of arbitrary rank and observing (8.2.2), it remains to
prove (iv) ⇒ (iii). Since (iii) holds trivially if A has rank 1, we may assume rankA > 1. But then,
as we have seen in b), conditions (i) - (ix) are all equivalent, so (iii) must hold again. �

8.3. Corollary. Every non-reduced cyclic trisotopy of rank > 1 is étale.
Proof. Since condition (viii) of Theorem 8.2 fails to hold, the assertion follows from Proposition

7.10. �

8.4. Corollary. Let A be a cyclic trisotopy of rank 1 over k. Then J(A) is reduced.
Proof. Since condition (iii) of Theorem 8.2 holds, so does (v). �

8.5. Example. Let (E, ρ) be a cyclic cubic field extension of k, w0 ∈ E× and assume char k 6= 2.
By Corollary 6.3, A = (E, ρ,E, ρ, ρ(w0)−1) is the most general cyclic trisotopy of rank 1 over k
that can be built up from (E, ρ). By Corollary 8.4, J(A) is reduced. On the other hand, one
checks easily that NA = 〈2NE(w0)−1〉 . NE . Therefore, since E is a field, A cannot be reduced, and
we have shown in Theorem 8.2 that (iii) does not imply (ii) if A has rank 1. On the other hand,
comparing [19, (4.9)] with (8.2.1) , we see that condition (ix) of Theorem 8.2 is equivalent to the
cyclic composition A0 being reduced in the sense of [19, Definition 4.1.8]. In particular, thanks
to our example, [19, Theorem 4.1.10] fails to hold for cyclic compositions of rank 1, as does [5,
Theorem (36.24)].

8.6. Theorem. Every cyclic trisotopy of rank 4 over k is reduced.
Proof. Let A = (E, ρ, C, g, b) be a cyclic trisotopy of rank 4 over k. By Theorem 8.2, it suffices

to show that some hybrid of A is unital. Hence Proposition 7.10 allows us to assume that A is étale
and E is a field. Moreover, since passing to hybrids and isotopes are commuting operations, we
may combine Corollary 4.8 with Proposition 7.6 to reduce to the case g(b) = b. In the terminology
of Proposition 2.5, this implies u0 = 1, and the multiplier, γ, of A belongs to k. We now put
L := Core(A), L0 := Core0(A) as in 7.2, Proposition 7.4, and obtain the identifications

L = L0 ⊗ E , g = 1L0 ⊗ ρ (on L) , b = γ−1b0 ∈ L0(8.6.1)

from (7.4.1). By Springer’s Lemma [19, Lemma 4.2.11], anisotropic cubic forms remain anisotropic
under quadratic field extensions. Hence, extending scalars if necessary, we may assume that L0

splits over k. But then L and C split over E; in fact, we may assume that L,L0 sit diagonally in
C = Mat2(E), C0 = Mat2(k), respectively:

L = Diag2(E) ⊆ C = Mat2(E) , L0 = Diag2(k) ⊆ C0 = Mat2(k) .(8.6.2)
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Now, letting ρ act componentwise on C, we obtain a ρ-semi-linear automorphism, also denoted by
ρ, which, in view of (8.6.1),(8.6.2) , agrees with g on L. On the other hand, since C is associative,
2.2 CT4 implies that g is a ρ-semi-linear automorphism of C, forcing g ◦ ρ2 : C → C to be an
E-linear automorphism. Thus the Skolem-Noether theorem yields an invertible element a ∈ C
satisfying

g(x) = aρ(x)a−1 . (x ∈ C)(8.6.3)

Since g = ρ on L, a centralizes L, and we conclude a ∈ L×. On the other hand, a threefold
application of g combined with (2.2.2), (8.6.3) gives bxb−1 = g3(x) = NE(a)xNE(a)−1 for all
x ∈ C, forcing NE(a) = vb for some v ∈ E×. Setting t = a ∈ L×, we conclude (tg(t)

)
g2(t) =

tρ(t)ρ2(t) = NE(a) = vb ∈ Eb and A[t] is unital by Proposition 7.7. �

Remark. The advantage of the above proof derives from the fact that it neither depends on
the structure theory for finite-dimensional simple Jordan algebras nor on fundamental facts about
(associative) algebras with involution. Dito for the proof of Corollary 8.4 above.

8.7. Proof of Theorem 1.8 b). The cyclic trisotopy corresponding via Theorem 5.4 to a free
cyclic composition of rank 4 over k is reduced by Theorem 8.6, hence up to weak isomorphism has
the form (8.2.1) for some quaternion algebra C0 over k. Applying Theorems 3.2, 6.2 and setting
v = w−1

0 , the assertion follows. �

8.8. Isotropic compositions. A cyclic composition S = (E, ρ,M,Q, ∗) over k is said to be
isotropic if the quadratic form Q has this property, so Q(x) = 0 for some non-zero element x ∈M .
Similarly, a cyclic trisotopy A = (E, ρ, C, g, b) over k is said to be isotropic if NC , the norm of C,
has this property. Using standard facts about composition algebras over fields, this holds true if
and only if the quadratic space (C,NC) over E is hyperbolic. Also, A is isotropic if and only if A0

is.
In order to deal with isotropic cyclic compositions and trisotopies effectively, more elaborate

versions of these notions need to be investigated.

8.9. Hyperbolic cyclic compositions. By a hyperbolic cyclic composition we mean a pair (S, e)
consisting of a cyclic composition S = (E, ρ,M,Q, ∗) over k and an element e ∈ M satisfying
Q(e) = 0, NS(e) 6= 0, where NS is the cubic form attached to S in the sense of Lemma 1.3 c).
A homomorphism (ϕ, φ) : (S, e) −→ (S ′, e′) of hyperbolic cyclic compositions is a homomorphism
(ϕ, φ) : S → S ′ of cyclic compositions satisfying φ(e) = e′. The following observation may be found
in Springer-Veldkamp [19, 4.5, p. 95].

8.10. Proposition. Let (S, e) be a hyperbolic cyclic composition over k and write

S = (E, ρ,M,Q, ∗)

as usual. Then, putting

γ = NS(e) , e∗ = γ−1(e ∗ e) ,

(e, e∗) is a hyperbolic pair for the quadratic space (M,Q) such that

e ∗ e = γe∗ , e∗ ∗ e∗ = γ−1e , e ∗ e∗ = e∗ ∗ e = 0 .
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Furthermore,

a = e+ e∗(8.10.1)

satisfies the relations

Q(a) = 1 , a ∗ e = γe∗ , a ∗ e∗ = γ−1e , a ∗ a = γ−1e+ γe∗ .

In particular, (S, a) is a pointed cyclic composition. �

8.11. Hyperbolic cyclic trisotopies. By Proposition 8.10, every hyperbolic cyclic composition
may be viewed as a pointed cyclic composition in a natural way, hence connects with a cyclic
trisotopy via Theorem 3.2. To make this connection more explicit, we introduce the following
terminology. A hyperbolic cyclic trisotopy over k is a pair (A, e) consisting of a cyclic trisotopy
A = (E, ρ, C, g, b) having multiplier 1 and an idempotent e ∈ C, e 6= 0, 1C such that

g(e) = e , b = γ−1e+ γe(8.11.1)

for some γ ∈ k×. A homomorphism (ϕ, φ) : (A, e) → (A′, e′) of hyperbolic cyclic trisotopies is a
homomorphism (ϕ, φ) : A → A′ of cyclic trisotopies satisfying φ(e) = e′.

The following proposition can now be checked by a straightforward computation.

8.12. Proposition. Let (S, e) be a hyperbolic cyclic composition over k and define a as in (8.10.1).
Then Alb(S, e) = (Alb(S, a), e) is a hyperbolic cyclic trisotopy. Conversely, let (A, e) be a hyper-
bolic cyclic trisotopy over k. Then Spr(A, e) = (A0, e), A0 being defined as in (3.2.3), is a hyperbolic
cyclic composition. The assignments (S, e) 7→ Alb(S, e), (A, e) 7→ Spr(A, e) define inverse isomor-
phisms between the category of hyperbolic cyclic compositions and the category of hyperbolic cyclic
trisotopies. �

8.13. Theorem. Every cyclic trisotopy A of rank > 1 over k contains up to weak isomorphism a
cyclic sub-trisotopy of rank 2. Moreover, if A is isotropic, this sub-trisotopy may be so chosen as
to be isotropic as well.

Proof. First suppose A is reduced. Then Theorem 8.2 implies that up to weak isomorphism
we may assume A = (E, ρ, C0 ⊗ E,1C0 ⊗ ρ, 1C0 ⊗ ρ(w0)−1) where (E, ρ) is a cyclic cubic étale
k-algebra, C0 is a composition algebra over k of dimension at least 2 and w0 ∈ E×. Let L0 ⊆ C0

be a composition subalgebra of dimension 2. Then the restriction A|L0⊗E ⊆ A in the sense of
7.1 is a cyclic sub-trisotopy of rank 2. Furthermore, if A is isotropic, C0 must be split, which
follows from Springer’s theorem if E is a field and by direct computation otherwise. Hence one
may choose L0 to be split as well, forcing A|L0⊗E to be isotropic. We are left with the case that
A = (E, ρ, C, g, b) is not reduced, forcing it to be étale by Corollary 8.3. But then the restriction
of A to its core yields a cyclic sub-composition of rank 2. Finally, suppose A is isotropic. Then so
is A0 = (E, ρ,M,Q, ∗), its associated cyclic composition, and we must show that some hybrid of
A contains an isotropic cyclic sub-trisotopy of rank 2. Following 8.8, we pick a non-zero element
e ∈ M satisfying Q(e) = 0. Since A is not reduced, we conclude NA0(e) = NA(e) 6= 0. Thus
(A0, e) is a hyperbolic cyclic composition, so Proposition 8.12 yields a hyperbolic cyclic trisotopy
Alb(A0, e) = (A′, e),A′ = Alb(A0, a) for some invertible element a ∈ C. In particular, by (5.1.2),
A′ is a hybrid of A. Inspecting (8.11.1) for A′ in place of A, we see that L = Ee + E e ⊆ C is
a split étale subalgebra containing b and stabilized by g. We may therefore restrict A′ to L and
obtain an isotropic cyclic rank 2 sub-trisotopy of A′. �
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8.14. Corollary. Every free cyclic composition S of rank > 1 over k contains a free cyclic sub-
composition of rank 2 which one may choose to be isotropic if S is isotropic. �

Remark. The preceding corollary is closely related to [2, Proposition 1.2.5] and [19, Lemma
4.2.12].

9. Quadrupling composition algebras

The technique of quadrupling composition algebras was devised by Thakur [20] to construct octo-
nions over arbitrary commutative rings containing 1

2 . It will be recast here, mostly without proofs,
in a slightly more general setting.

9.1. The general set-up. Throughout this section, we let R be a commutative associative ring
of scalars and fix a non-zero étale R-algebra L of (constant) rank r ≤ 2. We write

ι := ιL : L −→ L , a 7−→ a := ι(a) ,(9.1.1)

for the conjugation of L (which we agree to be the identity for r = 1), and NL : L → R for the
quadratic form given by the formula

a a = NL(a)1L . (a ∈ L)(9.1.2)

If we assume 1
2 ∈ R or r = 2, L is a composition algebra over R in the sense of [11, 1.4] with norm

NL.

9.2. Hermitian spaces. By a hermitian space over L we mean a pair (V, h) such that V is a
finitely generated projective right L-module of constant rank and h : V × V → L is a hermitian
form, linear in the second variable, anti-linear in the first, which is non-singular in the sense that
the assignment x 7→ h(x,−) defines an L-linear bijection from V onto its twisted dual V ∗; here
V ∗ is the ordinary L-module HomL(V,L) with scalar multiplication twisted by ι . In this case,
rank (V, h) = rankV is called the rank of (V, h). Given a hermitian space (V, h) of rank n over L,
det (V, h) =

∧n(V, h) is a hermitian space of rank one over L, called the determinant of (V, h).
If T ∈ GLn(L) is an invertible hermitian matrix of size n,

〈T 〉sesq : Ln × Ln −→ L , (x, y) 7−→ 〈T 〉sesq(x, y) = x tTy ,

defines a hermitian space (Ln, 〈T 〉sesq) of rank n over L and, up to isometry, all hermitian spaces
whose underlying L-module is free of rank n have this form.

Now let (V, h) be a hermitian space of rank n and suppose ∆ :
∧n V

∼→ L is an (L-linear)
isomorphism. By the above, there exists a unique element det∆ h ∈ R×, called the ∆-determinant
of (V, h), such that ∆ :

∧n(V, h) ∼→ (L, 〈det∆ h〉sesq) is a bijective isometry of hermitian spaces over
L. Moreover,

deta∆ h = NL(a)−1det∆ h(9.2.1)

for all a ∈ L×.

30



9.3. The hermitian vector product. Let (V, h) be a hermitian space over L which is ternary in
the sense that it has rank 3 and suppose ∆ :

∧3 V
∼→ L is an isomorphism. By the non-singularity

of h, there exists a unique map V × V → V, (x, y) 7→ x×h, ∆ y, such that

h(x×h, ∆ y, z) = ∆(x ∧ y ∧ z) . (x, y, z ∈ V )

We call ×h, ∆ the hermitian vector product induced by h and ∆. It is obviously alternating and
anti-linear in both arguments. Moreover, the expression h(x ×h, ∆ y, z) remains unaffected by a
cyclic change of variables and vanishes if two of them coincide.

9.4. Example. Consider the free L-module L3 with standard basis e1, e2, e3, and let T ∈ GL3(L)
be any hermitian matrix. Then (L3, 〈T 〉sesq) is a ternary hermitian space.

Writing ∆0 :
∧3 L

∼→ L for the isomorphism determined by the condition

∆0(e1 ∧ e2 ∧ e3) = 1 ,(9.4.1)

any other isomorphism
∧3 L

∼→ L has the from ∆ = a∆0 (a ∈ L×). It is then easily checked that
the hermitian vector product relative to 〈T 〉sesq and ∆ may be expressed in terms of the ordinary
vector product in 3-space by the formulae

x×〈T 〉sesq, ∆ y = T−1(x× y)a = (Tx× Ty)(detT )−1a.(9.4.2)

9.5. Proposition. Let (V, h) be a ternary hermitian space over L and suppose ∆ :
∧3 V

∼→ L is
an isomorphism. Then the hermitian vector product induced by h and ∆ satisfies the hermitian
Grassmann identity

(x×h, ∆ y)×h, ∆ z =
(
yh(z, x)− xh(z, y)

)
(det∆ h)−1. (x, y, z ∈ V )(9.5.1)

Proof. The question is local on L, so we may assume that V = L3 is a free L-module of rank 3,
∆ = a∆0 for some a ∈ L× and h = 〈T 〉sesq for some hermitian matrix T ∈ GL3(L) as in Example
9.4. Then (9.5.1) follows easily by invoking (9.4.2) and the Grassmann identity for the ordinary
vector product. �

The next two theorems are due to Thakur [20] for 1
2 ∈ R and r = 2. In the generality required

here, they follow easily from the preceding discussion. We omit the details.

9.6. Theorem. Under the hypotheses of 9.1, assume 1
2 ∈ R or r = 2, let (V, h) be a ternary

hermitian space over L and suppose ∆ :
∧3 V

∼→ L is an isomorphism such that det∆ h = 1.
Then the R-module L ⊕ V becomes a composition algebra of constant rank 4r over R under the
multiplication

(a⊕ x)(b⊕ y) :=
(
ab− h(x, y)

)
⊕ (y a+ xb+ x×h, ∆ y) . (a, b ∈ L, x, y ∈ V )(9.6.1)

Identifying R ⊆ L canonically, this composition algebra, written as C = Quad(L;V, h,∆), has unit
element, norm, polarized norm, trace, conjugation given by

1C = 1L ⊕ 0 ,
NC(a⊕ x) = NL(a) + h(x, x) ,(9.6.2)

NC(a⊕ x, b⊕ y) = NL(a, b) + TL

(
h(x, y)

)
,(9.6.3)

TC(a⊕ x) = TL(a) ,
a⊕ x = a⊕ (−x)(9.6.4)

for all a, b ∈ L, x, y ∈ V . Finally, the map L → C, a 7→ a ⊕ 0, is an embedding of composition
algebras, allowing us to view L as a composition subalgebra of C. �
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9.7. Theorem. Let C be a composition algebra of constant rank 4r (r ≤ 2) over R and suppose
L ⊆ C is a composition subalgebra of rank r. Then there exist a ternary hermitian space (V, h)
over L and an isomorphism ∆ :

∧3 V
∼→ L satisfying det∆ h = 1 such that the inclusion L ↪→ C

extends to an isomorphism Quad(L;V, h,∆) ∼→ C. �

The construction presented in Theorem 9.6 is clearly functorial in the parameters involved.
More precisely, we will present without proof the following elaborate version of a result of Thakur
[20, Theorem 2.2].

9.8. Proposition. Under the hypotheses of 9.1, assume 1
2 ∈ R or r = 2, let (Vi, hi) (i = 1, 2)

be ternary hermitian spaces over L and suppose ∆i :
∧3 Vi

∼→ L are isomorphisms such that
det∆i hi = 1. Given any map χ : V1 → V2 and setting

Ci := Quad(L;Vi, hi,∆i) = L⊕ Vi , (i = 1, 2)

the following statements are equivalent.

(i) χ : (V1, h1,∆1)
∼→ (V2, h2,∆2) is an isomorphism , i.e., χ : (V1, h1)

∼→ (V2, h2) is a bijective
isometry satisfying ∆2 ◦ (

∧3 χ) = ∆1.

(ii) χ : (V1, h1)
∼→ (V2, h2) is a bijective isometry satisfying

χ(x×h1, ∆1 y) = χ(x)×h2, ∆2 χ(y) . (x, y ∈ V )

(iii) 1L ⊕ χ : C1
∼→ C2 is an isomorphism of composition algebras over R.

�

10. Quadrupling cyclic trisotopies

We now extend the quadrupling procedure for composition algebras described in the preceding
section to the setting of cyclic trisotopies. We show that all cyclic trisotopies of rank 4 and 8 may
be obtained in this way and match the result with the Tits process. Before doing so, however, we
will explain

10.1. Why Cayley-Dickson doubling doesn’t work for cyclic trisotopies. It is a standard
fact that all composition algebras over a field can be obtained from composition subalgebras of
rank ≤ 2 (which always exist) by a repeated application of the Cayley-Dickson doubling process.
We claim that this fact does not carry over to cyclic trisotopies. Indeed, let A = (E, ρ, C, g, b) be a
non-reduced cyclic trisotopy of rank 8. (For example, one could start from a first Tits construction
Albert division algebra J , pick a cyclic cubic subfield E ⊆ J and a generator ρ of its Galois group,
apply [5, (36.12), (38.6)] to find a cyclic composition S = (E, ρ,M,Q, ∗) satisfying J(S) ∼= J , pick
a base point a ∈ M for S, and put A = Alb(S, a).) By Corollary 8.3, A is étale, so restricting it
to its core L = Core(A) yields a cyclic sub-trisotopy A0 = A|L ⊆ A of rank 2. However, there
does not exist a quaternion algebra L ⊆ B ⊆ C stabilized by g and thus giving rise to a cyclic
sub-trisotopy A0 ⊆ A|B ⊆ A because, thanks to Theorem 8.6, A|B, being of rank 4, would be
reduced and hence so would A, a contradiction.
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10.2. Cyclic trisotopies of rank at least 2 revisited. We know from Theorem 8.13 that
every cyclic trisotopy of rank > 1 up to weak isomorphism contains a cyclic sub-trisotopy of rank
2. Conversely, let us consider a cyclic trisotopy A of rank r ≤ 2 over k, the case r = 1 by 3.3 being
permitted only for char k 6= 2. Up to isomorphism, Corollary 6.3 allows us to assume

A =
(
E, ρ, L0 ⊗ E,1L0 ⊗ ρ, d0 ⊗ ρ(w0)−1

)
,

where (E, ρ) is a cyclic cubic étale k-algebra, L0 is a composition algebra of dimension r over k and
d0 ∈ L0, w0 ∈ E are invertible elements. We then have the notational and conceptual framework
of 6.5 – 6.11 at our disposal. It will be taken for granted from now on. We begin by presenting a
number of technical tools, and eventually a criterion that will facilitate the task to construct cyclic
trisotopies of rank > 2 later on.

10.3. Determinants of semi-linear maps. Let R be any commutative associative ring of
scalars, M an R-module, and suppose ∆ :

∧nM
∼→ R is an R-linear bijection. If ρ ∈ Aut(R)

and ϕ : M →M is a ρ-semi-linear map, we find a unique element det∆ ϕ ∈ R such that

∆ ◦ (
n∧
ϕ) = (det∆ ϕ)(ρ ◦∆) .(10.3.1)

We call det∆ ϕ the ∆-determinant of ϕ which, contrary to what one is used to from ordinary
determinants, does depend on the choice of ∆. Indeed, for ε ∈ R×,

detε∆ ϕ = ερ(ε)−1(det∆ ϕ) .(10.3.2)

Also, for σ ∈ Aut(R) and a σ-semi-linear map ψ : M →M , the map ϕ ◦ ψ : M →M is ρ ◦ σ-semi-
linear, and det∆ (ϕ ◦ ψ) = (det∆ ϕ)ρ(det∆ ψ).

The following supplement to Proposition 9.8 may be established by a straightforward compu-
tation.

10.4. Proposition. Let (V, h) be a ternary hermitian space over L, ∆ :
∧3 V

∼→ L an L-linear
bijection and ϕ : (V, h) ∼→ (V, h) a bijective σ-semi-linear isometry. Then

ϕ(x×h,∆ y) =
(
ϕ(x)×h,∆ ϕ(y)

)
det∆ ϕ

−1
. (x, y ∈ V )

�

10.5. Proposition. Setting y = diag
(
u, ρ(u), ρ2(u)

)
∈ H3(L)× and viewing L canonically as a

quadratic étale E-algebra in the set-up described by 10.2, the map

ω : H(B, τ) −→ H3(L)(y)

defined by

ω(x) :=

 u−1v u−1σ2(a) λρ2(u)−1σ(a)
u−1σ2(a) ρ(u)−1ρ(v) ρ(u)−1a

λρ2(u)−1σ(a) ρ(u)−1a ρ2(u)−1ρ2(v)

(10.5.1)

for

x = v + u′0σ
−1(a)Y + u′0σ(a)Y −1 ∈ H(B, τ) ,(10.5.2)
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where v ∈ E, a ∈ L (cf. (6.6.2)), is a unital embedding of Jordan algebras over k. In particular,

detω(x) = NE(u)−1NB(x) .(10.5.3)

Proof. Since ω is k-linear and preserves units, we only have to prove that it preserves norms as
well. Since det y = NE(u), this will follow once we have shown (10.5.3). To do so, one computes
the determinant of the matrix on the right of (10.5.1) by brute force and applies (6.5.8), (6.8.1). �

10.6. Proposition. Notations and assumptions being as in 10.2, let (V, h) be a ternary hermitian
space over L and ∆ :

∧3 V
∼→ L an isomorphism that satisfies

det∆ h = 1 .(10.6.1)

Furthermore, put

C = Quad(L;V, h,∆) = L⊕ V, (as right L-modules)(10.6.2)

let ϕ : V → V be a k-linear bijection and consider the map

g = σ ⊕ ϕ : C −→ C .(10.6.3)

Then the following statements are equivalent.

(i) A′ = (E, ρ, C, g, b) is a cyclic trisotopy over k.

(ii) The map g satisfies the relations

g(xy) = [g(x)b][b−1g(y)] , (x, y ∈ C)(10.6.4)

g3(x) = bxb−1 . (x ∈ C)(10.6.5)

(iii) ϕ : (V, h) ∼→ (V, h) is a σ-semi-linear isometry satisfying

det∆ ϕ = λ , ϕ3 = λ1V .(10.6.6)

In this case, A′ is a cyclic trisotopy of rank 4r over k and contains A as a cyclic sub-trisotopy.
Conversely, every cyclic trisotopy of rank 4r over k containing A as a cyclic sub-trisotopy has this
form.

Proof. We begin by establishing the following auxiliary assertions.
a) g satisfies the relation

g(ra) = [g(r)b][b−1g(a)] (r ∈ V, a ∈ L)(10.6.7)

if and only if ϕ : V → V is σ-semi-linear. This follows immediately from (10.6.3) and the property
of V being a right L-module.
b) If (10.6.7) holds, so does

g(as) = [g(a)b][b−1g(s)] . (a ∈ L, s ∈ V )(10.6.8)

This follows immediately from the fact that, by (9.6.4) and (10.6.3), g commutes with the conju-
gation of C.
c) g satisfies the relation

g(rs) = [g(r)b][b−1g(s)] (r, s ∈ V )(10.6.9)
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if and only if ϕ : (V, h) → (V, h) is a σ-semi-linear isometry such that

det∆ ϕ = λ .(10.6.10)

To see this, one simply expands both sides of (10.6.9) by using (9.6.1), 9.3 and Proposition 10.4.
d) g satisfies the relation

g3(r) = brb−1 (r ∈ V )(10.6.11)

if and only if ϕ3 = λ1V . For r ∈ V , we apply (9.6.1) to obtain brb−1 = r b b−1 = rλ (by (6.5.4)),
and the assertion follows.
We are now prepared to enter into the proof proper of the proposition.
(i) =⇒ (ii). Obvious.
(ii) =⇒ (iii). (10.6.4) (resp. (10.6.5)) implies (10.6.7), (10.6.9) (resp. (10.6.11)) as special cases.
Hence (iii) follows from a), c), d).
(iii) =⇒ (i). A′ trivially satisfies the conditions 2.2 CT1 – 3, so we only have to worry about CT4,
CT5. Since ϕ is σ-semi-linear by (iii), g is ρ-semi-linear by (10.6.3). Since σ stabilizes the line
through b, so does g, again by (10.6.3). It therefore remains to prove (2.2.1), (2.2.2). While (2.2.1),
being trivially fulfilled for x = a ∈ L, y = a′ ∈ L, is equivalent to (10.6.7) – (10.6.9) by bilinearity,
(2.2.2), being trivially fulfilled for x = a ∈ L, is equivalent to (10.6.11) for the same reason. Hence
both (2.2.1) and (2.2.2) follow from (iii) and a) – d).
Clearly, if (i) – (iii) hold, A′ has rank 4r and contains A as a cyclic sub-trisotopy. Conversely, let
A′ = (E, ρ, C, g, b) be a cyclic trisotopy with these properties. Since A is a cyclic sub-trisotopy of
A′, L is a composition subalgebra of C stabilized by g, and g agrees with σ on L. Then Theorem
9.7 yields a ternary hermitian space (V, h) over L and an isomorphism ∆ :

∧3 V
∼→ L satisfying

det∆ h = 1 such that C identifies with (10.6.2). Furthermore, g, being a ρ-semi-linear isometry
relative to NC by Lemma 2.3 b), stabilizes V = L⊥ and hence has the form indicated in (10.6.3).
This completes the proof. �

10.7. The hermitian form of a symmetric element. Notations and assumptions being as in
10.2, we put

S : =

0 0 λ
1 0 0
0 1 0

(10.7.1)

and let z ∈ H(B, τ) be a symmetric element of B relative to τ . Writing

z = w + u′0σ
−1(c)Y + u′0σ(c)Y −1(10.7.2)

for some w ∈ E, c ∈ L according to (6.6.2), and e1, e2, e3 for the unit vectors in (column) 3-space
over L, on which σ acts componentwise under the same notation, there is a unique hermitian form
hz : L3 × L3 → L satisfying

hz(e1, e1) = u−1w , hz(e2, e3) = ρ(u)−1c

and making S ◦ σ : (L3, hz)
∼−→ (L3, hz) a σ-semi-linear isometry. The matrix of hz relative to

e1, e2, e3 agrees with ω(z) as given by (10.5.1), which implies (in the notation of Example 9.4)

det∆0 hz = NE(u)−1NB(z)(10.7.3)

by (10.5.3), so (L3, hz) is a ternary hermitian space if and only if z is invertible in B.
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10.8. Quadrupling cyclic trisotopies by means of admissible pairs. In the set-up of 10.2,
let (z, µ) be an admissible pair for (B, τ), so z ∈ H(B, τ), µ ∈ L0 are invertible elements satisfying
NB(z) = NL0(µ). In the notation of Example 9.4 we put

∆µ := b−1
0 µ∆0 :

3∧
L3 ∼−→ L(10.8.1)

and conclude from (6.5.6), (9.2.1), (10.7.3) that det∆µ hz = 1. Applying Theorem 9.6, we now put

Cz,µ : = Quad(L;L3, hz,∆µ) = L⊕ L3 (as right L-modules) ,

define gS : Cz,µ → Cz,µ by

gS = σ ⊕ ϕ ,ϕ = S ◦ σ ,(10.8.2)

and claim that

A′ := Quad(A; z, µ) := (E, ρ, Cz,µ, g, b)

is a cyclic trisotopy of rank 4r over k containing A as a cyclic sub-trisotopy. To see this, it suffices
to verify the conditions of Proposition 10.6 (iii). By 10.7 we know that ϕ : (L3, hz)

∼→ (L3, hz) is
a σ-semi-linear isometry, so it remains to prove det∆µ ϕ = λ , ϕ3 = λ1V . While the second part is
immediate since S commutes with σ on L3, the first part follows from

det∆µ ϕ = detb−1
0 µ∆0

(S ◦ σ) (by (10.8.1), (10.8.2))

= b−1
0 µσ(b−1

0 µ)−1det∆0 (S ◦ σ) (by (10.3.2))
= det∆0 (S ◦ σ) (since b0, µ ∈ L0 by (6.5.3))
= detS = λ . (by (10.7.1))

In the remainder of this paper, we wish to prove that, conversely, every cyclic trisotopy of
rank 4r over k containing A as a cyclic sub-trisotopy has the form A′ = Quad(A; z, µ) for some
admissible pair (z, µ) relative to (B, τ). Moreover, we wish to match J(A′), the associated Jordan
algebra of degree 3, with the Tits process algebra J(B, τ, z, µ). Up to a point, these objectives can
be pursued simultaneously.

10.9. Technical preparations. Returning to the set-up described in 10.2, let A′ be a cyclic
trisotopy of rank 4r over k containing A as a cyclic sub-trisotopy. By Proposition 10.6, we may
and will assume that A′ has the form described therein.
a) Observing (6.5.8), we put

ϕ′ := ρ(u′0)ϕ : V −→ V , r 7−→ ϕ′(r) = ϕ(r)ρ(u′0) .(10.9.1)

Since ϕ is σ-semi-linear, so is ϕ′, and the relation NE(u′0) = 1 implies ϕ′ 3 = λ1V .
b) Now consider the homomorphism

ε0 : L −→ EndL0(V ) , a 7−→ ε0(a) : V −→ V , r 7−→ ε0(a)(r) := ra ,(10.9.2)

of unital L0-algebras, which connects with ϕ′ through the relation ϕ′ ◦ε0(a) = ε0
(
σ(a)

)
◦ϕ′ (a ∈ L).

Combining this with a), we therefore conclude that there exists a unique L0-homomorphism ε :
B = (L, σ, λ) → EndL0(V ) satisfying

ε|L = ε0 , ε(Y ) = ϕ′ .(10.9.3)
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c) By means of ε, V may thus be regarded as a left B-module, with the corresponding exterior
operation

(x, r) 7−→ x.r := ε(x)(r) . (x ∈ B, r ∈ V )(10.9.4)

Since V , as a vector space over k, has dimension 12r − 3r = 9r by (10.6.2) and 3.3, and is free as
an L0-module, it is, in fact, a free L0-module of rank 9r

r = 9. On the other hand, B is an Azumaya
algebra of degree 3 over L0, forcing V ∼= BB as left B-modules. Accordingly, let ψ : BB

∼→ V be
an isomorphism.
d) Setting e := ψ(1B) ∈ V , it follows easily that

ψ(a0 + a1Y + a−1Y
−1) = ea0 + ϕ(e)ρ(u′0)a1 + ϕ2(e)u′ −1

0 λ a−1 , (a0, a±1 ∈ L)(10.9.5)

which immediately implies that e ∈ V is a cyclic vector relative to ϕ, i.e.,(
e, ϕ(e), ϕ2(e)

)
is a basis of V over L .(10.9.6)

e) Next we prove

µ := b0∆
(
e ∧ ϕ(e) ∧ ϕ2(e)

)
∈ L×0 .(10.9.7)

Since ∆
(
e∧ϕ(e)∧ϕ2(e)

)
by (10.9.6) is a unit in L, we must only show that it remains fixed under

σ, which follows from

σ
(
∆

(
e ∧ ϕ(e) ∧ ϕ2(e)

))
λ = (det∆ ϕ)(σ ◦∆)

(
e ∧ ϕ(e) ∧ ϕ2(e)

)
(by (10.6.6))

= (∆ ◦
3∧
ϕ)

(
e ∧ ϕ(e) ∧ ϕ2(e)

)
(by (10.3.1))

= ∆
(
ϕ(e) ∧ ϕ2(e) ∧ ϕ3(e)

)
= λ∆

(
ϕ(e) ∧ ϕ2(e) ∧ e

)
(by (10.6.6))

= ∆
(
e ∧ ϕ(e) ∧ ϕ2(e)

)
λ .

f) We now put

w : = uh(e, e) ∈ E , c := ρ(u)σ
(
h(e, ϕ(e)

)
= ρ(u)h

(
ϕ(e), ϕ2(e)

)
∈ L ,(10.9.8)

z : = w + u′0σ
−1(c)Y + u′0σ(c)Y −1 ∈ H(B, τ)(10.9.9)

and use the property of ϕ : (V, h) ∼→ (V, h) being a σ-semi-linear isometry (Proposition 10.6 (iii))
to conclude from (10.9.6), 10.7 that the L-linear bijection χ : V ∼→ L3 determined by

χ
(
ϕi(e)

)
= ei+1 . (i = 0, 1, 2)(10.9.10)

is, in fact, a bijective isometry (V, h) ∼→ (L3, hz).
g) On the other hand, writing ∆e :

∧3 V
∼→ L for the L-isomorphism satisfying

∆e

(
e ∧ ϕ(e) ∧ ϕ2(e)

)
= 1 ,(10.9.11)

and observing f), (10.7.3), (6.5.6), we obtain

det∆e h = det∆0 hz = NL0(b0)
−1NB(z) .(10.9.12)

h) Comparing (10.9.11) with (10.9.7), we conclude

∆ = b−1
0 µ∆e ,(10.9.13)
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which implies

NL0(b0)
−1NB(z) = det∆e h (by (10.9.12))

= det(b−1
0 µ)−1∆ h = NL0(b

−1
0 µ)det∆ h (by (9.2.1))

= NL0(b0)
−1NL0(µ) , (by (10.6.1))

hence NB(z) = NL0(µ), so (z, µ) is an admissible pair for (B, τ).

10.10. Theorem. Notations and assumptions being as in 10.2, let A′ be a cyclic trisotopy of rank
4r over k containing A as a cyclic sub-trisotopy. Then there exists an admissible pair (z, µ) for
(B, τ) such that the inclusion A ↪→ Quad(A; z, µ) extends to an isomorphism A′ ∼→ Quad(A; z, µ).

Proof. From (9.4.1), (10.9.10), (10.9.11), (10.9.13), (10.8.1) we conclude that χ : (V, h,∆) ∼−→
(L3, hz,∆µ) is an isomorphism in the sense of Proposition 9.8 (i), consequently giving rise to an
isomorphism

φ := 1L ⊕ χ : C = Quad(L;V, h,∆) ∼−→ Cz,µ = Quad(L;L3, hz,∆µ) ,(10.10.1)

of composition algebras over E, which in turn is easily seen to induce an isomorphism

Φ := (1E , φ) : A′ ∼−→ Quad(A; z, µ)

of cyclic trisotopies extending the identity of A. �

10.11. Proof of Theorem 1.8 c). Let S be a free cyclic composition of rank 8 over k. By
Theorems 8.13, 10.10, there is a cyclic trisotopy corresponding to S via Theorem 5.4 and having
the form A′ = Quad(A; z, µ), where A satisfies 10.2 and (z, µ) is an admissible pair for (B, τ).
Since b−1

0 µ belongs to L0, 10.8 yields a basis (q1, q2, q3) of L3 over L that remains fixed under σ and
satisfies ∆µ(q1 ∧ q2 ∧ q3) = 1. Converting S and hz into matrices P and T , respectively, relative
to this new basis, the assertion follows from Theorems 3.2, 9.6 and (9.4.2) by a straightforward
computation. �

10.12. Some identifications. We return to the set-up described in 10.9 and deduce from 4.2,
4.6 that

J(A) = E ⊕ L ,(10.12.1)
J(A′) = E ⊕ C = E ⊕ L⊕ V = J(A)⊕ V(10.12.2)

as vector spaces over k. Using this, we obtain

TJ(A′)(v ⊕ a⊕ r, v′ ⊕ a′ ⊕ r′) = TE(v, v′) + TE

(
uNL0(a, a

′)
)

+ TE

(
uTL0

(
h(r, r′)

))
(10.12.3)

for all v, v′ ∈ E, a, a′ ∈ L, r, r′ ∈ V from (4.2.3), (3.2.1), (9.6.3). This immediately implies

V = J(A)⊥(10.12.4)

relative to the generic trace if J(A) and V are canonically identified in J(A′).
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10.13. Theorem. Notations and assumptions being as in 10.9, 10.12, the map

Θ := θ ⊕ ψ : J(B, τ, z, µ) ∼−→ J(A′)

given by

Θ(x0 ⊕ x) = θ(x0)⊕ ψ(x) (x0 ∈ H(B, τ) , x ∈ B)

is an isomorphism of Jordan algebras extending θ.
Proof. Since Θ trivially extends θ and hence preserves units, it remains to show that it preserves

norms as well. This will be accomplished in several steps.
10. We consider arbitrary elements

x = a0 + a1Y + a−1Y
−1 , x′ = a′0 + a′1Y + a′−1Y

−1 ∈ B(10.13.1)

for a0, a
′
0, a±1, a

′
±1 ∈ L and

x0 = v + u′0σ
−1(a)Y + u′0σ(a)Y −1 , x′0 = v′ + u′0σ

−1(a′)Y + u′0σ(a′)Y −1 ∈ H(B, τ)(10.13.2)

for v, v′ ∈ E, a, a′ ∈ L. Setting J := J(B, τ, z, µ), we must show

NJ(A′) ◦Θ(x0 ⊕ x) = NJ(x0 ⊕ x) .(10.13.3)

20. The right-hand side of (10.13.3) by (6.9.1) attains the form

NJ(x0 ⊕ x) = NB(x0) + µNB(x) + µNB(x)− TB

(
τ(x)x0x, z

)
.(10.13.4)

On the other hand, expanding the left-hand side of (10.13.3), and observing (10.12.1), (10.12.2),
we obtain

NJ(A′) ◦Θ(x0 ⊕ x)
)

=NJ(A)

(
θ(x0)

)
+ TJ(A′)

((
θ(x0)⊕ 0

)]
, 0⊕ 0⊕ ψ(x)

)
+

TJ(A′)

(
θ(x0)⊕ 0,

(
0⊕ 0⊕ ψ(x)

)]
)

+NJ(A′)

(
0⊕ 0⊕ ψ(x)

)
.

Here the first summand agrees with NB(x0) by Theorem 6.11, while (10.12.4) implies that the
second summand vanishes since J(A), being a subalgebra of J(A′), is stabilized by the adjoint
map. Thus

NJ(A′) ◦Θ(x0 ⊕ x) =NB(x0) + TJ(A′)

(
θ(x0)⊕ 0,

(
0⊕ 0⊕ ψ(x)

)]
)
+(10.13.5)

NJ(A′)

(
0⊕ 0⊕ ψ(x)

)
.

30. Our next aim will be to match the last summand of (10.13.5) with the two mid-terms of
(10.13.4). Before doing so, we will have to prove

ϕ2(r)[ϕ(r)r] ≡ ∆
(
r ∧ ϕ(r) ∧ ϕ2(r)

)
mod V , (r ∈ V )(10.13.6)

∆
(
ψ(x) ∧ ϕψ(x) ∧ ϕ2ψ(x)

)
= b−1

0 µNB(x) .(10.13.7)

(10.13.6) follows easily from (9.6.1) and standard properties of the hermitian vector product (cf.
9.3); we omit the details. (10.13.7) is more troublesome. First we combine (10.9.5) with (10.13.1)
and the σ-semi-linearity of ϕ to obtain

ψ(x) = ea0 + ϕ(e)ρ(u′0)a1 + ϕ2(e)u′ −1
0 λ a−1 ,

ϕψ(x) = eρ(u′0)
−1σ(a−1) + ϕ(e)σ(a0) + ϕ2(e)ρ2(u′0)σ(a1) (by (6.5.5), (10.6.6))

ϕ2ψ(s) = eu′0λσ
2(a1) + ϕ(e)ρ2(u′0)

−1σ2(a−1) + ϕ2(e)σ2(a0) .
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Using (6.5.5) and NE(u′0) = 1 (by (6.5.8)), this implies

∆
(
ψ(x) ∧ ϕψ(x)∧ϕ2ψ(x)

)
=

=det

 a0 ρ(u′0)a1 λu′ −1
0 a−1

ρ(u′0)
−1σ(a−1) σ(a0) ρ2(u′0)σ(a1)

λu′0σ
2(a1) ρ2(u′0)

−1σ2(a−1) σ2(a0)

 ∆
(
e ∧ ϕ(e) ∧ ϕ2(e)

)
= [NE(a0) + λNE(a1) + λ−1NE(a−1)−
TE

(
a0σ(a1)σ−1(a−1)

)
]∆

(
e ∧ ϕ(e) ∧ ϕ2(e)

)
=NB(x)b−1

0 µ

by (6.7.1), (10.9.7), as claimed. We can now compute,

NJ(A′)

(
0⊕ 0⊕ ψ(x)

)
= NA′

(
0⊕ ψ(x)

)
(by (4.2.1), (4.6.1))

= NC

(
ϕ2ψ(x)[ϕψ(x)ψ(x)], b0

)
(by (4.6.2), (10.6.3))

= NC

(
∆

(
ψ(x) ∧ ϕψ(x) ∧ ϕ2ψ(x)

)
, b0

)
(by (10.13.6))

= TC

(
b0∆

(
ψ(x) ∧ ϕψ(x) ∧ ϕ2ψ(x)

))
(by (3.2.5))

= TC

(
µNB(x)

)
(by (10.13.7))

= µNB(x) + µNB(x) .

Inserting this into (10.13.5) and comparing with (10.13.4), we see that (10.13.3) and hence our
theorem will follow once we have shown

TJ(A′)

(
θ(x0)⊕ 0,

(
0⊕ 0⊕ ψ(x)

)]
)

= −TB

(
τ(x)x0x, z

)
.(10.13.8)

40. We wish to make the left-hand side of (10.13.8) more explicit. To this end, we put

H1(x, x′) := h
(
ψ(x), ψ(x′)

)
, H2(x, x′) := h

(
ψ(x), ϕψ(x′)

)
(10.13.9)

and write A′ 0 = (E, ρ,M,Q, ∗) for the cyclic composition corresponding to A′ to establish the
relations

Q
(
0⊕ ψ(x)

)
= uH1(x, x) ,(10.13.10) (

0⊕ ψ(x)
)
∗

(
0⊕ ψ(x)

)
≡ −

(
u−1b0σ

(
H2(x, x)

)
⊕ 0

)
mod V .(10.13.11)

The first one of these follows immediately from (3.2.1), (9.6.2), (10.13.9). For the second one, we
identify V ⊆ C canonically and compute(

0⊕ ψ(x)
)
∗

(
0⊕ ψ(x)

)
= ψ(x) ∗ ψ(x)

= u0g
(
ψ(x)

)
[g2

(
ψ(x)

)
b] (by (3.2.2))

= u0ϕ
(
ψ(x)

)
[ϕ2

(
ψ(x)

)
b] (since ψ(x) = −ψ(x))

= ρ(u)−1u0ϕ
(
ψ(x)

)
[ϕ2

(
ψ(x)

)
b0] (by (2.5.1))

= u−1ϕ
(
ψ(x)

)
ϕ2

(
ψ(x)b0

)
(by (2.5.1), σ(b0) = b0)

≡ −u−1h
(
ϕ
(
ψ(x)

)
, ϕ2

(
ψ(x)b0

))
mod V (by (9.6.1))

≡ −u−1σ
(
h
(
ψ(x), ϕ(ψ(x)b0)

))
mod V (by Proposition 10.6 (iii))

≡ −u−1b0σ
(
h
(
ψ(x), ϕψ(x)

))
mod V ,
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and the identifications made together with (10.13.9) yield (10.13.11). We can now treat the left-
hand side of (10.13.8) by using (10.13.10), (10.13.11) in the following way:

T J(A′)

(
θ(x0)⊕ 0,

(
0⊕ 0⊕ ψ(x)

)]
)

= TJ(A′)

(
θ(x0)⊕ 0,−Q

(
0⊕ ψ(x)

)
⊕ [(0⊕ ψ(x)) ∗ (0⊕ ψ(x))]

)
(by (4.2.2))

= − TJ(A′)

(
v ⊕ ρ−1(u) b0 −1 a , uH1(x, x)⊕ u−1b0σ(H2(x, x)

))
(by (6.11.2), (10.12.4))

= − TE

(
v, uH1(x, x)

)
−

− TE

(
Q

(
ρ−1(u) b0 −1a, u−1b0σ

(
H2(x, x)

)))
, (by (4.2.3))

where the second summand agrees with

− TE

(
ρ−1(u)NC

(
b−1
0 a, b0σ(H2(x, x))

))
(by (3.2.1))

= − TE

(
ρ−1(u)TC

(
b−1
0 ab0σ(H2(x, x))

))
(by (3.2.5))

= − TE

(
ρ−1(u)aσ

(
H2(x, x)

))
− TE

(
ρ−1(u)aσ

(
H2(x, x)

))
.

Thus

TJ(A′)

(
θ(x0)⊕ 0,

(
0⊕ 0⊕ ψ(x)

)]
)

= − TE

(
v, uH1(x, x)

)
− TE

(
ρ−1(u)aσ

(
H2(x, x)

))
− TE

(
ρ−1(u)aσ

(
H2(x, x)

))
,

and, comparing with (10.13.8), we see that, in order to complete the proof of the theorem, we are
reduced to showing

TB

(
τ(x)x0x, z

)
= TE

(
v, uH1(x, x)

)
+ TE

(
ρ−1(u)aσ

(
H2(x, x)

))
(10.13.12)

+ TE

(
ρ−1(u)aσ

(
H2(x, x)

))
.

50. We claim that (10.13.12) will follow once we have shown

TB

(
τ(x)p x′, z

)
= TE

(
p, uH1(x, x′)

)
. (p ∈ L)(10.13.13)

Suppose this has been done. Since ψ : BB
∼→ V is an isomorphism of left B-modules by 10.9 c),

we obtain, for d ∈ L,

ψ(dx) = d.ψ(x) = ε(d)
(
ψ(x)

)
(by (10.9.4))

= ε0(d)
(
ψ(x)

)
, (by (10.9.3))

and (10.9.2) yields

ψ(dx) = ψ(x)d . (d ∈ L)(10.13.14)

Similarly, ψ(Y x′) = Y.ψ(x′) = ε(Y )(ψ(x′)) = ϕ′(ψ(x′)) = ϕ(ψ(x′))ρ(u′0), which implies

ϕψ(x′) = ψ(Y x′)ρ(u′0)
−1 = ψ(Y x′)ρ−1(u0) (by (6.5.8))
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and hence

ϕψ(x′) = ψ
(
ρ−1(u0)Y x′

)
(10.13.15)

by (10.13.14). Using the preceding relations, we now compute

TE

(
ρ(u)aH2(x, x′)

)
= TE

(
ρ(u)ah

(
ψ(x), ϕψ(x′)

))
(by (10.13.9))

= TE

(
uh

(
ψ(x)ρ(u)u−1 a , ψ(ρ−1(u0)Y x′)

))
(by (10.13.15))

= TE

(
uh

(
ψ(u0ax), ψ(ρ−1(u0)Y x′)

))
(by (10.13.14), (2.5.1))

= TE

(
uH1

(
u0ax, ρ

−1(u0)Y x′
))

(by (10.13.9))

= TB

(
τ(u0ax)ρ−1(u0)Y x′, z

)
(by (10.13.13) for p = 1)

= TB

(
τ(x)au0ρ

−1(u0)Y x′, z
)

= TB

(
τ(x)ρ(u0)−1aY x′, z

)
, (since NE(u0) = 1)

and (6.5.8) implies

TB

(
τ(x)[u′0aY ]x′, z

)
= TE

(
ρ(u)aH2(x, x′)

)
.(10.13.16)

Returning to (10.13.12), we now obtain

TB

(
τ(x)x0x, z

)
=TB

(
τ(x)vx, z) + TB

(
τ(x)[u′0σ

−1(a)Y ]x, z
)
+

TB

(
τ(x)τ(u′0σ

−1(a)Y )x, z
)

(by (10.13.2), (6.6.1))

=TB

(
τ(x)vx, z

)
+ TB

(
τ(x)[u′0σ

−1(a)Y ]x, z
)
+

TB

(
τ(x)[u′0σ−1(a)Y ]x, z

)
(since τ(z) = z)

=TE

(
v, uH1(x, x)

)
+ TE

(
ρ(u)σ−1(a)H2(x, x)

)
+

TE

(
ρ(u)σ−1(a)H2(x, x)

)
(by (10.13.13), (10.13.16))

=TE

(
v, uH1(x, x)

)
+ TE

(
ρ−1(u)aσ

(
H2(x, x)

))
+

TE

(
ρ−1(u)aσ

(
H2(x, x)

))
,

which proves (10.13.12), hence our claim.
60. We now turn to the proof of (10.13.13). It is straightforward to check that, if (10.13.13)
holds for (x, x′) and all p ∈ L, so it does for (x′, x) as well as (dx, d′x′) (d, d′ ∈ L) and all p ∈ L.
Therefore, all we have to do is check (10.13.13) in the six cases

(x, x′) = (1, 1), (1, Y ), (1, Y −1), (Y, Y ), (Y, Y −1), (Y −1, Y −1) .

We only treat the case (x, x′) = (Y, Y −1) since the others can be handled in a similar manner. On
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the one hand, we obtain

TE

(
p, uH1(Y, Y −1)

)
= TE

(
p, uh

(
ψ(Y ), ψ(Y −1)

))
(by (10.13.9))

= TE

(
p, uh

(
ϕ(e)ρ(u′0), ϕ

2(e)u′ −1
0 λ

))
(by (10.9.5))

= TE

(
p, uρ(u′0)u

′ −1
0 λh

(
ϕ(e), ϕ2(e)

))
= TE

(
p, uu−1ρ2(u)ρ2(u)ρ(u)−1 λ ρ(u)−1c

)
(by (6.5.8), (10.9.8))

= TE

(
p,

(
ρ2(u)ρ(u)−1

)2
λc

)
= TE

(
p, ρ(u0)2λc

)
, (by (2.5.1))

while on the other

TB

(
τ(Y )pY −1, z

)
= TB(u0u

′
0Y

−1pY −1, z) (by (6.5.9))

= TB

(
u0u

′
0σ

2(p)Y −2, z
)

= TB

(
u0u

′
0 λσ

2(p)Y, z
)

(by (6.5.7))

= TE

(
u0u

′
0λσ

2(p), ρ(u′0)σ
2(c)

)
(by (6.7.2), (10.9.9))

= TE

(
p, ρ(u0)ρ(u′0)ρ

2(u′0)λc
)

= TE

(
p, ρ(u0)u′ −1

0 λc
)

(since NE(u′0) = 1)

= TE

(
p, ρ(u0)2 λ c

)
, (by (6.5.8))

and comparing we end up with (10.13.13), which completes the proof of the theorem. �

Remark. For an analogue of Theorem 10.13 where B is split over L0 and J(A′) is replaced by
an appropriate Jordan matrix algebra, see [10, Theorem 1.1]. The connection between first Tits
constructions and isotropic cyclic compositions of rank 8 is worked out in [19, 8.5]. Finally, [2,
Chapter 5] describes the connection between arbitrary twisted compositions of rank 8 and the Tits
process but relies on descent and has to distinguish between the isotropic and the non-isotropic
case. All the results mentioned exclude characteristics 2 and 3.
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