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1. Conic algebras. In this short paper, we let k be an arbitrary commutative ring. A (non-
associative) algebra C over k is said to be conic if it contains a unit element and the following
conditions are fulfilled.

(i) C is projective as a k-module.

(ii) 1C is a unimodular element of C.

(iii) There exists a quadratic form n : C → k such that

x2 − t(x)x+ n(x)1C = 0 (t := ∂n(1C ,−))

for all x ∈ A.

In (i) we do not not require that C be finitely generated as a k-module. Condition (ii) means that
there is a linear form λ on C satisfying λ(1C) = 1, equivalently, that k1C ⊆ C is a free submodule of
rank 1 and a direct summand at the same time. In (iii), we denote by

∂n : C × C −→ k, (x, y) 7−→ ∂n(x, y) := n(x+ y)− n(x)− n(y)

the bilinear form associated with n. We mostly write n(x, y) := ∂n(x, y) if there is no danger of
confusion. By [6, Prop. 2.1.3], conditions (i)−(iii) above determine the quadratic form n uniquely; it
is called the norm of C and written as nC , while tC := ∂nC(1C ,−) is called the trace of C. Aside
from our hypotheses on the module structure, conic algebras are the same as generic degree 2 algebras
in the sense of McCrimmon [4]. They also agree with Loos’s notion [3] of conic algebras, except that
he confines himself to algebras that are finitely generated projective as modules.

2. Dickson’s theorem. It has been shown by Dickson [2] that a unital algebra A over a field F of
characteristic not 2 is conic if and only if it satisfies what we tentatively call the Dickson condition: for
all x ∈ A, the elements 1A, x, x

2 are linearly dependent over F , equivalently, x2 is a linear combination
of 1A and x. We wish to extend this theorem not only to fields of arbitrary characteristic but, in fact,
to arbitrary commutative rings in place of F .

To this end, we return to our base ring k and recall that conic algebras are stable under base
change: if C is a conic k-algebra and R ∈ k-alg, then CR is a conic R-algebra, with norm (resp. trace)
obtained from the norm (resp. trace) of C by extending scalars from k to R. It therefore follows
from Dickson’s theorem that the Dickson condition is invariant under base field extensions provided
F has characteristic not 2. In fact, as we shall see in Remark 4 below, this holds true for all fields F
except F = F2. We may therefore conclude that the only strategy to salvage Dickson’s theorem in all
characteristics consists in replacing the ordinary Dickson condition by the strict Dickson condition,
i.e., by the validity of the ordinary one in every base field extension. As will be seen in due course,
this strategy turns out to be successful.

Before stating our main result, we recall a notation introduced by Loos, e.g. in [3]. Let C be a
unital k-algebra. Then we put C. := C/k1C as k-modules and write x 7→ x. for the natural map from
C to C.. Note that C is (finitely generated) projective as a k-module if and only if C. is, and if C. is
free, so is C.
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3. Theorem. Let C be a unital algebra over k containing 1C as a unimodular vector and making
C. either free or finitely generated projective as a k-module. Then C is a conic k-algebra if and only
if it satisfies the strict Dickson condition: for all x ∈ CR, R ∈ k-alg, the element x2 is an R-linear
combination of 1CR

and x in CR.

Proof. By hypothesis, the vector 1C ∈ C is unimodular, so we find a submodule M ⊆ C such that

C = k1C ⊕M (1)

as a direct sum of k-modules. Since the assignment x 7→ x2 defines a (homogeneous) quadratic map
M → C over k, projection to the direct summands k1C ∼= k and M of the decomposition (1) gives
quadratic maps n : M → k and s : M →M such that

x2 = s(x)− n(x)1C (x ∈M). (2)

In particular, n is a quadratic form over k that will eventually become the norm (restricted to M)
of the prospective conic k-algebra C. On the other hand, by the Dickson condition, we also have
s(x) ∈ kx for x ∈ C, and we would like to think of s(x) as t(x)x with t(x) ∈ k becoming the trace of
x in the prospective conic k-algebra C. But since the annihilator of x (in k), i.e.,

Ann(x) := {α ∈ k | αx = 0},

may not be zero, we don’t even know at this stage how to make t(x) a quantity that is well defined,
let alone a linear form. For this reason, we bring the hypotheses on the module structure of C. and
the strict Dickson condition into play.

Let us first reduce to the case that C. is a free k-module. If not, C is finitely generated projective
by hypothesis, so there exists a finite family of elements f ∈ k that generate the unit ideal in k and
make Cf a free kf -module of finite rank, for each f . Assuming the free case has been settled, it follows
that all Cf are conic, and uniqueness of the norm in conic algebras ensures that the norms nCf

glue
to give a quadratic form n : C → k. It is then clear that C is a conic algebra with norm n.

For the rest of the proof, we may therefore assume that M ∼= C. is a free k-module, with basis
(ei)i∈I . We let T = (ti)i∈I be a family of independent variables and write k[T] for the corresponding
polynomial ring. For a non-empty finite subset E ⊆ I, we consider the submodule

ME :=
∑
i∈E

kei ⊆M, (3)

which is a direct summand, and the element

xE :=
∑
i∈E

ei ⊗ ti ∈ME
k[T] ⊆Mk[T]. (4)

We claim the annihilator of xE in k[T] is zero; indeed, for f(T) ∈ k[T] the relation f(T)xE = 0
implies

∑
ei ⊗ (tif(T)) = 0, hence tif(T) = 0 for all i ∈ E and then f(T) = 0 since ti is not a

zero divisor in k[T]. Invoking the strict Dickson condition, we therefore find a unique polynomial
g(T) ∈ k[T] such that

s(xE) = g(T)xE .

Specializing this relation with an additional variable u to uT, we obtain g(uT)uxE = s(uxE) =
u2s(xE) = (ug(T))uxE , so the polynomial g(T) ∈ k[T] is homogeneous of degree 1. Thus there
exists a unique linear form tE : ME → k satisfying the relation s(x) = tE(x)x for all x ∈ME because
any such tE will be converted into the linear homogeneous polynomial g(T) after extending scalars
from k to k[T]. Here the uniqueness condition implies that the linear forms tE as E varies over the
non-empty finite subsets of I glue to give a linear form t : M → k such that s(x) = t(x)x for all
x ∈M . Combining with (2), we obtain the relation

x2 − t(x)x+ n(x)1C = 0 (5)

for all x ∈M . We now extend t, n as given on M to all of C by

t(α1C + x) = 2α+ t(x), n(α1C + x) = α2 + αt(x) + n(x) (α ∈ k, x ∈M)

and then conclude from a straightforward computation that (5) holds for all x ∈ C. Hence C is a
conic algebra. �
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4. Remark. In the language of the present note, McCrimmon [4, Part C, 6.1.3] has proved the
following. A unital algebra C over a field k satisfying the Dickson condition is conic if either (a) k
contains more than two elements, or (b) k = F2 and A has no zero divisors.

We wish to understand how this result fits into our own approach to the subject, particularly into
Thm. 3. To this end, we consider the cubic polynomial law

g : A −→
3∧
A

defined by

gR(x) := 1A ∧ x ∧ x2 ∈
3∧

(AR) = (

3∧
A)R (x ∈ AR, R ∈ k-alg)

and note that C satisfies the Dickson condition if and only if gk : A→
∧3

A is zero as a set map, while

it satisfies the strict Dickson condition if and only if g : A →
∧3

A is zero as a (cubic) polynomial
law. Combining this observation with [5, Thm. 7] (or arguing directly), we conclude from Thm. 3 that
for C to satisfy the Dickson condition without satisfying the strict Dickson condition, i.e., without
being a conic algebra, it is necessary that k = F2. This settles clause (a) of McCrimmon’s result.
Clause (b), however, is a different matter, where McCrimmmon’s proof actually shows that a unital
algebra without zero divisors over F2 satisfying the Dickson condition has dimension at most 2. Here
is a variant of this result in a slightly modified setting.

5. Proposition. Let k be a perfect field of characteristic 2 and suppose C is a conic k-algebra
without nilpotent elements other than zero. Then C has dimension at most 2.

Proof. It suffices to show Ker(tC) = k1C . Since tC(1C) = 2 = 0, we clearly have k1C ⊆ Ker(tC). To
prove equality, let x ∈ C \ k1C . Then k[x] is a unital 2-dimensioanl k-algebra, so following Bourbaki
[1, III §2 Prop. 2] it is either étale, or an inseparable (quadratic) field extension, or the algebra of
dual numbers. The second possibility is ruled out by the property of k being perfect, the third by
the absence of nilpotent elements in C. Thus k[x] is a quadratic étale k-algebra, whose trace, which
is just the trace of C restricted to k[x], therefore has kernel k1C . This and x ∈ k[x] \ k1C implies
tC(x) 6= 0. �

It would be nice to know whether the preceding proposition generalizes to algebras satisfying the
Dickson condition. In any event, the question remains whether the Dickson condition and the strict
Dickson condition over fields are equivalent. The answer is no. Here is an example.

6. Example. By what we have seen in Remark 4, the choice k = F2 is forced upon us. The
algebra C we are going to construct lives on the vector space direct sum k1C ⊕M , where M is a
two-dimensional k-vector space, with basis e1, e2. We make C into a unital k-algebra by stipulating
that 1C be its identity element and e21 = e22 = e2e1 = 0, e1e2 = e1 + e2. Since C has dimension 3 the
cubic polynomial law g of Remark 4 is actually a cubic form g : C → k. For r0, r1, r2 ∈ R, R ∈ k-alg
and x = r1e1 + r2e2 ∈ CR, the computation

1C ∧ (r01C + x) ∧ (r01C + x)2 = 1C ∧ x ∧ x2 = 1C ∧ (r1e1 + r2e2) ∧
(
(r1r2)(e1 + e2)

)
= (r21r2 − r1r22)(1C ∧ e1 ∧ e2)

shows

gR(r01C + x) = r1r2(r1 + r2) = xtSRx
2 (S =

(
0 1
1 0

)
),

so by [5, Thm. 7] (or by direct inspection) the set map gk : C → k is zero but g itself is not. This
means that C satisfies the Dickson condition but not the strict Dickson condition, hence by Thm. 3
cannot be a conic algebra.
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