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In this short note we will be concerned with non-zero cubic polynomial laws g: V — W between vector
spaces V, W over a field k such that the set maps gi: V — W are (identically) zero. A complete
characterization of these objects may be found in Thm. 7 below. Along the way towards proving this
result, a few standard properties of cubic polynomial laws over arbitrary commutative rings will be
derived in an ad-hoc manner.

1. Expansion formulas for cubic maps. Let k be a commutative ring and f: M — N with
k-modules M, N a cubic polynomial law over k, so f is a polynomial law in the sense of Roby [2]
(or Petersson-Racine [1, 3.1]) and homogeneous of degree 3 at the same time. For R € k-alg and
z,y € Mpr we put

f(x,y) = (Df)(x,y), (1)

which is bi-homogeneous of degree (2,1) since Df = I3V f (by [1, 3.1.9]) has this property in view
of [1, 3.1.5]. Moreover, [1, (3.1.13)] yields

(D f)(z.y) = fly, @), (2)
and, with a variable t, the Taylor expansion [1, (3.1.10)] attains the form
fl@+ty) = fx) + tf(2,y) + 2 f(y, 2) + 2 f(y). (3)

Finally, the evaluation of the total linearization of f at x,y, z will be abbreviated as

f(x,y,Z) = (H(Ll’l)f)(z7yvz)7 (4)

which is trilinear and totally symmetric in its arguments.

2. Lemma. With the assumptions and notations of 1., we have

flz+y,2) = f(z,2) + f(z,y,2) + [y, 2) (5)
forall x,y,z € Mg, R € k-alg.

Proof. Combining [1, Lemma 3.1.2] for n = 2, p = 1 under the specialization t; — 1 (1 < j < n) with
[1, 3.1.6] and (1), we obtain

fety,2)=DH@+y,2) =Y @) (y2)= >,  ([O“Vf)(xyz2)

veN?2 veN,|v|=2

= (I®OY f)(z,y,2) + (DY ) (2,y,2) + (OO2D ) (2,9, 2).

Here (TN £)(z,y, 2) = f(2,y, 2) by (4) gives the middle term on the right-hand side of (5). On
the other hand, [1, (3.1.5)] for n = 3 under the specialization t; — s, to — 0, t3 — t shows
that (IT:%1 f) (2,5, 2) is the coefficient of s?t in the expansion of f(sz 4 tz), hence by (3) agrees
with f(x,z). Similarly, specializing t; — 0, ta — s, t3 — t in [1, (3.1.5)] for n = 3 identifies
(I10:21) £)(x, 5, z) with the coefficient of st in the expansion of f(sy + tz), hence with f(y,z). The
lemma follows. O
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3. Corollary. Forn €N, vy,...,v,,v € Mg, R € k-alg, we have

f(zviav)zz (vi,v Z vaaU]7
i=1

i=1 1<i<j<n

Proof. By induction on n. For n = 1, there is nothing to prove. For n > 1, Lemma 2 and the
induction hypothesis yield

n n—1
f(zvi7v):f(zvi+vn7 ZU’H +f ZU“’U”, +f’Un, )
i=1 i=1

n—1 n—1
= Zf U, U +f Un,V Z f Vi, V5, Zf(”hvmv)
1<i<j<n i=1
= Zf<vi,v>+ > flvivg,v)
i=1 1<i<j<n
as claimed O

4. Corollary. For all z,y,z € Mg, R € k-alg, we have
[y, 2)=fle+y+2) = flaty) - fly+2) - fz+2)+ fl2) + fly) + f(2)
Proof. Expanding the right-hand side by using (3) and Lemma 2, we obtain

f@t+y)+f@+y,2)+ fz,z+y)+ f(z) = fle+y) = fly) — fly,2)—
f(zoy) = f(2) = f(2) = f(z,2) = fz,2) = f(2) + f(x) + f(y) + f(z) =
f(@,2) + f(z,y,2) + f(y,2) + f(z,2) + f(z,9)—
fy,2) = f(zy) = f(z,2) = fz,2) = flz,y,2).

5. Proposition. With the assumptions and notations of 1., we have
n
vaz =S rdf)+ Y ririfnv)+ Y mrrf (i, vg,v)
i=1 1<i,j<n,ij 1<i<j<i<n

forallneN, rq,....,r, € R, v1,...,v, € Mg, R € k-alg.

Proof. Again by induction on n, the case n = 1 again being obvious. For n > 1, we combine the
induction hypothesis with the Taylor expansion (3) and Cor. 3 to obtain

n n—1 n—1 n—1 n—1
FO riv) = F(Orivi+ravn) = F(O_rivi) +raf (Y riviyvn) + 12 f (v, Y i) + 1 f(0n)
=1 =1 i=1 =1 =1

n—1
= > rif) +rifn)+ Y ririfnv)+ Y mrrf (i vg,0)
i=1 1<i,j<n,i#j 1<i<j<l<n
n—1 n—1
> rirafivn) 4 > rirraf (Ui vg,v) + 3 rirs f(on, v7)
i=1 1<i<j<n i=1
n
="ty > rErnfene) + Y. g f (v vg,w),
i=1 1<i,j<n,i#j 1<i<j<l<n
again as claimed. O
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6. Notations and conventions. We now assume that we are given a free k-module V' of finite
rank n > 0, with basis (e;)1<i<n. We use this basis to identify V' with n-dimensional column space
k™, which in turn will be viewed as the split étale k-algebra of rank n under the componentwise
multiplication. Given another k-module W and a matrix S = (s;;) € Mat, (W), we obtain an induced
bilinear map

(S): VXV —W, (x,y9)r— (S)(z,y):=2"'Sy,

where in explicit “co-ordinate” terms

n n aq ﬁl
'Sy = Z ;8505 = Z a;Bjsi; € W (x=|:1],y=]|:|eV=Fk").

= =
I I o Bn

The usual formalism of matrix multiplication obviously prevails also in this more general set-up. In
particular, the matrix S is alternating, i.e., skew-symmetric with zeroes down the diagonal, if and
only if (S): V x V — W is an alternating bilinear map.

In dealing with polynomial laws f: M — N over k, we have allowed ourselves so far the notational
laxity of writing the induced set maps Mr — Ng, R € k-alg, simply as f. For greater clarity, this
laxity will not be tolerated anymore, so from now on we will consistently use the elaborate notation
fR : MR — NR.

7. Theorem. With the notations and conventions of 6., assume k is a field and let g: V — W be
a cubic polynomial law over k. Then the following conditions are equivalent.

(i) The set map gr.: V — W is zero, but g itself is not.
(ii) We have k = Fo,
gr(ei) =0, gr(z,2) =0, gr(z,y,2) =0 (I<i<nz,yz€eV) (6)
and there are xo,yo € V such that gi(xo,yo) # 0.
(iii) We have k = Fo and the exists a non-zero alternating matriz S € Mat,, (W) such that
gr(x) = 2'Sgpa? (7)
forallz € R" =Fy @ R = Vg, R € Fy-alg.

Proof. (i) = (ii). The first relation in (6) is obvious, as is the last one, by Cor. 4. For the middle
one, we use Euler’s differential equation and obtain g(z,z) = (Dg)(z,z) = 3g(x) =0 for all z € V|,
as claimed. It remains to show k = Fy and the final statement of (ii). Given z,y,z € V, we obtain
g9r(7) = gr(y) = gr(z +y) =0 by (i), and (3) for t — a € k™ yields

gr(x,y) + age(y,x) =0 (€ k). (8)

Assuming £ contains more than two elements, (8) implies g(z,y) = 0 for all z,y € V, which in turn
implies gr(>_rie;) =0 for all r1,...,7, € R, R € k-alg by Prop. 5, and we conclude that the cubic
polynomial law ¢ is zero. This contradiction shows not only k& = Fy but also g (zo,y0) # 0 for some
Zo,Yo € V.
(ii) = (iii). By (6) and Lemma 2, the map V x V — W, (z,y) — g(z,y), is Fa-bilinear and
alternating, so we obtain in
S = (g(es, ej))lgi,jgn € Mat,, (W)

an alternating matrix, which by (ii) is non-zero. Combining Prop. 5 with (6), we therefore conclude,
for

T1 n

r=|": :ZmelvER":Fg(@R:VR, (ri,...,7q € R),

i=1
Tn
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that

n

n
gr(x) = QR(ZM%) = erg(ei)R + Z rirjg(ei e;)r + Z rirjrig(ei, ej, e R
i=1 i=1

1<i,j<n,ij 1<i<j<i<n

2 t 2
= E rig(ei,ej)rr; = " SrT”,
1<i j<n

as desired.

(iii) = (i). The elements of the Fo-algebra FJ are idempotents, which implies gi(z) = gr,(x) =
ztSx = 0 for all z € V since S is alternating. Thus the set map gi: V — W is zero. On the other
hand, there are xg,yo € V such that x§Syy # 0, and passing from k = Fy to K = Fy = Fy(0),
02 = 0 + 1, we deduce

9K (20 + 0y0) = (20 + 0y0)"S (2o + Oyo)* = (w0 + 0y0)" S (5 + 6*y5) = (w0 + Oyo)" S (w0 + 0%yo)
= (0 + 0y0)" S (w0 + Oyo) + (xo + Oyo)" Syo
= 5Syo # 0.

Thus the set map gx: Vi — Wik is not zero, forcing g to be non-zero as well, and we have (i). O

8. Remark. In the course of establishing the implication (iii) = (i) above, we have shown that a
polynomial law g satisfying the conditions of the theorem does not vanish as a set map from Vi to
Wy, K = Fy. Actually, this is part of the result: for any proper extension field L of k = o, the
extension g® L: Vi — W is a non-zero cubic polynomial law over L which, thanks to Thm. 7, cannot
induce the zero set map from Vi, to W, since the base field L is not F.
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