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The expermients I would like to discuss in this lecture have been designed in
order to overcome certain difficulties that arise when dealing with the two Tits
constructions of cubic Jordan algebras over arbitrary commutative rings. The key
notion underlying both constructions has been introduced by Kevin McCrimmon
[3] under the name “cubic forms with adjoint and base point”. Later on, Michel
Racine and I investigated the two Tits constructions more closely [6, 7] and, in
the process of doing so, the name “cubic forms with adjoint and base point” was
changed to “cubic norm structures”. It should be added, however, that this shift in
terminology was due neither to Michel nor to me but instead to the referee, who
in actual fact was none other than Kevin McCrimmon himself. I therefore feel
vindicated to use this latter terminology from now on, So let us begin by talking
about

1. Cubic norm structures.

In order to do so, I start out from an arbitrary commutative associative ring of
scalars, denoted by k, and write k-mod for the category of k-modules, k-alg for the
category of unital commutative associative k-algebras, morphisms being k-algebra
homomorphisms taking 1 into 1. For M ∈ k-mod and R ∈ k-alg, I always write
MR := M ⊗R, viewed as an R-module.

By a cubic norm structure over k I mean a quadruple

X = (X, 1 = 1X , ] = ]X , N = NX)

consisting of the following components.

• The first component, also denoted by X, is an ordinary k-module.

• The second component, denoted by 1 = 1X and called the base point of X, is
a distinguished element of X which I assume to be unimodular: there exists
a linear form λ on X taking the base point to the unit element of the base
ring.

• The third component, denoted by ] = ]X and called the adjoint of X, is a
quadratic map X → X, x 7→ x], with bilinearization

x× y = (x+ y)] − x] − y].
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• The fourth component, denoted by N = NX and called the norm of X,
is a cubic form in the sense of Roby [8], i.e., it is a family of set maps
NR : XR → R, one for each R ∈ k-alg, that are homogeneous of degree 3
and vary functorially with R.

For such a quadruple to be a cubic norm structure over k it is necessary and
sufficient that a bunch of identities hold in all scalar extensions. Rather than
writing them all down, I confine myself to the most important one, namely, the
adjoint identity

x]] = N(x)x,

which, as I just said, is assumed to hold in all scalar extensions of X.
Every cubic norm structure X as above allows a natural symmetric bilinear

form
T := TX : X ×X −→ k,

called its bilinear trace. An element x ∈ X is said to be invertible if N(x) ∈ k× is
a unit in the base ring. The set of invertible elements will be denoted by

X× := {x ∈ X | x is invertible} = {x ∈ X | N(x) ∈ k×}.

Homomorphisms of cubic norm structures are linear maps preserving base points,
adjoints and norms in the obvious sense. Examples of cubic norm structures arise
naturally from generically algebraic Jordan algebras of degree 3 over fields or, more
generally, from generically algebraic Jordan algebras of degree 3 in the sense of
Loos [2] over arbitrary commutative rings.

The two Tits constructions are about building up big cubic norm structures
that are sufficiently regular out of smaller ones. Therefore we will have to talk
about non-singularity and cubic sub-norm structures.

A cubic norm structure X over k is said to be non-singular if it is finitely
generated projective as a k-module and its bilinear trace is non-singular in the
sense that it induces an isomorphism from the k-module X onto its dual in the
usual way. The condition on the module structure of X ensures that the property
of being non-singular is stable under arbitrary base change.

We say X0 ⊆ X is a cubic sub-norm structure if

(i) X0 is a cubic norm structure,

(ii) X0 ⊆ X is a submodule,

(iii) The inclusion X0 ↪→ X is a homomorphism of cubic norm structures.

We now turn to

2. The two Tits constructions in their classical habitat.

This is provided by the assumption that the base ring k is, in fact, a field.

2.1. The first Tits construction. Its input consists of an associative k-algebra
A of degree 3, with generic norm N and generic trace T , and a scalar µ ∈ k×. Its
output is a cubic norm structure X := T1(A,µ), where

X = A⊕Aj1 ⊕Aj2 ∈ k-mod, (1)

1X = 1A + 0j1 + 0j2, (2)

u] = (x]0 − µx1x2) + (µx]2 − x0x1)j1 + (x]1 − x2x0)j2, (3)

NX(u) = N(x0) + µN(x1) + µ2N(x2)− µT (x0x1x2) (4)

for u = x0 + x1j1 + x2j2 ∈ XR, R ∈ k-alg.
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2.2. The second Tits construction. Here the input is more complicated. It
consists of

(i) an associative k-algebra of degree 3 with involution of the second kind, i.e.,
of a triple (K,B,N), where

(a) K ∈ k-alg is quadratic étale, i.e., a composition algebra of dimension 2,
with conjugation ιK , a 7→ ā,

(b) B is an associative K-algebra of degree 3, with generic norm N and
generic trace T ,

(c) τ : B → B is an ιK-linear algebra involution,

(ii) an admissible pair (p, µ), where p ∈ H(B, τ), µ ∈ K are invertible and satisfy
N(p) = µµ̄.

Then the output is a cubic norm structure

X := T2(K,B, τ, p, µ),

where

X = H(B, τ)⊕Bj ∈ k-mod, (5)

1X = 1B + 0j, (6)

u] =
(
x]0 − xpτ(x)

)
+

(
µ̄τ(x)]p−1 − x0x

)
j, (7)

NX(u) = N(x0) + µN(x) + µ̄ N(x)− T
(
x0, xpτ(x)

)
(8)

for u = x0 + xj ∈ XR, R ∈ k-alg.

In the 1980’s, Michel and I were quite enthusiastic about the analogy between the
two Tits constructions of cubic norm structures on the one hand and the Cayley
Dickson construction of composition algebras on the other. Today I am distinctly
less so, and this primarily for the following reason: composition algebras are well
known and easily seen to satisfy the

2.3. Embedding property. Suppose we are given

• a composition algebra C over k (any commutative ring), with norm nC ,

• a composition subalgebra B ⊆ C, for simplicity assumed to satisfy the con-
dition

rk(B) =
1

2
rk(C),

• an invertible element l ∈ C that is perpendicular to B at the same time.

Then the inclusion B ↪→ C has a unique extension to an isomorphism

Cay
(
B,nC(l)

)
= B ⊕Bj ∼−→ C

sending j to l.

But the analogue of this result for cubic norm structures is known only in a special
form and in special cases. Moreover, the proof relies heavily either on excessive
computations [5] or a substantial amount of Jordan theory [3, 6] that is not readily
available over arbitrary commutative rings.

In what follows, I would like to sketch an approach to the two Tits constructions
that I hope will eventually lead to a natural proof of the embedding property. It
will also work more generally for alternative rather than associative algebras of
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degree 3. While this turns out to be straightforward for the first Tits construction,
it is distinctly less so for the second. There is, of course, an easy way out in the
alternative setting by stipulating that the element p in 2.2 (ii) belong to the nucleus
of B. But the nucleus of the standard examples of alternative algebras of degree
3 that are not associative is very small, so this kind of generalization doesn’t look
very interesting.

3. Cubic alternative algebras and pure elements.

We now return to our arbitrary commutative associative ring k of scalars and keep
this amount of generality until the very end. By a cubic alternative k-algebra we
mean a pair (A,N) such that

(i) A is a unital alternative algebra over k and 1A ∈ A is unimodular,

(ii) N : A→ k is a cubic form (again in the sense of Roby [8]), called the norm
of (A,N), that satisfies the conditions

N(1A) = 1,

N(xy) = N(x)N(y),

the cubic polynomial N(t1A − x) kills x

strictly, i.e., in all scalar extensions.

Every cubic alternative algebra (A,N) over k is easily seen to carry

• a natural linear trace T : A→ k, and

• a natural quadratic adloint ] : A→ A

in such a way that
(A,N)+ := (A ∈ k-mod, 1A, ],N)

is a cubic norm structure over k, with bilinear trace given by T (xy).

3.1. Theorem. (Petersson-Racine [7], Faulkner [1]) Given a cubic alternative
k-algebra (A,N) and a scalar µ ∈ k, the relations (1)−(4) define a cubic norm
structure X = T1(A,N, µ) over k with (A,N)+ ⊆ T1(A,N, µ) through the initial
summand.

We now wish, conversely, to recover the first Tits construction as in Thm. 3.1 from
an abstract setting consisting of a cubic sub-norm structure X0 sitting inside a
bigger cubic norm structure X.

3.2. Orthogonal complements. Suppose X is a cubic norm structure over k
and X0 ⊆ X is a non-singular cubic sub-norm structure. Then the orthogonal
splitting

X = X0 ⊕ V, V := X⊥0 ,

with respect to the bilinear trace of X comes quipped with two additional struc-
tural ingredients: there is a canonical bilinear action

X0 × V −→ V, (x0, v) 7−→ x0 . v := −x0 × v,

and there are quadratic maps Q : V → X0, H : V → V given by

v] = −Q(v) +H(v) (v ∈ V ).

With these ingredients, an element l ∈ X is said to be pure relative X0 if
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(i) l ∈ V is invertible in X,

(ii) l] ∈ V (equivalently, Q(v) = 0),

(iii) X0 . (X0 . l) ⊆ X0 . l.

If this is so, we can give the k-module X0 the structure of a well defined non-
associative k-algebra

AX(X0, l) :=
(
X0 ∈ k-mod, (x0y0) . l := x0 . (y0 . l)

)
.

3.3. Theorem. With the notations and assumptions of 3.2,

(a) ((AX(X0, l), NX0) is a cubic alternative algebra over k with(
AX(X0, l), NX0

)+
= X0.

(b) The inclusion X0 ↪→ X has a unique extension to a homomorphism

T1
(
AX(X0, l), NX0

, NX(l)
)
−→ X

of cubic norm structures that sends j1 to l.

Among the conditions defining the notion of a pure element in 3.2, (iii) is the most
delicate. It is therefore important to note that, under some additional “global”
hypotheses involving X and X0 but not l, it holds automatically once the other
two are valid.

3.4. Theorem. With the notations and assumptions of 3.2, suppose X0 has rank
n and X is finitely generated projective as a k-module of rank at most 3n. Then,
if l ∈ V is invertible in X and has l] ∈ V as well, l is pure relative to X0 and the
homomorphism of Thm. 3.3 is an isomorphism.

We now turn the second Tits construction in the setting of cubic alternative alge-
bras, which requires considerably more effort.

4. Isotopy involutions and étale elements.

The key notion that we will have to utilize here is again due to McCrimmon [4],
but wil be needed here only in a special case.

4.1. Unital isotopes of alternative algebras. Let A be a unital alternative
algebra over k and p, q ∈ A×. Then the k-algebra

Ap :=
(
A ∈ k-mod, (x, y) 7−→ (xp−1)(py)

)
is again unital alternative with

• 1Ap = 1A,

• Jord(Ap) = Jord(A),

• (Ap)q = Apq,

• Ap = A if A is associative.

5



March 3, 2011 Exp.-cubic.syst.tex

4.2. Isotopy involutions of the second kind. Let

B := (K,B,N, p, τ)

be a cubic alternative k-algebra with isotopy involution of the second kind, so

(i) K ∈ k-alg is quadratic étale, with conjugation ιK , a 7→ ā,

(ii) (B,N) is a cubic alternative algebra over K,

(iii) p ∈ B×,

(iv) τ : B → (Bp)op is an ιK-linear isomorphism satisfying

τ(p) = p, τ2 = 1B , N ◦ τ = ιK ◦N.

A scalar µ ∈ K is said to be admissible relative to B if N(p) = µµ̄. Condition (iv)
implies in particular first τ(xy) = (τ(y)p−1)(pτ(x)) and then

xpτ(x) := x
(
pτ(x)

)
∈ H(B) := H(B, τ)

but NOT (xp)τ(x) ∈ H(B).

4.3. Theorem. With B as in 4.2, suppose µ ∈ K is admissible relative to B.
Then the relations (5)−(8) define a cubic norm structure T2(B, µ) over k with
H(B) ⊆ T2(B, µ) through the initial summand.

The proof of this result consists of some delicate computations.

4.4. Étale elements. Returning now to the set-up of 3.2, an element v ∈ X is
said to be étale relative to X0 if it satisfies the conditions

v ∈ V, Q(v) ∈ X×0 , NX(v)2 − 4NX0

(
Q(v)

)
∈ k×.

This implies that

Kv := k[t]/
(
t2 −NX(v)t +NX0

(
Q(v)

))
is a quadratic étale k-algebra (hence the name) that is generated by an invertible
element.

4.5. Theorem. With the notations and assumptions of 4.4, suppose X0 has rank
n and X ∈ k-mod is finitely generated projective of rank at most 3n. Then there
are a cubic alternative k-algebra B with isotopy involution of the second kind as in
4.2 with K = Kv, an admissible scalar µ ∈ K relative to B and an isomorphism

T2(B, µ)
∼−→ X

sending H(B) to X0 and j to v.

The proof of this theorem consists of

• extending scalars from k to K = Kv,

• exhibiting a pure element of XK relative X0K ,

• applying Thm. 3.3, and

• descending from K back to k.
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5. The existence of étale elements.

The value of Thm. 4.5 hinges on existence criteria for étale elements. Here our
results are even less complete than the previous ones. We begin with an important
class of examples.

5.1. Hermitian matrices. Let C be a octonion algebra over k and K ⊆ C a
quadratic étale subalgebra. Then

C = K ⊕W, W := K⊥,

and W is canonically a finitely generated projective (right) K-module of rank 3.
Now suppose

Γ ∈ Diag3(k) ∩GL3(k)

is a 3× 3 invertible diagonal matrix over k and put

X0 := H3(K,Γ) ⊆ H3(C,Γ) =: X,

(where H3(?,Γ) refers to 3× 3 Γ-hermitian matrices with scalars (in k) down the
diagonal), first as generically algebraic Jordan algebras of degree 3 and then as
cubic norm structures.

5.2. Theorem. With the notations and assumptions of 5.1, the following condi-
tions are equivalent.

(i) X contains étale elements relative to X0.

(ii) W ∈ K-mod is free (of rank 3) and K = k[a] for some invertible element
a ∈ K.

Combining Thm. 5.2 with a Zariski density argument and the fact that finite-
dimensional absolutely simple Jordan algebras over a finite field are reduced, we
obtain

5.3. Corollary. Let k be a field, X the cubic norm structure corresponding to an
Albert algebra J over k and X0 ⊆ X the cubic sub-norm structure corresponding
to an absolutely simple nine-dimensional subalgebra J ′ ⊆ J . Then precisely one of
the following holds.

(a) X contains étale elements relative to X0.

(b) J ′ ∼= Jord(Mat3(k)) and k = F2.

Moreover, if J ′ ∼= Jord(Mat3(k)), then X contains pure elements relative to X0.
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