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Abstract
Albert algebras, a specific kind of Jordan algebra, are naturally distinguished objects among commutative nonasso-
ciative algebras and also arise naturally in the context of simple affine group schemes of type F4, E6, or E7. We study
these objects over an arbitrary base ring R, with particular attention to the case 𝑅 = Z. We prove in this generality
results previously in the literature in the special case where R is a field of characteristic different from 2 and 3.
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1. Introduction

Albert algebras, which are a specific kind of Jordan algebra, are naturally distinguished objects among
commutative nonassociative algebras and also arise naturally in the context of simple affine group
schemes of type F4, E6, or E7. We study these objects over an arbitrary base ring R, with particular
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attention to the case 𝑅 = Z. We prove in this generality results previously in the literature in the special
case where R is a field of characteristic different from 2 and 3.

Why Albert algebras?

In the setting of semisimple algebraic groups over a field, a standard technique for computing with
elements of a group — especially an anisotropic group — is to interpret the group in terms of auto-
morphisms of some algebraic structure, such as viewing an adjoint group of type B𝑛 as the special
orthogonal group of a quadratic form of dimension 2𝑛 + 1, or an adjoint group of inner type A𝑛 as the
automorphism group of an Azumaya algebra of rank (𝑛 + 1)2. This approach can be seen in many ref-
erences, from [Weil], through [KnMRT] and [Conrad]. In this vein, Albert algebras appear as a natural
tool for computations related to F4, E6, and E7 groups, as we do below.

In the setting of nonassociative algebras, Albert algebras also arise naturally. Among commuta-
tive not-necessarily-associative algebras under additional mild hypotheses (the field has characteristic
≠ 2, 3, 5 and the algebra is metrized), every algebra satisfying a polynomial identity of degree ≤ 4 is
a Jordan algebra (see [ChG, Proposition A.8]). Jordan algebras have an analogue of the Wedderburn-
Artin theory for associative algebras [J68, p. 201, Corollary 2], and one finds that all the simple Jordan
algebras are closely related to associative algebras (more precisely, “are special”) except for one kind,
the Albert algebras (see, for example [J68, p. 210, Theorem 11] or [McCZ]).

Our contribution

In the setting of nonassociative algebras, we prove a classification of Albert algebras over Z (Theorem
14.3), which was viewed as an open question in the context of nonassociative algebra; here, we see that it
is equivalent to the classification of groups of type F4, which was known (see [Conrad], which leverages
[Gr] and [ElkiesGr]). We also prove new results about ideals in Albert algebras (Theorem 8.2), about
isotopy of Albert algebras over semilocal rings (Theorem 13.3), and about the number of generators of
an Albert algebra (Proposition 12.1). We have not seen Lemma 15.1 in the literature, even in the case
of a base field of characteristic different from 2 and 3.

In the setting of affine group schemes, the language of Albert algebras provides a way to give concrete
descriptions of the affine group schemes over Z (see Section 18). In that language, a clever computation
in [ElkiesGr] appears as an example of a general mechanism known as isotopy (see Definition 14.1).
To facilitate these applications, we present the definition of Albert algebras in a streamlined way (see
Definition 7.1). Note that they are defined as a type of what was formerly called a “quadratic” Jordan
algebra — because instead of a bilinear multiplication, one has a quadratic map, the U-operator — and
that the definition makes sense whether or not 2 is invertible in the base ring. Applying the definition
here allows one to replace, in some proofs, “global” computations over Z as one finds in [Conrad] with
“local” computations over an algebraically closed field that exist in several places in the literature (see,
for example, the proof of Lemma 9.1 and Section 18).

A different definition

The definition of Albert algebra over a ring R given here (Definition 7.2) is in the context of para-
quadratic algebras as recalled at the beginning of Section 5 — such an algebra is an R-module M with a
distinguished element 1𝑀 and a quadratic map 𝑈 : 𝑀 → End𝑅 (𝑀) such that 𝑈1𝑀 = Id𝑀 . There are no
other axioms to check. We then define a specific para-quadratic algebra, Her3(Zor(𝑅)), in Definition 6.7,
and define an Albert R-algebra J to be a para-quadratic R-algebra such that 𝐽 ⊗ 𝑆 � Her3(Zor(𝑅)) ⊗ 𝑆
for some faithfully flat R-algebra S.

A different approach is taken by references such as [Pe19, Section 6.1] or [Als21]. They define
an Albert R-algebra to be a cubic Jordan R-algebra (Definition 6.2) J whose underlying R-module is
projective of rank 27 and 𝐽 ⊗ 𝐹 is a simple algebra for every homomorphism from R to a field F. This
definition involves axioms that in principle need to be verified over all R-algebras. The two definitions
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give the same objects. Theorem 17 in [Pe19] states that an Albert algebra in the sense of that paper
is an Albert algebra in the sense of this paper by proving the existence of the required faithfully flat
R-algebra; a detailed proof has not been published but closely follows an argument for octonion algebras
from [LoPR]. For the converse, an Albert algebra in the sense of this paper has a projective underlying
module (because Her3(Zor(𝑅)) does), is a cubic Jordan algebra (Proposition 10.1), and satisfies the
simplicity condition (Corollary 8.5).

2. Notation

Rings, by definition, have a 1. We put Z-alg for the category of commutative rings, where Z is an
initial object. For any 𝑅 ∈ Z-alg, we put 𝑅-alg for the category of pairs (𝑆, 𝑓 ) with 𝑆 ∈ Z-alg and
𝑓 : 𝑅 → 𝑆, that is, the coslice category 𝑅 ↓ Z-alg. Below, R will typically denote an element of Z-alg.
(The interested reader is invited to mentally replace R by a base scheme X, 𝑅-alg with the category
of schemes over X, finitely generated projective R-modules with vector bundles over X, etc., thereby
translating results below into a language closer to that in [CalF].) An R-algebra S is said to be fppf if it
is faithfully flat and finitely presented.

We write Mat𝑛 (𝑅) for the ring of n-by-n matrices with entries from R, Id for the identity matrix, and
〈𝛼1, . . . , 𝛼𝑛〉 ∈ Mat𝑛 (𝑅) for the diagonal matrix whose (𝑖, 𝑖)-entry is 𝛼𝑖 . The transpose of a matrix x is
denoted 𝑥ᵀ. We write GL𝑛 (𝑅) for the group of invertible elements in Mat𝑛 (𝑅).

Suppose now that G is a finitely presented group scheme over R. For each fppf 𝑆 ∈ 𝑅-alg, we
write 𝐻1(𝑆/𝑅,G) for Čech cohomology of the sheaf of groups G relative to 𝑅 → 𝑆 (see, for example
[Gir, Section III.3.6] or [Wa, Chapter 17]). The set 𝐻1(𝑆/𝑅,G) does not depend on the choice of
structure homomorphism 𝑅 → 𝑆, and more is true: Every morphism 𝑆 → 𝑇 in 𝑘-alg gives a morphism
𝐻1 (𝑆/𝑅,G) → 𝐻1(𝑇/𝑅,G) that is injective and does not depend on the choice of arrow 𝑆 → 𝑇 [Gir,
Remark III.3.6.5]. The subcategory of fppf elements of 𝑅-alg has a small skeleton, so the colimit

𝐻1(𝑅,G) := lim
−−→

fppf 𝑆∈𝑅-alg
𝐻1(𝑆/𝑅,G)

is a set. We call it the nonabelian fppf cohomology of G. In case G is smooth, it agrees with étale 𝐻1. If
additionally R is a field, then it agrees with the nonabelian Galois cohomology defined in, for example,
[Serre].

Unimodular elements

Let M be an R-module. An element 𝑚 ∈ 𝑀 is said to be unimodular if 𝑅𝑚 is a free R-module of rank 1
and a direct summand of M, equivalently, if there is some 𝜆 ∈ 𝑀∗ (the dual of M) such that 𝜆(𝑚) = 1.
When M is finitely generated projective, this is equivalent to: 𝑚 ⊗ 1 is not zero in 𝑀 ⊗ 𝐹 for every field
𝐹 ∈ 𝑅-alg (see, for example [Lo, 0.3]). If 𝑚 ∈ 𝑀 is unimodular, then so is 𝑚 ⊗ 1 ∈ 𝑀 ⊗ 𝑆 for every
𝑆 ∈ 𝑅-alg. In the opposite direction, if M is finitely generated projective, S is a Zariski cover of R (i.e.,
Spec 𝑆 → Spec 𝑅 is surjective), and 𝑚 ⊗ 1 is unimodular in 𝑀 ⊗ 𝑆, it follows that m is unimodular as
an element of M.

3. Background on polynomial laws

We may identify an R-module M with a functor W(𝑀) from 𝑅-alg to the category of sets defined
via 𝑆 ↦→ 𝑀 ⊗ 𝑆. For R-modules M, N, a polynomial law (in the sense of [Roby] or [BouA2, Section
IV.5, Exercise 9]) 𝑓 : W(𝑀) → W(𝑁) is a morphism of functors, that is, a collection of set maps
𝑓𝑆 : 𝑀 ⊗ 𝑆 → 𝑁 ⊗ 𝑆 varying functorially with S. We put 𝒫𝑅 (𝑀, 𝑁) for the collection of polynomial
laws W(𝑀) → W(𝑁), omitting the subscript R when it is understood. Note that 𝒫𝑅 (𝑀, 𝑁) is an
R-module.
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Lemma 3.1. Let M be a finitely generated projective R-module, and suppose 𝑓 ∈ 𝒫(𝑀, 𝑁) is such that
𝑓𝑅 (0) = 0. If 𝑚 ∈ 𝑀 has 𝑓𝑅 (𝑚) unimodular in N, then m is unimodular.

In the case 𝑁 = 𝑅, the condition that 𝑓𝑅 (𝑚) is unimodular means that 𝑓𝑅 (𝑚) ∈ 𝑅×.

Proof. Replacing f with 𝜆 𝑓 , where 𝜆 ∈ 𝑁∗ is such that 𝜆( 𝑓𝑅 (𝑚)) = 1, we may assume 𝑁 = 𝑅 and
𝑓𝑅 (𝑚) = 1. If m is not unimodular, then there is a field 𝐹 ∈ 𝑅-alg, such that 𝑚 ⊗ 1 = 0 in 𝑀 ⊗ 𝐹, and
𝑓𝐹 (𝑚 ⊗ 1) = 0, whence 𝑓𝑅 (𝑚) belongs to the kernel of 𝑅 → 𝐹 a contradiction. �

A polynomial law is homogeneous of degree 𝑑 ≥ 0 if 𝑓𝑆 (𝑠𝑥) = 𝑠𝑑 𝑓𝑆 (𝑥) for every 𝑆 ∈ 𝑅-alg, 𝑠 ∈ 𝑆,
and 𝑥 ∈ 𝑀 ⊗ 𝑆 (see [Roby, p. 226]). We put 𝒫𝑑

𝑅 (𝑀, 𝑁) for the submodule of 𝒫𝑅 (𝑀, 𝑁) of polynomial
laws that are homogeneous of degree d. The polynomial laws that are homogeneous of degree 0 are
constants, and those of degree 1 are linear transformations, that is, the natural maps

𝑁 → 𝒫0
𝑅 (𝑀, 𝑁) and Hom𝑅 (𝑀, 𝑁) → 𝒫1

𝑅 (𝑀, 𝑁)

are isomorphisms (see [Roby, pp. 230, 231]). For degree 2, 𝒫2
𝑅 (𝑀, 𝑁) is canonically identified with

the maps 𝑓 : 𝑀 → 𝑁 that are quadratic in the sense that 𝑓 (𝑟𝑚) = 𝑟2 𝑓 (𝑚) and the map 𝑀 × 𝑀 → 𝑁
defined by 𝑓 (𝑚1, 𝑚2) := 𝑓 (𝑚1 + 𝑚2) − 𝑓 (𝑚1) − 𝑓 (𝑚2) is bilinear [Roby, p. 236, Proposition II.1]. A
form of degree d on M is a polynomial law W(𝑀) → W(𝑅) that is homogeneous of degree d. The
forms of degree 2 are commonly known as quadratic forms on M.

Directional derivatives

For 𝑓 ∈ 𝒫(𝑀, 𝑁), 𝑣 ∈ 𝑀 , t an indeterminate, and 𝑛 ≥ 0, we define a polynomial law ∇𝑛𝑣 𝑓 as follows.
For 𝑆 ∈ 𝑅-alg and 𝑥 ∈ 𝑀 ⊗ 𝑆, 𝑓𝑆 [𝑡 ] (𝑥 + 𝑣 ⊗ 𝑡) is an element of 𝑁 ⊗ 𝑆[𝑡], and we define ∇𝑛𝑣 𝑓𝑆 (𝑥) ∈ 𝑁 ⊗ 𝑆
to be the coefficient of 𝑡𝑛. This defines a polynomial law called the n-th directional derivative ∇𝑛𝑣 𝑓 of f
in the direction v. One finds that ∇0

𝑣 𝑓 = 𝑓 regardless of v. We abbreviate ∇𝑣 𝑓 := ∇1
𝑣 𝑓 ; it is linear in v.

If f is homogeneous of degree d and 0 ≤ 𝑛 ≤ 𝑑, then ∇𝑛𝑣 𝑓 (𝑥) is homogeneous of degree 𝑑 − 𝑛
in x and degree n in v. The symmetry implicit in the definition of the directional derivative gives
∇𝑛𝑣 𝑓 (𝑥) = ∇

𝑑−𝑛
𝑥 𝑓 (𝑣) for 𝑥 ∈ 𝑀 .

Lemma 3.2. Suppose M, N are R-modules and A is a unital associative R-algebra and 𝑔 ∈ 𝒫(𝑀, 𝐴)
is a polynomial law such that there is an element 𝑚 ∈ 𝑀 such that 𝑔𝑅 (𝑚) ∈ 𝐴 is invertible. If
𝑓 ∈ 𝒫𝑑 (𝑀, 𝑁) satisfies

𝑔𝑆 (𝑥) ∈ (𝐴 ⊗ 𝑆)
× ⇒ 𝑓𝑆 (𝑥) = 0

for all 𝑆 ∈ 𝑅-alg and 𝑥 ∈ 𝑀 ⊗ 𝑆, then 𝑓 = 0.

Proof. Since the hypotheses are stable under base change, it suffices to show that 𝑓 (𝑣) = 0 for all
𝑣 ∈ 𝑀 . Replacing g by 𝐿 ◦ 𝑔 ∈ 𝒫(𝑀, 𝐴), where 𝐿 ∈ End𝑅 (𝐴) is multiplication in A on the left by the
inverse of 𝑔𝑅 (𝑚), we may assume 𝑔𝑅 (𝑚) = 1𝐴. Set 𝑆 := 𝑅[𝜀]/(𝜀𝑑+1). For 𝑣 ∈ 𝑀 , the element

𝑔𝑆 (𝑚 + 𝜀𝑣) = 1𝐴 +

𝑑∑
𝑛=1

𝜀𝑛∇𝑛𝑣𝑔𝑅 (𝑚)

is invertible in 𝐴𝑆 , so by hypothesis,

0 = 𝑓𝑆 (𝑚 + 𝜀𝑣) =
𝑑∑

𝑛=0
𝜀𝑛∇𝑛𝑣 𝑓𝑅 (𝑚).
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Focusing on the coefficient of 𝜀𝑑 in that equation gives

0 = ∇𝑑𝑣 𝑓𝑅 (𝑚) = ∇
0
𝑚 𝑓𝑅 (𝑣) = 𝑓𝑅 (𝑣),

as required. �

While Lemma 3.2 has some similarity with the principle of extension of algebraic identities as in
[BouA2, Section IV.2.3], that result imposes some hypothesis on R.

The module of polynomial laws

In the following, we write S𝑛𝑀 for the n-th symmetric power of M, that is, the R-module ⊗𝑛𝑀 modulo
the submodule generated by elements 𝑥 − 𝜎(𝑥) for 𝑥 ∈ ⊗𝑛𝑀 and 𝜎 a permutation of the n factors.

Lemma 3.3. Let M and N be finitely generated projective R-modules. Then for each 𝑑 ≥ 0:

1. 𝒫𝑑 (𝑀, 𝑁) is a finitely generated projective R-module.
2. If 𝑇 ∈ 𝑅-alg is flat, the natural map 𝒫𝑑

𝑅 (𝑀, 𝑁) ⊗ 𝑇 → 𝒫𝑑
𝑇 (𝑀 ⊗ 𝑇, 𝑁 ⊗ 𝑇) is an isomorphism.

3. The natural map S𝑑 (𝑀∗) ⊗ 𝑁 → 𝒫𝑑 (𝑀, 𝑁) is an isomorphism.
4. The natural map 𝒫𝑑 (𝑀, 𝑅) ⊗ 𝑁 → 𝒫𝑑 (𝑀, 𝑁) is an isomorphism.

Proof. To establish notation, we write 𝑅 =
∏𝑛

𝑖=0 𝑅𝑖 for some n such that 𝑀 =
∏

𝑖 𝑀𝑖 and 𝑁 =
∏

𝑖 𝑁𝑖

with each 𝑀𝑖 , 𝑁𝑖 an 𝑅𝑖-module of finite constant rank.
Next write Γ𝑑 (𝑀) for the module of degree d divided powers on M as defined in [BouA2, Section IV.5,

Exercise 2]. We claim that it is finitely generated projective, and therefore, by [Stacks, Tag 00NX],
finitely presented. If M is free, then Γ𝑑 (𝑀) is free. If M is projective of constant rank, then there exists
𝑆 ∈ 𝑅-alg faithfully flat such that 𝑀 ⊗ 𝑆 is free. Because Γ𝑑 commutes with base change [BouA2,
Section IV.5, Exercise 7], Γ𝑑 (𝑀) ⊗ 𝑆 � Γ𝑑 (𝑀 ⊗ 𝑆) is free, and we again find that Γ𝑑 (𝑀) is finitely
generated projective [Stacks, Tags 03C4, 05A9]. In the general case, Γ𝑑 (𝑀) =

∏
𝑖 Γ𝑑 (𝑀𝑖), and the

claim is verified.
To verify (2), we note that 𝒫𝑑

𝑅 (𝑀, 𝑁) is naturally isomorphic to Hom𝑅 (Γ𝑑 (𝑀), 𝑁) by [Roby,
Theorem IV.1]. Then𝒫𝑑

𝑅 (𝑀, 𝑁)⊗𝑇 � Hom𝑅 (Γ𝑑 (𝑀), 𝑁)⊗𝑇 , which in turn is Hom𝑇 (Γ𝑑 (𝑀)⊗𝑇, 𝑁⊗𝑇)
because T is flat and Γ𝑑 (𝑀) is finitely presented [BouCA, Section I.2.10, Proposition 11]. Since Γ𝑑
commutes with base change, we have verified (2).

(3): If M and N are free modules, then the map is an isomorphism by [Roby, p. 232]. If M and
N have constant rank, then there is a faithfully flat 𝑇 ∈ 𝑅-alg such that 𝑀 ⊗ 𝑇 and 𝑁 ⊗ 𝑇 are free.
Since (3) holds over T by the free case, (2) and faithfully flat descent give that (3) holds. In the general
case, 𝒫𝑑 (𝑀, 𝑁) =

∏
𝒫𝑑 (𝑀𝑖 , 𝑁𝑖) and S𝑑 (𝑀∗) ⊗ 𝑁 =

∏
(S𝑑 (𝑀∗𝑖 ) ⊗ 𝑁𝑖) and the claim follows by the

constant rank case.
(4) follows trivially from (3). For (1), note that 𝑀∗ is finitely generated projective, so are S𝑑 (𝑀∗)

and the tensor product S𝑑 (𝑀∗) ⊗ 𝑁 . Applying (3) gives the claim. �

One can create new polynomial laws from old by twisting by a line bundle, that is, by a rank 1
projective module.

Lemma 3.4. Let M and N be finitely generated projective R-modules. Then for every 𝑑 ≥ 0 and every
line bundle L, we have:

1. There is a natural isomorphism 𝒫𝑑 (𝑀, 𝑁) ⊗ (𝐿∗)⊗𝑑 → 𝒫𝑑 (𝑀 ⊗ 𝐿, 𝑁).
2. There is a natural isomorphism 𝒫𝑑 (𝑀, 𝑁) � 𝒫𝑑 (𝑀 ⊗ 𝐿, 𝑁 ⊗ 𝐿⊗𝑑).

Proof. For (1), since 𝐿∗ is a line bundle, the natural map (𝐿∗)⊗𝑑 → S𝑑 (𝐿∗) is an isomorphism because
it is so after faithfully flat base change. Since S𝑑 (𝑀∗)⊗S𝑑 (𝐿∗) is naturally identified with S𝑑 ((𝑀⊗𝐿)∗),
combining Lemma 3.3(3),(4) then gives (1).
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For (2), there are isomorphisms 𝒫𝑑 (𝑀 ⊗ 𝐿, 𝑁 ⊗ 𝐿⊗𝑑)
∼
−→ 𝒫𝑑 (𝑀, 𝑁) ⊗ (𝐿∗)⊗𝑑 ⊗ 𝐿⊗𝑑 by (1) and

Lemma 3.3(4). Since 𝐿⊗𝑑 ⊗ (𝐿∗)⊗𝑑 � 𝑅, the claim follows. �

Example 3.5. (References: [Stacks, Tag 03PK], [CalF, Section 2.4.3], [Kn, Section III.3]) Suppose L
is a line bundle and there is an isomorphism ℎ : 𝐿⊗𝑑 → 𝑅 for some 𝑑 ≥ 1. We call such a pair [𝐿, ℎ] a
d-trivialized line bundle. (In the case 𝑑 = 2, they are sometimes called discriminant modules.) Applying
h to identify 𝑁 ⊗ 𝐿⊗𝑑

∼
−→ 𝑁 in Lemma 3.4(2) gives a construction that takes 𝑓 ∈ 𝒫𝑑 (𝑀, 𝑁) and gives

an element of 𝒫𝑑 (𝑀 ⊗ 𝐿, 𝑁), which we denote by [𝐿, ℎ] · (𝑀, 𝑓 ).
For example, for each 𝛼 ∈ 𝑅×, define 〈𝛼〉 to be [𝐿, ℎ] as in the preceding paragraph, where 𝐿 = 𝑅

and h is defined by ℎ(ℓ1 ⊗ · · · ⊗ ℓ𝑑) = 𝛼
∏

ℓ𝑖 . Clearly,
〈
𝛼𝛽𝑑

〉
� 〈𝛼〉 for all 𝛼, 𝛽 ∈ 𝑅×. Applying the

construction in the previous paragraph, we find 〈𝛼〉 · (𝑀, 𝑓 ) � (𝑀, 𝛼 𝑓 ).
Every [𝐿, ℎ] with 𝐿 = 𝑅 is necessarily isomorphic to 〈𝛼〉 for some 𝛼 ∈ 𝑅×. In particular, if Pic(𝑅)

has no d-torsion elements other than zero — for example, if R is a semilocal ring or a UFD [Stacks,
Tags 0BCH, 02M9] — then each [𝐿, ℎ] is isomorphic to 〈𝛼〉 for some 𝛼. The group scheme 𝜇𝑑 of d-th
roots of unity is the automorphism group of each [𝐿, ℎ], where 𝜇𝑑 acts by multiplication on L. The
group 𝐻1(𝑅, 𝜇𝑑) classifies pairs [𝐿, ℎ] up to isomorphism.

We say that homogeneous polynomial laws related by the isomorphism in Lemma 3.4(2) are projec-
tively similar, imitating the language from [AuBB, Section 1.2] for the case of quadratic forms (𝑑 = 2).
(This relationship was called “lax-similarity” in [BC].) We say that homogeneous degree d laws f and
[𝐿, ℎ] · 𝑓 for [𝐿, ℎ] ∈ 𝐻1(𝑅, 𝜇𝑑) as in the preceding example are similar. If Pic(𝑅) is d-torsion, the
two notions coincide.

For 𝑓 ∈ 𝒫𝑑 (𝑀, 𝑁), we define Aut( 𝑓 ) to be the subgroup of GL(𝑀) consisting of elements g such
that 𝑓 𝑔 = 𝑓 as polynomial laws. In case M and N are finitely generated projective, so is 𝒫𝑑 (𝑀, 𝑁),
whence the functor Aut( 𝑓 ) from 𝑅-alg to groups defined by Aut( 𝑓 ) (𝑇) = Aut( 𝑓𝑇 ) is a closed sub-
group-scheme of GL(𝑀).

Lemma 3.6. Let f and 𝑓 ′ be homogeneous polynomial laws on finitely generated projective modules. If
f and 𝑓 ′ are projectively similar, then their automorphism groups are isomorphic.

Proof. By hypothesis, 𝑓 ∈ 𝒫𝑑 (𝑀, 𝑁) and 𝑓 ′ ∈ 𝒫𝑑 (𝑀 ⊗ 𝐿, 𝑁 ⊗ 𝐿⊗𝑑) for some modules M and N, line
bundle L, and 𝑑 ≥ 0. The group scheme Aut( 𝑓 ) is the closed sub-group-scheme of GL(𝑀) stabilizing
the element f in S𝑑 (𝑀∗) ⊗ 𝑁 . Now, any element of GL(𝑀) acts on S𝑑 ((𝑀 ⊗ 𝐿)∗) ⊗ (𝑁 ⊗ 𝐿⊗𝑑) by
defining it to act as the identity on L. In this way, we find a homomorphism Aut( 𝑓 ) → Aut( 𝑓 ′). Viewing
M as (𝑀 ⊗ 𝐿) ⊗ 𝐿∗ and N as (𝑁 ⊗ 𝐿⊗𝑑) ⊗ (𝐿∗)⊗𝑑 , and repeating this construction, we find an inverse
mapping Aut( 𝑓 ′) → Aut( 𝑓 ). �

4. Background on composition algebras

A not-necessarily-associative R-algebra C is an R-module with an R-linear map𝐶 ⊗𝑅𝐶 → 𝐶, which we
view as a multiplication and write as juxtaposition. Such a C is unital if it has an element 1𝐶 ∈ 𝐶 such
that 1𝐶𝑐 = 𝑐1𝐶 = 𝑐 for all 𝑐 ∈ 𝐶 (see, for example, [Sch]). A composition R-algebra as in [Pe93] is such
a C that is finitely generated projective as an R-module, is unital, and has a quadratic form 𝑛𝐶 : 𝐶 → 𝑅
that allows composition (that is, such that 𝑛𝐶 (𝑥𝑦) = 𝑛𝐶 (𝑥)𝑛𝐶 (𝑦) for all 𝑥, 𝑦 ∈ 𝐶), satisfies 𝑛𝐶 (1𝐶 ) = 1,
and whose bilinearization defined by 𝑛𝐶 (𝑥, 𝑦) := 𝑛𝐶 (𝑥 + 𝑦) − 𝑛𝐶 (𝑥) − 𝑛𝐶 (𝑦) gives an isomorphism
𝐶 → 𝐶∗ via 𝑥 ↦→ 𝑛𝐶 (𝑥, ·). We say that a symmetric bilinear form with this property is regular. The
quadratic form 𝑛𝐶 (which is unique by Proposition 4.3 below) is called the norm of C.

Remark 4.1. In the definition above, one can swap the condition 𝑛𝐶 (1𝐶 ) = 1 with the requirement that
the rank of C is nowhere zero, that is, 𝐶 ⊗ 𝐹 ≠ 0 for every field 𝐹 ∈ 𝑅-alg.

We put Tr𝐶 (𝑥) := 𝑛𝐶 (𝑥, 1𝐶 ), a linear map 𝐶 → 𝑅, called the trace of C. Trivially, Tr𝐶 (1𝐶 ) = 2.
Lemma 3.1 gives that 1𝐶 is unimodular, so we may identify R with 𝑅1𝐶 , and C is a faithful R-module.
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The unimodularity of 1𝐶 is equivalent to the existence of some 𝜆 ∈ 𝐶∗ such that 𝜆(1𝐶 ) = 1, that is,
some 𝑥 ∈ 𝐶 such that Tr𝐶 (𝑥) = 1, whence Tr𝐶 : 𝐶 → 𝑅 is surjective.

The class of composition algebras is stable under base change. That is, if C is a composition
R-algebra with norm 𝑛𝐶 , then for every 𝑆 ∈ 𝑅-alg, 𝐶 ⊗ 𝑆 is a composition S-algebra with norm 𝑛𝐶 ⊗ 𝑆.
The following two results are essentially well known [Pe93, 1.2−1.4]. For convenience, we include their
proof.

Lemma 4.2 (“Cayley-Hamilton”). Let C be a composition algebra with norm 𝑛𝐶 , and define Tr𝐶 as
above. Then

𝑥2 − Tr𝐶 (𝑥)𝑥 + 𝑛𝐶 (𝑥)1𝐶 = 0

for all 𝑥 ∈ 𝐶.

Proof. Linearizing the composition law 𝑛𝐶 (𝑥𝑦) = 𝑛𝐶 (𝑥)𝑛𝐶 (𝑦), we find

𝑛𝐶 (𝑥𝑦, 𝑥) = 𝑛𝐶 (𝑥) Tr𝐶 (𝑦) and (4.1)

𝑛𝐶 (𝑥𝑦, 𝑤𝑧) + 𝑛𝐶 (𝑤𝑦, 𝑥𝑧) = 𝑛𝐶 (𝑥, 𝑤)𝑛𝐶 (𝑦, 𝑧) (4.2)

for all 𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝐶. Setting 𝑧 = 𝑥 and 𝑤 = 1𝐶 in (4.2), we find:

𝑛𝐶 (𝑥𝑦, 𝑥) + 𝑛𝐶 (𝑦, 𝑥
2) = Tr𝐶 (𝑥)𝑛𝐶 (𝑥, 𝑦).

Combining these with (4.1), we find:

𝑛𝐶 (𝑥
2 − Tr𝐶 (𝑥)𝑥 + 𝑛𝐶 (𝑥)1𝐶 , 𝑦) = 0 for all 𝑥, 𝑦 ∈ 𝐶.

Since the bilinear form 𝑛𝐶 is regular, the claim follows. �

A priori, a composition algebra is a unital algebra together with a quadratic form, the norm. The next
result shows that these data are redundant.

Proposition 4.3. If C is a composition algebra, then the norm 𝑛𝐶 is uniquely determined by the algebra
structure of C.

Proof. Let 𝑛′ : 𝐶 → 𝑅 be any quadratic form making C a composition algebra, and write Tr′ for
the corresponding trace Tr′(𝑥) := 𝑛′(𝑥 + 1𝐶 ) − 𝑛′(𝑥) − 𝑛′(1𝐶 ). Then 𝜆 := Tr𝐶 −Tr′ (respectively,
𝑞 := 𝑛𝐶 − 𝑛

′) is a linear (respectively, quadratic) form on C and the Cayley-Hamilton property yields

𝜆(𝑥)𝑥 = 𝑞(𝑥)1𝐶 for all 𝑥 ∈ 𝐶. (4.3)

We aim to prove that 𝑞 = 0. Because 1𝐶 is unimodular, it suffices to prove 𝜆 = 0. This can be checked
locally, so we may assume that R is local and, in particular, 𝐶 = 𝑅1𝐶 ⊕ 𝑀 for a free module M. Now,
Tr𝐶 (1𝐶 ) = 2 = Tr′(1𝐶 ), so 𝜆(1𝐶 ) = 0. For 𝑚 ∈ 𝑀 a basis vector, 𝜆(𝑚)𝑚 belongs to 𝑀 ∩ 𝑅1𝐶 by (4.3),
so it is zero, whence 𝜆(𝑚) = 0, proving the claim. �

Corollary 4.4. Let C be a unital R-algebra. If there is a faithfully flat 𝑆 ∈ 𝑅-alg such that 𝐶 ⊗ 𝑆 is a
composition S-algebra, then C is a composition algebra over R.

Proof. Because the norm 𝑛𝐶⊗𝑆 of 𝐶 ⊗ 𝑆 is uniquely determined by the algebra structure, one obtains
by faithfully flat descent a quadratic form 𝑛𝐶 : 𝐶 → 𝑅 such that 𝑛𝐶 ⊗ 𝑆 = 𝑛𝐶⊗𝑆 . Because 𝑛𝐶⊗𝑆 satisfies
the properties required to make 𝐶 ⊗ 𝑆 a composition algebra and S is faithfully flat over R, it follows
that the same properties hold for 𝑛𝐶 . �

The following facts are standard, see, for example [Kn, Section V.7]: Composition algebras are
alternative algebras. The map ¯ : 𝐶 → 𝐶 defined by 𝑥 := Tr𝐶 (𝑥)1𝐶 − 𝑥 is an involution, that is, an
R-linear antiautomorphism of period 2.
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Composition algebras of constant rank

In case R is connected — that is, 𝑅 � 𝑅1 × 𝑅2, where neither 𝑅1 nor 𝑅2 are the zero ring — a
composition R-algebra has rank 2𝑒 for 𝑒 ∈ {0, 1, 2, 3} [Kn, p. 206, Theorem V.7.1.6]. Therefore,
specifying a composition R-algebra C is equivalent to writing

𝑅 =
3∏

𝑒=0
𝑅𝑒 and 𝐶 =

3∏
𝑒=0

𝐶𝑒, (4.4)

where 𝐶𝑒 is a composition 𝑅𝑒-algebra of constant rank 2𝑒.
If C is a composition algebra of rank 1, then since 1𝐶 is unimodular, C is equal to R. The bilinear

form 𝑛𝐶 (·, ·) gives an isomorphism 𝐶 → 𝐶∗ and 𝑛𝐶 (1𝐶 , 𝛼1𝐶 ) = 2𝛼, and we deduce that 2 is invertible
in R. Conversely, if 2 is invertible, then R is a composition algebra by setting 𝑛𝐶 (𝛼) = 𝛼2; in this case,
we say that R is a split composition algebra.

A composition algebra whose rank is 2 is not just an associative and commutative ring, it is an étale
algebra [Kn, p. 43, Theorem I.7.3.6]. Conversely, every rank 2 étale algebra is a composition algebra.
Among rank 2 étale algebras, there is a distinguished one, 𝑅 × 𝑅, which is said to be split.

A composition algebra whose rank is 4 is associative and is an Azumaya algebra, com-
monly known as a quaternion algebra. (Note that our notion of quaternion algebra is
more restrictive than the one in the books [Kn, see p. 43] and [Vo].) Among quaternion
R-algebras, there is a distinguished one, the 2-by-2 matrices Mat2 (𝑅), which is said to be split.

A composition algebras whose rank is 8 is known as an octonion algebra. Among octonion R-
algebras, there is a distinguished one that is said to be split, called the Zorn vector matrices and denoted
Zor(𝑅) (see [LoPR, 4.2]). As a module, we view it as

(
𝑅 𝑅3

𝑅3 𝑅

)
with multiplication

( 𝛼1 𝑢
𝑥 𝛼2

) ( 𝛽1 𝑣
𝑦 𝛽2

)
=
(

𝛼1𝛽1−𝑢
ᵀ𝑦 𝛼1𝑣+𝛽2𝑢+𝑥×𝑦

𝛽1𝑥+𝛼2𝑦+𝑢×𝑣 −𝑥ᵀ𝑣+𝛼2𝛽2

)
,

where × is the ordinary cross product on 𝑅3. The quadratic form is

𝑛Zor(𝑅)
( 𝛼1 𝑢
𝑥 𝛼2

)
= 𝛼1𝛼2 + 𝑢

ᵀ𝑥.

One says that a composition R-algebra C is split if, when we write R and C as in (4.4), 𝐶𝑒 is
isomorphic to the split composition 𝑅𝑒-algebra for 𝑒 ≥ 1.

It is well known in the case where 𝑅 = R, the real numbers, that a composition algebra is determined
up to isomorphism by its dimension and whether it is split. That is, there are only seven isomorphism
classes of composition R-algebras, consisting of four split ones and four division algebras, namely,
R, C, H, and O; note that both collections of four contain R.

Example 4.5. The real octonions O are a composition R-algebra with basis 1O, 𝑒1, 𝑒2, . . ., 𝑒7 which is
orthonormal with respect to the quadratic form 𝑛O with multiplication table

𝑒2
𝑟 = −1 and 𝑒𝑟 𝑒𝑟+1𝑒𝑟+3 = −1

for all r with subscripts taken modulo 7, and the displayed triple product is associative.
The Z-sublattice O of O spanned by 1O, the 𝑒𝑟 , and

ℎ1 = (1 + 𝑒1 + 𝑒2 + 𝑒4)/2, ℎ2 = (1 + 𝑒1 + 𝑒3 + 𝑒7)/2,
ℎ3 = (1 + 𝑒1 + 𝑒5 + 𝑒6)/2 and ℎ4 = (𝑒1 + 𝑒2 + 𝑒3 + 𝑒5)/2

is a composition Z-algebra. It is a maximal order in O ⊗ Q, and all such are conjugate under the
automorphism group of O ⊗ Q. (As a consequence, there is some choice in the way one presents this
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algebra. We have followed [ElkiesGr].) As a subring of O, it has no zero divisors. For more on this, see
[Di, Section 19], [Cox], [ConwS, Section 9], or [Conrad, Section 5]. The nonuniqueness of this choice
of maximal order and its relationship to other orders like Z⊕Z𝑒1 ⊕ · · · ⊕Z𝑒7 can be understood in terms
of the Bruhat-Tits building of the group Aut(Zor(Q2)) of type G2 over the 2-adic numbers, compare
[GanY, Section 9].

5. Background on Jordan algebras

Para-quadratic algebras

A (unital) para-quadratic algebra over a ring R is an R-module J together with a quadratic map
𝑈 : 𝐽 → End𝑅 (𝐽) — that is, U is an element of 𝒫2 (𝐽,End𝑅 (𝐽)) — called the U-operator, and a
distinguished element 1𝐽 ∈ 𝐽 such that 𝑈1𝐽 = Id𝐽 . A homomorphism 𝜙 : 𝐽 → 𝐽 ′ of para-quadratic R-
algebras is an R-linear map such that 𝜙(1𝐽 ) = 1𝐽 ′ and 𝑈 ′

𝜙 (𝑥)
𝜙(𝑦) = 𝜙(𝑈𝑥𝑦) for all 𝑥, 𝑦 ∈ 𝐽, where 𝑈 ′

denotes the U-operator in 𝐽 ′.

Jordan algebras

As a notational convenience, we define a linear map 𝐽 ⊗ 𝐽 ⊗ 𝐽 → 𝐽 denoted 𝑥 ⊗ 𝑦 ⊗ 𝑧 ↦→ {𝑥𝑦𝑧} via

{𝑥𝑦𝑧} := (𝑈𝑥+𝑧 −𝑈𝑥 −𝑈𝑧)𝑦. (5.1)

Evidently, {𝑥𝑦𝑧} = {𝑧𝑦𝑥} for all 𝑥, 𝑦, 𝑧 ∈ 𝐽. A para-quadratic R-algebra J is a Jordan R-algebra if the
identities

𝑈𝑈𝑥 𝑦 = 𝑈𝑥𝑈𝑦𝑈𝑥 and 𝑈𝑥{𝑦𝑥𝑧} = {(𝑈𝑥𝑦)𝑧𝑥} (5.2)

hold for all 𝑥, 𝑦, 𝑧 ∈ 𝐽 ⊗ 𝑆 for all 𝑆 ∈ 𝑅-alg. (Alternatively, one can define a Jordan R-algebra entirely
in terms of identities concerning elements of J, avoiding the “for all 𝑆 ∈ 𝑅-alg”, at the cost of requiring
a longer list of identities (see [McC66, Section 1]).) Note that if J is a Jordan R-algebra, then 𝐽 ⊗ 𝑇
is a Jordan T-algebra for every 𝑇 ∈ 𝑅-alg (“Jordan algebras are closed under base change”). If J is a
para-quadratic algebra and 𝐽 ⊗ 𝑇 is Jordan for some faithfully flat 𝑇 ∈ 𝑅-alg, then J is Jordan.

For x in a Jordan algebra J and 𝑛 ≥ 0, we define the n-th power 𝑥𝑛 via

𝑥0 := 1𝐽 , 𝑥1 := 𝑥, 𝑥𝑛 = 𝑈𝑥𝑥
𝑛−2 for 𝑛 ≥ 2. (5.3)

An element 𝑥 ∈ 𝐽 is invertible with inverse y if 𝑈𝑥𝑦 = 𝑥 and 𝑈𝑥𝑦
2 = 1 [McC66, Section 5]. It turns

out that x is invertible if and only if 𝑈𝑥 is invertible if and only if 1 is in the image of 𝑈𝑥 ; when these
hold, the inverse of x is 𝑦 = 𝑈−1

𝑥 𝑥, which we denote by 𝑥−1. It follows from (5.2) that 𝑥, 𝑦 ∈ 𝐽 are both
invertible if and only if 𝑈𝑥𝑦 is invertible, and in this case, (𝑈𝑥𝑦)

−1 = 𝑈𝑥−1 𝑦−1.

Example 5.1. Let A be an associative and unital R-algebra. Define 𝑈𝑥𝑦 := 𝑥𝑦𝑥 for 𝑥, 𝑦 ∈ 𝐴. Then
{𝑥𝑦𝑧} = 𝑥𝑦𝑧 + 𝑧𝑦𝑥 and A endowed with this U-operator is a Jordan algebra denoted by 𝐴+. Note that
for 𝑥 ∈ 𝐴 and 𝑛 ≥ 0, the n-th powers of x in A and 𝐴+ are the same.

Relations with other kinds of algebras

Suppose for this paragraph and the next that 2 is invertible in R. Given a para-quadratic algebra J as in
the preceding paragraph, one can define a commutative (bilinear) product • on J via

𝑥 • 𝑦 :=
1
2
{𝑥1𝐽 𝑦} for 𝑥, 𝑦 ∈ 𝐽. (5.4)
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(In the case where J is constructed from an associative algebra as in Example 5.1, one finds that
𝑥 • 𝑦 = 1

2 (𝑥𝑦 + 𝑦𝑥). If, additionally, the associative algebra is commutative, • equals the product in that
associative algebra.) If J is Jordan, then • satisfies

(𝑥 • 𝑦) • (𝑥 • 𝑥) = 𝑥 • (𝑦 • (𝑥 • 𝑥)), (5.5)

which is the axiom classically called the “Jordan identity”.
In the opposite direction, given an R-module J with a commutative product •with identity element 1𝐽 ,

we obtain a para-quadratic algebra by setting

𝑈𝑥𝑦 := 2𝑥 • (𝑥 • 𝑦) − (𝑥 • 𝑥) • 𝑦 for 𝑥, 𝑦 ∈ 𝐽. (5.6)

If the original product satisfied the Jordan identity, then the para-quadratic algebra so obtained satisfies
(5.2), that is, is a Jordan algebra in our sense (see, for example [J69, Section 1.4]).

Definition 5.2 (hermitian matrix algebras). Let C be a composition R-algebra and Γ = 〈𝛾1, 𝛾2, 𝛾3〉 ∈
GL3(𝑅). We define Her3(𝐶, Γ) to be the R-submodule of Mat3(𝐶) consisting of elements fixed by the
involution 𝑥 ↦→ Γ−1𝑥ᵀΓ and with diagonal entries in R. Note that, as an R-module, Her3 (𝐶, Γ) is a sum
of three copies of C and three copies of R, so it is finitely generated projective.

In the special case where 2 is invertible in R, one can define a multiplication • on Her3 (𝐶, Γ) via
𝑥•𝑦 := 1

2 (𝑥𝑦+𝑦𝑥), where juxtaposition denotes the usual product of matrices in Mat3 (𝐶). It satisfies the
Jordan identity [J68, p. 61, Corollary], and therefore, the U-operator defined via (5.6) makes Her3(𝐶, Γ)
into a Jordan algebra.

6. Cubic Jordan algebras

In this section, we define cubic Jordan algebras and the closely related notion of cubic norm structure.
They provide a useful alternative language for computation.

Definition 6.1. Following [McC69] (see [PeR86a, p. 212] for the terminology), we define a cubic norm
R-structure as a quadruple M = (𝑀, 1M, ♯, 𝑁M) consisting of an R-module M; a distinguished element
1M ∈ 𝑀 (the base point); a quadratic map ♯ : 𝑀 → 𝑀 , written 𝑥 ↦→ 𝑥♯ (the adjoint) with (symmetric
bilinear) polarization 𝑥 × 𝑦 := (𝑥 + 𝑦)♯ − 𝑥♯ − 𝑦♯; and a cubic form 𝑁M : 𝑀 → 𝑅 (the norm) such that
the following axioms are fulfilled. Define a bilinear form 𝑇M : 𝑀 × 𝑀 → 𝑅 by

𝑇M (𝑥, 𝑦) := (∇𝑥𝑁M) (1M) (∇𝑦𝑁M) (1M) − (∇𝑥∇𝑦𝑁M) (1M) (6.1)

(the bilinear trace), which is symmetric since the directional derivatives ∇𝑥 , ∇𝑦 commute [Roby, p. 241,
Proposition II.5], and a linear form TrM : 𝑀 → 𝑅 by

TrM(𝑥) := 𝑇M (𝑥, 1M) (6.2)

(the linear trace). For M to be a cubic norm structure, we require that the identities

1♯M = 1M, 𝑁M (1M) = 1, (6.3)

1M × 𝑥 = TrM(𝑥)1M − 𝑥, (∇𝑦𝑁M) (𝑥) = 𝑇M (𝑥
♯, 𝑦), 𝑥♯♯ = 𝑁M(𝑥)𝑥 (6.4)

hold in all scalar extensions 𝑀 ⊗ 𝑆, 𝑆 ∈ 𝑅-alg.

For such a cubic norm structure M, we then define a U-operator by

𝑈𝑥𝑦 := 𝑇M (𝑥, 𝑦)𝑥 − 𝑥
♯ × 𝑦, (6.5)
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which together with 1M converts the R-module M into a Jordan R-algebra 𝐽 = 𝐽 (M) [McC69, Theo-
rem 1]. In the sequel, we rarely distinguish carefully between the cubic norm structure M and the Jordan
algebra 𝐽 (M). By abuse of notation, we write 1𝐽 = 1M, 𝑁𝐽 = 𝑁M, 𝑇𝐽 = 𝑇M, and Tr𝐽 := TrM if there is
no danger of confusion, even though, in general, J does not determine M uniquely [PeR86a, p. 216].

Definition 6.2. A Jordan R-algebra J is said to be cubic if there exists a cubic norm R-structure M as in
Definition 6.1 such that (i) 𝐽 = 𝐽 (M) and (ii) 𝐽 = 𝑀 is a finitely generated projective R-module. With
the quadratic form 𝑆𝐽 : 𝑀 → 𝑅 defined by 𝑆𝐽 (𝑥) := Tr𝐽 (𝑥♯) for 𝑥 ∈ 𝐽 (the quadratic trace), the cubic
Jordan algebra J satisfies the identities

(𝑈𝑥𝑦)
♯ = 𝑈𝑥♯ 𝑦

♯, 𝑁𝐽 (𝑈𝑥𝑦)𝑈𝑥𝑦 = 𝑁𝐽 (𝑥)
2𝑁𝐽 (𝑦)𝑈𝑥𝑦, (6.6)

𝑈𝑥𝑥
♯ = 𝑁𝐽 (𝑥)𝑥, 𝑈𝑥 (𝑥

♯)2 = 𝑁𝐽 (𝑥)
21𝐽 , (6.7)

𝑥♯ = 𝑥2 − Tr𝐽 (𝑥)𝑥 + 𝑆𝐽 (𝑥)1𝐽 and (6.8)

𝑥3 − Tr𝐽 (𝑥)𝑥2 + 𝑆𝐽 (𝑥)𝑥 − 𝑁𝐽 (𝑥)1𝐽 = 0 = 𝑥4 − Tr𝐽 (𝑥)𝑥3 + 𝑆𝐽 (𝑥)𝑥
2 − 𝑁𝐽 (𝑥)𝑥 (6.9)

for all 𝑥 ∈ 𝐽. For (6.6)−(6.8) and the first equation of (6.9), see [McC69, p. 499], while the second
equation of (6.9) follows from the first, (6.7), and (6.8) via 𝑥4 = 𝑈𝑥𝑥

2 = 𝑈𝑥𝑥
♯+Tr𝐽 (𝑥)𝑈𝑥𝑥−𝑆𝐽 (𝑥)𝑈𝑥1𝐽 =

Tr𝐽 (𝑥)𝑥3 − 𝑆𝐽 (𝑥)𝑥
2 + 𝑁𝐽 (𝑥)𝑥.

Remark 6.3. Note that the second equality of (6.9) derives from the first through formal multiplication
by x. But, due to the para-quadratic character of Jordan algebras, this is not a legitimate operation unless
2 is invertible in R. In fact, cubic Jordan algebras exist that contain elements x satisfying 𝑥2 = 0 ≠ 𝑥3

[J69, 1.31–1.32].

Example 6.4 (3-by-3 matrices). We claim that Mat3(𝑅)+ is a cubic Jordan algebra, in particular, it
is 𝐽 (M) for M := (Mat3(𝑅), Id, ♯, det), where ♯ denotes the classical adjoint. We first verify that
M is a cubic norm structure. Computing directly from the definition (6.1), we find that 𝑇M (𝑥, 𝑦) =
TrMat3 (𝑅) (𝑥𝑦), where the juxtaposition on the right is usual matrix multiplication. The formulas in (6.3)
are obvious. For (6.4), the first two equations can be verified directly and the third equation is a standard
property of the classical adjoint, completing the proof that M is a cubic norm structure. Similarly,
one can check directly that the U-operator defined from the cubic norm structure by (6.5) equals the
U-operator defined from the usual matrix product in Example 5.1, that is, 𝐽 (M) = Mat3(𝑅)+.

Lemma 6.5. Let J be a cubic Jordan R-algebra and 𝑥, 𝑦 ∈ 𝐽.

1. x is invertible in J if and only if 𝑁𝐽 (𝑥) is invertible in R. In this case

𝑥−1 = 𝑁𝐽 (𝑥)
−1𝑥♯ and 𝑁𝐽 (𝑥

−1) = 𝑁𝐽 (𝑥)
−1.

2. Invertible elements of J are unimodular.
3. 𝑁𝐽 (𝑈𝑥𝑦) = 𝑁𝐽 (𝑥)

2𝑁𝐽 (𝑦) and 𝑁𝐽 (𝑥
2) = 𝑁𝐽 (𝑥)

2 = 𝑁𝐽 (𝑥
♯).

Proof. (1): If 𝑁𝐽 (𝑥) is invertible in R, then (6.7) shows that so is x, with inverse 𝑥−1 = 𝑁𝐽 (𝑥)
−1𝑥♯.

Conversely, assume x is invertible in J. Then 𝑦 := (𝑥−1)2 satisfies 𝑈𝑥𝑦 = 1𝐽 , and (6.6) yields 1𝐽 =
𝑁𝐽 (𝑈𝑥𝑦)𝑈𝑥𝑦 = 𝑁𝐽 (𝑥)

2𝑁𝐽 (𝑦)1𝐽 , hence

𝑁𝐽 (𝑥)
2𝑁𝐽 (𝑦) = 1

since 1𝐽 is unimodular by Lemma 3.1 and (6.3). Thus, 𝑁𝐽 (𝑥) ∈ 𝑅×. Before proving the final formula
of (1), we deal with (2), (3).

(2) follows immediately from Lemma 3.1 combined with the first part of (1).
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(3): Applying Lemma 3.2 to the polynomial law 𝑔 : 𝐽 × 𝐽 → End𝑅 (𝐽) defined by 𝑔(𝑥, 𝑦) := 𝑈𝑈𝑥 𝑦 in
all scalar extensions, we may assume that 𝑈𝑥𝑦 is invertible. By (2), therefore, 𝑈𝑥𝑦 is unimodular, and
the first equality follows from (6.6). The second equality follows from the first for 𝑦 = 1𝐽 , while in the
third equality, we may again assume that x is invertible, hence, unimodular. Then (6.7) combines with
the first equality to imply 𝑁𝐽 (𝑥)

4 = 𝑁𝐽 (𝑁𝐽 (𝑥)𝑥) = 𝑁𝐽 (𝑈𝑥𝑥
♯) = 𝑁𝐽 (𝑥)

2𝑁𝐽 (𝑥
♯), as desired.

Now the second equality of (1) follows from the first and (3) via

𝑁𝐽 (𝑥
−1) = 𝑁𝐽 (𝑥)

−3𝑁𝐽 (𝑥
♯) = 𝑁𝐽 (𝑥)

−1. �

Without the assumption that J is finitely generated projective as an R-module, Lemma 6.5 would be
false [PeR85, Theorem 10].

Example 6.6. We endow the R-module 𝑀 := Her3(𝐶, Γ) from Definition 5.2 with a cubic norm R-
structure M = (𝑀, 1M, ♯, 𝑁M), where 1M is the 3-by-3 identity matrix. An element 𝑥 ∈ Her3 (𝐶, Γ) may
be written as

𝑥 =

(
𝛼1 𝛾2𝑐3 𝛾3 �̄�2
𝛾1 �̄�3 𝛼2 𝛾3𝑐1
𝛾1𝑐2 𝛾2 �̄�1 𝛼3

)

for 𝛼𝑖 ∈ 𝑅 and 𝑐𝑖 ∈ 𝐶. Because three of the entries are determined by symmetry, we may denote such
an element by

𝑥 :=
∑3

𝑖=1

(
𝛼𝑖𝜀𝑖 + 𝛿

Γ
𝑖 (𝑐𝑖)

)
, (6.10)

where 𝜀𝑖 has a 1 in the (𝑖, 𝑖) entry and zeros elsewhere, and 𝛿Γ𝑖 (𝑐) has 𝛾𝑖+2𝑐 in the (𝑖 + 1, 𝑖 + 2) entry —
where the symbols 𝑖 + 1 and 𝑖 + 2 are taken modulo 3 — and zeros in the other entries not determined
by symmetry. In the literature on Jordan algebras, one finds the notation 𝑐[(𝑖 + 1) (𝑖 + 2)] for what we
denote 𝛿Γ𝑖 (𝑐). We define the adjoint ♯ by

𝑥♯ :=
∑3

𝑖=1

( (
𝛼𝑖+1𝛼𝑖+2 − 𝛾𝑖+1𝛾𝑖+2𝑛𝐶 (𝑐𝑖)

)
𝜀𝑖 + 𝛿

Γ
𝑖

(
−𝛼𝑖𝑐𝑖 + 𝛾𝑖𝑐𝑖+1𝑐𝑖+2

) )

with indices modulo (mod) 3, and the norm 𝑁M by

𝑁M(𝑥) := 𝛼1𝛼2𝛼3 −
∑3

𝑖=1
𝛾𝑖+1𝛾𝑖+2𝛼𝑖𝑛𝐶 (𝑐𝑖) + 𝛾1𝛾2𝛾3Tr𝐶 (𝑐1𝑐2𝑐3) (6.11)

in all scalar extensions, where the last summand on the right of (6.11) is unambiguous since
Tr𝐶 ((𝑐1𝑐2)𝑐3) = Tr𝐶 (𝑐1 (𝑐2𝑐3)) [McC85, Theorem 3.5]. By [McC69, Theorem 3], M is indeed a cubic
norm structure. The corresponding cubic Jordan algebra will again be denoted by 𝐽 := Her3 (𝐶, Γ) :=
𝐽 (M).

(In case 2 is invertible in R, the commutative product • on Her3 (𝐶, Γ) defined from the U-operator
by (5.4) equals the product 𝑥 • 𝑦 := 1

2 (𝑥𝑦 + 𝑦𝑥) from Definition 5.2. In order to see this, it suffices to
note that the square of 𝑥 ∈ Her3 (𝐶, Γ) as defined in (5.3) is the same as the square of x in the matrix
algebra Mat3(𝐶). This in turn follows immediately from (6.8), (6.11), and the definition of the adjoint.)

For x as above and 𝑦 =
∑
(𝛽𝑖𝜀𝑖 + 𝛿

Γ
𝑖 (𝑑𝑖)), with 𝛽𝑖 ∈ 𝑅, 𝑑𝑖 ∈ 𝐶, evaluating the bilinear trace at 𝑥, 𝑦

yields

𝑇𝐽 (𝑥, 𝑦) =
∑3

𝑖=1

(
𝛼𝑖𝛽𝑖 + 𝛾𝑖+1𝛾𝑖+2𝑛𝐶 (𝑐𝑖 , 𝑑𝑖)

)
. (6.12)

Since the bilinearization of 𝑛𝐶 is regular, so is 𝑇𝐽 .

Here is an important special case.
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Definition 6.7. For the special case where Γ = Id, we define Her3(𝐶) := Her3 (𝐶, Id) and write 𝛿𝑖
for 𝛿Γ𝑖 . It can be useful to write elements of Her3 (𝐶) as

( 𝛼1 𝑐3 ·
· 𝛼2 𝑐1
𝑐2 · 𝛼3

)
,

where · denotes an entry that is omitted because it is determined by symmetry. As an example of the
triple product defined from (5.1) and (6.5), we mention that for 𝑥 =

∑
𝛼𝑖𝜀𝑖 diagonal, we have

{𝛿𝑖 (𝑎)𝛿𝑖+1(𝑏)𝑥} = 𝛿𝑖+2(𝑎𝑏)𝛼𝑖 and {𝛿𝑖+1(𝑏)𝛿𝑖 (𝑎)𝑥} = 𝛿𝑖+2(𝑎𝑏)𝛼𝑖+1 (6.13)

for 𝑖 ∈ 1, 2, 3 taken mod 3 and 𝑎, 𝑏 ∈ 𝐶.

Note that, for the Jordan algebra Her3 (𝐶, Γ), if we multiply Γ by an element of 𝑅× or any entry in Γ
by the square of an element of 𝑅×, we obtain an algebra isomorphic to the original. Therefore, replacing
Γ by

〈
(det Γ)−1𝛾1, (det Γ)−1𝛾2, (det Γ)𝛾3

〉
does not change the isomorphism class of Her3(𝐶, Γ), and

we may assume that 𝛾1𝛾2𝛾3 = 1.

Example 6.8. When studying the Jordan R-algebras Her3(𝐶, Γ) in the special case 𝑅 = R, the preceding
paragraph shows that it is sufficient to consider two choices for Γ, namely, 〈1, 𝑠, 𝑠〉 for 𝑠 = ±1. We
compute 𝑇Her3 (𝐶,Γ) for each choice of C and Γ. Regular symmetric bilinear forms over R are classified
by their dimension and signature (an integer), so it suffices to specify the signature. If 𝐶 = R, C, H, or
O, the signature of 𝑛𝐶 is 2𝑟 for 𝑟 = 0, 1, 2, 3, respectively. By (6.12), 𝑇𝐽 has signature 3(1 + 2𝑟 ) for
𝐽 = Her3 (𝐶) and 3 − 2𝑟 for 𝐽 = Her3(𝐶, 〈1,−1,−1〉). For 𝐶 the split composition algebra of rank 2𝑟
for 𝑟 = 1, 2, or 3 and any Γ, the signature of 𝑛𝐶 is 0 and the signature of 𝑇Her3 (𝐶,Γ) is 3.

Remark 6.9. Alternatively, one could define the Jordan algebra structure on Her3(𝐶, Γ) for an arbitrary
ring R without referring to cubic norm structures as follows. Writing out the formulas for the U-operator
from Definition 5.2 in case 𝑅 = Q, one finds that the formulas do not involve any denominators other
than 𝛾𝑖 terms and therefore make sense for any R regardless of whether 2 is invertible. This makes
Her3(𝐶, Γ) a para-quadratic algebra. Because it is a Jordan algebra in case 𝑅 = Q as in Definition 5.2,
we conclude that Her3(𝐶, Γ) is a Jordan algebra with no hypothesis on R by extension of identities
[BouA2, Section IV.2.3, Theorem 2]. This alternative definition gives the same objects but is much
harder to work with.

7. Albert algebras are Freudenthal algebras are Jordan algebras

Definition 7.1. A split Freudenthal R-algebra is a Jordan algebra Her3 (𝐶) as in Definition 6.7 for some
split composition R-algebra C. Because split composition algebras are determined up to isomorphism
by their rank function, so are split Freudenthal algebras.

A para-quadratic R-algebra J is a Freudenthal algebra if 𝐽 ⊗ 𝑆 is a split Freudenthal S-algebra for
some faithfully flat 𝑆 ∈ 𝑅-alg. It is immediate that every Freudenthal algebra is a Jordan algebra. Since
every split Freudenthal R-algebra is finitely generated projective as an R-module for every R, the same
is true for every Freudenthal R-algebra J, and by the same reasoning, we see that the identity element
1𝐽 is unimodular. Because the rank of a composition algebra takes values in {1, 2, 4, 8}, the rank of a
Freudenthal algebra takes values in {6, 9, 15, 27}.

We are now prepared to define the objects named in the title of this paper.

Definition 7.2. An Albert R-algebra is a Freudenthal R-algebra of rank 27.

We continue to prove results about Freudenthal algebras, rather than merely Albert algebras. The
extra generality comes at a low cost.

Proposition 7.3. For every composition R-algebra C and every Γ ∈ GL3 (𝑅), Her3(𝐶, Γ) is a Freuden-
thal algebra.
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Proof. Replacing R with 𝑅𝑒 as in (4.4), we may assume that C has constant rank. There is a faithfully
flat 𝑆 ∈ 𝑅-alg such that 𝐶 ⊗ 𝑆 is a split composition algebra.

Consider 𝑇 := 𝑆[𝑡1, 𝑡2, 𝑡3]/(𝑡
2
1 − 𝛾1, 𝑡

2
2 − 𝛾2, 𝑡

2
3 − 𝛾3). It is a free S-module, so faithfully flat. Then

Her3(𝐶, Γ) ⊗ 𝑇 is isomorphic to Her3(𝐶 ⊗ 𝑇) as Jordan algebras, and the latter is a split Freudenthal
algebra. �

A Freudenthal algebra is said to be reduced if it is isomorphic to Her3(𝐶, Γ) for some C and Γ.

Example 7.4. Let J be a Freudenthal R-algebra. If 𝑥 ∈ 𝐽 has 𝑈𝑥 = Id𝐽 , then 𝑥 = 𝜁1𝐽 for some 𝜁 ∈ 𝑅
such that 𝜁2 = 1. To see this, first suppose that J is Her3(𝐶) for some composition algebra C and write
𝑥 =

∑
(𝛼𝑖𝜀𝑖 + 𝛿𝑖 (𝑐𝑖)) for 𝛼𝑖 ∈ 𝑅 and 𝑐𝑖 ∈ 𝐶. We find

𝑈𝑥𝜀𝑖 = 𝛼2
𝑖 𝜀𝑖 + 𝛿𝑖+2(𝛼𝑖𝑐𝑖+2) + · · ·

for each i, so 𝛼2
𝑖 = 1 and 𝑐𝑖+2 = 0 for all i. Then

𝑈𝑥𝛿𝑖 (1𝐶 ) = 𝛿𝑖 (𝛼𝑖+1𝛼𝑖+21𝐶 ).

Since 1𝐶 is unimodular, 𝛼𝑖+1𝛼𝑖+2 = 1 for all i, proving the claim for this J.
For general J, let 𝑆 ∈ 𝑅-alg be faithfully flat such that 𝐽 ⊗ 𝑆 is split. Then 𝑥 ∈ 𝐽 maps to an element

of 𝑅1𝐽 ⊗ 𝑆 ⊆ 𝐽 ⊗ 𝑆 and so belongs to 𝑅1𝐽 ⊆ 𝐽. Since 𝑈𝜁 1𝐽 = 𝜁2 Id𝐽 for 𝜁 ∈ 𝑅, the claim follows.

The following result is well known when R is a field or perhaps a local ring (see, for example [Pe19,
Proposition 20]). We impose no hypothesis on R.

Proposition 7.5. Suppose C is a split composition R-algebra of constant rank at least 2, that is, C is
𝑅 × 𝑅, Mat2(𝑅), or Zor(𝑅). Then Her3(𝐶, Γ) � Her3(𝐶) for all Γ.

Proof. Define 𝛾𝑖 via Γ = 〈𝛾1, 𝛾2, 𝛾3〉. We may assume 𝛾1𝛾2𝛾3 = 1. Since 𝑛𝐶 is universal, there are
invertible 𝑝, 𝑞 ∈ 𝐶 such that 𝛾2 = 𝑛𝐶 (𝑞

−1) and 𝛾3 = 𝑛𝐶 (𝑝
−1), so 𝛾1 = 𝑛𝐶 (𝑝𝑞). We define 𝐶 (𝑝,𝑞)

to be a not-necessarily-associative R-algebra with the same underlying R-module structure and with
multiplication ·(𝑝,𝑞) defined by

𝑥 ·(𝑝,𝑞) 𝑦 := (𝑥𝑝) (𝑞𝑦),

where the multiplication on the right is the multiplication in C. Certainly (𝑝𝑞)−1 is an identity element
in 𝐶 (𝑝,𝑞) . The algebra 𝐶 (𝑝,𝑞) is called an isotope of C and is studied in [McC71a], where it is proved
to be alternative. One checks that it is a composition algebra with quadratic form 𝑛𝐶 (𝑝,𝑞) = 𝑛𝐶 (𝑝𝑞)𝑛𝐶
(see [McC71a, Proposition 5] for a more general statement in case R is a field).

Define 𝜙 : Her3(𝐶
(𝑝,𝑞) ) → Her3 (𝐶, Γ) via 𝜙(

∑
𝑥𝑖𝜀𝑖 + 𝛿𝑖 (𝑐𝑖)) =

∑
𝑥𝑖𝜀𝑖 + 𝛿

Γ
𝑖 (𝑐
′
𝑖), where

𝑐′1 = (𝑝𝑞)𝑐1 (𝑝𝑞), 𝑐′2 = 𝑐2𝑝, and 𝑐′3 = 𝑞𝑐3.

It is evidently an isomorphism of R-modules, and one checks that it is an isomorphism of Jordan
algebras, compare [McC71a, Theorem 3]. Therefore, we are reduced to verifying that 𝐶 (𝑝,𝑞) is split.

If C is associative, then the R-linear map

𝐿𝑝𝑞 : 𝐶 (𝑝,𝑞) → 𝐶 such that 𝐿𝑝𝑞 (𝑥) = 𝑝𝑞𝑥

is an isomorphism of R-algebras. So assume 𝐶 = Zor(𝑅).
At the beginning, when we chose p and q, we were free to pick 𝜉𝑖 , 𝜂𝑖 ∈ 𝑅

× such that 𝑝 =
(
𝜉1 0
0 𝜉2

)
and

𝑞 =
(
𝜂1 0
0 𝜂2

)
. Let 𝐴 ∈ Mat3(𝑅) be any matrix such that det 𝐴 = (𝜉1𝜉

2
2𝜂

2
1𝜂)
−1 and put 𝐵 := 𝜉2𝜂1 (𝐴

♯)ᵀ,
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where ♯ denotes the classical adjoint. With 𝜁𝑖 := (𝜉𝑖𝜂𝑖)−1, one checks, using the formula (𝑆𝑥) × (𝑆𝑦) =
(𝑆♯)ᵀ (𝑥 × 𝑦) for × the usual cross product in 𝑅3, that the assignment

( 𝛼1 𝑢1
𝑢2 𝛼2

)
↦→

(
𝜁1𝛼1 𝐴𝑢1
𝐵𝑢2 𝜁2𝛼2

)

defines an isomorphism 𝐶
∼
−→ 𝐶 (𝑝,𝑞) . �

8. The ideal structure of Freudenthal algebras

It is a standard exercise to show that every (two-sided) ideal in the matrix algebra Mat𝑛 (𝑅) is of the
form Mat𝑛 (𝔞) for some ideal 𝔞 in R. More generally, every ideal in an Azumaya R-algebra A is of the
form 𝔞𝐴 some ideal 𝔞 of R [KnO, p. 95, Corollary III.5.2].

A similar result holds for every octonion R-algebra C: Every one-sided ideal in C is a two-sided ideal
that is stable under the involution on C. The maps 𝐼 ↦→ 𝐼 ∩ 𝑅 and 𝔞𝐶 ← � 𝔞 are bijections between the
set of ideals of C and ideals in R. See [Pe21, Section 4] for a proof in this generality and the references
therein for earlier results of this type going back to [Ma].

We now prove a similar result for Freudenthal algebras.

Definition 8.1. An ideal in a para-quadratic R-algebra J is the kernel of a homomorphism, that is, an
R-submodule I such that

𝑈𝐼 𝐽 +𝑈𝐽 𝐼 + {𝐽𝐽𝐼} = 𝐼,

where we have written𝑈𝐼 𝐽 for the R-span of𝑈𝑥𝑦 with 𝑥 ∈ 𝐼 and 𝑦 ∈ 𝐽. (This is sometimes written with a
⊆ instead of =, but the two are equivalent since𝑈𝐽 𝐼 ⊇ 𝑈1𝐽 𝐼 = 𝐼.) An R-submodule I is an outer ideal if

𝑈𝐽 𝐼 + {𝐽𝐽𝐼} = 𝐼 . (8.1)

Here are some observations about outer ideals:

1. Every ideal is an outer ideal.
2. If 2 is invertible in R, then for every 𝑥 ∈ 𝐼 and 𝑦 ∈ 𝐽, 𝑈𝑥𝑦 = 1

2 {𝑥𝑦𝑥} ∈ {𝐽𝐽𝐼}, so the notions of
ideal and outer ideal coincide, and both agree with the notion of ideal for the commutative bilinear
product • defined in (5.4).

3. For every ideal 𝔞 in R, the R-submodule 𝔞𝐽 is an ideal of J.
4. If 1𝐽 is unimodular, then for every outer ideal I of J, 𝐼 ∩ 𝑅1𝐽 is an ideal in R, for the trivial reason

that I is an R-module.
5. If𝔞 is an ideal in R and 1𝐽 is unimodular, then𝔞1𝐽 = (𝔞𝐽)∩𝑅1𝐽 . The containment⊆ is clear. To see the

opposite containment, suppose 𝛼1𝐽 ∈ 𝔞𝐽 ∩𝑅1𝐽 for some 𝛼 ∈ 𝑅 and write 𝛼1𝐽 =
∑
𝛼𝑖𝑦𝑖 with 𝛼𝑖 ∈ 𝔞

and 𝑦𝑖 ∈ 𝐽. There is some R-linear 𝜆 : 𝐽 → 𝑅 such that 𝜆(1𝐽 ) = 1. Then 𝛼 = 𝜆(𝛼1𝐽 ) =
∑
𝛼𝑖𝜆(𝑦𝑖) is

in 𝔞.

Theorem 8.2. Let J be a Freudenthal R-algebra. Every outer ideal of J is an ideal. The maps 𝐼 ↦→ 𝐼∩𝑅1𝐽

and 𝔞𝐽 ← � 𝔞 are bijections between the set of outer ideals of J and the set of ideals of R.

Proof. It suffices to show that the stated maps are bijections, because then observation (3) implies that
every outer ideal is of the form 𝔞𝐽 and therefore an ideal. In view of (5) (noting that 1𝐽 is unimodular),
it suffices to verify that (𝐼 ∩ 𝑅1𝐽 )𝐽 = 𝐼 for every outer ideal I. First suppose that 𝐽 = Her3 (𝐶) for some
composition R-algebra C and write 𝔞 := 𝐼 ∩ 𝑅1𝐽 . The Peirce projections relative to the diagonal frame
of J, that is, 𝑈𝜀𝑖 and 𝑥 ↦→ {𝜀 𝑗𝑥𝜀𝑙} for 𝑖, 𝑗 , 𝑙 = 1, 2, 3 [McC66, p. 1074] stabilize I, and we find

𝐼 =
∑
𝑖

(𝐼 ∩ 𝑅𝜀𝑖) + (𝐼 ∩ 𝛿𝑖 (𝐶)).
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Set 𝐵 := {𝑐 ∈ 𝐶 | 𝛿1 (𝑐) ∈ 𝐼}. We claim that B is an ideal in C. Note that 𝑈𝛿1 (1𝐶 )𝛿1 (𝑏) = 𝛿1 (�̄�), so
B is stable under the involution.

We leverage (6.13). Repeatedly applying this with 𝑎 = 1𝐶 and using that B is stable under the
involution, we conclude that 𝛿𝑖 (𝐵) = 𝐼∩𝛿𝑖 (𝐶) for all i. For 𝑐 ∈ 𝐶 and 𝑏 ∈ 𝐵, I contains {1𝐽 𝛿2 (𝑐)𝛿1(�̄�)} =
𝛿3 (𝑐𝑏), so 𝑐𝐵 ⊆ 𝐵, that is, B is an ideal in C and therefore 𝐵 = 𝔞𝐶 for some ideal 𝔞 of R.

For 𝑐 ∈ 𝐶, I contains {𝛿𝑖 (1𝐶 )𝜀𝑖+1𝛿𝑖 (𝔞𝑐)} = Tr𝐶 (𝔞𝑐)𝜀𝑖+2. Since Tr𝐶 is surjective, 𝔞𝜀 𝑗 ⊆ 𝐼 for all j.
In the other direction, if 𝛼𝑖𝜀𝑖 ∈ 𝐼, then so is

{𝛿𝑖+1(1𝐶 )1𝐽 (𝛼𝑖𝜀𝑖)} = 𝛿𝑖+1(𝛼𝑖1𝐶 ).

It follows that 𝐼 ∩ 𝑅𝜀𝑖 = 𝔞𝑅 for all i and, in particular, 𝐼 ∩ 𝑅1𝐽 = 𝔞𝑅 and 𝐼 = 𝔞𝐽.
We now treat the general case. Suppose I is an outer ideal in a Freudenthal R-algebra J. There is a

faithfully flat 𝑆 ∈ 𝑅-alg, such that 𝐽 ⊗ 𝑆 is a split Freudenthal algebra. We have

((𝐼 ∩ 𝑅1𝐽 )𝐽) ⊗ 𝑆 = ((𝐼 ⊗ 𝑆) ∩ 𝑆1𝐽 ) (𝐽 ⊗ 𝑆) = 𝐼 ⊗ 𝑆,

where the first equality is because S is flat and the second is by the previous case, since 𝐼 ⊗ 𝑆 is an outer
ideal. It follows that 𝐼 = (𝐼 ∩ 𝑅1𝐽 )𝐽 as desired. �

Remark 8.3. In the proof above, the inclusion (𝐼 ∩ 𝑅1𝐽 )𝐽 ⊆ 𝐼 could instead have been argued as
follows. Define Sq(𝐽) as the R-submodule of J generated by 𝑥2 for 𝑥 ∈ 𝐽. Since 1𝐽 is unimodular, one
finds that (𝐼 ∩ 𝑅1𝐽 ) Sq(𝐽) ⊆ 𝐼. Then, one argues that Sq(𝐽) = 𝐽 for a split Freudenthal algebra, and
that Sq(𝐽 ⊗ 𝑆) = Sq(𝐽) ⊗ 𝑆 for all flat 𝑆 ∈ 𝑅-alg.

Corollary 8.4. Let 𝜙 : 𝐽 → 𝐴 be a homomorphism of para-quadratic R algebras. If J is a Freudenthal
algebra and 1𝐴 is unimodular in A, then 𝜙 is injective.

In particular, the corollary applies to every homomorphism between Freudenthal R-algebras.

Proof. The kernel of 𝜙 is an ideal of J and therefore 𝔞𝐽 for some ideal 𝔞 of R. For 𝛼 ∈ 𝔞, we have
0 = 𝜙(𝛼1𝐽 ) = 𝛼𝜙(1𝐽 ) = 𝛼1𝐴, so 𝛼 = 0 because 1𝐴 is unimodular. �

Because a Freudenthal algebra J is a projective R-module of rank ≥ 3, the corollary says that there
is no homomorphism of para-quadratic R-algebras 𝐽 → 𝑅+. This might be stated as J is not augmented
or J has no counit.

A para-quadratic algebra J is said to be simple if the underlying module is not the zero module and
if every ideal in J equals 0 or J. Theorem 8.2 immediately gives:

Corollary 8.5. If J is a Freudenthal R-algebra and R is a field, then J is simple. �

Remark 8.6. There is also the notion of an inner ideal in a Jordan algebra (see [McC71b, Theorem 8]
for a description of them for Her3(Zor(𝑅))). The inner ideals are related to the projective homogeneous
varieties associated with the group of isometries described in Section 15 and “outer automorphisms”
relating these varieties (see [Rac] and [CarrG]).

9. Groups of type F4 and C3

In the following, for a Jordan R-algebra J, we write Aut(𝐽) for the ordinary group of R-linear automor-
phisms of J and Aut(𝐽) for the functor from 𝑅-alg to groups such that 𝑆 ↦→ Aut(𝐽 ⊗ 𝑆). Recall that
for every simple root datum, there is a unique simple group scheme over Z called a Chevalley group
[DemG, Corollary XXIII.5.4], and every split simple algebraic group over a field is obtained from a
unique Chevalley group by base change [Milne, Section 23g].

Lemma 9.1. Let J be a Freudenthal algebra of rank 15 or 27 over a ring R. Then Aut(𝐽) is a semisimple
R-group scheme that is adjoint (i.e., its center is the trivial group scheme). Its root system has type C3 if
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J has rank 15 and type F4 if J has rank 27. If J is the split Freudenthal algebra, then the group scheme
Aut(𝐽) is obtained from the Chevalley group over Z by base change.

Proof. First suppose that 𝑅 = Z and J is split. If J has rank 15, then the proof of 14.19 in [Sp73] shows
that the automorphisms of 𝐽 ⊗ 𝐹 for every field F are exactly the automorphisms of the algebra Mat6(𝐹)
with the split symplectic involution, which is the split adjoint group PGSp6 of type C3. For J of rank 27,
Aut(𝐽) × 𝐹 is split of type F4 by [J71, Section 6] (written for Lie algebras), [Fr85, Satz 4.11] (written
for R), [SpV, Theorem 7.2.1] (if char 𝐹 ≠ 2, 3), or [Sp73, 14.24] in general.

Note that Aut(𝐽) × 𝐹 is connected and smooth as a group scheme over F, and Aut(𝐽) is finitely
presented (because Z is noetherian and J is a finitely generated module), so it follows by [GanY,
Proposition 6.1] or [AlsG, Lemma B.1] that Aut(𝐽) is smooth as a scheme over the Dedekind domain
Z. In summary, Aut(𝐽) is semisimple and adjoint of the specified type. Moreover, because Aut(𝐽) ×Q
is split, Aut(𝐽) is a Chevalley group [Conrad, Theorem 1.4].

In the case of general R and J, let 𝑆 ∈ 𝑅-alg be faithfully flat such that 𝐽 ⊗ 𝑆 is split. Then
Aut(𝐽) × 𝑆 is semisimple adjoint of the specified type. Certainly, Aut(𝐽) is also smooth. Moreover, for
each 𝔭 ∈ Spec 𝑅, there is a 𝔮 ∈ Spec 𝑆 such that 𝔮 ∩ 𝑅 = 𝔭. Then the field of fractions 𝑅(𝔭) of 𝑅/𝔭
embeds in the field 𝑆(𝔮), so the algebraic closure 𝑅(𝔭) includes in the algebraic closure 𝑆(𝔮). Because
Aut(𝐽) × 𝑆(𝔮) is adjoint semisimple of the specified type and this property is unchanged by replacing
one algebraically closed field by a smaller one, the same holds over 𝑅(𝔭). Since this holds for every 𝔭,
the claim is verified. �

Remark 9.2. In case R is a field, the automorphism group of the split Freudenthal algebra of rank 6
or 9 can be deduced in a similar manner, referring to 14.17 and 14.16 in [Sp73]. The automorphism
group of the split Freudenthal algebra of rank 9 is PGL3 �Z/2. The automorphism group of the split
Freudenthal algebra of rank 6 is the special orthogonal group of the quadratic form 𝑥2 + 𝑦2 + 𝑧2, that is,
the group commonly denoted SO(3). In particular, it is not smooth when R is a field of characteristic 2,
and indeed, one can give examples of Freudenthal algebras of rank 6 over a field F of characteristic 2
that are not split by any separable field extension of F. (From this, it follows that such an algebra is not
split by any étale F-algebra R.)

Suppose J, 𝐽0 are Jordan R-algebras and there is an fppf 𝑆 ∈ 𝑅-alg and an isomorphism 𝑓 : 𝐽 ⊗ 𝑆 →
𝐽0 ⊗ 𝑆. The isomorphism f gives a class in 𝐻1(𝑆/𝑅,Aut(𝐽0)) that depends only on the isomorphism
class of J as a Jordan R-algebra. Analogous statements apply when the role of Jordan algebras is replaced
with affine group schemes. This is the source of the diagonal arrows in the theorem below.

Theorem 9.3. Let 𝐽0 be a Freudenthal R-algebra of rank 𝑟 = 15 or 27. In the diagram

Isomorphism classes
of rank 𝑟 Freudenthal
𝑅-algebras

𝐽 ↦→Aut(𝐽 ) ��

����
���

���
���

��

Isomorphism classes of
adjoint semisimple 𝑅-
group schemes of type C3
(𝑟 = 15) or F4 (𝑟 = 27)

�����
���

���
��

𝐻1 (𝑅,Aut(𝐽0))

all arrows are bijections that are functorial in R.

Proof. The top arrow has the claimed codomain by Lemma 9.1.
Every Freudenthal algebra is split by some faithfully flat R-algebra by definition, so the discussion

preceding the theorem of the statement yields the lower left arrow.
As another consequence of Lemma 9.1, the conjugation map Aut(𝐽0) → Aut(Aut(𝐽0)) is an

isomorphism that we use to identify 𝐻1(𝑅,Aut(𝐽0))
∼
−→ 𝐻1(𝑅,Aut(Aut(𝐽0))). Every semisimple group
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scheme is split by some faithfully flat R-algebra (even an étale cover) [DemG, Corollary XXIV.4.1.6],
and the remarks before the statement of the theorem now define the lower right arrow.

The facts that the diagram commutes and that the diagonal arrows are bijective are general features
of the machinery of descent as in [Wa, Theorem 17.6] or see [CalF, 2.2.4.5]. �

The machinery of descent shows a more refined statement, where each of the boxes in the theorem
are replaced by groupoids and the arrows are equivalences of groupoids. In that statement, the bottom
box is replaced by the groupoid of Aut(𝐽0)-torsors and the diagonal arrows are provided by [Gir, p. 151,
Theorem III.2.5.1].

In the theorem, the set 𝐻1 (𝑅,Aut(𝐽0)) is naturally a pointed set and the bijections are actually of
pointed sets, where the distinguished elements are 𝐽0 in the upper left and Aut(𝐽0) in the upper right.

In case R is a field of characteristic different from 2, 3 and 𝑟 = 27, the theorem goes back to [Hij]. Or
see [KnMRT, 26.18]. The statement of the theorem is similar to various statements over a field that can
be found in [Serre, Section III.1].

Corollary 9.4. For each Freudenthal R-algebra J of rank 15 or 27, there is an étale cover 𝑆 ∈ 𝑅-alg
such that 𝐽 ⊗ 𝑆 is a split Freudenthal algebra.

Proof. Let 𝐽0 be the split Freudenthal R-algebra of the same rank as J. The image Iso(𝐽, 𝐽0) of J in
𝐻1 (𝑅,Aut(𝐽0)) is an Aut(𝐽0)-torsor. Since Aut(𝐽0) is smooth (Lemma 9.1), there is an étale cover of
R that trivializes Iso(𝐽, 𝐽0). �

Note that exactly the same kind of argument gives analogues of Lemma 9.1 and Theorem 9.3 for
composition algebras, where 𝑟 = 4 or 8, and the group is of type A1 or G2, respectively.

10. Generic minimal polynomial of a Freudenthal algebra

Polynomials with polynomial-law coefficients

Let J be a Jordan R-algebra, 𝒫(𝐽, 𝑅) the R-algebra of polynomial laws from J to R, and t a variable.
Consider a polynomial p(𝑡) =

∑𝑛
𝑖=0 𝑓𝑖𝑡

𝑖 with 𝑓𝑖 ∈ 𝒫(𝐽, 𝑅) for 0 ≤ 𝑖 ≤ 𝑛. For 𝑆 ∈ 𝑅-alg, 𝑥 ∈ 𝐽 ⊗ 𝑆, we
have p(𝑡, 𝑥) :=

∑𝑛
𝑖=0 𝑓𝑖𝑆 (𝑥)𝑡

𝑖 ∈ 𝑆[𝑡], and we define

p(𝑥, 𝑥) :=
𝑛∑
𝑖=0

𝑓𝑖𝑆 (𝑥)𝑥
𝑖 ∈ 𝐽 ⊗ 𝑆.

The algebra J is said to satisfy p if p(𝑥, 𝑥) = 0 = (𝑡p) (𝑥, 𝑥) for all 𝑆 ∈ 𝑅-alg and 𝑥 ∈ 𝐽 ⊗ 𝑆. Note that
the second equation follows from the first if 2 is invertible in R but not in general (see Remark 6.3).

The generic minimal polynomial

Let 𝐽 := Her3(𝐶, Γ) as in Example 6.6. With a variable t, we recall from (6.9) that J satisfies the monic
polynomial

m𝐽 = 𝑡3 − Tr𝐽 ·𝑡2 + 𝑆𝐽 · 𝑡 − 𝑁𝐽 ∈ 𝒫(𝐽, 𝑅) [𝑡] . (10.1)

More precisely, by [Lo, 2.4(b)], J is generically algebraic of degree 3 in the sense of [Lo, 2.2] and
m𝐽 is the generic minimal polynomial of J, that is, the unique monic polynomial in 𝒫(𝐽, 𝑅) [𝑡] of
minimal degree satisfied by J [Lo, 2.7]. It follows that the Jordan algebra J determines the polynomial
m𝐽 uniquely. In particular, the generic norm 𝑁𝐽 , the generic trace 𝑇𝐽 (or Tr𝐽 ) and, in fact, the cubic
norm structure underlying J in the sense of Definition 6.2 are uniquely determined by J as a Jordan
algebra. By faithfully flat descent, every Freudenthal algebra J has a uniquely determined generic
minimal polynomial of the form (10.1), and a uniquely determined underlying cubic norm structure.
We conclude:
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Proposition 10.1. Every Freudenthal algebra J is a cubic Jordan algebra and the bilinear trace form
𝑇𝐽 is regular. �

The preceding discussion shows that, for a Freudenthal R-algebra J, the Jordan algebra structure of J
alone (ignoring that J is a cubic Jordan algebra) determines the bilinear form 𝑇𝐽 . (For example, the 11
Freudenthal R-algebras discussed in Example 6.8 have distinct trace forms and therefore are distinct.)
When R is a field of characteristic ≠ 2, 3 and J and 𝐽 ′ are reduced Freudenthal algebras, Springer proved
that the converse also holds, that is, 𝐽 � 𝐽 ′ if and only if 𝑇𝐽 � 𝑇𝐽 ′ [SpV, Theorem 5.8.1]. We do not
use Springer’s result in this paper.

The following result can also be found in [Pe19, Corollary 18(b)], based on the definition of Albert
algebra appearing there.

Lemma 10.2. Let J and 𝐽 ′ be Freudenthal R-algebras. An R-linear map 𝜙 : 𝐽 → 𝐽 ′ is an isomorphism of
para-quadratic algebras if and only if 𝜙 is surjective, 𝜙(1𝐽 ) = 1𝐽 ′ , and 𝑁𝐽 ′ = 𝑁𝐽𝜙 as polynomial laws.

Proof. The “only if” direction follows from the uniqueness of the generic minimal polynomial as in
(10.1), so we show “if”. The equality 𝑁𝐽 ′ = 𝑁𝐽𝜙 of polynomial laws and the definition of the directional
derivative in Section 3 gives formulas, such as

∇𝑦𝑁𝐽 (𝑥) = ∇𝜙 (𝑦)𝑁𝐽 ′ (𝜙(𝑥)).

Since 𝜙(1𝐽 ) = 1𝐽 ′ , the definition of the bilinear forms 𝑇𝐽 and 𝑇𝐽 ′ in (6.1) give:

𝑇𝐽 ′ (𝜙(𝑥), 𝜙(𝑦)) = 𝑇𝐽 (𝑥, 𝑦)

for all 𝑥, 𝑦. Therefore, on the one hand we have

∇𝑦𝑁𝐽 (𝑥) = 𝑇𝐽 (𝑥
♯, 𝑦) = 𝑇𝐽 ′ (𝜙(𝑥

♯), 𝜙(𝑦)).

On the other hand, we have

∇𝑦𝑁𝐽 (𝑥) = ∇𝜙 (𝑦)𝑁𝐽 ′ (𝜙(𝑥)) = 𝑇𝐽 ′ ( (𝜙(𝑥))
♯, 𝜙(𝑦)).

Therefore, 𝜙(𝑥♯) = 𝜙(𝑥)♯ for all x. In summary, 𝜙 commutes with ♯ and preserves 𝑇𝐽 . Therefore, by
(6.5), 𝜙 is a homomorphism of Jordan algebras.

Suppose that x is in ker 𝜙. Then for all 𝑦 ∈ 𝐽, 𝑇𝐽 (𝑥, 𝑦) = 𝑇𝐽 ′ (𝜙(𝑥), 𝜙(𝑦)) = 0, so 𝑥 = 0 since the
bilinear form 𝑇𝐽 is regular. Since 𝜙 is both surjective and injective, it is an isomorphism. �

Example 10.3. We claim that Her3(𝑅 × 𝑅), the split Freudenthal algebra of rank 9, is isomorphic to
Mat3(𝑅)+. To see this, define 𝜋𝑖 : 𝑅 × 𝑅 → 𝑅 to be the projection on the i-th coordinate and define
𝜙 : Her3(𝑅 × 𝑅) → Mat3(𝑅)+ by sending

( 𝛼1 𝑐3 ·
· 𝛼2 𝑐1
𝑐2 · 𝛼3

)
↦→

(
𝛼1 𝜋1 (𝑐3) 𝜋2 (𝑐2)

𝜋2 (𝑐3) 𝛼2 𝜋1 (𝑐1)
𝜋1 (𝑐2) 𝜋2 (𝑐2) 𝛼3

)
for 𝛼𝑖 ∈ 𝑅 and 𝑐𝑖 ∈ 𝑅 × 𝑅.

This map is obviously R-linear and surjective and sends the identity to the identity. One checks directly
that 𝜙 preserves norms, that is, that det(𝜙(𝑥)) equals 𝑁 (𝑥) according to (6.11). Because Her3 (𝑅 × 𝑅)
and Mat3(𝑅)+ are both cubic Jordan algebras with regular trace bilinear forms, the proof of the “if”
direction of Lemma 10.2 shows that 𝜑 is an isomorphism of Jordan algebras.

11. Basic classification results for Albert algebras

In the case where R is a field, such as the real numbers, a finite field, a local field, or a global field,
one can find in many places in the literature classifications of Albert algebras proved using techniques
involving algebras as in [SpV, Section 5.8]. For such an R, groups of type F4 can be classified using
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techniques from algebraic groups, such as in [PlRap, Chapter 6] or [Gil19]. The two approaches are
equivalent by Theorem 9.3.

Example 11.1 (Albert algebras over R). Up to isomorphism, there are three Albert R-algebras, namely,
the split one Her3 (Zor(R)), Her3(O, 〈1,−1,−1〉), and Her3(O). Rather than proving this in the language
of Jordan algebras as in [AlbJ, Theorem 10], one may leverage Theorem 9.3 as follows. The three
algebras are pairwise nonisomorphic because their trace forms are (Example 6.8). At the same time,
a computation in the Weyl group of F4 as in [Serre, Section III.4.5], [BorE, 14.1], or [AdT, Table 3]
shows that 𝐻1 (R,Aut(Her3 (Zor(R)))) has three elements. That is, there are exactly three isomorphism
classes of simple affine group schemes over R of type F4, so we have found all of them.

Example 11.2 (Albert algebras over global fields). Let A be an Albert F-algebra for F a global field.
Put Ω for the (finite) set of inequivalent embeddings 𝜔 : 𝐹 ↩→ R. Since Aut(𝐴) is a simple and simply
connected affine group scheme, the natural map

𝐻1 (𝐹,Aut(𝐴))
∏

𝜔
−−−→

∏
𝜔∈Ω

𝐻1 (R,Aut(𝐴))

is a bijection by [Ha66] or [PlRap, p. 286, Theorem 6.6]. Because 𝐻1 (R,Aut(𝐴)) has three elements by
the preceding example, there are exactly 3 |Ω | isomorphism classes of Albert F-algebras. This result, for
number fields and with a proof in the language of Albert algebras, dates back to [AlbJ, p. 417, Corollary
of Theorem 12].

The same argument goes through for octonion algebras, and one finds that there are 2 |Ω | isomorphism
classes of octonion F-algebras. This result, for number fields and with a proof in the language of octonion
algebras, dates back to [Z, p. 400].

In the special case where F has a unique real embedding (e.g., 𝐹 = Q), the two isomorphism classes
of octonion algebras are Zor(𝐹) and O ⊗ 𝐹, and the three isomorphism classes of Albert algebras are
Her3(Zor(𝐹)) and Her3 (O ⊗ 𝐹, 〈1, 𝑠, 𝑠〉) for 𝑠 = ±1.

Below, we will focus our attention on classification results in the case where R is not a field. We
translate known results about cohomology of affine group schemes into the language of Albert algebras.

Proposition 11.3. If R is: (1) a complete discrete valuation ring whose residue field is finite or (2) a finite
ring, then every Freudenthal R-algebra of rank 15 or 27 and every quaternion or octonion R-algebra is
split.

Proof. In view of Theorem 9.3 and its analogue for composition algebras, it suffices to prove that
𝐻1 (𝑅,G) = 0 for G a simple R-group scheme of type F4 or C3 obtained by base change from a
Chevalley group over Z. In case (1), this is [Conrad, Proposition 3.10]. In case (2), we apply the
following lemma. �

Lemma 11.4. If R is a finite ring and G is a smooth connected R-group scheme, then 𝐻1 (𝑅,G) = 0.

Proof. If R is not connected, then it is a finite product 𝑅 =
∏

𝑅𝑖 , where each ring 𝑅𝑖 is finite, so
𝐻1 (𝑅,G) =

∏
𝐻1 (𝑅𝑖 ,G × 𝑅𝑖). Therefore, it suffices to assume that R is connected.

Suppose X is a G-torsor. Our aim is to show that X is the trivial torsor, that is, X(𝑅) is nonempty.
Put 𝔞 for the nil radical Nil(𝑅) of R. Because R is finite, there is some minimal 𝑚 ≥ 1 such that
𝔞𝑚 = 0. We proceed by induction on m. If 𝑚 = 1, then R is reduced and connected, so it is a
finite field and 𝐻1 (𝑅,G) = 0 by Lang’s theorem. For the case 𝑚 ≥ 2, put 𝐼 := 𝔞𝑚−1. The ring 𝑅/𝐼
has Nil(𝑅/𝐼)𝑚−1 = (Nil(𝑅)/𝐼)𝑚−1 = 0, so by induction, X(𝑅/𝐼) is nonempty. On the other hand,
𝐼2 = 𝔞2𝑚−2 = 𝔞𝑚 · 𝔞𝑚−2 = 0 and X is smooth, so the natural map X(𝑅) → X(𝑅/𝐼) is surjective. �

Example 11.5. Suppose R is a Dedekind domain, and write F for its field of fractions. For G a
Chevalley group of type G2, F4, or E8, the map 𝐻1(𝑅,G) → 𝐻1(𝐹,G) has zero kernel [Ha67, Satz 3.3].
Consequently, if A is an Albert or octonion R-algebra and 𝐴 ⊗ 𝐹 is split, then the R-algebra A is split.



Forum of Mathematics, Sigma 21

In particular, if F is a global field with no real embeddings, then every Albert or octonion F-algebra
is split, so every Albert or octonion R-algebra is split.

In the case where F is a number field with a real embedding, we provide the following partial result,
which relies on Example 11.1.

Proposition 11.6. Suppose F is a number field and R is a localization of its ring of integers at finitely
many primes. If A is an Albert (respectively, octonion) F-algebra such that 𝐴 ⊗ R is not isomorphic to
Her3(O) (respectively, O) for every embedding 𝐹 ↩→ R, then there is an Albert (respectively, octonion)
R-algebra B such that 𝐵 ⊗ 𝐹 � 𝐴 and B is uniquely determined up to R-isomorphism.

Proof. Write G for the automorphism group of the split Albert (respectively, octonion) F-algebra. Write
𝐻1

ind (𝑅,G) ⊆ 𝐻1 (𝑅,G) for the isomorphism classes of R-algebras B such that 𝐵 ⊗ 𝐹𝑣 is not Her3(O)
(respectively, O), that is, such that Aut(𝐵) × 𝐹𝑣 is not compact, for all real places v of F. Since G is
simply connected, Strong Approximation gives that the natural map 𝐻1

ind (𝑅,G) → 𝐻1
ind (𝐹,G) is an

isomorphism [Ha67, Satz 4.2.4], which is what is claimed. �

12. The number of generators of an Albert algebra

The goal of this section is to prove Proposition 12.1, which is inspired by the work of First-Reichstein
[FiR] generalizing the Forster-Swan theorem. Let J be a para-quadratic R-algebra. By a (para-quadratic)
subalgebra of J, we mean a submodule 𝐽 ′ ⊆ 𝐽 containing 1𝐽 and closed under the U-operator, that is,
such that 𝑈𝑥𝑦 ∈ 𝐽

′ for all 𝑥, 𝑦 ∈ 𝐽 ′. For any subset 𝑆 ⊆ 𝐽, the smallest subalgebra of J containing S is
called the subalgebra generated by S; if this subalgebra is all of J, we say that S generates J.

Proposition 12.1. For every noetherian ring R, every Albert R-algebra can be generated in the sense
of the preceding paragraph by 3 + dim Max 𝑅 elements.

In the statement, Max 𝑅 is the topological space whose points are the maximal ideals of R, endowed
with the subspace topology inherited from Spec 𝑅. It is evident that dim Max 𝑅 ≤ dim Spec 𝑅, also
known as the Krull dimension. Beyond this inequality, the two numbers may be quite different (e.g., for
a local ring, dim Max 𝑅 = 0 and dim Spec 𝑅 can be any number).

If 2 is invertible in R, the bound in the proposition is Corollary 4.2c in [FiR]. The contribution here
is to remove the hypothesis on 2. In the special case where R contains an infinite field of characteristic
≠ 2, a different (and possibly smaller) upper bound is given in [FiRW, Section 13].

The results in [FiR] reduce the proof of the proposition to the case where R is a field. For a field of
characteristic not 2, a proof may be read off from [McC04, p. 112]; we give a characteristic-free proof
using the first Tits construction of cubic Jordan algebras [McC69, pp. 507–509]. We briefly recall its
details.

The first Tits construction

Let A be a (finite-dimensional) separable associative algebra of degree 3 over a field F, so its generic
norm 𝑁𝐴 is a cubic form on A and its trace 𝑇𝐴 : 𝐴 × 𝐴 → 𝐹 defined as in (6.1) is a nondegenerate
symmetric bilinear form. Given any nonzero scalar 𝜇 ∈ 𝐹, we obtain a cubic norm structure

M := (𝐴 × 𝐴 × 𝐴, 1M, ♯, 𝑁M)

by defining

1M := (1𝐴, 0, 0), (12.1)

𝑥♯ := (𝑥♯0 − 𝑥1𝑥2, 𝜇
−1𝑥♯2 − 𝑥0𝑥1, 𝜇𝑥

♯
1 − 𝑥2𝑥0) and (12.2)

𝑁M (𝑥) := 𝑁𝐴(𝑥0) + 𝜇𝑁𝐴(𝑥1) + 𝜇
−1𝑁𝐴(𝑥2) − 𝑇𝐴(𝑥0𝑥1𝑥2) (12.3)
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for all 𝑥 = (𝑥0, 𝑥1, 𝑥2) in all scalar extensions of 𝐴× 𝐴× 𝐴. By [McC69, Theorem 6], M is a cubic norm
structure, so 𝐽 (M) is a cubic Jordan F-algebra which we denote by 𝐽 (𝐴, 𝜇).

Example 12.2. (a): Let E be a cubic étale F-algebra. If E is either split — that is, isomorphic to 𝐹×𝐹×𝐹
— or a cyclic cubic field extension of F, then 𝐽 (𝐸, 1) � Her3(𝐹×𝐹, 〈1,−1,−1〉) [PeR84b, Theorem 3],
that is, is the split Freudenthal algebra of rank 9 (Proposition 7.5), which is Mat3 (𝐹)+ by Example 10.3.

(b): Let A be a central simple associative F-algebra of degree 3. Then 𝐽 (𝐴, 1) is a split Albert algebra
[PeR84a, Corollary 4.2].

Lemma 12.3. Let A be a separable associative F-algebra of degree 3 and 𝜇 ∈ 𝐹×. Then the first
Tits construction 𝐽 (𝐴, 𝜇) is generated by 𝐴+ (identified in 𝐽 (𝐴, 𝜇) through the initial summand) and
(0, 1𝐴, 0).

Proof. Let 𝐽 ′ be the subalgebra of 𝐽 (𝐴, 𝜇) generated by 𝐴+ and 𝑤 := (0, 1𝐴, 0). As a subalgebra, it is
closed under ♯ by (6.8), that is, 𝑥♯ ∈ 𝐽 ′ and 𝑥 × 𝑦 ∈ 𝐽 ′ for all 𝑥, 𝑦 ∈ 𝐽 ′. Since 𝑤♯ = 𝜇(0, 0, 1𝐴) and
𝑥0 × (0, 𝑥1, 𝑥2) = (0,−𝑥0𝑥1,−𝑥2𝑥0) for all 𝑥𝑖 ∈ 𝐴 by (12.2), it follows that 𝐽 ′ must be all of 𝐽 (𝐴, 𝜇). �

Proof of Proposition 12.1. Theorem 1.2 in [FiR] reduces the proof to the case where R is a field F, in
which case dim Max 𝑅 = 0, so the task is to prove that three elements suffice to generate an Albert
algebra J. If F is infinite, then Proposition 4.1 in [FiR] reduces us to considering the case where J is
split. If F is finite, then J is split by Proposition 11.3.

If 𝐹 ≠ F2, then the split cubic étale F-algebra 𝐸 := 𝐹 × 𝐹 × 𝐹 can be generated by a single element
x as an associative algebra. On the other hand, if 𝐹 = F2, let 𝐸 := F8 be the cyclic cubic extension of F,
which is again generated by one element, call it x. In either case, x also generates the Jordan algebra 𝐸+,
because the powers of x in 𝐸+ and E are the same.

Hence, Example 12.2 (a) and Lemma 12.3 show that Mat3(𝐹)+ is generated by two elements.
Lemma 12.3 combined with Example 12.2 (b) shows that the split Albert algebra 𝐽 (Mat3(𝐹), 1) is
generated by three elements. �

Remark 12.4. That the Jordan algebra Mat3(𝐹)+, for any field F, is generated by two elements doesn’t
seem too surprising, but one should keep in mind that the analogous result for 2-by-2 matrices is false:
the minimal number of generators for the Jordan algebra Mat2(𝐹)+ is three.

Remark 12.5 (dichotomy of fields and the Tits construction). The classification of Albert algebras
over a field F of characteristic ≠ 3 has a fundamentally different flavor depending on whether or not
𝐻3 (𝐹,Z/3) is zero, as indicated by [Rost], [PeR96], or [Gar09, Section 8]. If 𝐻3(𝐹,Z/3) = 0 — as is the
case for global fields, p-adic fields, and the real numbers — every Albert F-algebra is reduced, that is, of
the form Her3(𝐶, Γ) for some C and Γ, and is not a division algebra. (It is natural to speculate that this is
the reason it took many years after Albert algebras were defined — all the way until 1958 — for the first
Albert division algebra to be exhibited in [Alb58].) In the other case, when 𝐻3 (𝐹,Z/3) ≠ 0, as happens
when 𝐹 = Q(𝑡), for example, one can construct an Albert division algebra via the first Tits construction
described above as 𝐽 (𝐴 ⊗ Q(𝑡), 𝑡) for A an associative division algebra of dimension 9 over Q.

It is known that every Albert algebra over a field is obtained by the first Tits construction or
second Tits construction (which we have not described here) (see [McC70, Theorem 10] or [PeR86b,
Theorem 3.1(i)]). Both constructions have been extended from the case of algebras over a field to an
arbitrary base ring [PeR86a]. However, in this more general setting, the Tits constructions do not produce
all Albert algebras [PaST].

13. Isotopy

The aim of this section is to discuss the notion of isotopy of Jordan algebras, which will pay off later
in the paper when we discuss groups of type E6 in Section 15 and E7 in Section 17. We include this
material at this point in the paper because Corollary 13.6 is needed in the following section.
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Definition 13.1. Let J be a Jordan R-algebra, and suppose 𝑢 ∈ 𝐽 is invertible. We define a Jordan algebra
𝐽 (𝑢) with the same underlying R-module, with U-operator𝑈 (𝑢)𝑥 := 𝑈𝑥𝑈𝑢 (where the unadorned U on the
right denotes the U-operator in J), and with identity element 1(𝑢) := 𝑢−1. One checks that 𝐽 (𝑢) is indeed
a Jordan algebra, and for 𝑢, 𝑣 invertible, we have (𝐽 (𝑢) ) (𝑣) = 𝐽 (𝑈𝑢𝑣) . A Jordan R-algebra 𝐽 ′ is an isotope
of J if it is isomorphic to 𝐽 (𝑢) for some invertible 𝑢 ∈ 𝐽; equivalently, one says that J and 𝐽 ′ are isotopic.
This defines an equivalence relation on Jordan algebras that is a priori weaker than isomorphism.

We have presented the notion of isotopy, for Jordan algebras. However, there are analogous notions for
other classes of algebras, which go back at least to [Alb42]. For associative algebras, isotopy is the same
as isomorphism. For octonion algebras, isotopy amounts to norm equivalence [AlsG, Corollary 6.7],
which is a weaker condition than isomorphism (see [Gil14] and [AsHW]).

Isotopes of cubic Jordan algebras

If J is a cubic Jordan R-algebra and 𝑢 ∈ 𝐽 is invertible, then [McC69, Theorem 2] and its proof show that
the isotope 𝐽 (𝑢) is a cubic Jordan algebra as well whose identity element, adjoint and norm are given by

1𝐽 (𝑢) = 𝑢−1, 𝑥♯(𝑢) = 𝑁𝐽 (𝑢)𝑈
−1
𝑢 𝑥♯, 𝑁𝐽 (𝑢) (𝑥) = 𝑁𝐽 (𝑢)𝑁𝐽 (𝑥). (13.1)

Moreover, the (bi-)linear and quadratic trace of 𝐽 (𝑢) have the form

𝑇𝐽 (𝑢) (𝑥, 𝑦) = 𝑇𝐽 (𝑈𝑢𝑥, 𝑦), Tr𝐽 (𝑢) (𝑥) = 𝑇𝐽 (𝑢, 𝑥), 𝑆𝐽 (𝑢) (𝑥) = 𝑇𝐽 (𝑢
♯, 𝑥♯). (13.2)

The first equation of (13.2) is in [McC69, p. 500], while the second one follows from (13.1), the first,
and Lemma 6.5 (1) via Tr𝐽 (𝑢) (𝑥) = 𝑇𝐽 (𝑢) (𝑢

−1, 𝑥) = 𝑇𝐽 (𝑈𝑢𝑢
−1, 𝑥) = 𝑇𝐽 (𝑢, 𝑥). Similarly,

𝑆𝐽 (𝑢) (𝑥) = Tr𝐽 (𝑢) (𝑥♯(𝑢) ) = 𝑇𝐽 (𝑢, 𝑁𝐽 (𝑢)𝑈
−1
𝑢 𝑥♯) = 𝑇𝐽 (𝑁𝐽 (𝑢)𝑈

−1
𝑢 𝑢, 𝑥♯) = 𝑇𝐽 (𝑢

♯, 𝑥♯).

Example 13.2. Her3(𝐶, Γ) is isotopic to Her3(𝐶) for every Γ. Indeed, for

𝑢 :=
(
𝛾1 0 0
0 𝛾2 0
0 0 𝛾3

)
∈ Her3 (𝐶, Γ),

the map 𝜙 : Her3 (𝐶, Γ) (𝑢) → Her3 (𝐶) defined by

𝜙

(
𝛼1 𝛾2𝑐3 𝛾3 �̄�2
𝛾1 �̄�3 𝛼2 𝛾3𝑐1
𝛾1𝑐2 𝛾2 �̄�1 𝛼3

)
=
( 𝛾1𝛼1 𝛾1𝛾2𝑐3 ·

· 𝛾2𝛼2 𝛾2𝛾3𝑐1
𝛾1𝛾3𝑐2 · 𝛾3𝛼3

)

is an isomorphism of Jordan algebras. One can also turn this around:

Her3(𝐶, Γ) = (Her3(𝐶, Γ)
(𝑢) ) (𝑢

−2) � Her3(𝐶)
(𝜙 (𝑢−2)) = Her3(𝐶)

(𝑢−1) .

Jordan algebras isotopic to a reduced Freudenthal algebra

In the special case where R is a field, a Jordan algebra that is isotopic to the split Albert algebra
Her3(Zor(𝑅)) is necessarily isomorphic to it (see, for example [J71, p. 53, Theorem 9]). This need not
hold for general R: Alsaody has shown in [Als21, Theorem 2.7] that there exists a ring R finitely generated
over C and an Albert R-algebra that is isotopic to the split Albert R-algebra but is not isomorphic to it.
Here we show that it is sufficient to assume that R is a semilocal ring (Corollary 13.4), as a consequence
of a more general result (Theorem 13.3) from which we also obtain the key Corollary 13.6.

We work in a slightly more general context than semilocal rings. For the following statements, see
[EsG] and [McDW]. We say that R is an LG ring if whenever a polynomial 𝑓 ∈ 𝑅[𝑥1, . . . , 𝑥𝑛] represents
a unit over 𝑅𝔪 for every maximal ideal 𝔪 of R, then f represents a unit over R. Every semilocal ring is
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an LG ring. It is easy to see that rings 𝑅1, 𝑅2 are both LG if and only if their product 𝑅1 × 𝑅2 is LG.
The ring of all algebraic integers and the ring of all real algebraic integers are LG rings. Every integral
extension of an LG ring is LG [EsG, Corollary 2.3].

Theorem 13.3. Suppose J is a Jordan R-algebra that is isotopic to Her3(𝐶, Γ) for some composition
R-algebra C and some Γ. If R is an LG ring, then J is isomorphic to Her3 (𝐶, Γ′) for some Γ′.

Proof. As in previous proofs, we reduce to the case where C has constant rank.
In view of Example 13.2, J is isotopic to Her3(𝐶), that is, 𝐽 � Her3 (𝐶)

(𝑢−1) for some invertible
𝑢 ∈ Her3 (𝐶). The same example shows we are done if u is diagonal.

Write N for the cubic form on Her3 (𝐶). In case u is not diagonal, we will apply successive elements
𝜂 ∈ GL(Her3(𝐶)) such that 𝑁𝜂 = 𝑁 as polynomial laws. (In the notation of Section 15 below,
𝜂 ∈ Isom(Her3(𝐶)) (𝑅).) Note that each such 𝜂 defines an isomorphism of R-modules

𝜂 : Her3 (𝐶)
(𝑢−1) → Her3(𝐶)

(𝜂 (𝑢)−1) . (13.3)

We have

𝑁 (𝜂(𝑢)−1) = 𝑁 (𝜂(𝑢))−1 = 𝑁 (𝑢)−1 = 𝑁 (𝑢−1),

so we have by (13.1) that

𝑁Her3 (𝐶) (𝑢
−1 ) = 𝑁 (𝑢)−1𝑁 = 𝑁 (𝜂(𝑢)−1)𝑁𝜂 = 𝑁Her3 (𝐶) (𝜂 (𝑢)

−1 ) 𝜂.

Since 𝜂 is a norm isometry that maps the identity element 𝑢−1 in the domain of (13.3) to the identity
element in the codomain, it is an isomorphism of algebras by Lemma 10.2. Thus, if successive elements
𝜂 transform u into a diagonal element, the proof will be complete.

We employ the transformation 𝜏𝑠𝑡 (𝑞) for 1 ≤ 𝑠 ≠ 𝑡 ≤ 3 and 𝑞 ∈ 𝐶 defined by

𝜏𝑠𝑡 (𝑞) : 𝐴 ↦→ (𝐼3 + 𝑞𝐸𝑠𝑡 )𝐴(𝐼3 + 𝑞𝐸𝑡𝑠),

where 𝐼3 is the identity matrix, 𝐸𝑠𝑡 is the 3-by-3 matrix with a 1 in the (𝑠, 𝑡)-entry and 0 elsewhere, and
juxtaposition defines naive multiplication of 3-by-3 matrices with entries in C. For example,

𝜏12(𝑞)
( 𝛼1 𝑐3 ·
· 𝛼2 𝑐1
𝑐2 · 𝛼3

)
=
(
𝛼1+𝑛𝐶 (𝑞,𝑐3)+𝛼2𝑛𝐶 (𝑞) 𝑐3+𝛼2𝑞 ·

· 𝛼2 𝑐1
𝑐2+�̄�1�̄� · 𝛼3

)
.

These transformations appear in [J61, Section 5] and [Kr02, Section 2]; the argument in either reference
shows that 𝜏𝑠𝑡 (𝑞) preserves N for all choices of s, t, and q. For 𝑒 = 2, 3, define polynomial functions 𝜈𝑒
from 𝐶𝑒 to the group scheme G of linear transformations stabilizing the norm N via

𝜈3(𝑞1, 𝑞2, 𝑞3) = 𝜏31(𝑞3)𝜏21(𝑞2)𝜏12(𝑞1) and 𝜈2 (𝑞1, 𝑞2) = 𝜏32 (𝑞2)𝜏23(𝑞1).

Additionally, for every permutation 𝜋 of {1, 2, 3}, there is a linear transformation of Her3 (𝐶) that we
denote also by 𝜋, for example, the transposition (1 2) acts via

( 𝛼1 𝑐3 ·
· 𝛼2 𝑐1
𝑐2 · 𝛼3

)
↦→

( 𝛼2 �̄�3 ·
· 𝛼1 �̄�2
�̄�1 · 𝛼3

)
(13.4)

(see, for example, [Kr02, p. 282]). The other transpositions are constructed analogously and each
evidently preserves the norm. In this way, we obtain a representation of the permutation group on
Her3(𝐶).
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Case: R is local: We collect some observations in the case where R is a local ring. Write

𝑢 =
( 𝛼1 𝑐3 ·
· 𝛼2 𝑐1
𝑐2 · 𝛼3

)
.

By hypothesis, 𝑁 (𝑢) is invertible, that is, does not lie in the maximal ideal 𝔪 of R.
If 𝛼1 ∈ 𝑅× or 𝛼2, 𝛼3 ∉ 𝑅×, then after modifying u by a transformation in the image of 𝜈3, we may

assume that 𝛼1 ∈ 𝑅
× and 𝑐2 = 𝑐3 = 0. Indeed, if 𝛼1 ∉ 𝑅×, then by (6.11) we have

𝑁 (𝑢) ≡ Tr𝐶 (𝑐1𝑐2𝑐3) mod 𝔪,

whence 𝑐3 ∉ 𝔪𝐶. Since 𝑛𝐶 continues to be regular when changing scalars to 𝑅/𝔪, some 𝑞 ∈ 𝐶 has
𝑛𝐶 (𝑞, 𝑐3) ∉ 𝔪. Applying 𝜏12 (𝑞), we may arrange 𝛼1 ∈ 𝑅×. Then note that 𝜏21 (𝑞)

( 𝛼1 𝑐3 ·
· 𝛼2 𝑐1
𝑐2 · 𝛼3

)
has top

row entries 𝛼1, 𝑐3 + 𝛼1𝑞, 𝑐2. Taking 𝑞 = −𝑐3𝛼
−1
1 shows that we may assume 𝑐3 = 0. The argument that

we may assume 𝑐2 = 0 is similar, with the role of 𝜏21 replaced by 𝜏31.
Now suppose that 𝛼1 ∈ 𝑅× and 𝑐2 = 𝑐3 = 0. If 𝛼2 ∈ 𝑅× or 𝛼3 ∉ 𝑅×, then after modifying u

by a transformation in the image of 𝜈2, we may assume that u is diagonal. Indeed, since u has norm
𝛼1 (𝛼2𝛼3 − 𝑛𝐶 (𝑐1)) ∉ 𝔪, at least one of 𝛼2, 𝛼3, or 𝑛𝐶 (𝑐1) is not in 𝔪. The same argument as in
the preceding paragraph, with 𝜏12 replaced by 𝜏23, shows that we may assume that 𝛼2 ∉ 𝔪. The same
argument as in the preceding paragraph, with 𝜏21 replaced by 𝜏32, shows that we may assume that 𝑐1 = 0.
Thus, we have transformed u into a diagonal element, as required.

General case: Return to the setting of R as in the statement of the theorem. We combine the
transformations 𝜈3, 𝜈2, and permutations together into a polynomial function 𝐶21 → G, namely

(𝜈2 (2 3) 𝜈2𝜈3 (1 3)) (𝜈2 (2 3) 𝜈2𝜈3 (1 3)) (𝜈2 (2 3) 𝜈2𝜈3), (13.5)

where the arguments to the various 𝜈2, 𝜈3 are assigned independently. Combining this with the poly-
nomial function on G that sends 𝑔 ∈ G(𝑅) to the product of the diagonal entries of 𝑔𝑢, we obtain a
polynomial law in 𝒫(𝐶21, 𝑅). But more is true. Because R is LG and C is projective of constant rank,
C is a free module (see [EsG, Theorem 2.10] or [McDW, p. 457]). Choosing a basis for C expresses this
polynomial law as a polynomial with coefficients in R.

We claim that this polynomial represents a unit over 𝑅𝔪 for every maximal ideal 𝔪 of R. For a
given 𝔪, here is how to pick the element of 𝐶21 that produces a unit. If 𝛼1 ∈ 𝑅×𝔪 or 𝛼2, 𝛼3 ∉ 𝑅×𝔪,
applying 𝜈3 to u, with arguments chosen as in the second paragraph of the local case, we obtain an
element with 𝛼1 ∈ 𝑅

×
𝔪 and 𝑐3 = 𝑐2 = 0. We take this to be the rightmost term in (13.5). If that element

has 𝛼2 ∈ 𝑅×𝔪 or 𝛼3 ∉ 𝑅×𝔪, the next 𝜈2 term can be chosen to produce a diagonal u; one takes the
remaining 𝜈 terms in (13.5) to have argument 0. Otherwise, 𝛼3 is invertible in 𝑅𝔪, and we plug 0 into
the rightmost 𝜈2, pick the argument for the next 𝜈2 as in the proof of the local case, and plug 0 into the
remaining 𝜈 terms to the left in (13.5). The claim is verified if 𝛼1 ∈ 𝑅

×
𝔪 or 𝛼2, 𝛼3 ∉ 𝑅×𝔪.

The next case of the claim is where 𝛼2 ∈ 𝑅
×
𝔪. In that case, we plug 0 into the rightmost three 𝜈 terms

in (13.5). After applying the permutation (2 3) and then (1 3), we obtain an element of Her3(𝐶) with
𝛼1 invertible, and a well-chosen argument for the next 𝜈3 term will assure that 𝑐3 = 𝑐2 = 0. As in the
preceding paragraph, choosing the arguments for the leftmost two 𝜈2 terms in the middle product in
(13.5) suffices to transform u into a diagonal element, verifying the claim in this case.

The last case of the claim is when 𝛼3 ∈ 𝑅
×
𝔪. Plug 0 in the 𝜈 terms in the middle and right parenthetical

expressions in (13.5). After applying all permutations in (13.5) besides the leftmost transposition to u,
we obtain an element of Her3 (𝐶) with 𝛼1 ∈ 𝑅×𝔪 and the argument in the preceding paragraph, again,
transforms u into a diagonal element, completing the proof of the claim.

Since R is an LG ring, the claim provides an element 𝑔 ∈ G(𝑅) such that 𝑔𝑢 has (1, 1)-entry a unit.
That is, we may assume that in the element u, 𝛼1 is invertible. Applying now 𝜏21(𝑞) and 𝜏31 (𝑞) to u for
values of q chosen as in the local case, we may assume that 𝑐3 = 𝑐2 = 0.
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Applying now an argument as in the preceding five paragraphs, with the function

𝜈2 (2 3) 𝜈2 : 𝐶4 → G,

we conclude that we may transform u to further assume that 𝛼2 is invertible, and therefore, apply a
transformation 𝜏32(𝑞) to transform it into a diagonal element, as required. �

Corollary 13.4. Suppose J is a Jordan R-algebra over an LG ring R. If J is isotopic to a split Freudenthal
algebra whose rank does not take the value 6, then J is itself a split Freudenthal algebra.

Proof. As in previous proofs, one is reduced to the case where J has constant rank, which is not 6. The
theorem and Proposition 7.5 give the claim. �

The hypothesis that the rank is not 6 is necessary, because Her3(R, 〈1,−1,−1〉) is isotopic to the
split Freudenthal algebra Her3(R) (Example 13.2) but is not isomorphic to it (Example 6.8).

Example 13.5 (isotopy over global fields). For 𝐹 = R or a global field, there is a bijection between the
isomorphism classes of octonion algebras and isotopy classes of Albert algebras given by𝐶 ↔ Her3 (𝐶).
Indeed, every Albert F-algebra is reduced (Example 11.2), so 𝐶 ↦→ Her3 (𝐶) touches every isotopy
class. For injectivity, if 𝐶,𝐶 ′ are distinct octonion algebras, there is a real embedding 𝐹 ↩→ R such that
𝐶 ⊗ R � 𝐶 ′ ⊗ R, and Corollary 13.4 shows that Her3(𝐶) ⊗ R and Her3(𝐶

′) ⊗ R are not isotopic.

Corollary 13.6. Every isotope of a Freudenthal algebra is itself a Freudenthal algebra.

Proof. Suppose J is an isotope of a Freudenthal algebra. After base change to a faithfully flat extension,
J is an isotope of a split Freudenthal algebra.

The R-algebra 𝑆 :=
∏

𝔪 𝑅𝔪, where 𝔪 ranges over maximal ideals of R, is faithfully flat. For each
𝔪, 𝐽 ⊗ 𝑅𝔪 is Her3 (𝐶, Γ) for C a split composition 𝑅𝔪-algebra and some Γ by Theorem 13.3. By
Proposition 7.3, there is a faithfully flat 𝑅𝔪-algebra T such that 𝐽 ⊗𝑇 is a split Freudenthal algebra. The
product of these T’s is a faithfully flat R-algebra over which J is the split Freudenthal algebra. �

We close this section by making explicit the relationship between isotopy and norm similarity between
Freudenthal algebras, extending Lemma 10.2.

Proposition 13.7. Let J and 𝐽 ′ be Freudenthal R-algebras. For an R-linear map 𝜙 : 𝐽 → 𝐽 ′, the
following are equivalent:

1. 𝜙 is an isomorphism 𝐽 → (𝐽 ′) (𝑢) for some invertible 𝑢 ∈ 𝐽 ′ (“𝜙 is an isotopy”).
2. 𝑁𝐽 ′𝜙 = 𝛼𝑁𝐽 as polynomial laws for some 𝛼 ∈ 𝑅×, and 𝜙 is surjective (“𝜙 is a norm similarity”).

Proof. Since (𝐽 ′) (𝑢) is a Freudenthal algebra by Corollary 13.6, condition (2) follows from (1) by
Lemma 10.2 and (13.1). Conversely, we assume (2) and prove (1). Because 𝑁𝐽 ′ (𝜙(1𝐽 )) = 𝛼, the
element 𝜙(1𝐽 ) is invertible in 𝐽 ′. We set 𝑢 := 𝜙(1𝐽 )

−1 and 𝐽 ′′ := (𝐽 ′) (𝑢) . We have

𝜙(1𝐽 ) = 𝑢−1 = 1𝐽 ′′ .

Also, 𝑁𝐽 ′ (𝑢) = 𝑁𝐽 ′ (𝜙(1𝐽 ))
−1 = 𝛼−1. Then

𝑁𝐽 ′′𝜙 = 𝑁𝐽 ′ (𝑢)𝑁𝐽 ′𝜙 = 𝑁𝐽

as polynomial laws. Lemma 10.2 implies that 𝜙 is an isomorphism 𝐽
∼
−→ 𝐽 ′′, as desired. �

14. Classification of Albert algebras over Z

In this section, we study Albert algebras over the integers.
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Definition 14.1. In the notation of Example 4.5, consider the element

𝛽 := (−1 + 𝑒1 + 𝑒2 + · · · + 𝑒7)/2 = ℎ1 + ℎ2 + ℎ3 − (2 + 𝑒1) ∈ O,

as was done in [ElkiesGr, (5.2)]. That element has

TrO (𝛽) = −1, 𝑛O (𝛽) = 2 and 𝛽2 + 𝛽 + 2 = 0.

Put

𝑣 :=
(

2 𝛽 ·
· 2 𝛽
𝛽 · 2

)
∈ Her3 (O).

Since TrO (𝛽3) = 5, we find that 𝑁Her3 (O) (𝑣) = 1. In particular, v is invertible with inverse 𝑣♯. We define
Λ := Her3(O) (𝑣) ; it is an Albert algebra by Corollary 13.6.

Proposition 14.2. Her3 (O) � Λ as JordanZ-algebras, but Her3(O) ⊗Q � Λ⊗Q as JordanQ-algebras.

Proof. We first prove the claim over Z, which amounts to a computation from [ElkiesGr]. The isomor-
phism class of a Freudenthal algebra determines its cubic norm form and also its trace linear form.
From (13.1), we deduce for 𝑥 ∈ Her3 (O) that 𝑥♯(𝑣) = 0 if and only if 𝑥♯ = 0. Hence, [ElkiesGr,
Proposition 5.5] says that Her3(O) contains exactly three elements x such that 𝑥♯ = 0 and
TrHer3 (O) (𝑥) = 1, whereas Λ has no elements x such that 𝑥♯(𝑣) = 0 and

𝑇Her3 (O) (𝑣, 𝑥) = 1,

where the left side is TrΛ (𝑥) by (13.2). This proves that Her3 (O) � Λ.
Now consider Her3(O) ⊗ R. It is called a “euclidean” Jordan algebra or, in older references, a

“formally real” Jordan algebra, because every sum of nonzero squares is not zero [BrK, p. 331]. The
element v has generic minimal polynomial, in the sense of (10.1), (𝑡 − 1) (𝑡2 − 5𝑡 + 1), which has three
positive real roots. Therefore, there is some 𝑢 ∈ Her3(O) ⊗ R such that 𝑢2 = 𝑣 [BrK, Section XI.3, S.
3.6 and 3.7]. From this, it is trivial to see that

Λ ⊗ R � (Her3(O) ⊗ R) (𝑣) � Her3 (O) ⊗ R,

and Example 11.2 gives that Λ ⊗ Q � Her3(O) ⊗ Q. �

Theorem 14.3. Over Z:

a. There are exactly two isomorphism classes of octonion algebras: Zor(Z) and O.
b. There are exactly four isomorphism classes of Albert algebras: Her3(Zor(Z)), Her3 (O, 〈1,−1,−1〉),

Her3(O), and Λ.
c. There are exactly two isotopy classes of Albert algebras: Her3(Zor(Z)) and Her3(O).

Proof. We first prove (a) and (b). No pair of the algebras listed are isomorphic to each other. For Her3(O)
and Λ, this is Proposition 14.2. For any other pair, base change to Q yields nonisomorphic Q-algebras.
To complete the proof, it suffices to show that every octonion or Albert Z-algebra B is isomorphic to
one of the ones listed.

If B is indefinite — that is, 𝐵 ⊗ R is not isomorphic to O nor Her3(O)— then the isomorphism class
of B is determined by 𝐵 ⊗ Q as a Q-algebra (Proposition 11.6). Since the indefinite octonion or Albert
Q-algebras are Zor(Q), Her3 (Zor(Q)), and Her3(O ⊗Q, 〈1,−1,−1〉) by Example 11.2, B is isomorphic
to one of the algebras listed in the statement.

If B is definite, then Aut(𝐵) is a Z-form of the compact real group of type G2 or F4. Gross’s mass
formula [Gr, Proposition 5.3] shows that, up to Z-isomorphism, there is only one group of type G2 and
two groups of type F4 with this property. Using the equivalence between these groups and octonion or
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Albert algebras (Theorem 9.3), we conclude that up to isomorphism O is the unique definite octonion
Z-algebra and Her3(O) and Λ are the two isomorphism classes of definite Albert Z-algebras, completing
the proof of (a) and (b).

For (c), note that the three algebras in (b) that are not Her3(Zor(Z)) are all isotopic, see Example 13.2,
so the two algebras listed in (c) represent all of the isotopy classes of Albert Z-algebras. The base change
of these two algebras to Q are not isotopic (Example 13.5), so they are not isotopic as Z-algebras. �

Note that part (a) of the theorem can be proved entirely in the language of octonion algebras (see
[vdBS]).

In view of Theorem 9.3, part (b) is equivalent to a classification of the group schemes of type F4
overZ, which was done in Sections 6 and 7 of [Conrad], especially Examples 6.7 and 7.4. The innovation,
here, is that we can use the language of Albert algebras also in the case of Z where 2 is not invertible.
Because of this extra flexibility, we can substitute results from the literature over algebraically closed
fields (including characteristic 2) for some of the computations over Z done in [Conrad].

Part (c) corresponds to the classification of groups of type E6 over Z up to isogeny (see Section 18).

15. Groups of type E6

Roundness of the norm

We note that the cubic norm of a Freudenthal algebra has the following special property. A quadratic
form with this property is called “round” (see [ElKM, Section 9.A]).

Lemma 15.1 (roundness). For every Freudenthal R-algebra J,

{𝛼 ∈ 𝑅× | 𝛼𝑁𝐽 � 𝑁𝐽 } = {𝑁𝐽 (𝑥) ∈ 𝑅
× | 𝑥 invertible in 𝐽}.

Proof. If 𝛼 ∈ 𝑅× and 𝜙 ∈ GL(𝐽) are such that 𝛼𝑁𝐽 = 𝑁𝐽𝜙, then for 𝑥 := 𝜙(1𝐽 ), we have 𝑁𝐽 (𝑥) = 𝛼.
Conversely, if x is invertible in J, put 𝛼 := 𝑁𝐽 (𝑥) and define 𝜙 := 𝛼𝑈𝑥−1 . Then 𝑁𝐽𝜙 = 𝛼3𝑁𝐽 (𝑥

−1)2𝑁𝐽

by Lemma 6.5(3), so 𝑁𝐽𝜙 = 𝛼𝑁𝐽 . �

Example 15.2. For 𝐽 = Her3(𝐶, Γ), the sets displayed in Lemma 15.1 equal 𝑅×. To see this for the right
side, take 𝛼 ∈ 𝑅× and note that 𝑁𝐽 (𝛼𝜀1 + 𝜀2 + 𝜀3) = 𝛼. For the left side, consider 𝜙 ∈ GL(𝐽) defined by

𝜙(𝜀𝑖) = 𝛼𝜀𝑖 and 𝜙(𝛿𝑖 (𝑐)) = 𝛿𝑖 (𝑐) for 𝑖 = 1, 2,
𝜙(𝜀3) = 𝛼−1𝜀3 and 𝜙(𝛿3 (𝑐)) = 𝛿3(𝛼𝑐).

Then 𝑁𝐽𝜙 = 𝛼𝑁𝐽 as polynomial laws.

Example 15.3. In contrast to the preceding example, we now show that the sets displayed in Lemma 15.1
may be properly contained in 𝑅×. Suppose F is a field and J is a Freudenthal F-algebra such that 𝑁𝐽

is anisotropic, that is, 𝑁𝐽 (𝑥) = 0 if and only if 𝑥 = 0. (For example, such a J exists if F is Laurent
series or rational functions in one variable over a global field, see Remark 12.5.) We claim that, for t
an indeterminate, every nonzero element in the image of 𝑁𝐽 ⊗𝐹 ( (𝑡)) has lowest term of degree divisible
by 3. Because the norm is a homogeneous form, it suffices to prove this claim for 𝐽 ⊗ 𝐹 [[𝑡]].

Let 𝑥 ∈ 𝐽 ⊗ 𝐹 [[𝑡]] be nonzero, so 𝑥 =
∑

𝑗≥ 𝑗0 𝑥 𝑗 𝑡
𝑗 for some 𝑗0 ≥ 0 with 𝑥 𝑗0 ≠ 0. Since 𝑁𝐽 is

anisotropic, 𝑁𝐽 (𝑥 𝑗0 ) ≠ 0. If 𝑗0 = 0, then the homomorphism 𝐹 [[𝑡]] → 𝐹 such that 𝑡 ↦→ 0 sends 𝑥 ↦→ 𝑥0
and 𝑁𝐽 ⊗𝐹 [ [𝑡 ] ] (𝑥) ↦→ 𝑁𝐽 (𝑥0) ≠ 0, therefore 𝑁𝐽 ⊗𝐹 [ [𝑡 ] ] (𝑥) has lowest degree term 𝑁𝐽 (𝑥0)𝑡

0. If 𝑗0 > 0,
then

𝑁𝐽 ⊗𝐹 [ [𝑡 ] ] (𝑥) = 𝑁𝐽 ⊗𝐹 [ [𝑡 ] ] (𝑡
𝑗0 (𝑥𝑡− 𝑗0 )) = 𝑡3 𝑗0 (𝑁𝐽 (𝑥 𝑗0 )𝑡

0 + · · · ),

proving the claim.
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Corollary 15.4. For Freudenthal R-algebras J and 𝐽 ′, the following are equivalent:
1. J and 𝐽 ′ are isotopic.
2. 𝑁𝐽 � 𝛼𝑁𝐽 ′ for some 𝛼 ∈ 𝑅×.
3. 𝑁𝐽 � 𝑁𝐽 ′ .

Proof. The equivalence of (1) and (2) is Proposition 13.7.
Supposing (2), let 𝜙 : 𝐽 ′ → 𝐽 be an R-module isomorphism such that 𝛼𝑁𝐽 ′ = 𝑁𝐽𝜙. Take 𝑥 := 𝜙(1𝐽 ′ ).

Since 𝑁𝐽 (𝑥) = 𝛼, Lemma 15.1 gives that𝛼𝑁𝐽 � 𝑁𝐽 . As 𝑁𝐽 is also isomorphic to𝛼𝑁𝐽 ′ , we conclude (3).
The converse is trivial. �

In the corollary, the inclusion of (3) seems to be new, even in the case where R is a field. Omitting
that, in the special case where R is a field of characteristic ≠ 2, 3, the equivalence of (1) and (2) and
Proposition 15.6 below can be found as Theorems 7 and 10 in [J71].

Albert algebras and groups of type E6

The stabilizer of the cubic form 𝑁𝐽 in GL(𝐽) is a closed sub-group-scheme denoted Isom(𝐽). It contains
Aut(𝐽) as a natural sub-group-scheme, namely, it is the stabilizer of 1𝐽 by Lemma 10.2. Arguing as in
the proof of Lemma 9.1, one finds that Isom(𝐽) is a simple affine group scheme that is simply connected
of type E6. (In the case where R is an algebraically closed field, this claim is verified in [Sp73, 11.20,
12.4], or see [SpV, Theorem 7.3.2] for the case where R is a field of characteristic different from 2, 3.)
Compare [Als21, Lemma 2.3] or [Conrad, Appendix C]. Moreover, Isom(𝐽) is a “pure inner form” in
the sense of [Conrad, Section 3], respectively, “strongly inner” in [CalF, Definition 2.2.4.9], meaning
that it is an inner twist of Isom(𝐽0) for the split Albert algebra 𝐽0. We note that the center of Isom(𝐽)
is the group scheme 𝜇3 of cube roots of unity operating on J by scalar multiplication.

Faithfully flat descent shows that the set 𝐻1 (𝑅, Isom(𝐽)) is in bijection with isomorphism classes
of pairs (𝑀, 𝑓 ), where M is a projective module of the same rank as J and f is a cubic form on M —
that is, an element of S3(𝑀∗) — such that 𝑓 ⊗ 𝑆 is isomorphic to the norm on Her3(Zor(𝑆)) for some
faithfully flat 𝑆 ∈ 𝑅-alg. For every Albert R-algebra J and every 𝛼 ∈ 𝑅×, (𝐽, 𝛼𝑁𝐽 ) is such a pair by
Example 15.2. In the special case where R is a field, every such pair (𝑀, 𝑓 ) — that is, every element
of 𝐻1 (𝑅, Isom(𝐽)) — is of the form (𝐽, 𝛼𝑁𝐽 ) for some J and 𝛼 ∈ 𝑅× (see [Gar09, 9.12] in general or
[Sp62] for the case of characteristic ≠ 2, 3).

Outer automorphism of Isom(𝐽)

Suppose J and 𝐽 ′ are Freudenthal R-algebras and 𝜙 : 𝐽 → 𝐽 ′ is an isomorphism of R-modules. Since the
bilinear form𝑇𝐽 ′ is regular, there is a unique R-linear map 𝜙† : 𝐽 → 𝐽 ′ such that𝑇𝐽 ′ (𝜙𝑥, 𝜙†𝑦) = 𝑇𝐽 (𝑥, 𝑦)
for all 𝑥, 𝑦 ∈ 𝐽. Because 𝑇𝐽 and 𝑇𝐽 ′ are symmetric, we have (𝜙†)† = 𝜙 for all 𝜙. If 𝐽 ′′ is another
Freudenthal R-algebra and 𝜓 : 𝐽 ′ → 𝐽 ′′ is an R-linear bijection, then (𝜙𝜓)† = 𝜙†𝜓†.
Proposition 15.5. Let J be a Freudenthal R-algebra.
1. If 𝜙 ∈ GL(𝐽) is such that 𝑁𝐽𝜙 = 𝛼𝑁𝐽 for some 𝛼 ∈ 𝑅×, then 𝑁𝐽𝜙

† = 𝛼−1𝑁𝐽 .
2. The map 𝜙 ↦→ 𝜙† is an automorphism of Isom(𝐽) of order 2 that is not an inner automorphism.
3. For 𝜙 as in (1) or in Isom(𝐽) (𝑅), 𝜙† = 𝜙 if and only if 𝜙 is an automorphism of J.

Proof. (1): Put 𝑢 := 𝜙(1𝐽 )
−1. On the one hand,

𝑇𝐽 (𝑥, 𝑦) = 𝑇𝐽 (𝑢) (𝜙(𝑥), 𝜙(𝑦))

for all 𝑥, 𝑦 ∈ 𝐽, because 𝜙 is an isomorphism 𝐽 → 𝐽 (𝑢) by Proposition 13.7. On the other hand, (13.2)
yields

𝑇𝐽 (𝑢) (𝜙(𝑥), 𝜙(𝑦)) = 𝑇𝐽 (𝑈𝑢𝜙(𝑥), 𝜙(𝑦)).
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Therefore,

𝜙† = 𝑈𝜙 (1𝐽 )−1𝜙. (15.1)

To complete the proof of (1), we note by Lemma 6.5(3) that

𝑁𝐽𝜙
† = 𝑁𝐽𝑈𝑢𝜙 = 𝑁𝐽 (𝑢)

2𝑁𝐽𝜙 = 𝛼−1𝑁𝐽 .

For (2), we only have to check that the map is not an inner automorphism. Let 𝑆 ∈ 𝑅-alg be such that
there exists 𝜁 ∈ 𝜇3 (𝑆) such that 𝜁 ≠ 1. Then 𝜁† = 𝜁−1 ≠ 𝜁 and 𝜁 is in the center of Iso(𝐽) (𝑅), proving
that the automorphism is not inner (and not the identity).

For (3), suppose 𝜙† = 𝜙. Then 𝑁𝐽𝜙 = 𝑁𝐽 . By (15.1), 𝑈𝜙 (1𝐽 )−1 = Id𝐽 , so 𝜙(1𝐽 ) = 𝜁1𝐽 for some
𝜁 ∈ 𝑅 with 𝜁2 = 1 (Example 7.4). Yet 1 = 𝑁𝐽 (1𝐽 ) = 𝑁𝐽𝜙(1𝐽 ), so 𝜁3 also equals 1, whence 𝜙(1𝐽 ) = 1𝐽 .
Lemma 10.2 shows that 𝜙 is an automorphism of J. Conversely, if 𝜙 is an automorphism of J, then
𝑢 = 1𝐽 , so 𝜙† = 𝜙 by (15.1). �

Proposition 15.6. Let J and 𝐽 ′ be Albert R-algebras. Among the statements

1. Isom(𝐽) � Isom(𝐽 ′),
2. There is a line bundle L and isomorphism ℎ : 𝐿⊗3 → 𝑅 such that (𝐽 ′, 𝑁𝐽 ′ ) � [𝐿, ℎ] · (𝐽, 𝑁𝐽 ) for ·

as defined in Section 3,
3. J and 𝐽 ′ are isotopic,

we have the implications (1) ⇔ (2) ⇐ (3). If Pic 𝑅 has no 3-torsion other than zero, then all three
statements are equivalent.

Proof. Suppose (1); we prove (2). We may assume R is connected.
The conjugation action gives a homomorphism Isom(𝐽) → Aut(Isom(𝐽)), which gives a map of

pointed sets

𝐻1(𝑅, Isom(𝐽)) → 𝐻1 (𝑅,Aut(Isom(𝐽))), (15.2)

where the second set is in bijection with isomorphism classes of R-group schemes that become
isomorphic to Isom(𝐽) after base change to an fppf R-algebra. By hypothesis, the class of 𝑁𝐽 ′ ∈

𝐻1 (𝑅, Isom(𝐽)) is in the kernel of (15.2).
There is an exact sequence

1→ Isom(𝐽)/𝜇3 → Aut(Isom(𝐽)) → Z/2→ 1

of fppf sheaves by [DemG, Theorem XXIV.1.3]. Since R is connected, (Z/2) (𝑅) has one nonidentity
element, and it is the image of the map † from Lemma 15.5. That is, in the exact sequence

Aut(Isom(𝐽)) (𝑅) → (Z/2) (𝑅) → 𝐻1 (𝑅, Isom(𝐽)/𝜇3) → 𝐻1(𝑅,Aut(Isom(𝐽))),

the first map is surjective, so the third map has zero kernel, and we deduce that the image of 𝑁𝐽 ′ in
𝐻1 (𝑅, Isom(𝐽)/𝜇3) is the zero class. It follows that 𝑁𝐽 ′ is in the image of the map

𝐻1(𝑅, 𝜇3) → 𝐻1(𝑅, Isom(𝐽)),

which is the orbit of the zero class 𝑁𝐽 under the action of the group 𝐻1(𝑅, 𝜇3), which is (2).
That (2) implies (1) is Lemma 3.6. The claimed implications between (3) and (2) are

Corollary 15.4. �
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16. Freudenthal triple systems

In this section, we define Freudenthal triple systems, also known as FT systems. We will see in
Theorem 17.4 in the next section that they play the same role relative to groups of type E7 that forms of
the norm on an Albert algebra play for groups of type E6.

For any Albert R-algebra J, define𝑄(𝐽) to be the rank 56 projective R-module 𝑅⊕𝑅⊕ 𝐽 ⊕ 𝐽 endowed
with a 4-linear form Ψ and an alternating bilinear form b, defined as follows.

We write an element of 𝑄(𝐽) as ( 𝛼 𝑥
𝑥′ 𝛼′ ) for 𝛼, 𝛼′ ∈ 𝑅 and 𝑥, 𝑥 ′ ∈ 𝐽. Define

𝑏𝐽

(
( 𝛼 𝑥
𝑥′ 𝛼′ ),

(
𝛽 𝑦
𝑦′ 𝛽′

))
:= 𝛼𝛽′ − 𝛼′𝛽 + 𝑇𝐽 (𝑥, 𝑦

′) − 𝑇𝐽 (𝑥
′, 𝑦). (16.1)

As an intermediate step to defining Ψ, define a quartic form

𝑞𝐽 (
𝛼 𝑥
𝑥′ 𝛼′ ) = −4𝑇𝐽 (𝑥♯, 𝑥 ′♯) + 4𝛼𝑁𝐽 (𝑥) + 4𝛼′𝑁𝐽 (𝑥

′) + (𝑇𝐽 (𝑥, 𝑥
′) − 𝛼𝛼′)2, (16.2)

compare [Brown, p. 87] or [Kr07, p. 940].
To define the 4-linear form, consider first the case 𝑅 = Z and 𝐽 := Her3(Zor(Z)). (The following

definitions are inspired by [Lur, Section 6].) Putting 𝑋𝑖 for an element of𝑄(𝐽) and 𝑡𝑖 for an indeterminate,
the coefficient of 𝑡1𝑡2𝑡3𝑡4 in 𝑞(

∑
𝑡𝑖𝑋𝑖), equivalently, the 4-linear form

(𝑋1, 𝑋2, 𝑋3, 𝑋4) ↦→ ∇𝑋1∇𝑋2∇𝑋3𝑞(𝑋4)

on 𝑄(𝐽), equals 2Θ for a symmetric 4-linear form Θ. Define 4-linear forms Φ𝑖 via

Φ1(𝑋1, 𝑋2, 𝑋3, 𝑋4) = 𝑏(𝑋1, 𝑋2) 𝑏(𝑋3, 𝑋4)

Φ2(𝑋1, 𝑋2, 𝑋3, 𝑋4) = 𝑏(𝑋1, 𝑋3) 𝑏(𝑋4, 𝑋2) (16.3)
Φ3(𝑋1, 𝑋2, 𝑋3, 𝑋4) = 𝑏(𝑋1, 𝑋4) 𝑏(𝑋2, 𝑋3).

Then Θ +
∑
Φ𝑖 is divisible by 2 as a 4-linear function on 𝑄(Zor(Z)), and we set

ΨHer3 (Zor(Z)) :=
1
2
(Θ +

∑
Φ𝑖). (16.4)

As Θ is symmetric, Ψ is evidently stable under even permutations of its arguments, and we have:

Ψ(𝑋1, 𝑋2, 𝑋3, 𝑋4) − Ψ(𝑋2, 𝑋1, 𝑋3, 𝑋4) =
∑

Φ𝑖 .

For any ring R, we define ΨHer3 (Zor(𝑅)) := ΨHer3 (Zor(Z)) ⊗𝑅, and we define Ψ𝐽 for an Albert R-algebra
J by descent.
Definition 16.1. A Freudenthal triple system1 or FT system (𝑀,Ψ, 𝑏) is an R-module M endowed with
a 4-linear form Ψ and an alternating bilinear form b such that (𝑀,Ψ, 𝑏) ⊗ 𝑆 is isomorphic (in an obvious
sense) to 𝑄(𝐽) for some faithfully flat 𝑆 ∈ 𝑅-alg and some Albert S-algebra J.

Comparison with other definitions

Suppose for this paragraph that 6 is invertible in R. Given an FT system (𝑀,Ψ, 𝑏), we may define
4-linear forms Φ𝑖 on M via (16.3) and recover Θ and q via

Θ := 2Ψ −
∑

Φ𝑖 and Θ(𝑋, 𝑋, 𝑋, 𝑋) = 12𝑞(𝑋) (16.5)

as polynomial laws in X. (This last is a special case of the general fact that going from a homogeneous
form of degree d to a d-linear form and back to a homogeneous form of degree d equals multiplication

1See p. 273 of [Sp06] for remarks on the history of this term.
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by 𝑑! [BouA2, Section IV.5.8, Proposition 12(i)].) Since the form b is regular and Θ is symmetric, the
equation

Θ(𝑋1, 𝑋2, 𝑋3, 𝑋4) = 𝑏(𝑋1, 𝑡 (𝑋2, 𝑋3, 𝑋4))

implicitly defines a symmetric 3-linear form 𝑡 : 𝑀×𝑀×𝑀 → 𝑀 , and Aut(𝑀,Ψ, 𝑏) equals Aut(𝑀, 𝑡, 𝑏).
That is, under the hypothesis that 6 is invertible in R, we would obtain an equivalent class of objects if
we replaced the asymmetric 4-linear form Ψ in the definition of FT systems with the quartic form q (the
version studied in [Brown]) or with the trilinear form t (the version studied in [Mey]).

Similarity of FT systems

For a d-linear form f on an R-module M, that is, an R-linear map 𝑓 : 𝑀 ⊗𝑑 → 𝑅, and a d-trivialized line
bundle [𝐿, ℎ] ∈ 𝐻1(𝑅, 𝜇𝑑), we define a d-linear form [𝐿, ℎ] · 𝑓 on 𝑀 ⊗ 𝐿 via the composition

(𝑀 ⊗ 𝐿)⊗𝑑
∼
−→ 𝑀 ⊗𝑑 ⊗ 𝐿⊗𝑑

𝑓 ⊗ℎ
−−−−→ 𝑅.

For 𝑄 := (𝑀,Ψ, 𝑏), an FT system and a discriminant module [𝐿, ℎ] ∈ 𝐻1(𝑅, 𝜇2), we define [𝐿, ℎ] ·𝑄
to be the triple consisting of the module 𝑀 ⊗ 𝐿, the 4-linear form [𝐿, ℎ⊗2] ·Ψ for [𝐿, ℎ⊗2] ∈ 𝐻1 (𝑅, 𝜇4),
and the bilinear form [𝐿, ℎ] · 𝑏. Since 〈1〉 ·𝑄 is Q itself, we deduce that [𝐿, ℎ] ·𝑄 is also an FT system.
We say that FT systems Q, 𝑄 ′ are similar if 𝑄 ′ � [𝐿, ℎ] ·𝑄 for some [𝐿, ℎ] ∈ 𝐻1 (𝑅, 𝜇2). For example,
for any FT system (𝑀,Ψ, 𝑏) and any 𝛼 ∈ 𝑅×, (𝑀,Ψ, 𝑏) and (𝑀, 𝛼2Ψ, 𝛼𝑏) are similar.
Example 16.2. Suppose (𝑀,Ψ, 𝑏) = 𝑄(𝐽) for some Albert R-algebra J. Then for every 𝜇 ∈ 𝑅×, the map

( 𝛼 𝑥
𝑥′ 𝛼′ ) ↦→

(
𝛼/𝜇 𝜇𝑥

𝑥′ 𝜇2𝛼′

)

is an isomorphism 〈𝜇〉 · 𝑄(𝐽) ∼−→ 𝑄(𝐽). One checks this for 𝑅 = Z and 𝐽 = Her3(Zor(Z)) using (16.1)
and (16.2). It follows for general R and J by base change and twisting.

17. Groups of type E7

We will now relate FT systems as defined in the previous section to affine group schemes of type E7.
Here is a tool that allows us to work with the quartic form q as in (16.2) rather than the less convenient
4-linear form Ψ, while still getting results that hold when 6 is not invertible.
Lemma 17.1. Let (𝑀,Ψ, 𝑏) be an FT system over Z, let G be a closed subgroup of GL(𝑀), and let
F be a field of characteristic zero. If G(𝐹) is dense in G (which holds if G is connected) and G(𝐹)
preserves 𝑏 ⊗ 𝐹 and the quartic form q over F defined by (16.5), then G is a closed sub-group-scheme
of Aut(𝑀,Ψ, 𝑏).
Proof. Since G(𝐹) is dense in G, the group scheme G × 𝐹 preserves 𝑏 ⊗ 𝐹 and q, whence also Ψ ⊗ 𝐹.
Viewing b and Ψ as elements of the representation 𝑉 := (𝑀∗)⊗𝑑 of G for 𝑑 = 2 or 4, the natural map
𝑉G ⊗ 𝐹 → (𝑉 ⊗ 𝐹)G×𝐹 is an isomorphism because F is flat over Z [Ses, Lemma 2], so G preserves b
and Ψ. �

Corollary 17.2. For every Freudenthal R-algebra J, there is an inclusion 𝑓 : Isom(𝐽) ↩→ Aut(𝑄(𝐽))
via

𝑓 (𝜙) ( 𝛼 𝑥
𝑥′ 𝛼′ ) =

(
𝛼 𝜙 (𝑥)

𝜙† (𝑥′) 𝛼′

)
.

Proof. Consider the case 𝐽 = Her3(Zor(Z)). For 𝜙 ∈ Isom(𝐽) (Q), it follows from the definition of 𝜙†
and Proposition 15.5(1) that 𝑓 (𝜙) is an isomorphism of the bilinear and quartic forms 𝑏 ⊗ Q and q
defined by (16.2) for 𝐽 ⊗ Q. The lemma gives the claim in this case. Base change and twisting give the
claim for every R and every Albert R-algebra J. �
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Corollary 17.3. Suppose J and 𝐽 ′ are Albert R-algebras. If J and 𝐽 ′ are isotopic, then Aut(𝑄(𝐽)) �
Aut(𝑄(𝐽 ′)).

Proof. The inclusions Aut(𝐽) ↩→ Isom(𝐽) ↩→ Aut(𝑄(𝐽)) induce maps

𝐻1 (𝑅,Aut(𝐽)) → 𝐻1(𝑅, Isom(𝐽)) → 𝐻1 (𝑅,Aut(𝑄(𝐽))),

where the last set classifies FT systems over R. The class of 𝐽 ′ in 𝐻1(𝑅,Aut(𝐽)) maps to the class of
𝑁𝐽 ′ in 𝐻1 (𝑅, Isom(𝐽)), and by hypothesis and by Proposition 15.6, this is the trivial class. Therefore,
the image of 𝐽 ′ in 𝐻1(𝑅,Aut(𝑄(𝐽))), which is 𝑄(𝐽 ′), is the trivial class. �

In case R is a field of characteristic ≠ 2, 3, the converse of Corollary 17.3 is true by [Fe72, Corol-
lary 6.9]. That is, if 𝑄(𝐽) � 𝑄(𝐽 ′), then J and 𝐽 ′ are isotopic. The paper [Als22] provides an example
related to this construction over rings.

Theorem 17.4. The group scheme Aut(𝑄(Her3(Zor(𝑅)))) over R is obtained from the simply connected
Chevalley group of type E7 over Z by base change. Every strongly inner and simply connected simple
R-group scheme of type E7 over R is of the form Aut(𝑄) for some FT system Q. For FT systems Q and
𝑄 ′, Aut(𝑄) � Aut(𝑄 ′) if and only if Q and 𝑄 ′ are similar.

Proof. Put 𝐽𝑅 := Her3 (Zor(𝑅)) and 𝑄𝑅 := 𝑄(𝐽𝑅). We will show that Aut(𝑄𝑅) is isomorphic to the
base change to R of the simply connected Chevalley group 𝐸7 over Z.

In addition to the sub-group-scheme Isom(𝐽𝑅) of Aut(𝑄𝑅) provided by Corollary 17.2, we consider
a rank 1 torus Gm defined by

𝛽( 𝛼 𝑥
𝑥′ 𝛼′ ) =

(
𝛽−3𝛼 𝛽𝑥

𝛽−1𝑥′ 𝛽3𝛼′

)
for 𝛽 ∈ 𝑅×

and two copies of 𝐽𝑅 (as group schemes under addition) through which an element 𝑦 ∈ 𝐽𝑅 acts via

𝑦( 𝛼 𝑥
𝑥′ 𝛼′ ) =

(
𝛼+𝑏 (𝑥′,𝑦) 𝑥+𝛼′𝑦
𝑥′+𝑥×𝑦 𝛼′

)
or

(
𝛼 𝑥+𝑥′×𝑦

𝑥′+𝛼𝑦 𝛼′+𝑏 (𝑥′,𝑦)

)
.

These preserve b and q, see, for example, [Brown, p. 95] or [Kr07, p. 942], and so by Lemma 17.1
do belong to Aut(𝑄𝑅). Considering the Lie algebras of Isom(𝐽𝑅), Gm, and the two copies of J, as
subalgebras of Lie(GL(𝑄𝑅)), one can identify the subalgebra 𝐿𝑅 they generate with the Lie algebra of
𝐸7 × 𝑅 by picking out specific root subalgebras and so on as in [Fr54] or [Sel], or see [Gar01, Section 7]
for partial information. Note that Lie(Aut(𝑄𝑅)) ⊇ 𝐿𝑅. For F any algebraically closed field, we may
identify the smooth closed subgroup of Aut(𝑄𝐹 ) generated by Isom(𝐽𝐹 ), Gm, and the two copies of
𝐽𝐹 with 𝐸7 × 𝐹.

In [Lur], Lurie begins with 𝐿Z and defines 𝐿Z-invariant 4-linear formsΘ𝐿 ,Φ𝐿
𝑖 , andΨ𝐿 and alternating

bilinear form 𝑏𝐿 on the 56-dimensional Weyl module of 𝐿Z. Over C, Aut(𝑄C) is simply connected of
type E7 by the references in the previous paragraph, so it preserves the base change of Lurie’s forms
Θ𝐿 ⊗ C, etc. Because Aut(𝑄C) (C) is dense in Aut(𝑄C), Lemma 17.1 shows that Aut(𝑄Z) preserves
Θ𝐿 , the Φ𝐿

𝑖 , Ψ𝐿 , and 𝑏𝐿 . By the uniqueness of 𝐸7 invariant bilinear and symmetric 4-linear forms on
M (which follows from the uniqueness over C as in the proof of Lemma 17.1), we find that 𝑏𝐿 = ±𝑏
and Θ𝐿 = ±Θ. Note that regardless of the sign on b in the preceding sentence, we find Φ𝐿

𝑖 = Φ𝑖 for all i
and Aut(𝑄𝐹 ) preserves 𝑏𝐿 . Now let F be an algebraically closed field. If F has characteristic different
from 2, then Aut(𝑄𝐹 ) preserves 2Ψ = Θ +

∑
Φ𝑖 and the Φ𝑖 , so it preserves Θ, hence Θ𝐿 , hence Ψ𝐿 .

If F has characteristic 2, then although Ψ𝐿 = 1
2 (±Θ +

∑
Φ𝑖) for some choice of sign as polynomials

over Z, we have Ψ𝐿 ⊗ 𝐹 = Ψ ⊗ 𝐹. In either case, Aut(𝑄𝐹 ) preserves 𝑏𝐿 ⊗ 𝐹 and Ψ𝐿 ⊗ 𝐹, whence so
does its Lie algebra, so dim Lie Aut(𝑄𝐹 ) ≤ dim 𝐿𝐹 by [Lur, Theorem 6.2.3]. Putting this together with
the previous paragraph, we see that Aut(𝑄𝐹 ), an affine group scheme over the field F, is smooth with
identity component 𝐸7 × 𝐹.
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We claim that Aut(𝑄𝐹 ) is connected. Since its identity component 𝐸7 has no outer automorphisms,
every element of Aut(𝑄𝐹 ) (𝐹) is a product of an element of 𝐸7(𝐹) and a linear transformation centraliz-
ing 𝐸7. The action of 𝐸7×𝐹 on𝑄𝐹 is irreducible (it is the 56-dimensional minuscule representation), so
the centralizer of 𝐸7 consists of scalar transformations. Finally, we note that the intersection of Aut(𝑄𝐹 )

and the scalar transformations is the group scheme 𝜇2 of square roots of unity, which is contained in 𝐸7.
In summary, Aut(𝑄𝐹 ) = 𝐸7 × 𝐹 for every algebraically closed field F.

As in the proof of Lemma 9.1, it follows that Aut(𝑄Z) is a simple affine group scheme that is simply
connected of type E7, and we deduce from the fact that Aut(𝑄R) is split that Aut(𝑄Z) is in fact the
Chevalley group.

The second claim now follows by descent.
The third claim is proved in the same manner as Proposition 15.6, although the current situation

is somewhat easier due to the absence of nontrivial automorphisms of the Dynkin diagram of E7 and
therefore the absence of outer automorphisms for semisimple groups of that type. The sequence

𝐻1(𝑅, 𝜇2) → 𝐻1(𝑅,Aut(𝑄)) → 𝐻1(𝑅,Aut(Aut(𝑄))) (17.1)

is exact, where 𝜇2 is the center of Aut(𝑄) and Aut(Aut(𝑄)) � Aut(𝑄)/𝜇2 is the adjoint group. We
have Aut(𝑄 ′) � Aut(𝑄) if and only if the element 𝑄 ′ in 𝐻1(𝑅,Aut(𝑄)) is in the kernel of the second
map in (17.1), if and only if 𝑄 ′ is in the image of the first map. To complete the proof, it suffices to
calculate by descent that the action of 𝐻1 (𝑅, 𝜇2) on 𝐻1(𝑅,Aut(𝑄)) is exactly by the similarity action
defined in Section 16. �

A partial rephrasing of the second statement of the theorem is that, for any FT system Q, the set
𝐻1 (𝑅,Aut(𝑄)) is in bijection with the set of isomorphism classes of FT systems over R.

Corollary 17.5. If R is: (1) a complete discrete valuation ring whose residue field is finite; (2) a finite
ring; or (3) a Dedekind domain whose field of fractions F is a global field with no real embeddings,
then the split FT system is the only one over R, up to isomorphism.

Proof. Imitate the arguments in Proposition 11.3 or Example 11.5, where G is the base change to R of
the simply connected Chevalley group Aut(𝑄(Zor(Z))). �

Remarks 17.6. A previous work that considered groups of type E7 over rings is [Luz]. Aschbacher
[Asch] studied the 4-linear form in the case where R is a field of characteristic 2. The paper [MüW]
studied the case of fields of any characteristic, organized around a polynomial law Θ ∈ 𝒫(𝑄, 𝑅) that is
not homogeneous. For a field F of characteristic ≠ 2, 3, FT systems have been studied in this century
in [Cl], [Hel], [Kr07], [Sp06], and [BDFMR] to name a few. They arise naturally in the context of the
bottom row of the magic triangle from [DelG, Table 2], in connection with the existence of extraspecial
parabolic subgroups as in [Röh] or [Gar09, Section 12], or from groups with a BC1 grading [GrG,
p. 995]. For every Albert F-algebra J, the group scheme Aut(𝑄(𝐽)) is isotropic (see, for example [Sp06,
Lemma 5.6(i)]). Yet there exist strongly inner groups of type E7 that are anisotropic, see [T, 3.1] or
[Gar09, Appendix A], and therefore, there exist FT systems Q that are not isomorphic to 𝑄(𝐽) for any J.
A construction that produces all FT systems can be obtained by considering a subgroup Isom(𝐽) � 𝜇4
of Aut(𝑄(𝐽)), which leads to a surjection 𝐻1(𝐹, Isom(𝐽) � 𝜇4) → 𝐻1(𝐹,Aut(𝑄(𝐽))) (see [Gar09,
12.13], [Gar01, Lemma 4.15] or [Sp06, Section 4]).

18. Exceptional groups over Z

We now record explicit descriptions of the isomorphism classes of semisimple affine group schemes
over Z of types F4, G2, E6, and E7.

There are four such group schemes of type F4, namely, Aut(𝐽) for each of the four Albert Z-algebras
listed in Theorem 14.3(b). The proof of this fact is intertwined with the proof of that theorem. Similarly,
there are two such group schemes of type G2, namely, Aut(𝐶) for 𝐶 = Zor(Z) or O.
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Proposition 18.1. For 𝑅 = Z, R or a number field with a unique real embedding, and 𝐽𝑖 = Her3 (𝐶𝑖) for
𝐶0 = Zor(𝑅) and 𝐶1 = O ⊗ 𝑅:

1. there are exactly two isomorphism classes of R-forms of the cubic norm on 𝐽0, namely, 𝑁𝐽𝑖 for 𝑖 = 0, 1.
2. there are exactly two isomorphism classes of FT systems over R, namely, 𝑄(𝐽𝑖) for 𝑖 = 0, 1.

Proof. For 𝑛 = 6 or 7, put 𝐸𝑛 for the semisimple simply connected Chevalley group scheme over Z of
type E𝑛. The set 𝐻1(R, 𝐸𝑛) has two elements (see [BorE], [BorT, esp. Section 15] or [AdT, Table 3]).
For F a number field with a unique real embedding, the map 𝐻1(𝐹, 𝐸𝑛) → 𝐻1 (R, 𝐸𝑛) is a bijection, a
fact we have already used in Example 11.2.

By [Conrad, Remark 4.8], Z forms of absolutely simple and simply connected Q-group schemes are
purely inner forms, that is, in this case they are obtained by twisting 𝐸𝑛 by a class 𝜉 ∈ 𝐻1(Z, 𝐸𝑛).
Now the compact real form of type E𝑛 is not a pure inner form, so (𝐸𝑛)𝜉 × R is not compact for all
𝜉 ∈ 𝐻1(Z, 𝐸𝑛). Therefore, the natural map 𝐻1(Z, 𝐸𝑛) → 𝐻1(Q, 𝐸𝑛) is a bijection by [Ha67, Satz 4.2.4].

We have observed that the set 𝐻1(𝑅, 𝐸𝑛) has two elements for each choice of R, and we have already
noted that this set is in bijection with the isomorphism classes in (1) for 𝑛 = 6 and (2) for 𝑛 = 7
(Theorem 17.4). It suffices to prove that the two exhibited elements are distinct, for which it suffices to
consider the case 𝑅 = R.

In case (1), Her3(O) is not split (Example 11.1), so it is not isotopic to Her3 (Zor(R)) (Cor. 13.4) and
the cubic norms on the two algebras are not isomorphic (Corollary 15.4). In case (2), one can invoke
Ferrar’s converse to Corollary 17.3. Alternatively, one can use the methods used to calculate 𝐻1(R, 𝐸𝑛)

to observe that the nontrivial element of 𝐻1(R, 𝐸7) is in the image of 𝐻1 (R, 𝐸6). �

(Apart from the case 𝑅 = Z, the proposition is well known. Analogous statements for any number
field can be deduced from the result over R via Harder’s local-global principle as in Example 11.2, see,
for example [Fe76] and [Fe78].)

The proof provides the following corollary.
Corollary 18.2. Regarding isomorphism classes of semisimple and simply connected affine group
schemes over Z:

1. there are two of type E6, namely, Isom(Her3(𝐶)) and
2. there are two of type E7, namely, Aut(𝑄(Her3(𝐶)))

for 𝐶 = Zor(Z) or O. �

We have addressed now all the simple types that are usually called “exceptional”, apart from E8.
A classification of Z-groups of type E8 like Proposition 18.2 appears currently out of reach, because
among those group schemes G over Z such that G×R is the compact group of type E8, there are at least
13,935 distinct isomorphism classes [Gr, Proposition 5.3]. Among those G over Z of type E8 such that
G × R is not compact, the same argument as in the proof of Proposition 18.2 shows that there are two
isomorphism classes.
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