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Abstract
(Idempotent) 2-by-2 matrices of determinant 0 and trace 1 over a com-

mutative ring are related to line bundles on two generators. This is used
to describe their orbits under inner (resp. arbitrary) automorphisms and to
construct explicit examples of line bundles on two generators having infinite
order in the Picard group of the base ring.

1. Introduction

This paper may be regarded as an exercise in maths education. Starting out from
a topic in linear algebra that could hardly be more elementary, we proceed to
explore its ramifications as the underlying base field is replaced by an arbitrary
commutative associative ring of scalars. The results obtained along the way
are neither deep nor original, but serve as an instructive illustration of what
commutative algebra can do for us even when dealing with very simple-minded
questions over arbitrary commutative rings.

The key notion of the paper is that of an elementary idempotent: an idempo-
tent 2-by-2 matrix c with entries in a commutative ring k is said to be elementary
if it is different from 0, 1 not only over k itself but over all non-trivial scalar ex-
tensions as well; as it turns out, this is equivalent to c having determinant 0 and
trace 1.

An important feature of elementary idempotents is that they survive in the
more general set-up of conic algebras (Section 3) and are related to line bundles
in a natural way (Section 5); more specifically, with very little effort we will be
able to set up a bijective correspondence between isomorphism classes of line
bundles on two generators over k and orbits of elementary idempotents under
the action of the full linear group by inner automorphisms (Prop 5.7). As an
amusing corollary we conclude that, over the ring of integers of a (finite) algebraic
number field, the number of these orbits agrees with the class number of that field
(Cor. 5.9). Returning to the setting of arbitrary base rings in Section 6, we find
natural obstructions to the validity of the Skolem-Noether theorem for Azumaya
algebras (Cor. 6.3) and obtain counter-examples to Witt cancellation for non-
singular quadratic forms that have some bearing on the study of composition
algebras (6.7). The paper concludes in Section 7 with a brief visit to the scheme of
elementary idempotents that allows us to construct explicit “hands-on” examples
of line bundles on two generators having infinite order in the Picard group of the
base ring (Thms. 7.3, 7.4).

With the possible exception of these two theorems, whose proofs rely on some
classical results from algebraic geometry, the level of the paper is completely



elementary. In order to emphasize this aspect, and for the convenience of the
reader, a few standard facts about line bundles over commutative rings that will
be used frequently later on have been collected in Section 4.

Notations. Throughout we let k be an arbitrary commutative ring. Unadorned
tensor products are always to be taken over k. We write M2(k) for the k-algebra
of 2-by-2 matrices with entries in k and 12 ∈ M2(k) for the 2-by-2 unit matrix.
The category of commutative associative k-algebras with 1 will be denoted by
k-alg. We write Spec(k) for the prime spectrum of k, i.e., for the totality of
prime ideals in k endowed with the Zariski topology. For a k-module M , x ∈ M ,
R ∈ k-alg, p ∈ Spec(k), we denote by kp the localization of k at p and put

MR := M ⊗R, xR := x⊗ 1R ∈ MR, Mp := Mkp , xp := xkp = x/1 ∈ Mkp .

The bilinearization of a quadratic form q : M → k will always be denoted by the
same letter, so

q(x, y) := q(x + y)− q(x)− q(y). (x, y ∈ M)

The canonical pairing between a k-module M and its dual M∗ := Homk(M,k)
will be indicated by

M ×M∗ −→ k, (x, x∗) 7−→ 〈x, x∗〉 := x∗(x).

We think of n-dimensional column space kn over k as being equipped with the
canonical scalar product kn × kn → k, (x, y) 7→ xty.

Acknowledgement. The author is greatly indebted to O. Loos, who carefully
read an earlier version of the paper and made several important suggestions for
improvement. In particular, the short proof of Prop. 6.6 is basically due to him.
He also clarified the picture around Thm. 7.3, giving rise to Thm. 7.4 as a
separate result in the process. He also generalized both theorems considerably;
the reader is referred to [6] for details.

2. Linear algebra.

For the time being, we assume that k is a field. An idempotent c ∈ M2(k) is
said to be non-trivial if c 6= 0,12. The following characterization of non-trivial
idempotents is a standard fact from linear algebra.

2.1. Proposition. Let k be a field and c ∈ M2(k). Then the following condi-
tions are equivalent.

(i) c is a non-trivial idempotent.

(ii) det c = 0, tr(c) = 1.

(iii) There exists g ∈ GL2(k) satisfying gcg−1 = ( 1 0
0 0 ).

(iv) There exists an automorphism ϕ of M2(k) satisfying ϕ(c) = ( 1 0
0 0 ).

(v) There exist column vectors x, y ∈ k2 satisfying c = xyt and xty = 1.
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If these conditions are fulfilled and x, y ∈ k2 satisfy c = xyt, then xty = 1 and

Im c = kx, Ker c = (ky)⊥.

In particular, the pair (x, y) is unique up to transformations of the form (x, y) 7→
(αx, α−1y), α ∈ k×. �

The only thing worth mentioning here is that the equivalence of (iii) and (iv)
derives from (a special case of) the classical Skolem-Noether theorem: every
automorphism of a central simple associative algebra of finite dimension (e.g., a
full matrix algebra) over a field is inner.

2.2. Key question. What happens to Prop. 2.1 if the field k is replaced by
an arbitrary commutative associative ring of scalars? In this paper, we will try
to answer this question as completely as possible. The following example shows
that the answer cannot be entirely straightforward.

2.3. Example. Let k0 be a field and k = k3
0 with componentwise operations.

Write εi (1 ≤ i ≤ 3) for the unit vectors in k, so
∑

εi = 1k, εiεj = δijεi

(1 ≤ i, j ≤ 3), and put

c :=
(

ε1 + ε3 0
0 ε2 + ε3

)
∈ M2(k).

Then c is an idempotent 6= 0,12 but det c = ε3 6= 0, tr(c) = 1k + ε3 6= 1k. Hence
the equivalence of (i), (ii) in Prop. 2.1 founders badly over rings. Notice also
that the projection onto the third factor makes R = k0 a k-algebra and cR = 12

in M2(R).

3. Conic algebras and elementary idempotents.

Returning to our arbitrary base ring k, Example 2.3 tells us that the property of
an idempotent in M2(k) to be different from 0,12 is not preserved under scalar
extensions. This simple observation gives rise to the notion of an elementary
idempotent. We prefer to phrase it in a considerably more general context.

3.1. The concept of a conic algebra. By a conic algebra over k we mean
a pair (C, n) consisting of a unital (non-associative) k-algebra C over k and a
quadratic form n : C → k (the norm) such that

n(1C) = 1, x2 − t(x)x + n(x)1C = 0, (x ∈ C) (1)

where t := n(1C ,−) is called the trace of (C, n). For a systematic treatment of
conic algebras the reader may consult [8, 1.4].

3.2. Key facts about conic algebras. a) Conic algebras are invariant under
base change.
b) If (C, n) is a conic algebra over k and x ∈ C, then k[x] := k1C + kx ⊆ C is a
unital commutative associative subalgebra and n permits local composition, so

n(yz) = n(y)n(z). (y, z ∈ k[x])

Also, x is invertible in k[x] if and only if n(x) ∈ k×.
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3.3. Key example. For our purposes, the key example of a conic algebra is
(C, n) := (M2(k),det). Other examples arise naturally in the study of composi-
tion algebras over rings, cf. [8, 1.5,1.6].

3.4. Elementary idempotents in conic algebras. Let (C, n) be a conic al-
gebra over k. An element c ∈ C is called an elementary idempotent if it is an
idempotent and cR 6= 0, 1 for all R ∈ k-alg, R 6= {0}. We wish to understand
conditions (i)-(v) of Prop. 2.1 for elementary (rather than non-trivial) idempo-
tents over rings and begin with the following simple observation. Recall that k
is connected if it contains no idempotents other than 0 and 1.

3.5. Proposition. Assume k 6= {0} is connected and let (C, n) be a conic al-
gebra with trace t over k. For c ∈ C to be an idempotent 6= 0, 1C it is necessary
and sufficient that n(c) = 0, t(c) = 1.

Proof. If n(c) = 0, t(c) = 1, then c is an idempotent by (1), which cannot be
zero since t(c) = 1 and cannot be 1C since n(c) = 0. Conversely, suppose c is an
idempotent 6= 0, 1C . By 3.2 b), n(c) is an idempotent in k, forcing n(c) = 1 or
n(c) = 0 by connectedness. Assuming n(c) = 1, c would be invertible in k[c] (3.2
b)), and c(1C − c) = 0 would imply c = 1C . This contradiction shows n(c) = 0.
But then (1) reduces to c = c2 = t(c)c and applying the trace shows that t(c) is
an idempotent in k. Thus t(c) = 0 or t(c) = 1, and since t(c) = 0 implies c = 0,
we end up with t(c) = 1. �

Remark. Prop. 3.5 explains why the use of idempotents in the base ring is un-
avoidable in Example 2.3. It also shows, in conjunction with Key Example 3.3,
that for elementary rather than non-trivial idempotents, conditions (i), (ii) of
Prop. 2.1 are equivalent over arbitrary commutative rings:

3.6. Corollary. For a conic algebra (C, n) with trace t over k and c ∈ C, the
following conditions are equivalent.

(i) c is an elementary idempotent.

(ii) cp is an idempotent 6= 0, 1Cp in Cp, for all prime ideals p ⊆ k.

(iii) n(c) = 0, t(c) = 1.

Proof. While (iii) ⇒ (i) follows from (1), the implication (i) ⇒ (ii) is obvious.
Finally, to prove (ii) ⇒ (iii), Prop. 3.5 implies n(c)p = 0, t(c)p = 1 for all
p ∈ Spec(k) since kp 6= {0} is connected, and (iii) follows. �

4. Line bundles.

Here we collect what little is needed about line bundles (= finitely generated
projective modules of rank 1, also called invertible modules) over arbitrary com-
mutative rings. We refer to Bourbaki [1, II §5] for details. Given f ∈ k, a
k-module M and x ∈ M , we put

S := {1, f, f2, . . . } ⊆ k, k[f−1] := S−1k,

M [f−1] := Mk[f−1], x[f−1] : = xk[f−1] = x/1 ∈ M [f−1].
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Our notation will not always distinguish carefully between elements x ∈ M and
their images x/1 ∈ M [f−1].

4.1. The concept of a line bundle. By a line bundle over k we mean k-
module L such that the following equivalent conditions hold.

(i) L is finitely generated and, for all p ∈ Spec(k), the kp-module Lp is free of
rank 1.

(ii) There are elements f1, . . . , fm ∈ k such that
∑

kfi = k and, for each
i = 1, . . . ,m, the k[f−1

i ]-module L[f−1
i ] is free of rank 1.

4.2. Key facts. Let L,L′ be line bundles over k.
a) Line bundles are finitely generated projective k-modules, so L is a direct sum-
mand of kn, for some n ∈ N.
b) L⊗ L′ and L∗ = Homk(L, k) are line bundles over k.
c) Pic(k) := {[L]|L is a line bundle over k}, where [L] stands for the isomorphism
class of L, is an abelian group under the operation [L][L′] := [L⊗ L′], with unit
element and inverse of [L] given by [k] and[L∗], respectively. Pic(k) is called the
Picard group of k. Setting L⊗n := L ⊗ · · · ⊗ L (n-times) and L⊗−n := L∗⊗n for
n ∈ N0, we obtain [L⊗n] = [L]n for all n ∈ Z.
d) For R ∈ k-alg, LR = L⊗R is a line bundle over R and L 7→ LR gives a group
homomorphism Pic(k) → Pic(R). Thus we obtain a (covariant) functor Pic from
k-algebras to abelian groups.
e) There is a natural isomorphism L∗ ⊗ L′

∼→ Homk(L,L′) sending x∗ ⊗ x′, for
x∗ ∈ L∗, x′ ∈ L′, to the linear map L → L′, x 7→ 〈x, x∗〉x′.
f) If ϕ : L → L′ is an epimorphisms, it is, in fact, an isomorphism.

The proof of the following well known proposition will be included here for com-
pleteness.

4.3. Proposition. Let L be a line bundle over k.

a) If L is generated by a single element, then L ∼= k is free of rank 1.

b) If f1, . . . , fm ∈ k satisfy
∑

kfi = k and have Lfi
free over kfi

for all
i = 1, . . . ,m, then L is generated by m elements.

Proof. a) Any generator of L gives an epimorphism k → L, allowing us to apply
4.2 f).
b) Let xi/1 be a basis of L[f−1

i ] over k[f−1
i ], for i = 1, . . . ,m. Given x ∈ L, there

exist n ∈ N and α1, . . . , αm ∈ k such that x/1 = (αi/fn
i )(xi/1) = (αixi)/fn

i in
L[f−1

i ] for all i = 1, . . . ,m. Hence for some integer p ≥ n and all i = 1, . . . ,m,
fp

i x = βixi, βi = fp−n
i αi. Since the fp

1 , . . . , fp
m continue to generate k as an ideal,

we find g1, . . . , gm ∈ k such that
∑

fp
i gi = 1. But this implies x =

∑
βigixi, so

L =
∑

kxi is generated by x1, . . . , xm. �

5. Elementary idempotents in M2(k).

We are now ready to analyze elementary idempotents of the conic algebra
(M2(k),det).
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5.1. The line bundle of an elementary idempotent. Let c ∈ M2(k) be an
elementary idempotent. By Cor. 3.6, c has trace 1 and determinant 0, so

c =
(

α β
γ α

)
, α, β, γ ∈ k, α = 1− α, αα = βγ. (2)

The last condition means

α2 − α + βγ = 0. (3)

Viewing c as a linear map k2 → k2, we consider its image

Lc := Im c = k

(
α
γ

)
+ k

(
β
α

)
(4)

and, using (2), record the relations

β

(
α
γ

)
= α

(
β
α

)
, α

(
α
γ

)
= γ

(
β
α

)
(5)

on the two generators of Lc. Now observe that

c = 12 − c =
(

α −β
−γ α

)
∈ M2(k) (6)

is an elementary idempotent as well and since Ker c = Lc, we have

k2 = Lc ⊕ Lc, (7)

so Lc, Lc are finitely generated projective k-modules such that, for each p ∈
Spec(k), rkp(Lc)+rkp(Lc) = 2. Moreover, both summands on the left are different
from 2 since det c = det c = 0 and we conclude that Lc, Lc are line bundles over
k. We call Lc the line bundle of (or associated with) c.

More detailed information will now be supplied by the following lemma.

5.2. Lemma. Notations being as in 5.1, the following statements hold.

a) kα + kα = k.

b) (Lc)[α−1] is a free k[α−1]-module of rank 1, with basis ( α
γ ), and (Lc)[α−1]

is a free k[α−1]-module of rank 1, with basis
(

β
α

)
.

c) The map

det : Lc ⊗ Lc
∼−→ k, x⊗ y 7−→ det(x, y),

is an isomorphism, forcing Lc
∼= L∗c to be the dual of Lc, hence its inverse

in Pic(k).

Proof. While a) is obvious, b) follows immediately from (4), (5). In c) it suffices
to show that det is an isomorphism over k[α−1], k[α−1]. By b) and (6), (Lc)[α−1],
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(Lc)[α−1] are free of rank 1 over k[α−1] with bases ( α
γ ) , (−β

α ), respectively. Hence
(3) gives

det
(

α −β
γ α

)
= α2 + βγ = α ∈ k[α−1]×.

Similarly, (Lc)[α−1], (Lc)[α−1] are free of rank 1 over k[α−1] with bases(
β
α

)
,
(

α
−γ

)
, respectively, and

−det
(

β α
α −γ

)
= α2 + βγ = 1− 2α + α2 + βγ = 1− α = α ∈ k[α−1]×.

The assertion follows. �

Remark. Since we know from 5.1 that Lc is a line bundle over k, the isomorphism
Lc

∼= L∗c also follows from (7) by taking determinants (i.e., second exterior powers)
and invoking Bourbaki [1, III §7, Cor. of Prop. 10, p.517].

The interplay between elementary idempotents and line bundles set up by 5.1 and
Lemma 5.2 will now be described more closely in a series of easy propositions and
their corollaries.

5.3. Proposition. Let c ∈ M2(k) be an elementary idempotent and R ∈ k-alg.
Then there is a canonical isomorphism LcR

∼= Lc ⊗R.

Proof. The property of the sequence

0 // Lc
// k2 c // Lc

// 0

to be split exact is preserved under scalar extensions, and the assertion follows.

�

5.4. Proposition. Let c ∈ M2(k) be an idempotent. Then c is elementary if
and only if Lc := Im c is a line bundle over k.

Proof. The condition on Lc is necessary for c to be elementary, by 5.1. Con-
versely, suppose Lc is a line bundle over k. For p ∈ Spec(k), Im cp = (Lc)p ⊆ k2

p

is a free submodule of rank 1, so cp 6= 0,12 in M2(kp) and Cor. 3.6 implies that
c is elementary. �

5.5. Proposition. Let L be a line bundle over k. There exists an elementary
idempotent c ∈ M2(k) satisfying Lc

∼= L if and only if L is generated by two
elements.

Proof. By (4), Lc is generated by two elements, for any elementary idempotent
c ∈ M2(k). Conversely, suppose L is generated by two elements. Then we obtain
a short exact sequence 0 → L′ → k2 → L → 0 of k-modules, which splits since L
is projective. Thus k2 ∼= L⊕L′, and the projection onto the first summand gives
an idempotent c ∈ M2(k) satisfying Im c ∼= L and c is elementary by Prop. 5.4.

�
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5.6. Corollary. If L is a line bundle on two generators over k, so is L⊗n for
all n ∈ Z.

Proof. By Prop. 5.5, there exists an elementary idempotent c ∈ M2(k) as in 5.1
such that L ∼= Lc. Now Lemma 5.2 b) shows that L[α−1], L[α−1] are free of rank
1 over k[α−1], k[α−1], respectively. But then so are (L⊗n)[α−1] ∼= (L[α−1])⊗n,
(L⊗n)[α−1] ∼= (L[α−1])⊗n. Hence L⊗n is generated by two elements (Prop. 4.3
b)). �

5.7. Proposition. Elementary idempotents c, d ∈ M2(k) are conjugate under
the inner automorphism group of M2(k) if and only if Lc

∼= Ld.

Proof. If d = gcg−1 for some g ∈ GL2(k), then g maps Lc = Im c isomorphically
onto Im gc = Im gcg−1 = Im d = Ld. Conversely, if Lc, Ld are isomorphic, so are
Lc, Ld by Lemma 5.2 c). Hence, given any isomorphisms ρ : Lc

∼→ Ld, ρ : Lc
∼→

Ld,
g := ρ⊕ ρ : k2 = Lc ⊕ Lc

∼−→ Ld ⊕ Ld = k2

belongs to GL2(k), and for x ∈ Lc, y ∈ Lc we obtain

gc(x + y) = g(x) = ρ(x) = d
(
ρ(x) + ρ(y)

)
= dg(x + y).

Hence d = gcg−1, as claimed. �

5.8. Example: Dedekind domains. Let k be a Dedekind domain. Then line
bundles over k are basically the same as fractional ideals, and Pic(k) identifies
canonically with the class group of k, so algebraic number theory provides us
with lots of examples where this group (is finite but) has a rich and sufficiently
complicated structure. Also, thanks to the strong approximation theorem, every
fractional ideal of any Dedekind ring k is generated by two elements (O’Meara [7,
22:5a, p.48]), hence by Prop. 5.5 has the form Lc for some elementary idempotent
c ∈ M2(k). Combining this with Prop. 5.7, we end up with the following amusing
conclusion.

5.9. Corollary. Let K be a (finite) algebraic number field and write oK for its
ring of integers. Then the number of orbits of elementary idempotents in M2(oK)
under the action of GL2(oK) by conjugation is finite and, in fact, agrees with the
class number of K. �

We are now in a position to analyze conditions (ii), (iii), (v) of Prop. 2.1 over
arbitrary commutative rings.

5.10. Proposition. For c ∈ M2(k), the following conditions are equivalent.

(i) c is an elementary idempotent and the k-module Lc is free of rank 1.

(ii) There exists g ∈ GL2(k) satisfying gcg−1 = ( 1 0
0 0 ).

(iii) There exist column vectors x, y ∈ k2 satisfying c = xyt and xty = 1.
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If these conditions are fulfilled and x, y ∈ k2 satisfy c = xyt, then xty = 1 and

Lc = Im c = kx, Lc = Ker c = (ky)⊥. (8)

In particular, the pair (x, y) is unique up to transformations of the form (x, y) 7→
(αx, α−1y), α ∈ k×.

Proof. (i) ⇐⇒ (ii). Since d = ( 1 0
0 0 ) is an elementary idempotent having Ld =

k ( 1
0 ) free of rank 1, this follows from Prop. 5.7.

(iii) =⇒ (i). For any x, y ∈ k2 satisfying c = xyt, xty = 1 and for z ∈ k2 we
obtain cz = (zty)x, hence cx = x and c2z = cz. Thus c is an idempotent such
that Lc := Im c = kx is free of rank 1, forcing c to be elementary by Prop. 5.4,
and (8) holds.
(i) =⇒ (iii). We require the relation

det (x, y) = xtJy (J :=
(

0 1
−1 0

)
) (9)

for all x, y ∈ k2. By Lemma 5.2 c), since Lc is free of rank 1, so is Lc, and we find
basis vectors x of Lc, x of Lc, respectively, such that det (x, x) = 1. Therefore
(x, x) is a basis of k2 and setting y = Jx, (9) shows xty = 1, (ky)⊥ = kx. But
now, by the implication (iii) ⇒ (i) and (8), d := xyt is an elementary idempotent
satisfying Ld = kx = Lc, Ker d = (ky)⊥ = kx = Ker c, hence c = d.
It remains to prove the final statement of the proposition, so suppose (i) − (iii)
hold and x, y ∈ k2 satisfy c = xyt. Then c = c2 = (xty)c, and taking traces yields
xty = 1. But then (8) has already been settled while establishing the implication
(iii) ⇒ (i). The remaining assertion is now obvious. �

5.11. Twisted powers of elementary idempotents. Let c ∈ M2(k) be an
elementary idempotent and n ∈ Z. By Prop. 5.5 and Cor. 5.6, there exists an
elementary idempotent c〈n〉 ∈ M2(k) such that Lc〈n〉

∼= L⊗n
c ; moreover, by Prop.

5.7, c〈n〉 is unique up to conjugation by inner automorphisms. Skipping most
of the details, a representative for the conjugacy class of c〈n〉 may be found as
follows.

Applying 4.2 c) and Lemma 5.2 c), we obtain L⊗−1
c

∼= Lc, and since c〈0〉 = ( 1 0
0 0 )

up to conjugation (Prop. 5.10), we may assume n ∈ N. Writing c as in (2), we
conclude

αnαn + αnδn = 1,

where

αn :=
n−1∑
i=0

(
2n− 1

i

)
αn−1−i αi, δn :=

n−1∑
i=0

(
2n− 1
n + i

)
αn−1−i αi,

and

c〈n〉 :=
(

αnαn βnδn

γnαn αnδn

)
∈ M2(k)

is an elementary idempotent satisfying Lc〈n〉
∼= L⊗n

c .
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6. Obstructions to the Skolem-Noether theorem
and to Witt cancellation.

We wish to understand condition (iv) of Prop. 2.1 in a purely ring-theoretical
setting. To this end, we require the Peirce decomposition of associative algebras:
every idempotent c of an associative algebra A induces a direct sum decomposition
A = A11 ⊕A10 ⊕A01 ⊕A00 of k-modules Aij := Aij(c) := {x ∈ A | cx = ix, xc =
jx}, i, j = 0, 1. We begin with a digression into twisted matrix algebras.

6.1. Twisted 2-by-2 matrices. Let L be a line bundle over k. Then

A := Endk(L⊕ k) =
(

k L
L∗ k

)
is a reduced quaternion algebra in the sense of [8, 1.9]. In the present context, it
will be totally adequate to view A merely as a conic algebra, with norm and trace
being given by the ordinary determinant and the ordinary trace of matrices:

det x = αδ − 〈u, u∗〉, tr(x) = α + δ, (for x =
(

α u
u∗ δ

)
∈ A)

and to observe with [8, Ex. 1.24] that isomorphisms between such algebras always
preserve norms and traces. Finally,

e =
(

1 0
0 0

)
∈ A

is an elementary idempotent (Cor. 3.6) and

A10(e) =
(

0 L
0 0

)
∼= L

as k-modules.

We will see in a moment that condition (iv) of Prop. 2.1 is not equivalent to c
being an elementary idempotent. Instead, we obtain:

6.2. Proposition. For c ∈ A := M2(k), the following conditions are equivalent.

(i) c is an elementary idempotent.

(ii) There exist a line bundle L over k and an isomorphism

Φ : M2(k) −→ Endk(L⊕ k) =
(

k L
L∗ k

)
such that

Φ(c) =
(

1 0
0 0

)
.
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In this case, L as in (ii) is unique up to isomorphism; more precisely, L ∼= L⊗2
c
∼=

A10(c).

Proof. (ii) =⇒ (i). Since Φ preserves norms and traces by 6.1, c is an elementary
idempotent.
(i) =⇒ (ii). Setting L := Lc, L := Lc, we obtain the decomposition k2 = L⊕L =(

L
L

)
. Therefore 4.2 e) and Lemma 5.2 c) give rise to a chain of isomorphisms, all

but the very first one being “slot preserving”,

M2(k) ∼= Endk(
(

L

L

)
) ∼=

(
Homk(L,L) Homk(L,L)
Homk(L,L) Homk(L,L)

)
∼=

(
L∗ ⊗ L L

∗ ⊗ L

L∗ ⊗ L L
∗ ⊗ L

)
∼=

(
k L⊗2

L⊗2∗ k

)
under which c is eventually transformed into ( 1 0

0 0 ). In particular, A10(c) ∼= L⊗2
c .

To establish the final statement of the proposition, let L, Φ be as in (ii). Then
6.1 and what has been proved in (i) ⇒ (ii) imply L ∼= A10(c) ∼= L⊗2

c . �

6.3. Corollary. Two elementary idempotents c, d ∈ M2(k) are conjugate under
the full automorphism group of M2(k) if and only if L⊗2

c
∼= L⊗2

d .

Proof. Suppose c, d are conjugate under the full automorphism group of A =
M2(k), so d = ϕ(c) for some ϕ ∈ Aut(A). Then ϕ(A10(c)) = A10(d), and Prop.
6.2 implies L⊗2

c
∼= L⊗2

d . Conversely, let this be so and put L := Lc. By Prop.
6.2, there are isomorphisms

Φ,Ψ : M2(k) ∼−→
(

k L⊗2

L⊗2∗ k

)
satisfying

Φ(c) =
(

1 0
0 0

)
= Ψ(d).

Setting ϕ := Ψ−1 ◦ Φ ∈ Aut(A), we obtain ϕ(c) = d, as desired. �

Remark. Combining Prop. 5.7, Cor. 6.3 and 5.8, we obtain natural obstructions
to the validity of the Skolem-Noether theorem for Azumaya algebras over com-
mutative rings. More generally, given any Azumaya algebra A over k, we have
the exact sequence of Rosenberg-Zelinsky:

0 −→ Int(A) −→ Aut(A) −→ Pic(k).

For this and other details, some of them directly related to results obtained here,
we refer to [5, IV, §1].

6.4. Corollary. Let M be a line bundle over k. Then Endk(M ⊕ k) ∼= M2(k) if
and only if there exists a line bundle L over k that is generated by two elements
and satisfies M ∼= L⊗2.

Proof. If M ∼= L⊗2 for some line bundle L on two generators over k, then
Endk(M ⊕ k) ∼= M2(k) by Propositions 5.5, 6.2. Conversely, let

Ψ : Endk(M ⊕ k) ∼−→ M2(k)

11



be an isomorphism and consider the elementary idempotent c := Ψ(( 1 0
0 0 )) ∈

M2(k). Then M and Φ := Ψ−1 satisfy condition (ii) of Prop. 6.2. Hence
M ∼= L⊗2

c . �

6.5. Hyperbolic planes. The preceding results combined with 5.8 or Thm.
7.3 below also yield easy counter-examples to Witt cancellation in the theory of
quadratic forms. These counter-examples are based on the following construction.
Let L be a line bundle over k. Then the map

hL : L⊕ L∗ −→ k, v ⊕ v∗ 7−→ hL(v ⊕ v∗) := 〈v, v∗〉

is a non-singular quadratic form satisfying hL
∼= 〈α〉 .hL for all α ∈ k×. Following

Knus [4, I (3.5)], we refer to hL or (L,hL) as a hyperbolic plane, while h := hk

is called the split hyperbolic plane. Conditions that are necessary and sufficient
for a hyperbolic plane to be split are presented in the following proposition.

6.6. Proposition. Given a line bundle L over k, the following conditions are
equivalent.

(i) The hyperbolic plane hL is split, i.e., isometric to h.

(ii) There are elements e± ∈ L⊕ L∗ satisfying the relations

hL(e+) = hL(e−) = 0, hL(e+, e−) = 1. (10)

(iii) The line bundle L is trivial.

Proof. The implications (iii) ⇒ (i) ⇒ (ii) being obvious, it suffices to prove
(ii) ⇒ (iii), which we do by adopting a suggestion of O. Loos. Writing e± =
v± ⊕ v∗±, v± ∈ L, v∗± ∈ L∗, relations (10) imply

〈v+ + v−, v∗+ + v∗−〉 = hL(e+ + e−) = 1.

Therefore v+ + v− is a unimodular vector and hence a basis of L over k. �

6.7. Counter-examples to Witt cancellation. Let L be a line bundle on
two generators over k such that M := L⊗2 is non-trivial. From Cor. 6.4 we
conclude

M2(k) ∼= Endk(M ⊕ k) ∼=
(

k M
M∗ k

)
as isomorphisms of quaternion algebras, so both algebras have isometric norms.
But the norm of M2(k) is h ⊥ h, while the norm of Endk(M ⊕ k) is h ⊥ hM .
Hence h ⊥ h ∼= h ⊥ hM even though h and hM are not isometric by Prop. 6.6,
and we have obtained a counter example to Witt cancellation of non-singular
quadratic forms over rings.
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6.8. Example. Let L be a line bundle on two generators over k that is not a
square in Pic(k). Then

Endk(L⊕ k) =
(

k L
L∗ k

)
is a reduced quaternion algebra over k that is free as a k-module (since L⊕L∗ ∼= k2

by Lemma 5.2 c), (7) and Prop. 5.5) but is not isomorphic to M2(k) (Cor. 6.4).

7. Elementary idempotents and algebraic geometry.

We wish to construct examples of elementary idempotents c ∈ M2(k), for appro-
priate base rings k, such that the corresponding line bundle Lc is as complicated
as one could possibly hope for. One way of achieving this consists in looking
at Dedekind domains (5.8). But there are other, more direct, means of con-
structing elementary idempotents whose associated line bundles are sufficiently
complicated. They derive from looking at the set of all elementary idempotents
in all scalar extensions.

7.1. The scheme of elementary idempotents. Let X be the functor from
k-algebras to sets defined by

X(R) := {c ∈ M2(R) | c is an elementary idempotent} for R ∈ k-alg

and X(f) : X(R) → X(S), for a k-algebra homomorphism f : R → S, being the
set map that sends an elementary idempotent of M2(R) to its componentwise
image under f in M2(S). By (3), X is an affine scheme represented by the
k-algebra

k[X] = k[X, Y, Z]/(Z2 − Z + XY ), (11)

so we have natural identifications

Homk-alg(k[X], R) = X(R) for all R ∈ k-alg. (12)

Writing π : k[X, Y, Z] → k[X] for the canonical projection and setting u =
π(X), v = π(Y ), w = π(Z), a straightforward verification shows that u, v are
algebraically independent over k (so no non-zero f ∈ k[X, Y ] kills (u, v)), allowing
us to identify u = X, v = Y via π. Then

k[X] = k[X, Y ][w],

where w ∈ k[X] satisfies the defining relation

w2 − w + XY = 0.

Hence k[X] is a conic k[X, Y ]-algebra that is a free k[X, Y ]-module of rank 2,
with basis 1, w. Now

e :=
(

w X
Y w

)
∈ M2(k[X]), w := 1− w, (13)

is an elementary idempotent in M2(k[X]), corresponding to the identity transfor-
mation k[X] → k[X] via (12)and satisfying the following property.
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7.2. Specialization property. Let R ∈ k-alg. By (12), giving an elementary
idempotent c ∈ M2(R) amounts to making R a k[X]-algebra, which we denote
by R〈c〉. In this case, c = eR〈c〉 and Prop. 5.3 implies

Le ⊗k[X] R〈c〉 ∼= Lc. (14)

7.3. Theorem. Notations being as in 7.1 and assuming k 6= {0}, the line bundle
Le over k[X] has infinite order in Pic(k[X]).

Proof. Replacing k by κ(p), p ∈ Spec(k), and invoking the specialization property
7.2, we reduce to the case that k is a field. Then we can actually prove a much
stronger result.

7.4. Theorem. Notations being as in 7.1 and assuming that k is a field,
Pic(k[X]) ∼= Z is generated by [Le].

Proof. We will make free use of standard facts from classical algebraic geometry
and refer to Hartshorne [3, II §6] for details. In order to keep formal prerequisites
at a minimum, we also assume that k is algebraically closed; with the appropriate
scheme-theoretic adjustments, our proof will go through in the general case vir-
tually unchanged. We now regard X as a (possibly reducible) algebraic k-variety
and perform the following steps.
10. Writing projective n-space Pn := {[x] |x ∈ kn+1 − {0}} in homogeneous
co-ordinates, we recall that the Segre embedding (cf. Prop. 2.1 (v))

P1 × P1 −→ P3 =
{
[u] |u ∈ M2(k)− {0}

}
, ([x], [y]) 7−→ [xyt],

identifies

P1 × P1 = {[u] ∈ P3 | rk(u) = 1} = {[u] ∈ P3 |det u = 0}

as a (quadratic hyper) surface in P3, with the corresponding closed immersion

i : P1 × P1 � � // P3.

Now consider the open affine

U : = {[u] ∈ P1 × P1 | tr(u) 6= 0} = {[u] ∈ P3 |det u = 0 6= tr(u)}
= {c ∈ M2(k) |det c = 0, tr(c) = 1} = X,

so

X = (P1 × P1)− {[u] ∈ P1 × P1 | tr(u) = 0}

identifies in P1 × P1 as a dense open subvariety, with the corresponding open
immersion

j : X � � // P1 × P1.

20. Algebraic geometry provides us with a contravariant functor Pic from k-
varieties to abelian groups having the following properties.

• On affine k-varieties, Pic is contra-equivalent to the covariant functor Pic
from reduced k-algebras of finite type to abelian groups.
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• There are canonical identifications

Pic(Pn) = Z, Pic(P1 × P1) = Z⊕ Z.

• i∗ := Pic(i) : Z → Z⊕ Z is the diagonal embedding.

• The ν-th projection πν : P1 × P1 → P1 (ν = 1, 2) induces the ν-th co-
ordinate embedding π∗ν : Z → Z⊕ Z.

• The top row of

0 // Z
i∗

// Z⊕ Z
j∗

// Pic(k[X]) // 0

Z

π∗ν

OO (15)

is exact.

Hence Pic(k[X]) ∼= (Z ⊕ Z)/Diag(Z ⊕ Z) ∼= Z is a free abelian group of rank 1
generated by j∗(1⊕ 0).
30. Now consider the morphism ϕ := π1 ◦ j : X → P1. It follows from (15) and
[3, II Thm. 7.1] that

L := ϕ∗OP1(1) = j∗ ◦ π∗1(1) = j∗(1⊕ 0)

is a line bundle on two generators over k[X], so Prop. 5.5 combines with (14) to
yield an elementary idempotent c ∈ M2(k[X]) such that

L ∼= Lc
∼= Le ⊗k[X] k[X]〈c〉.

Since [L] generates Pic(k[X]) by 20, the natural map (cf. 4.2 d))

Z ∼= Pic(k[X]) −→ Pic(k[X]〈c〉) = Pic(k[X]) ∼= Z,

which sends [Le] to [L], is surjective, hence an isomorphism, and the proof is
complete. �

7.5. Remark. a) A result considerably more general than Thms. 7.3, 7.4 above,
dealing with flag schemes and GLn-torsors, may be found in Demazure-Gabriel
[2, III §4 no. 7].
b) For a generalization of the aforementioned theorems in another direction, see
Loos [6].
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