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1. Introduction. Given a vector space X over a field, Hitzemann and Hochstattler
[1] have recently set up a(n almost) bijective correspondence between interval decom-
positions of the subspace lattice of X on the one hand and what they call families of
point-wise reflexive and anti-symmetric linear forms on the other. In an effort to gain a
better understanding of this correspondence, it will be recast here in a slightly different
form. Examples of interval decompositions that seem to be new will also be presented.

2. The subspace lattice of X. Let X be a vector space, possibly infinite-dimensional,
over an arbitrary field k. We denote by £(X) the lattice of all sub-vector spaces of X.
Given U,V € L(X), we denote by

U, V] :={W € L(X) |[UCW CV}

the (closed) interval determined by U,V in the lattice £(X). If V is finite-dimensional,

we call
([U,V]) := dimg (V) — dimg (U)

the length of [U,V]. Clearly, [U,V] is not empty it U CV iff U € [U,V]iff V € [U,V].
Moreover, for another pair of subspaces U’, V' € L(X),

O, VInUu,V]=[U+U,VvnV',

and we conclude that that the intervals [U, V], [U’, V'] have a non-empty intersection iff
U+U CVNV'iff U and U’ are both subspaces of V and of V.

3. Interval decompositions. By an interval decomposition of £L(X) we mean a triple
Z = (Uo, Ho,m)
satisfying the following conditions.
(i) Uy € L(X) has dimension 1.
(ii) Ho € L(X) is a hyperplane, i.e., a subspace of co-dimension 1 in X.
(iii) m: P(Uy, Ho) — P*(Uy, Hy), where
P(Uo, Ho) == {U € L(X) | dim(U) = 1, Uy # U ¢ Ho},
P*(Uo, Ho) := {H € L(X) | codimx(H)=1, Uy ¢ H # HU}7
is a map satisfying the following conditions:

(a) U C m(U) for all U € P(Uy, Hy).
(b) The intervals [U,m(U)] C L(X), U € P(Uy, Hy), are mutually disjoint.
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Here the map m is necessarily injective. Indeed, suppose U,U’ € P(Uy, Hy) satisfy
m(U) = m(U’). Then (iii)(a) implies

m(U) =m(U’) € [U,m@)] N [U', m(U’],

forcing U = U’ by (iii)(b).
Tt follows from 2. that, in the presence of conditions (i)—(iii)(a), condition (iii)(b) is
equivalent to the following:

(b') It U, U’ € P(Uy, Hy) are distinct, then U € m(U’) or U" € m(U).

We speak of a proper interval decomposition if the injective map m is surjective as well,
hence bijective. This means that the intervals [U, m(U)], U € P(Uy, Hp), together with
[Uy, X] and [{0}, Ho] form an interval partition of £(X).

4. Base points of interval decompositions. Let Z := (U, Hp,m) be an interval
decomposition of £(X). Then that we have the splitting

X = Uy @ Ho. (1)

By a base point of Z, we mean a non-zero element of Uy, i.e., a basis of the one-
dimensional vector space Uy. A base point of Z is unique up to a non-zero scalar factor.
By a pointed interval decomposition of L£L(X) we mean a pair (Z,pg), where Z is an in-
terval decomposition of £(X) as above and py is a base point for Z. We then claim that
the assignment

p— Up = k(po +p) (2)

gives a bijection from Hy \ {0} onto P(Uy, Hyp). Indeed, for 0 # p € Hy, the one-
dimensional space U, is clearly distinct from Uy = kpy and not contained in Hy, hence
belongs to P(Uy, Hp). The map in question is clearly injective and, given any U €
P Uy, Hp), we may combine the definition of P(Up, Hp) with (1) to find a scalar o € k*
and a vector p’ € Hy such that Uy # U = k(apo +p') € Hp. But then U = U, with
p=a"1p' € Hy\ {0}, and the assertion follows.

Remark.. The preceding observation matches canonically with the the standard fact that
the k-rational points of P} whose (n + 1)-th co-ordinate (say) is not zero are basically
the same as the k-rational points of Aj}.

5. Irreflexive and anti-symmetric linear forms. A triple

3 = (po, Ho, (9p)pe o\ {0})

is said to be a point-wise irreflezive and anti-symmetric family of linear forms on X if
it satisfies the following conditions:

(i) po € X is not zero.
(ii) Hy € L(X) is a hyperplane in X not containing py.

(iii) (0p)pero\foy is a family of linear forms on X such that the following conditions are
fulfilled, for all p,q € Hy \ {0}.

(a) op(po) = —1.
(b) op(p) = 1.
(c) If p# q and o,(q) = 1, then o4(p) # 1.
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From now on, the term “point-wise” will always be suppressed in the preceding definition.
Note that, thanks to conditions (i),(ii) above, we have the analogue of decomposition (1),
ie.,

X =Uo® Hy, Up:=kpo. (3)
Remark. By (iii)(a) and (3), the linear forms o,, p € Hy \ {0}, on X are completely
determined by their action on Hy. Thus an irreflexive and anti-symmetric family of linear

forms may be defined intrinsically on an arbitrary non-zero vector space Y over k as a
family (oy)yey\foy of linear forms on Y satisfying the condition

Vy,ze Y\{0}: oy(z) =0.(y) =1l <=y ==z

6. From interval decompositions to linear forms. Let (Z,pg) with
Z = (Uo, H(), m)

be a pointed interval decomposition of £(X). For 0 # p € Hy, Uy = kpg is not contained
in m(Up), so we have the decomposition

X =Uy ®m(U,), (4)
and find a unique linear form o,: X — k such that
op(po) = =1, Ker(op) =m(Up). (5)
We claim that
3(Z,p0) := (po, Ho, (0p)pe o\ {0}) (6)

is an irreflexive and anti-symmetric family of linear forms on X. Indeed, conditions
(i),(il) in 5. are clearly equivalent to the corresponding ones in 3., so we only have to
worry about conditions (iii)(a)—(c). Here (a) is the first relation of (5). For (b),(c), let
p.q € Ho \ {0}. Again by (5),
op(q) =1 <= op(po +q) =0 <= po + q € Ker(op,) <= U, € m(Up).
Therefore (iii)(b) (resp. (iii)(c)) follows from condition (iii)(a) (resp. (iii)(b’)) in 3..
What happens if we change the base point? To see this, let a € k* and put
p/O = Oé_lp(), E(valo) = (U07H07 (O-;))pEHg\{U})'
For 0 # p € Hy, we consult (2) and obtain
U, = k(po +p) = k(po + ap) = Uap.
Combining this with (5), we obtain 0}, = ac,,, for p € Ho\{0}. Summing up we conclude
(2,07 'po) = (a'po, Ho, (a0ap) pe o\ (03) - (7)
7. From linear forms to interval decompositions. It is easy to reverse the pre-

ceding construction. Let ¥ = (po, Ho, (0p)pen,\{0}) be an irreflexive and anti-symmetric
family of linear forms on X. We put

Z(Z) = (Z7p0)7 Z = (U03H07m)7 UO = pra (8)
where we observe 4., particularly (2), to define
m: P(Uo, Hy) — P*(Uo, Ho), m(Up) := Ker(op) (p € Hyo\{0}). (9)

We claim that Z is an interval decomposition of £(X). While conditions (i),(ii) of 3.
are obvious, condition (iii) follows from (iii) in 5. and the following chain of equivalent
conditions, for all p,q € Hy \ {0}.

Uy Cm(U,) <= po + q € Ker(op) <= 0p(po+¢q) =0 <= 0,(q) = 1.

Combining the two preceding constructions, we arrive at the following theorem.
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8. Theorem. The assignments
(Z,po)'—>E(Z,po), 2’—>Z(Z)7

define inverse bijections between the set of pointed interval decompositions of L(X) and
the set of irreflexive anti-symmetric families of linear forms on X. O

We now turn to examples of irreflexive anti-symmetric families of linear forms. In agree-
ment with the remark of 5., we will construct such families on appropriate vector spaces
Y over k. If Y has finite dimension n, this construction will give rise, via Thm. 8., to an
interval decomposition in dimension n + 1.

We begin by generalizing [1, Example 2].

9. Example: Anisotropic bilinear forms. Let Y be a vector space over k and
0: Y XY —k

be a (possibly non-symmetric) bilinear form that is anisotropic in the sense that 6(y, y) #
0 for all non-zero elements y € Y. For y € Y \ {0} we define

oyt Y — Y, zr—0y(2) = 8(y,y) " (y, 2). (10)

Clearly, o, is a linear form satisfying o, (y) = 1. Now suppose y,z € Y\ {0} are distinct
with 0,(z) = 0,(y) = 1. Then y and z are linearly independent since, otherwise, z = ay
for some a € k, forcing a = oy(ay) = o,(2) = 1, a contradiction. Now (10) gives
6(y,2) = 0(y,y), 6(2,y) = d(2, 2), hence

5(.%9) 5(y72) = - 2)o(z =
det(écz,y) 6<z,z>>5<y’y>5<z’2> 5(y,2)0(2,y) = 0.

Writing Y’ = ky + kz for the subspace of Y spanned by vy, 2, we conclude that there
exists a non-zero vector w € Y’ satisfying 6(Y',w) = {0}. On the other hand, § being
anisotropic implies 0(w,w) # 0, a contradiction. Thus (o ),ey\ {0} is an irreflexive anti-
symmetric family of linear forms on Y.

Remark. 1. Tt is a standard fact from the algebraic theory of quadratic forms that
every quadratic form ¢: Y — k allows a bilinear form §: Y x Y — k, in general not
symmetric, such that ¢(y) = 0(y,y) for all y € Y. In particular, if ¢ is anisotropic, so is
0, and conversely.

Remark. 2. Replacing 6 by § + « for some alternating bilinear form a: Y XY — k does
not change the quadratic form corresponding to §. Hence we obtain a whole family of
irreflexive anti-symmetric families of linear forms on Y, parametrized by the alternating
bilinear forms on Y.

Remark. 3. Let k be finite. Anisotropic quadratic forms of dimension n over k exist iff
n < 2. We thus obtain examples of interval decompositions of £(X) if X has dimension
< 3 over k, in agreement with the first row the final table in [1].

10. Example: Anisotropic cubic forms. Again we let Y be a vector space over k
but now assume
N:Y —k

is an anisotropic cubic form, so N is a polynomial law in the sense of Roby [3], homoge-
neous of degree 3, and representing zero only trivially: N(y) =0, y € Y, implies y = 0.
We denote by

DN: Y XY —k, (y,z)— (DN)(y,z2)
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the total differential of N, which is quadratic in the first variable, linear in the second,
and matches with N itself through the expansion

N(y+2) = N(y) + (DN)(y, 2) + (DN)(z,y) + N(2), (11)
valid in all scalar extensions. For y € Y\ {0}, we define
oy Y —Y, 2+ 0,(2) = N(y) ' (DN)(y,2) (12)

and claim: If k has characteristic 2, then (oy)yey\{oy i an irreflevive anti-symmetric
family of linear forms on'Y. Since we are in characteristic 2, the relations o, (y) = 1 for
0 # y € Y follow immediately from Euler’s differential equation:

oy(y) = N(y)""(DN)(y,y) =3N(y) 'N(y) = 1.

Hence it remains to show for y,z € Y\ {0} distinct that the relations o, (2) = 0.(y) =1
lead to a contradiction. From (12) we conclude (DN)(y, z) = N(y), (DN)(z,y) = N(2),
and (11) implies

N(y+2z)=N(y)+ N(y) + N(z) + N(2) =0,

a contradiction since N was assumed to be anisotropic.

Remark. Let k be finite of characteristic 2, hence of the form Fy- for some integer r > 0.
By Chevalley’s theorem [2, Chap. IV, Ex. 7], anisotropic cubic forms of dimension n over
k exist iff n < 3. Thus we find interval decompositions over k in all dimensions < 4,
allowing us to replace the question mark in the second row of the final table in [1] by a
“yes” provided ¢ is a power of 2.
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