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1. Introduction. Given a vector space X over a field, Hitzemann and Hochstättler
[1] have recently set up a(n almost) bijective correspondence between interval decom-
positions of the subspace lattice of X on the one hand and what they call families of
point-wise reflexive and anti-symmetric linear forms on the other. In an effort to gain a
better understanding of this correspondence, it will be recast here in a slightly different
form. Examples of interval decompositions that seem to be new will also be presented.

2. The subspace lattice of X. Let X be a vector space, possibly infinite-dimensional,
over an arbitrary field k. We denote by L(X) the lattice of all sub-vector spaces of X.
Given U, V ∈ L(X), we denote by

[U, V ] :=
{
W ∈ L(X) | U ⊆W ⊆ V

}
the (closed) interval determined by U, V in the lattice L(X). If V is finite-dimensional,
we call

l([U, V ]) := dimk(V )− dimk(U)

the length of [U, V ]. Clearly, [U, V ] is not empty iff U ⊆ V iff U ∈ [U, V ] iff V ∈ [U, V ].
Moreover, for another pair of subspaces U ′, V ′ ∈ L(X),

[U, V ] ∩ [U ′, V ′] = [U + U ′, V ∩ V ′],

and we conclude that that the intervals [U, V ], [U ′, V ′] have a non-empty intersection iff
U + U ′ ⊆ V ∩ V ′ iff U and U ′ are both subspaces of V and of V ′.

3. Interval decompositions. By an interval decomposition of L(X) we mean a triple

Z := (U0, H0,m)

satisfying the following conditions.

(i) U0 ∈ L(X) has dimension 1.

(ii) H0 ∈ L(X) is a hyperplane, i.e., a subspace of co-dimension 1 in X.

(iii) m : P(U0, H0)→ P∗(U0, H0), where

P(U0, H0) :=
{
U ∈ L(X) | dim(U) = 1, U0 6= U * H0

}
,

P∗(U0, H0) :=
{
H ∈ L(X) | codimX(H) = 1, U0 * H 6= H0

}
,

is a map satisfying the following conditions:

(a) U ⊆ m(U) for all U ∈ P(U0, H0).

(b) The intervals [U,m(U)] ⊆ L(X), U ∈ P(U0, H0), are mutually disjoint.
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Here the map m is necessarily injective. Indeed, suppose U,U ′ ∈ P(U0, H0) satisfy
m(U) = m(U ′). Then (iii)(a) implies

m(U) = m(U ′) ∈ [U,m(U)] ∩ [U ′,m(U ′],

forcing U = U ′ by (iii)(b).
It follows from 2. that, in the presence of conditions (i)−(iii)(a), condition (iii)(b) is

equivalent to the following:

(b′) If U,U ′ ∈ P(U0, H0) are distinct, then U * m(U ′) or U ′ * m(U).

We speak of a proper interval decomposition if the injective map m is surjective as well,
hence bijective. This means that the intervals [U,m(U)], U ∈ P(U0, H0), together with
[U0, X] and [{0}, H0] form an interval partition of L(X).

4. Base points of interval decompositions. Let Z := (U0, H0,m) be an interval
decomposition of L(X). Then that we have the splitting

X = U0 ⊕H0. (1)

By a base point of Z, we mean a non-zero element of U0, i.e., a basis of the one-
dimensional vector space U0. A base point of Z is unique up to a non-zero scalar factor.
By a pointed interval decomposition of L(X) we mean a pair (Z, p0), where Z is an in-
terval decomposition of L(X) as above and p0 is a base point for Z. We then claim that
the assignment

p 7−→ Up := k(p0 + p) (2)

gives a bijection from H0 \ {0} onto P(U0, H0). Indeed, for 0 6= p ∈ H0, the one-
dimensional space Up is clearly distinct from U0 = kp0 and not contained in H0, hence
belongs to P(U0, H0). The map in question is clearly injective and, given any U ∈
P(U0, H0), we may combine the definition of P(U0, H0) with (1) to find a scalar α ∈ k×
and a vector p′ ∈ H0 such that U0 6= U = k(αp0 + p′) * H0. But then U = Up with
p = α−1p′ ∈ H0 \ {0}, and the assertion follows.

Remark.. The preceding observation matches canonically with the the standard fact that
the k-rational points of Pnk whose (n + 1)-th co-ordinate (say) is not zero are basically
the same as the k-rational points of Ank .

5. Irreflexive and anti-symmetric linear forms. A triple

Σ :=
(
p0, H0, (σp)p∈H0\{0}

)
is said to be a point-wise irreflexive and anti-symmetric family of linear forms on X if
it satisfies the following conditions:

(i) p0 ∈ X is not zero.

(ii) H0 ∈ L(X) is a hyperplane in X not containing p0.

(iii) (σp)p∈H0\{0} is a family of linear forms on X such that the following conditions are
fulfilled, for all p, q ∈ H0 \ {0}.

(a) σp(p0) = −1.

(b) σp(p) = 1.

(c) If p 6= q and σp(q) = 1, then σq(p) 6= 1.
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From now on, the term “point-wise” will always be suppressed in the preceding definition.
Note that, thanks to conditions (i),(ii) above, we have the analogue of decomposition (1),
i.e.,

X = U0 ⊕H0, U0 := kp0. (3)

Remark. By (iii)(a) and (3), the linear forms σp, p ∈ H0 \ {0}, on X are completely
determined by their action on H0. Thus an irreflexive and anti-symmetric family of linear
forms may be defined intrinsically on an arbitrary non-zero vector space Y over k as a
family (σy)y∈Y \{0} of linear forms on Y satisfying the condition

∀y, z ∈ Y \ {0} : σy(z) = σz(y) = 1⇐⇒ y = z.

6. From interval decompositions to linear forms. Let (Z, p0) with

Z = (U0, H0,m)

be a pointed interval decomposition of L(X). For 0 6= p ∈ H0, U0 = kp0 is not contained
in m(Up), so we have the decomposition

X = U0 ⊕m(Up), (4)

and find a unique linear form σp : X → k such that

σp(p0) = −1, Ker(σp) = m(Up). (5)

We claim that

Σ(Z, p0) :=
(
p0, H0, (σp)p∈H0\{0}

)
(6)

is an irreflexive and anti-symmetric family of linear forms on X. Indeed, conditions
(i),(ii) in 5. are clearly equivalent to the corresponding ones in 3., so we only have to
worry about conditions (iii)(a)−(c). Here (a) is the first relation of (5). For (b),(c), let
p, q ∈ H0 \ {0}. Again by (5),

σp(q) = 1⇐⇒ σp(p0 + q) = 0⇐⇒ p0 + q ∈ Ker(σp)⇐⇒ Uq ⊆ m(Up).

Therefore (iii)(b) (resp. (iii)(c)) follows from condition (iii)(a) (resp. (iii)(b′)) in 3..
What happens if we change the base point? To see this, let α ∈ k× and put

p′0 := α−1p0, Σ(Z, p′0) =:
(
U0, H0, (σ

′
p)p∈H0\{0}

)
.

For 0 6= p ∈ H0, we consult (2) and obtain

U ′p := k(p′0 + p) = k(p0 + αp) = Uαp.

Combining this with (5), we obtain σ′p = ασαp for p ∈ H0\{0}. Summing up we conclude

Σ(Z, α−1p0) =
(
α−1p0, H0, (ασαp)p∈H0\{0}

)
. (7)

7. From linear forms to interval decompositions. It is easy to reverse the pre-
ceding construction. Let Σ = (p0, H0, (σp)p∈H0\{0}) be an irreflexive and anti-symmetric
family of linear forms on X. We put

Z(Σ) := (Z, p0), Z := (U0, H0,m), U0 := kp0, (8)

where we observe 4., particularly (2), to define

m : P(U0, H0) −→ P∗(U0, H0), m(Up) := Ker(σp) (p ∈ H0 \ {0}). (9)

We claim that Z is an interval decomposition of L(X). While conditions (i),(ii) of 3.
are obvious, condition (iii) follows from (iii) in 5. and the following chain of equivalent
conditions, for all p, q ∈ H0 \ {0}.

Uq ⊆ m(Up)⇐⇒ p0 + q ∈ Ker(σp)⇐⇒ σp(p0 + q) = 0⇐⇒ σp(q) = 1.

Combining the two preceding constructions, we arrive at the following theorem.
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8. Theorem. The assignments

(Z, p0) 7−→ Σ(Z, p0), Σ 7−→ Z(Σ),

define inverse bijections between the set of pointed interval decompositions of L(X) and
the set of irreflexive anti-symmetric families of linear forms on X. �

We now turn to examples of irreflexive anti-symmetric families of linear forms. In agree-
ment with the remark of 5., we will construct such families on appropriate vector spaces
Y over k. If Y has finite dimension n, this construction will give rise, via Thm. 8., to an
interval decomposition in dimension n+ 1.

We begin by generalizing [1, Example 2].

9. Example: Anisotropic bilinear forms. Let Y be a vector space over k and

δ : Y × Y −→ k

be a (possibly non-symmetric) bilinear form that is anisotropic in the sense that δ(y, y) 6=
0 for all non-zero elements y ∈ Y . For y ∈ Y \ {0} we define

σy : Y −→ Y, z 7−→ σy(z) := δ(y, y)−1δ(y, z). (10)

Clearly, σy is a linear form satisfying σy(y) = 1. Now suppose y, z ∈ Y \ {0} are distinct
with σy(z) = σz(y) = 1. Then y and z are linearly independent since, otherwise, z = αy
for some α ∈ k, forcing α = σy(αy) = σy(z) = 1, a contradiction. Now (10) gives
δ(y, z) = δ(y, y), δ(z, y) = δ(z, z), hence

det

(
δ(y, y) δ(y, z)
δ(z, y) δ(z, z)

)
= δ(y, y)δ(z, z)− δ(y, z)δ(z, y) = 0.

Writing Y ′ = ky + kz for the subspace of Y spanned by y, z, we conclude that there
exists a non-zero vector w ∈ Y ′ satisfying δ(Y ′, w) = {0}. On the other hand, δ being
anisotropic implies δ(w,w) 6= 0, a contradiction. Thus (σy)y∈Y \{0} is an irreflexive anti-
symmetric family of linear forms on Y .

Remark. 1. It is a standard fact from the algebraic theory of quadratic forms that
every quadratic form q : Y → k allows a bilinear form δ : Y × Y → k, in general not
symmetric, such that q(y) = δ(y, y) for all y ∈ Y . In particular, if q is anisotropic, so is
δ, and conversely.

Remark. 2. Replacing δ by δ+α for some alternating bilinear form α : Y ×Y → k does
not change the quadratic form corresponding to δ. Hence we obtain a whole family of
irreflexive anti-symmetric families of linear forms on Y , parametrized by the alternating
bilinear forms on Y .

Remark. 3. Let k be finite. Anisotropic quadratic forms of dimension n over k exist iff
n ≤ 2. We thus obtain examples of interval decompositions of L(X) if X has dimension
≤ 3 over k, in agreement with the first row the final table in [1].

10. Example: Anisotropic cubic forms. Again we let Y be a vector space over k
but now assume

N : Y −→ k

is an anisotropic cubic form, so N is a polynomial law in the sense of Roby [3], homoge-
neous of degree 3, and representing zero only trivially: N(y) = 0, y ∈ Y , implies y = 0.
We denote by

DN : Y × Y −→ k, (y, z) 7−→ (DN)(y, z)
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the total differential of N , which is quadratic in the first variable, linear in the second,
and matches with N itself through the expansion

N(y + z) = N(y) + (DN)(y, z) + (DN)(z, y) +N(z), (11)

valid in all scalar extensions. For y ∈ Y \ {0}, we define

σy : Y −→ Y, z 7−→ σy(z) := N(y)−1(DN)(y, z) (12)

and claim: If k has characteristic 2, then (σy)y∈Y \{0} is an irreflexive anti-symmetric
family of linear forms on Y . Since we are in characteristic 2, the relations σy(y) = 1 for
0 6= y ∈ Y follow immediately from Euler’s differential equation:

σy(y) = N(y)−1(DN)(y, y) = 3N(y)−1N(y) = 1.

Hence it remains to show for y, z ∈ Y \ {0} distinct that the relations σy(z) = σz(y) = 1
lead to a contradiction. From (12) we conclude (DN)(y, z) = N(y), (DN)(z, y) = N(z),
and (11) implies

N(y + z) = N(y) +N(y) +N(z) +N(z) = 0,

a contradiction since N was assumed to be anisotropic.

Remark. Let k be finite of characteristic 2, hence of the form F2r for some integer r > 0.
By Chevalley’s theorem [2, Chap. IV, Ex. 7], anisotropic cubic forms of dimension n over
k exist iff n ≤ 3. Thus we find interval decompositions over k in all dimensions ≤ 4,
allowing us to replace the question mark in the second row of the final table in [1] by a
“yes” provided q is a power of 2.
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