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Well, I guess everybody in this audience will agree with me that the theory of Jordan
systems is important not only because of its intrinsic beauty but also because of its
profound and extremely versatile connections with other branches of mathematics. Today
I would like to focus on a connection that was brought up only a few years ago, in a
paper by Tom deMedts and Richard Weiss [2] dating back to 2006. In this paper, the
authors use a classical device from Jordan theory, namely, the Hua identity, to set up
a correspondence between what are usually called Moufang sets on the one hand and
honest-to-goodness (quadratic) Jordan division rings on the other. Let me begin by
saying a few words about

1. Moufang sets.

Moufang sets are the brainchild of Jacques Tits [6]. Technically speaking, they are
basically the same as Tits buildings of rank 1 carrying the additional structure of a split
BN -pair. But I don’t think you want to share with me my appallingly limited knowledge
of the theory of buildings, so let me go straight to the formal definition of a Moufang
set. In doing so, I follow the treatment of deMedts-Segev [1].

1.1. The concept of a Moufang set. A Moufang set is a pair M = (X,W) satisfying
the following conditions.

(i) X is a set of cardinality at least 3: |X| ≥ 3.

(ii) W = (Wx)x∈X is a family of subgroups of Sym(X), the (full) permutation group
of X.

(iii) Writing
G := GM := 〈Wx | x ∈ X〉

for the subgroup of Sym(X) generated by the members of W, the following condi-
tions hold.

(a) For all x ∈ X, Wx / Gx = {g ∈ G | gx = x} is a normal subgroup of the
stabilizer, Gx, of x in G.

(b) The subgroups Wx, x ∈ X, form a full conjugacy class of subgroups in G.
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(c) For all x ∈ X, Wx is regular, i.e., simply transitive on X \ {x}: given y, z ∈
X \ {x}, there is a unique g ∈Wx sending y to z.

If M as above is a Moufang set, then GM as defined in (iii), for reasons that will be
explained below, is called the little projective group of M, while the Wx, x ∈ X, are
called its root groups.

Given two Moufang sets, M = (X, (Wx)x∈X) and M′ = (X ′, (W ′x′)x′∈X′), a morphism
ϕ : M → M′ is defined as a bijection ϕ : X → X ′ such that W ′ϕ(x) = ϕWxϕ

−1 for all
x ∈ X. In this way we obtain the groupoid of Moufang sets, a groupoid being a category
all of whose morphisms are isomorphisms.

The preceding definition looks pretty intractable, and examples of Moufang sets seem
difficult to construct. Nevertheless we will be able to do so. The following elementary
observations will be crucial.

1.2. Lemma. Let M = (X, (Wx)x∈X) be a Moufang set. Then

(a) The little projective group GM is 2-transitive on X: for all x, y, x′, y′ ∈ X, x 6= x′,
y 6= y′, there exists a g ∈ GM such that gx = y, gx′ = y′.

(b) gWxg
−1 = Wgx for all g ∈ M, x ∈ X, i.e., every g ∈ GM is an automorphism of

M. �

1.3. Towards Moufang sets via groups. Given any group W , written additively
with neutral element 0 and inversion a 7→ −a, even though it may not be abelian, we add
a new symbol ∞ /∈W to W by forming the set

X := W ∪ {∞}

and consider any permutation τ ∈ Sym(X) interchanging 0 and ∞: τ0 = ∞, τ∞ = 0.
We then define

b+∞ :=∞ =:∞+ b (b ∈W )

and, for any a ∈W , the permutation αa ∈ Sym(X) by

αax := a+ x (x ∈ X),

so αa fixes ∞ and agrees with the left translation by a on the group W . By means of

W∞ := {αa | a ∈W}, (1)

W0 := τW∞τ
−1, (2)

Wa := αaW0α
−1
a = αaW0α−a (a ∈W \ {0}), (3)

we obtain

M(W, τ) :=
(
X, (Wx)x∈X

)
, (4)

which is just a set X together with a family of subgroups of the permutation group of X,
one for each x ∈ X. Though M(W, τ) will not be a Moufang set in general, it still makes
sense to consider G := 〈Wx | x ∈ X〉, the subgroup of the permutation group Sym(X)
generated by all Wx, x ∈ X. Of particular importance later on are

• the Hua subgroup of G defined by

H := {g ∈ G | g0 = 0, g∞ =∞},

whose elements may canonically be regarded as permutations of W fixing 0,
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• and the Hua maps ha ∈ Sym(X), a ∈W \ {0}, defined by

ha := α−τ(−(τ−1a))τα−(τ−1a)τ
−1αaτ,

so ha : X → X is given by

hax = −τ
(
− (τ−1a)

)
+ τ

(
− (τ−1a) + τ−1(a+ τx)

)
(5)

for all x ∈ X. One checks easily that ha fixes 0 and ∞, hence belongs to the Hua
subgroup H of G.

As a converse of the procedure described in 1.3, we have

1.4. Proposition. Let M = (X, (Wx)x∈X) be a Moufang set and pick two distinct
elements 0,∞ ∈ X. Put

W := X \ {∞}

and assume we are given a permutation τ ∈ Sym(X) interchanging 0 and ∞ as well as
conjugating W∞ to W0:

τ0 =∞, τ∞ = 0, τW∞τ
−1 = W0. (6)

Then the following statements hold.

(a) For a ∈W , there is a unique αa ∈W∞ such that αa0 = a.

(b) The binary operation + defined on W by

a+ b := αab (a, b ∈W )

makes W a (possibly non-abelian) group and the assignment a 7→ αa determines
an isomorphism W

∼→W∞.

(c) M = M(W, τ). �

Remark. By Lemma 1.2 (a), permutations τ of X satisfying the first two relations of (6)
and even belonging to GM always exist; the final condition of (6) is then automatic.

The big question that presents itself now reads: given W, τ as in 1.3, when is M(W, τ)
a Moufang set? Here is the answer.

1.5. Theorem. (deMedts-Weiss [2]) If W, τ are as in 1.3, then M(W, τ) is a Moufang
set if and only if, for all a ∈ W \ {0}, the Hua map ha ∈ Sym(W ) is an automorphism
of the group W . �

This fundamental result, whose proof, though elementary, is not at all trivial, brings us
to
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2. The connection with Jordan division rings.

Using Theorem 1.5, we can now present

2.1. Examples of Moufang sets. Let J be a (quadratic) Jordan division ring, so J is
a unital quadratic Jordan algebra over the ring Z of rational integers such that J 6= {0}
and J× = J \ {0}, i.e., all non-zero elements of J are invertible. We define

W := Add(J)

as the additive group of J and, with X := W ∪{∞}, let τ : X → X be the map given by

τx := −x−1 (x ∈ X),

where we put −∞ :=∞, ∞−1 := 0, 0−1 :=∞. Then τ2 = IdX and we claim that

M(J) := M(W, τ) = M
(

Add(J), x 7−→ −x−1
)

is a Moufang set. By Theorem 1.5, it suffices to show that the Hua maps ha : J → J ,
a ∈ J×, are additive. But (1.5) shows

hax = a−
(
a−1 − (a− x−1)−1

)−1
for x ∈ J , which agrees with Uax by the Hua identity [4, Prop. 1.7.10], even for the
critical values x = 0, a−1. Thus ha = Ua is an automorphism of the additive group of J
and the assertion is proved.

Remark. For J = F+, the Jordan division ring corresponding to an ordinary field F ,
one can show GM = PSL2(F ). This justifies the term “little projective group of M”.

Consulting (1.1)−(1.3), we see that since Add(J) is abelian, so are the root groups
of M(J). The big question is the converse.

2.2. Big question. Is every Moufang set with abelian root groups isomorphic to the
Moufang set of a Jordan division ring?

The answer to this question is not known. Yoav Segev, in a personal communication
that I received a few months ago, described the big question as difficult, bordering on
the intractable. He therefore suggested to specialize the situation by looking at

2.3. The Zassenhaus condition. A Moufang set M = (X, (Wx)x∈X) is said to satisfy
the Zassenhaus condition if

(i) M is proper, i.e., its little projective group is not sharply 2-transitive on X, equiv-
alently, realizing M = M(W, τ) as in Prop. 1.4, the Hua subgroup of GM is not
trivial.

(ii) The pointwise stabilizer in GM of three distinct points in X is trivial.

The Zassenhaus condition leads to the following remarkable observation, which, for want
of a better name, I call

2.4. The Segev alternative. (Segev, unpublished) Let J be a Jordan division ring of
characteristic not 2 and suppose M(J), the Moufang set corresponding to J , satisfies the
Zassenhaus condition. Then one of the following holds.

(a) There exist elements x, y ∈ J such that x ◦ y = 0 and the U -operators Ux, Uy do
not commute: UxUy 6= UyUx.
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(b) J is a field.

Proof. Let x, y ∈ J×. Standard identities from Jordan theory imply

Ux(x−1 ◦ y) = x ◦ y.

Applying this repeatedly, we conclude that the (multiplicative) commutator
UxUyU

−1
x U−1y fixes x ◦ y:

UxUyU
−1
x U−1y (x ◦ y) = x ◦ y. (1)

Now suppose (a) does not hold. Then x◦y = 0 implies that Ux, Uy commute. Otherwise,
by (1), the commutator UxUyU

−1
x U−1y fixes three distinct elements in M(J), namely,

0,∞, x ◦ y, which again implies, this times by the Zassenhaus condition,, that Ux, Uy
commute. Thus the U -operators of J commute by pairs, forcing J to be a field under
the bilinear multiplication xy = 1

2x ◦ y:

(xy)z =
1

4
z ◦ (x ◦ y) =

1

4
VzVxy =

1

4
Uz,1Ux,1y

=
1

4
Ux,1Uz,1y =

1

4
VxVzy =

1

4
x ◦ (z ◦ y) = x(yz).

�
The Segev alternative brings us immediately to

3. The problem of commuting U-operators.

More specifically, the natural question to be raised here is

3.1. Tent’s question. (Tent, unpublished) Given elements x, y in an arbitrary Jordan
division ring J , does x ◦ y = 0 imply that the U -operators Ux, Uy commute: UxUy =
UyUx?

My answer to this question is provided by

3.2. Theorem. Yes.

Sketch of Proof. By the Zelmanov-McCrimmon structure theory [5, 15.7], there are two
cases.

(a) J is special. Then, as a moment’s reflection shows, the answer is trivially yes, even
without assuming that J be division.

(b) J is an Albert division algebra over some field F . Then the answer is yes because
elements x, y ∈ J with x◦y = 0 are extremely rare. More specifically, assuming x 6= 0 6= y
(as we may), x ◦ y = 0 if and only if F has characteristic 2 and x is a multiple of 1 or y
belongs to the subalgebra of J generated by x:

x ◦ y = 0⇐⇒ char(F ) = 2 and (x ∈ F1 or y ∈ F [x].)

In any event, the conclusion that Ux and Uy commute provided x ◦ y = 0 is obvious. �

While the preceding result is precisely what the Moufang people want, its proof is not.
Instead, what these people want is a proof that can be mimicked in arbitrary Moufang
sets, hopefully giving them a handle on the Zassenhaus condition in the general set-up.
In other words, they want a proof by clever manipulations of identities valid in arbitrary
Jordan algebras (not just division), equivalently, they want an affirmative answer to
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3.3. The problem of commuting U-operators. Let J be a unital Jordan algebra
over k, an arbitrary commutative associative ring of scalars, and suppose x, y ∈ J satisfy
x ◦ y = 0. Does this imply that the U -operators Ux, Uy commute: UxUy = UyUx?

This problem is wide open. Let me use the remaining minutes of my talk to tell you
what I know.

3.4. The answer is yes if J is special. This trivial observation was already noted in the
proof (or, rather, its sketch) of Theorem 3.2.

3.5. Some time ago I thought I had a proof for the implication

x ◦ y = 0 =⇒ 2UxUy = 2UyUx

but, fortunately, Teresa and José were kind enough of pointing out to me a stupid mistake
in my argument.

3.6. Pointed quadratic forms. By what we have seen before (3.4) the problem of
commuting U -operators has a trivial (affirmative) answer unless J is exceptional. Here
it were Ottmar and, again, Teresa and José who reminded me that the Jordan algebra
J = J(M, q, e) of a pointed quadratic form over k, where M is a k-module, q : M → k is a
quadratic form and e ∈M has q(e) = 1, need not be special [4, p. 2.6], so the problem of
commuting U -operators is open even in this case. Therefore I was asking myself whether
it is possible, assuming x ◦ y = 0, to derive a formula for UxUyz, in terms of q and its
bilinearization, that is symmetric in x and y. I was able to do so but only in the absence
of 2-torsion, not in general :

x ◦ y = 0 =⇒ UxUyz = q(x)q(y)z − q(x)q(y, z)y − q(y)q(x, z)x.

3.7. Cubic Jordan algebras. It is a natural question to ask wether the obvious ana-
logue of the preceding game can be played on the level of cubic Jordan algebras. I failed
miserably, even when confining myself to base fields (rather than rings) and excluding
low (positive) characteristics. But at least I can record the following positive result.

3.8. Theorem. (Anquela-Cortes, unpublished) Let J be a unital Jordan algebra over
a field F of characteristic not 2 and suppose x, y ∈ J satisfy x ◦ y = 0. If x is algebraic
of degree at most 3 over F but not nilpotent, then the U -operators Ux, Uy commute:
UxUy = UyUx. �

3.9. Strongly prime Jordan algebras. Once the problem of commuting U -operators
in its most general form has been accepted as being fairly intractable, it is natural to
impose regularity conditions on J , e.g., by insisting that it be strongly prime. In this
case, again invoking the Zelmanov-McCrimmon structure theory, J is either special or
an Albert form [5, 15.2], so it makes sense to look at arbitrary Albert algebras, division
or not. Here I have

3.10. Theorem. Let J be an arbitrary Albert algebra over an arbitrary field F and
suppose x, y ∈ J satisfy x◦y = 0. Then the U -operators Ux, Uy commute: UxUy = UyUx.

Sketch of Proof. 10. Changing scalars to the algebraic closure of F , we may assume that
J is split.

20. By 10 and the Jacobson embedding theorem [3, Theorem IX.11], which also holds
in characteristic 2 (not obvious!), there is a unital subalgebra J ′ ⊆ J with x ∈ J ′ ∼=
Mat3(F )+.
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30. By 20, we may assume that

J = J(A, 1) = A⊕Aj1 ⊕Aj2, A := Mat3(F ),

is a first Tits construction and x, y ∈ J have the form

x = x0 := x0 + 0j1 + 0j2, y = y0 + y1j1 + y2j2 (x0, y0, y1, y2 ∈ A).

40. Since there is an automorphism of J that stabilizes A (in its capacity as the initial
summand of J) and interchanges Aj1, Aj2, we only have to show

UxUyz = UyUxz, UxUy(zj1) = UyUx(zj1) (z ∈ A).

50. Working this out by means of the explicit formula for the U -operator in cubic Jordan
algebras, it follows that Theorem 3.10 is equivalent to the validity of no less than eleven
identities in ordinary 3× 3−matrices x0, y0, y1, y2, z under the assumption x ◦ y = 0, i.e.,

x0 ◦ y0 = 0, x0y1 = tr(x0)y1, y2x0 = tr(x0)y2. (1)

60. Surprisingly and annoyingly, the verification of these identities under the assumption
(1), though elementary, is by no means straightforward. Here is a particularly notorious
example: (

(y0y1)× z
)
x]0 = (y0y1)× (x]0z), (2)

where ] is the usual adjoint and × its bilinearization. If you could give a comparatively
easy proof for the implication (1) ⇒ (2), I would be happy.

4. Comparisons.

In this section, which is not part of the lecture, we compare the various notions of Hua
maps floating around in [1, 2] and (1.5).

4.1. Groups with infinity switch. By a group with infinity switch we mean a pair
(W, τ), where W is an additive group, possibly non-abelian, and τ ∈ Sym(W ∪ {∞}) is
an infinity switch, i.e., a permutation of W ∪{∞} that interchanges 0 ∈W with∞ /∈W .
Given another group with infinity switch, (W ′, τ ′), a morphism from (W, τ) to (W ′, τ ′)
is a group isomorphism ϕ : W → W ′ that, when extended to a map ϕ : W ∪ {∞} →
W ′ ∪ {∞} via ϕ(∞) :=∞, satisfies the relation

τ ′ = ϕτϕ−1. (1)

In this way we obtain the category GrouSwi∞ of groups with infinity switch, which is,
in fact, a groupoid.

4.2. Sets with families of permutation groups. By a set with a family of permu-
tation groups we mean a pair (X,W) consisting of a set X and a family W = (Wx)x∈X
of subgroups Wx ⊆ Sym(X), one for each x ∈ X. Given another set with a family of
permutation groups, (X ′,W′), W′ = (W ′x′)x′∈X′ , a morphism from (X,W) to (X ′,W′)
is a bijective map ϕ : X → X ′ such that

W ′ϕ(x) = ϕWxϕ
−1 (x ∈ X). (2)

In this way we obtain the category SeFaPer of sets with families of permutation groups,
which again is a groupoid.
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4.3. Towards functoriality. For the remainder of this section, we adopt the con-
ventions of 1.3 and fix the following situation. W,W ′ are additive groups, possibly
non-abelian, and ∞ /∈W ∪W ′ is a new symbol. Setting

X := W ∪ {∞}, X ′ := W ′ ∪ {∞}

and considering arbitrary permutations τ ∈ Sym(X), τ ′ ∈ Sym(X ′) interchanging 0 and
∞, we may then follow (1.3.1)−1.3.4) and form

M := M(W, τ) =
(
X, (Wx)x∈X

)
, M′ := M(W ′, τ ′) =

(
X ′, (W ′x′)x′∈X′

)
(3)

as sets with families of permutations groups in the sense of 4.2.
To stress dependence on W , the left translation by a ∈ W on X will be denoted by

αWa , so

αWa : X −→ X, x 7−→ αWa (x) = a+ x. (4)

Ditto for the right translation,

βWa : X −→ X, x 7−→ βWa (x) = x+ a. (5)

4.4. Proposition. Let ϕ : (W, τ) → (W ′, τ ′) be a morphism of groups with infinity
switch. Then

αW
′

ϕ(a) = ϕαWa ϕ
−1, βW

′

ϕ(a) = ϕβWa ϕ−1, (6)

and M(ϕ) := ϕ : M(W, τ) → M(W ′, τ ′) is a morphism of sets with families of permuta-
tion groups. In this way,

M : GrouSwi∞ −→ SeFaPer

becomes a functor.

Proof. We begin by verifying the first equation of (6); the second one will follow analo-
gously. Since both sides fix ∞, is suffices to show that they take the same value at any
b ∈W . But ϕ : W →W ′ is a group isomorphism, so we have

ϕαWa ϕ
−1b = ϕ

(
a+ ϕ−1(b)

)
= ϕ(a) + b = αW

′

ϕ(a)b,

as desired. To establish the remainder of the proposition, we only need to show that
ϕ : M(W, τ) → M(W ′, τ ′) is a morphism of sets with families of permutation groups,
equivalently, that (2) holds. Combining (1.3.1) with (6), we obtain

W ′ϕ∞ = W ′∞ = {αW
′

a′ | a′ ∈W ′} = {αW
′

ϕ(a) | a ∈W}

= {ϕαWa ϕ−1 | a ∈W} = ϕ{αWa | a ∈W}ϕ−1 = ϕW∞ϕ
−1,

hence (2) for x =∞. Combining (1.3.2) with (1) and (2) for x =∞, we obtain

W ′ϕ0 = W ′0 = τ ′W ′∞τ
′−1 = ϕτϕ−1W ′∞ϕτ

−1ϕ−1

= ϕτW∞τ
−1ϕ−1 = ϕW0ϕ

−1,

hence (2) for x = 0. Similarly, given a ∈W \ {0}, we have ϕa ∈W ′ \ {0} and then

W ′ϕa = αW
′

ϕaW
′
0(αW

′

ϕa )−1 = ϕαWa ϕ
−1W ′0ϕ(αWa )−1ϕ−1

= ϕαWa W0(αWa )−1ϕ−1 = ϕWaϕ
−1,

giving (2) for x = a. �
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4.5. Opposites. The inversion a 7→ −a may be viewed as a group isomorphism

ι : W
∼−→W op, a 7−→ ιa := −a (7)

that satisfies ι2 = IdW . In fact, calling

(W, τ)op := (W op, τop), τop := ιτ ι = ιτ ι−1 (8)

the opposite of (W, τ), we deduce from 4.1, particularly (1), that

ι : (W, τ)
∼−→ (W, τ)op (9)

is an isomorphism of groups with infinity switch, giving rise by Prop. 4.4 to an isomor-
phism

ι = M(ι) : M(W, τ)
∼−→M(W, τ)op := M

(
(W, τ)op

)
(10)

of sets with families of permutation groups. Hence (6) implies

βW−a = αW
op

ιa = ιαWa ι, (11)

while (2) yields

(W op)ιa = ιWaι (12)

for all a ∈W .
By the first relation of (11), M(W op, τ) agrees with what deMedts-Segev in [1, 1.3]

and deMedts-Weiss in [2, §3] refer to as M(W, τ).

4.6. Various Hua maps. To emphasize dependence on (W, τ), we write h
(W,τ)
a for the

Hua map determined by a ∈W \ {0}. Thus

h(W,τ)a = αW−τ(−(τ−1a))τα
W
−(τ−1a)τ

−1αWa τ (13)

by (1.5). On the other hand, we denote by h
′(W,τ)
a (resp. h

′′(W,τ)
a ) the Hua map deter-

mined by a as defined in deMedts-Segev [1, 1.3.1.12] (resp. deMedts-Weiss [2, Def. 3.2]).
Thus

h′(W,τ)a = βW−τ(−(τ−1a))τβ
W
−(τ−1a)τ

−1βWa τ, (14)

h′′(W,τ)a = βW−τ(−(τ−1a))τβ
W
−(τ−1a)τ

−1βWa τ, (15)

the latter by [2, (14)] where, appearances to the contrary, the maps in question are being
composed from left to right; otherwise, the authors’ equation would not be consistent
with [2, Def. 3.2].

4.7. Proposition. With the notations of 4.6, the Hua maps of (W, τ) in the sense of
deMedts-Segev agree with the ones in the sense of deMedts-Weiss:

h′(W,τ)a = h′′(W,τ)a (a ∈W \ {0}).

Moreover, for all a ∈W \ {0}, we have a commutative diagram

W ι
//

h′(W,τ)a

��

W op

h(W,τ)op

ιa

��
W ι

// W op.
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Proof. The first part is clear by (14),(15), so it remains to verify that the diagram
commutes. In order to do so, we apply (14),(11),(8) and obtain

ιh′(W,τ)a = ιβW−τ(−(τ−1a))τβ
W
−(τ−1a)τ

−1βWa τ

= αWτ(−(τ−1a))ιτ ια
W
τ−1aιτ

−1ια−aιτ

= αWτ(−(τ−1a))τ
opαWτ−1a(τop)−1αWιa τ

opι,

where

−τop
(
−
(
(τop)−1ιa

))
= ιτopιιτ−1ιιa = τιτ−1a = τ

(
− (τ−1a)

)
,

−(τop)−1ιa = ι(τop)−1ιa = τ−1a.

Hence
ιh′(W,τ)a = αW−τop(−((τop)−1ιa))τ

opαW−(τop)−1ιa(τop)−1αWιa τ
opι,

and by (13), this is the same as h
(W,τ)op

ιa ι. �
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