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ABSTRACT

Classical results, like the construction of a 3-fold Pfister form attached to any
central simple associative algebra of degree 3 with involution of the second kind
[Haile, D. E., Knus, M.-A., Rost, M., Tignol, J.-P. (1996). Algebras of odd

degree with involution, trace forms and dihedral extensions. Israel J. Math.
96(B):299–340], or the Skolem–Noether theorem for Albert algebras and their
9-dimensional separable subalgebras [Parimala, R., Sridharan, R., Thakur, M. L.

(1998). A classification theorem for Albert algebras. Trans. Amer. Math. Soc.
350(3):1277–1284], which originally were derived only over fields of characteristic
not 2 (or 3), are extended here to base fields of arbitrary characteristic. The

methods we use are quite different from the ones originally employed and, in
many cases, lead to expanded versions of the aforementioned results that
continue to be valid in any characteristic.
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0. INTRODUCTION

Thanks to their close connection with the Galois cohomology of classical
and exceptional groups, Jordan algebras of degree 3 have attracted considerable
attention over the last couple of years. The results on the (cohomological) invariants
mod 2, based to a large extent on the construction of Haile et al. (1996) attaching a
3-fold Pfister form to any central simple associative algebra of degree 3 with
involution of the second kind, are particularly noteworthy in this context, as is
the Skolem–Noether theorem of Parimala et al. (1998) for Albert algebras and their
9-dimensional separable subalgebras. Invariably, however, these results, a systematic
account of which may be found in Knus et al. (1998, Secs. 19, 30, 37–40), are
confined to base fields of characteristic not 2; sometimes even characteristic 3 has
to be excluded.

In the present paper, an approach to the subject will be developed that
yields expanded versions of the aforementioned results over fields of arbitrary
characteristic. The methodological framework of our approach is mainly Jordan-
theoretic in nature and relies heavily on the Tits process (Petersson and Racine,
1986a) for Jordan algebras of degree 3. Another key ingredient is the explicit,
characteristic-free description due to Petersson and Racine (1995, 1.8, 2.4; 1996a,
3.8, 3.9) of the 3-fold Pfister form attached to a central simple associative algebra
of degree 3 with involution of the second kind. Finally, the insight, which goes back
to Racine (1972), that in this generality the role usually played by the bilinear trace
form is taken over by the quadratic trace (cf. 1.4 for the definition) becomes a
frequently recurring theme in our investigation.

With special emphasis on those results which seem to be new even when
the characteristic is not 2, the content of the paper may be summarized as follows.
After covering some background material in Sec. 1, we proceed to investigate
distinguished involutions in the next two sections and show in particular that
an involution t of the second kind on a simple associative algebra B of degree 3
is distinguished if and only if the quadratic trace of J ¼ HðB; tÞ, the Jordan algebra
of t-symmetric elements in B, becomes isotropic on the orthogonal complement
of any cubic étale subalgebra of J (2.7). We also establish Albert’s classical result
(Albert, 1963) yielding distinguished cubic subfields of symmetric elements in central
simple associative algebras of degree 3 with distinguished involution in all character-
istics (3.1). Our proof is different from the one of Haile and Knus (1996) and Villa
(Knus et al., 1998, Ex. 19.9) and provides additional information in characteristic 3
(3.9). Section 4 is devoted to Albert algebras and the characteristic-free interpretation
of their invariants mod 2 in terms of Pfister forms. The main results are 4.4 and 4.9,
characterizing in various ways Albert algebras with vanishing 5- (resp. 3-) invariant
mod 2. As an application of 4.4, we obtain examples of Albert division algebras
which are isotopic but not isomorphic (4.7). The proof of the Skolem–Noether the-
orem of Parimala et al. (1998) in arbitrary characteristic will be taken up in Sec. 5.
The paper concludes in 6.5 with comparing the two descriptions of the 3-fold Pfister
form attached to an involution given by Haile et al. (1996, Proposition 19) (see also
Knus et al., 1998, (19:25)) and by Petersson and Racine (1996a, 3.8, 3.9) (see 3.3
below).
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1. BACKGROUND MATERIAL

1.0. Throughout this paper, we fix a base field k of arbitrary characteristic. All
algebras considered in the sequel are assumed to be finite-dimensional and to contain
an identity. The set of invertible elements in a structure A will be denoted by A�,
whenever this makes sense. We systematically write Qðx;yÞ¼QðxþyÞ�QðxÞ�QðyÞ
for the bilinearization of a quadratic map Q. Basic concepts and facts from the
theory of (quadratic) Jordan algebras will be taken for granted, the standard reference
being Jacobson (1981). Given a Jordan algebra J , we write k½x� for the subalgebra
of J generated by x. The generic norm of J (Jacobson and Katz, 1971) will always
be viewed as a polynomial function (Roby, 1963), acting, mostly under the same
notation, on every base change of J in a functorial manner; dito for the other
coefficients of the generic minimum polynomial.

The main purpose of this section is to collect a few results scattered in the
literature that are indispensable for understanding the subsequent development.
Proofs will be omitted most of the time.

1.1. Quadratic Forms Versus Symmetric Bilinear Forms

Since we do not exclude characteristic 2, we have to distinguish carefully
between quadratic forms on the one hand and symmetric bilinear forms on the
other. Our basic reference for both are Micali and Revoy (1979) and Scharlau
(1985). They will be identified only if characteristic 2 has been expressly ruled out.
Given a symmetric matrix S of size n, the symmetric bilinear form induced by S

on n-dimensional column space kn will be denoted by hSi. If S ¼ diagðg1; . . . ; gnÞ
is diagonal, we write hg1; . . . ; gni ¼ hSi. The hyperbolic plane as a binary quadratic
form will be denoted by h. A quadratic form is said to be nonsingular if its
bilinearization is nondegenerate in the usual sense. For example, the hyperbolic
plane h is nonsingular but, for char k ¼ 2 and a 2 k, the one-dimensional quadratic
form ½a� is not, even if a 6¼ 0. The Witt classes of nonsingular quadratic forms make
up the Witt group of k, which is a module over its Witt ring, consisting of the Witt
classes of nondegenerate symmetric bilinear forms; the corresponding module action
is given by the tensor product of a symmetric bilinear form b and a quadratic form q

yielding a quadratic form b : q over k. We also recall that Witt’s theorem holds for
nonsingular quadratic forms, though is does not for symmetric bilinear ones even if
they are nondegenerate.

1.2. Quadratic Étale Algebras

Quadratic étale k-algebras are classified by H1ðk;Z=2ZÞ; in fact, this group will
be identified systematically with the group of square classes in k� for char k 6¼ 2 and
with the cokernel of the Artin–Schreier map a 7! aþ a2 otherwise. The element of
H1ðk;Z=2ZÞ corresponding to a quadratic étale k-algebra L will be denoted by
dðL=kÞ. Conversely, we write kfdg for the quadratic étale k-algebra corresponding
to d 2 H1ðk;Z=2ZÞ. Recall that, writing dL=k 2 k�=k�2 for the ordinary discriminant
of L, we have dL=k ¼ dðL=kÞ for char k 6¼ 2 but dL=k ¼ 1 for char k ¼ 2.

Structure Theorems for Jordan Algebras 1021
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1.3. Associates of Quadratic Forms

Let q :V ! k be a nonsingular quadratic form with base point e 2 V , so

qðeÞ ¼ 1. Given d 2 H1ðk;Z=2ZÞ represented by d 2 k� for char k 6¼ 2 (resp. d 2 k

for char k ¼ 2), qdðxÞ ¼ dqðxÞ þ 1�d
4 qðe; xÞ2ðchar k 6¼ 2Þ; qdðxÞ ¼ qðxÞ þ dqðe; xÞ2

ðchar k ¼ 2Þ defines a nonsingular quadratic form qd : V ! k with base point e

which up to isometry neither depends on d nor on e (Petersson and Racine, 1984a,
Proposition 3.1) and is called the d-associate of q. For a discussion of this concept in
a much more general setting, see Loos (1996). By Petersson and Racine (1995, 2.7)
we have

ðq? q0Þd ffi qd ? hd0i: q0; ð1:3:1Þ

where q0 is another nonsingular quadratic form and d0 ¼ d ðchar k 6¼ 2Þ;
d0 ¼ 1 ðchar k ¼ 2Þ; also,

ðqdÞd0 ffi qdþd0 ð1:3:2Þ

for d; d0 2 H1ðk;Z=2ZÞ. Moreover, writing NL for the norm of an étale k-algebra L,
we recall

ðNkfdgÞd0 ffi Nkfdþd0g ð1:3:3Þ

from Petersson and Racine (1995, 2.9). Finally,

hdL=ki:NL ffi h�1i:NL ð1:3:4Þ

for any quadratic étale k-algebra L.

1.4. Cubic Norm Structures

Following McCrimmon (1969), and adopting the terminology of Petersson and
Racine (1986a), we define a cubic norm structure over k as a quadruple ðV ;N ; ]; 1Þ
consisting of a finite-dimensional vector space V over k, a cubic form N : V �! k

(the norm), a quadratic map ]: V �!V ; x 7�! x], (the adjoint) and a distinguished
element 1 2 V (the base point) such that the relations x]] ¼ NðxÞx (the adjoint
identity), Nð1Þ ¼ 1;Tðx]; yÞ ¼ ðDNÞðxÞy (the directional derivative of N at x in the
direction y), 1] ¼ 1; 1� y ¼ TðyÞ1� y hold under all scalar extensions, where
T :¼ �ðD2 logNÞð1Þ : V � V �! k is the associated trace form, x� y ¼ ðxþ yÞ]�
x] � y] is the bilinearization of the adjoint and TðyÞ ¼ Tðy; 1Þ. Then the U-operator
Uxy ¼ Tðx; yÞx� x] � y and the base point 1 give V the structure of quadratic Jordan
algebra denoted by JðV ;N ; ]; 1Þ. Among the results obtained in McCrimmon (1969),
the following are particularly noteworthy in the present context. Writing S : J �! k

for the quadratic form given by SðxÞ ¼ Tðx]Þ, we have the relation

x] ¼ x2 � TðxÞxþ SðxÞ1: ð1:4:1Þ

1022 Petersson
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Isomorphisms between Jordan algebras of cubic norm structures with nondegene-
rate associated trace forms are the same as bijective linear maps preserving norms
and base points. An element y 2 J is invertible if and only if NðyÞ 6¼ 0, in which case
J ðyÞ, the y-isotope of J , again arises from a cubic norm structure in an explicit
manner. J satisfies not only the cubic equation

x3 � TðxÞx2 þ SðxÞx� NðxÞ1 ¼ 0 ð1:4:2Þ

but also, as pointed out in Jacobson and Katz (1971, p. 220), its quartic companion

x4 � TðxÞx3 þ SðxÞx2 � NðxÞx ¼ 0;

the latter being implied by the former only in characteristic not 2. In particular, J has
degree at most 3. Conversely, given any Jordan algebra J of degree 3 over k, with
generic norm N ¼ NJ and identity element 1 ¼ 1J , we define the adjoint ] as the
numerator of the inversion map to obtain a cubic norm structure ðV ;N ; ]; 1Þ (V being
the vector space underlying J) satisfying J ¼ JðV ;N ; ]; 1Þ. We then write T ¼ TJ

for the associated trace form, which agrees with the generic trace of J , and call
S ¼ SJ the quadratic trace of J . For y 2 J�, the quadratic trace of J ðyÞ is given by

SJ ðyÞ ðxÞ ¼ TJðy]; x]Þ: ð1:4:3Þ

Denoting by J0 ¼ kerT the space of trace zero elements in J , the relation (cf.
McCrimmon, 1969, (16))

Sðx; yÞ ¼ TðxÞTðyÞ � Tðx; yÞ ðx; y 2 JÞ ð1:4:4Þ

immediately implies the following elementary observation.

1.5 Proposition. Let J be a Jordan algebra of degree 3 over k whose generic trace
is nondegenerate. Then S�J , defined to be the quadratic trace of J for char k 6¼ 2 and
its restriction to J0 for char k ¼ 2, is a nonsingular quadratic form over k.

1.6. Cubic Étale Algebras

Given a cubic étale k-algebra E, the preceding considerations apply to its
associated Jordan algebra, which has degree 3 and will be identified with E. Also, we
write DðEÞ for the discriminant of E, viewed as a quadratic étale k-algebra (Knus
et al., 1998, Sec. 18), and dðE=kÞ for the element of H1ðk;Z=2ZÞ determined by
DðEÞ. The connection between dðE=kÞ and dE=k, the ordinary discriminant, is the
same as for quadratic étale algebras, cf. 1.2. Sometimes we will use the Scharlau
transfer ðTEÞ� (Scharlau, 1985, Chapter 2) (cf. Petersson and Racine, 1996a, 3.4, 3.5)
for a characteristic-free ad-hoc description) of quadratic (resp. symmetric bilinear)
forms over E to quadratic (resp. symmetric bilinear) forms over k. The key fact
is Frobenius reciprocity

ðTEÞ�
�
b : ðq� EÞ� ffi ðTEÞ�ðbÞ : q ð1:6:1Þ

Structure Theorems for Jordan Algebras 1023
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for a symmetric bilinear form b over E and a quadratic form q over k. Dito for étale
k-algebras of degree other than 3.

1.7. Reduced Algebras

Let J be a Jordan algebra of degree 3 over k. Then J is either a division algebra
or it is reduced (Racine, 1972, Theorem 1). In the latter case, J can be co-ordinatized,
so there exist a composition algebra C over k (the possibility of a purely inseparable
field extension of characteristic 2 and exponent 1 being included) and a diagonal
matrix g ¼ diagðg1; g2; g3Þ 2 GL3ðkÞ with the following property: J is isomorphic
to H3ðC; gÞ, the Jordan algebra of all 3-by-3 matrices x over C which have diagonal
entries in k and are g-hermitian in the sense that x ¼ g�1tx�g, � being the canonical
involution of C. We call C, which is unique up to isomorphism, the co-ordinate
algebra of J . Writing NC (resp. TC) for the norm (resp. trace) of C and

u½jl� ¼ gluejl þ gju
�elj ðu 2 C; 1 � j; l � 3; j 6¼ lÞ

for the usual hermitian matrix units, the elements of J ¼ H3ðC; gÞ have the form

x ¼
X

aiei þ
X

ui½jl�; y ¼
X

biei þ
X

vi½jl� ðai; bi 2 k; ui; vi 2 CÞ;
ð1:7:1Þ

both multiple sums being extended over all cyclic permutations ðijlÞ of (123). By
McCrimmon (1969, p. 502), norm, adjoint, base point and associated trace form
of J are given by the formulae

NJðxÞ ¼ a1a2a3 �
X

gjglaiNCðuiÞ þ g1g2g3TCðu1u2u3Þ; ð1:7:2Þ

x] ¼
X�

ajal � gjglNCðuiÞ
�
ei þ

X�
giðujulÞ� � aiui

�½jl�; ð1:7:3Þ

1 ¼
X

ei; ð1:7:4Þ

TJðx; yÞ ¼
X

aibi þ
X

gjglNCðui; viÞ: ð1:7:5Þ

This implies

SJðxÞ ¼
X�

ajal � gjglNCðuiÞ
�
: ð1:7:6Þ

Moreover, the diagonal E ¼ P
kei � J is a split cubic étale subalgebra, and, writing

E? for its orthogonal complement relative to the generic trace, we conclude
SJ jE? ffi QJ , where

QJ :¼h�g2g3i:NC ?h�g3g1i:NC ? h�g1g2i:NC ð1:7:7Þ

is an invariant of J (Petersson, 1974b, p. 593). The following standard fact has been
observed in Petersson (1974b, Proposition 1). (Recall that an algebra is said to be
absolutely simple if it stays simple under all base field extensions.)

1024 Petersson
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1.8 Proposition. Given a reduced absolutely simple Jordan algebra J of degree 3
over k, the following statements are equivalent.

(i) J contains nonzero nilpotent elements.
(ii) QJ is isotropic.
(iii) J can be co-ordinatized as in 1.7, with g ¼ diagð1;�1; 1Þ.

1.9. The Tits Process

We now recall from Petersson and Racine (1986a) the most important technical
tool of the paper. Let K be a quadratic étale k-algebra, B a separable associative
algebra of degree 3 over K (with the obvious meaning if K ffi k� k is split) and t
a K=k-involution of B. Assume that we are given invertible elements u 2 HðB; tÞ, the
Jordan algebra of t-symmetric elements in B, and b 2 K satisfying NBðuÞ ¼ NKðbÞ.
Then we may extend NB; ] (the adjoint of B or Bþ, cf. 1.4), 1B as given on B and
HðB; tÞ to the k-vector space V ¼ HðB; tÞ � B according to the rules

N
�ðv0; vÞ

� ¼ NBðv0Þ þ bNBðvÞ þ tðbÞt�NBðvÞ
�� TB

�
v0; vutðvÞ

�
; ð1:9:1Þ

ðv0; vÞ] ¼
�
v
]
0 � vutðvÞ; tðbÞtðvÞ]u�1 � v0v

�
; ð1:9:2Þ

1 ¼ ð1B; 0Þ ð1:9:3Þ

for v0 2 HðB; tÞ; v 2 B to obtain a cubic norm structure whose corresponding Jordan
algebra will be written as J ¼ JðK;B; t; u; bÞ. The associated trace form is given by

Tðx; yÞ ¼ TBðv0;w0Þ þ TB

�
vu; tðwÞ�þ TB

�
wu; tðvÞ� ð1:9:4Þ

for x ¼ ðv0; vÞ; y ¼ ðw0;wÞ 2 J . Furthermore, HðB; tÞ identifies as a subalgebra of J
through the first factor. We recall from Petersson and Racine (1986a, 5.2) that J is a
division algebra if and only if b is not a generic norm of B. The following useful result
has been established in Petersson and Racine (1986a, 3.7).

1.10 Proposition. Notations being as in 1.9, let w 2 B� and put u0 ¼ wutðwÞ; b0 ¼
NBðwÞb. Then the assignment ðv0; vÞ 7�! ðv0; vwÞ determines an isomorphism from
JðK;B; t; u0; b0Þ onto JðK;B; t; u; bÞ.

1.11. The Second Tits Construction

If ðB; tÞ is a central simple associative algebra of degree 3 over k with involution
of the second kind (central simplicity being understood in the category of algebras
with involution, cf. Knus et al., 1998, pp. 20, 21), the Tits process 1.9 applies to
K ¼ CentðBÞ, the centre of B, and JðB; t; u; bÞ :¼ JðK;B; t; u; bÞ is an Albert algebra,
i.e., a k-form of H3ðZorðkÞÞ ¼ H3ðZorðkÞ; 13Þ, where ZorðkÞ is the split octonion
algebra of Zorn vector matrices (Springer and Veldkamp, 2000, 1.8) and 13 stands
for the 3-by-3 unit matrix. For example, we may choose u ¼ 1; b ¼ 1, forcing the

Structure Theorems for Jordan Algebras 1025

D
ow

nl
oa

de
d 

by
 [

Fe
rn

U
ni

ve
rs

ita
et

] 
at

 0
5:

37
 1

0 
M

ar
ch

 2
01

5 



ORDER                        REPRINTS

Albert algebra JðB; t; 1; 1Þ to be reduced. Following Petersson and Racine (1995, 1.7),
we write Oct J for the co-ordinate algebra of JðB; t; 1; 1Þ in the sense of 1.7, which
is an octonion algebra called the octonion algebra of J ¼ HðB; tÞ. Given any cubic
étale subalgebra E � J , the norm of Oct J can be described by the following
formulae (cf. Petersson and Racine, 1996a, 1.11):

NOct J ffi NkfdðK=kÞþdðE=kÞg ? hdK=ki: SJ jE? ; ð1:11:1Þ
hdK=ki: SJ ffi h�1i ? NOct J ðchar k 6¼ 2Þ; ð1:11:2Þ
S0J ffi

�
NOct J

�
dðK=kÞþ1

ðchar k ¼ 2Þ: ð1:11:3Þ

1.12. The First Tits Construction

Let A be a separable associative algebra of degree 3 over k and a 2 k�. Then
NA; ]; 1A as given on A extend to the vector space A� A� A according to the rules

N
�ðv0; v1; v2Þ

� ¼ NAðv0Þ þ aNAðv1Þ þ a�1NAðv2Þ � TAðv0v1v2Þ; ð1:12:1Þ

ðv0; v1; v2Þ] ¼
�
v
]
0 � v1v2; a�1v

]
2 � v0v1; av

]
1 � v2v0

�
; ð1:12:2Þ

1 ¼ ð1A; 0; 0Þ ð1:12:3Þ

for v0; v1; v2 2 A to yield a cubic norm structure over k whose associated Jordan
algebra will be denoted by J ¼ JðA; aÞ; clearly, Aþ identifies as a subalgebra of J
through the first factor. If K ffi k� k as in 1.9 splits, we obtain B ffi A� Aop for
some separable associative k-algebra A of degree 3 and t is the exchange involution,
allowing us to identify Aþ with HðB; tÞ via the diagonal embedding. Also, b¼ ða1;a2Þ
with a1; a2 2 k�, and applying 1.10 twice (cf. Petersson and Racine, 1986a, 3.8)
yields an explicit isomorphism JðK;B; t; u; bÞ ffi JðA; a1Þ extending the identity of
Aþ ¼ HðB; tÞ.

1.13. The Étale Tits Process

Let L;E be étale k-algebras of dimension 2; 3, respectively, and write s for the
nontrivial k-automorphism of L. Following Petersson and Thakur (to appear), we
apply 1.9 to K ¼ L;B ¼ E� L and t ¼ s, acting as 1E � s on B. Hence, given
u 2 E ¼ HðE� L; sÞ and b 2 L having the same nonzero norms, we may perform
the Tits process 1.9 to obtain the algebra JðE;L; u; bÞ ¼ JðL;E� L; s; u; bÞ. If
L ffi k� k splits, the étale Tits process becomes the étale first Tits construction
JðE; aÞ for some a 2 k� as in 1.12. Combining Petersson and Racine (1984b,
Theorem 1) with Petersson and Thakur (to appear, 1.6) and Petersson and
Racine (1996a, (1.10.2)), we conclude:

1.14 Theorem. Let L;E be étale k-algebras of dimension 2; 3, respectively, and
ðB; tÞ a central simple associative algebra of degree 3 with involution of the second

1026 Petersson
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kind over k. Given an isomorphic embedding i from E to J ¼ HðB; tÞ, the following
statements are equivalent.

(i) There exist invertible elements u 2 E; b 2 L having the same norms such
that i extends to an isomorphism from the étale Tits process JðE;L; u; bÞ
onto J .

(ii) Writing K for the centre of B, we have dðL=kÞ ¼ dðK=kÞ þ dðE=kÞ in
H1ðk;Z=2ZÞ.

In this case, dL=k ¼ dK=kdE=k in k�=k�2.

1.15. Springer Forms

Let J be a Jordan algebra of degree 3 over k and E � J a cubic étale subalgebra.
Following Petersson and Racine (1984a, Proposition 2.1), the assignment
ðv; xÞ 7�! �v� x gives E? the structure of a left E-module and, for every x 2 E?,
we may decompose x] ¼ �qEðxÞ þ rEðxÞ; qEðxÞ 2 E; rEðxÞ 2 E? to obtain a quadratic
form qE : E? �!E, called the Springer form of E in J . We are now in a position to
recall Petersson and Racine (1986b, 3.7).

1.16 Lemma. Notations being as in 1.15, suppose y 2 E? and qEðyÞ 2 E are both
invertible in J . Suppose further that the subalgebra J 0 of J generated by E and y

has dimension 9. Then

L ¼ k½X�=�X2 � X þ NJðyÞ�2
NJ

�
qEðyÞ

��

is a quadractic étale k-algebra,

u ¼ qEðyÞ 2 E�; b ¼ NJðyÞð1� XÞ mod
�
X2 � X þ NJðyÞ�2

NJ

�
qEðyÞ

�� 2 L�

have the same norms and J 0 ffi JðE;L; u; bÞ.

1.17. Reduced Models

Following Petersson and Racine (1996a, 2.8), every absolutely simple Jordan
algebra J of degree 3 over k has a unique reduced model, denoted by Jred, which
is characterized by the following condition: Jred is a reduced absolutely simple
Jordan algebra of degree 3 over k as in 1.7 satisfying J � F ffi Jred � F for every field
extension F=k which reduces J in the sense that the base change J � F is reduced
over F . We then call the co-ordinate algebra of Jred the coordinate algebra of J .

2. INVOLUTIONS AND PFISTER FORMS

2.0. Our aim in this section is to extend the construction of Haile et al. (1996)
(see also Knus et al., 1998) attaching a 3-fold Pfister form to any central simple
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associative algebra of degree 3 with involution of the second kind to base fields of
arbitrary characteristic. With an eye on applications later on, we begin the discussion
in a slightly more general setting. Concerning Pfister forms, we follow the notational
conventions of Knus et al. (1998, p. xxi).

2.1. Jordan Algebras of Degree 3 and Pfister Forms

Let J be an absolutely simple Jordan algebra of degree 3 over k whose generic
trace is nondegenerate. (The latter restriction only excludes the symmetric 3-by-
3 matrices over k and their isotopes for char k ¼ 2.) Writing C for the co-ordinate
algebra of J as in 1.17, the reduced model of J has the form Jred ffi H3ðC; gÞ for some
diagonal matrix g ¼ diagð�g1;�g2; 1Þ 2 GL3ðkÞ (1.7, 1.17). If F ¼ k� k� k stands
for the split étale cubic k-algebra, we may combine Petersson and Racine (1996a, 2.2)
with the relations

SE ffi h�dE=ki? h ðchar k 6¼ 2Þ; ð2:1:1Þ
S0E ffi NkfdðE=kÞþ1g ðchar k ¼ 2Þ; ð2:1:2Þ

valid for arbitrary cubic étale k-algebras E (Petersson and Racine, 1995, 3.3, 3.2), to
conclude that, in the terminology of 1.5,

S�J ffi S�F ?QJ ; ð2:1:3Þ

where

QJ :¼ QJred ffi hg1; g2;�g1g2i:NC ð2:1:4Þ

is as in (1.7.7). Hence

NC ?h�1i:QJ ffi hhg1; g2ii:NC ð2:1:5Þ

is an ðnþ 2Þ-fold Pfister form if C has dimension 2n.

2.2. The Pfister Form of an Involution

For the rest of this section, we fix a central simple associative algebra ðB; tÞ of
degree 3 with involution of the second kind over k. We write K ¼ CentðBÞ for the
centre of B and J ¼ HðB; tÞ for the Jordan algebra over k of t-symmetric elements
in B. Specializing 2.1 to J , we obtain C ffi K, and

b ¼ h�g1;�g2; g1g2i ð2:2:1Þ

is a nondegenerate symmetric bilinear form of dimension 3 and determinant 1
satisfying

S�J ffi S�F ?ðh�1ibÞ :NK; ð2:2:2Þ
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in accordance with Knus et al. (1998, (11.22)). Hence, as in Knus et al. (1998, (19.4)),

pðJÞ :¼ pðtÞ :¼ NK ? b :NK ð2:2:3Þ

is a 3-fold Pfister form, called the Pfister form of J (or of t). It is clear from the
construction that J and Jred have isometric Pfister forms. The connection with the
octonion algebra of J is the obvious one.

2.3 Proposition. Notations being as in 2.2, the Pfister form and the octonion norm
of J are isometric.

Proof. Writing Jred ¼ H3ðK; gÞ for some g ¼ diagð�g1;�g2; 1Þ 2 Gl3ðkÞ, we apply
(2.2.1), (2.2.3) and obtain pðJÞ ffi hhg1; g2ii:NK. On the other hand, by Petersson
and Racine (1996a, 2.7), Oct J ffi CayðK; g1; g2Þ as an iterated Cayley–Dickson
doubling process, and the assertion follows. &

Our next aim will be to show that the involution t up to isomorphism is uniquely
determined by its Pfister form, thus extending (Haile et al., 1996, Theorem 15) (or
Knus et al., 1998, (19.6)) to base fields of arbitrary characteristic.

2.4 Theorem. Notations being as in 2.2, let t0 be another involution of the second
kind on B and put J 0 ¼ HðB; t0Þ. Then the following statements are equivalent.

(i) t0 and t are conjugate, i.e., t ¼ Int ðuÞ 	 t0 	 Int ðuÞ�1 for some u 2 B�,
where Int ðuÞ stands for the inner automorphism of B determined by u.

(ii) ðB; t0Þ and ðB; tÞ are isomorphic, i.e., there exists a k-automorphism j of
B satisfying

j 	 t0 ¼ t 	 j:
(iii) J 0 and J are isomorphic.
(iv) S�J 0 and S�J are isometric.
(v) pðJ 0Þ and pðJÞ are isometric.
(vi) Oct J 0 and Oct J are isomorphic.

Proof. The implications (i) ) (ii) ) (iii) ) (iv) are obvious, whereas (iv) , (v) ,
(vi) follow from Witt cancellation in (2.2.2), (2.2.3) and from 2.3, respectively. We
also have (iii) ) (ii) by Jacobson (1976, Theorem 5 and p. 118). It therefore suffices
to establish the implications (v) ) (i) or (iv) ) (i). For char k 6¼ 2, this is just part of
Knus et al. (1998, (19.6)), so we may assume char k ¼ 2. Moreover, the argument
given in Knus et al. (1998, p. 305) works in this special case as well providing K or
B is split. We are thus allowed to assume that K is a field and B is a division algebra.
Then, however, the argument of loc. cit. breaks down, relying as it does on a theorem
of Bayer-Fluckiger and Lenstra (1990, Corollary 1.4) (see also Knus et al., 1998,
(6.17)), which has been proved in characteristic not 2 only. Therefore we are forced
to proceed in a different way, and we do so by reducing the case char k ¼ 2 to the
case char k 6¼ 2 as follows. First we note that (ii) implies (i) since B, being a division
algebra of degree 3 over K, does not allow any K-linear anti-automorphisms.
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Hence it suffices to establish the implication (vi) ) (iii). We do so by following
Teichmüller (1936) to find a local field k0 of characteristic 0 whose residue class field
is our given field k of characteristic 2. In what follows, free use will be made of the
noncommutative and nonassociative valuation theory developed in Schilling (1950)
and Petersson (1973, 1974a, 1975). First of all, ðB; tÞ; ðB; t0Þ have a unique lift to
unramified central associative division algebras ðB0; t0Þ; ðB0; t00Þ, respectively, of
degree 3 with involution of the second kind over k0 (Petersson, 1975, Theorem 1).
Clearly, K0 ¼ CentðB0Þ is an unramified quadratic field extension of k0, with residue
class field K, and J0 ¼ HðB0; t0Þ; J 00 ¼ HðB0; t00Þ are unramified Jordan division
algebras of degree 3 and dimension 9 over k0, with residue class algebras J ; J 0,
respectively (Petersson, 1975, Proposition 2). Setting C ¼ Oct J ;C0 ¼ Oct J 0;
C0 ¼ Oct J0; C

0
0 ¼ Oct J 00, we conclude C0 ffi C from (vi) and claim that it suffices

to show C0
0 ffi C0. Indeed, this implies J 00 ffi J0 since 2.4 is known to hold for k0,

and passing to the residue class algebras gives (iii). In order to prove C0
0 ffi C0, we first

establish the following intermediate result:

If C0 is split; so is C: If C0 is a division algebra; then C is the

residue class algebra of C0; hence a division algebra as well: ð2:4:1Þ

To do so, we begin by recalling that C0 is the co-ordinate algebra of the reduced
Albert algebra J0 ¼ JðB0; t0; 1; 1Þ (1.11). Furthermore, we write o0 for the valuation
ring of k0; p0 for the valuation ideal of o0;O0 for the valuation ring of K0 and M0 for
the valuation ring of B0. Then t0 restricts to an O0=o0-involution of M0, also written
as t0, such that HðM0; t0Þ is the valuation ring of J0. Furthermore, extending the
terminology of the Tits process (1.9) to the arithmetic setting in the obvious way,

M0 :¼ JðM0; t0; 1; 1Þ ¼ HðM0; t0Þ �M0 � J0

turns out to be an o0-order of J0 which, thanks to a theorem of Brühne (2000, 3.9.10),
is selfdual in the sense that it agrees with its dual lattice relative to the trace form.
Reduction mod p0 gives M0 � k ffi JðB; t; 1; 1Þ, so

C is the co-ordinate algebra of M0 � k: ð2:4:2Þ

We now distinguish the following cases.

Case 1. C0 is split.
Then C0 ffi Zorðk0Þ is the algebra of Zorn vector matrices over k0, and since M0,

being selfdual, is distinguished as an order in J0 (cf. Knebusch, 1965, Sec. 8; Racine
1972, IV Sec. 4 and Lemma 2), we conclude M0 ffi H3ðZorðo0ÞÞ (Racine, 1973, IV
Proposition 5). Reducing mod p0 and comparing with (2.4.2) implies C ffi ZorðkÞ,
hence the first part of (2.4.1).

Case 2. C0 is a division algebra.
Writing R0 for the valuation ring of C0, it follows from Brühne (2000, 3.4.7)

that M0 is isomorphic to H3ðR0; g0Þ for some diagonal matrix g0 2 GL3ðo0Þ. Again
reducing mod p0 and observing (2.4.2), we obtain the second part of (2.4.1).
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Noting that, by symmetry, (2.4.1) holds für C0;C0
0 as well, we are now ready to

prove that C0
0 and C0 are isomorphic. Indeed, if C0 ffi C are both split, so are C0

0;C0

by (2.4.1), and hence they are isomorphic. On the other hand, if C0 ffi C are both
division algebras, (2.4.1) implies that C0

0;C0 are unramified octonion division
algebras over k0 whose residue class algebras are isomorphic. But this implies
C0
0 ffi C0 by Petersson (1974a, Theorem 1), as desired.

2.5 Remark. (a) Garibaldi has proposed an approach to the implication (v) ) (i)
of 2.4 that is different from the one adopted here and relies on the Rost invariant of
algebraic groups (cf. Garibaldi et al., 2003 or Gille, 2000 for details). We merely
sketch the main ingredients of his approach. Following Garibaldi (2001), the desired
implication is equivalent to the Rost invariant having trivial kernel for groups of
type A2. To prove the latter, Knus et al. (1998, (19.6)) do the job for char k 6¼ 2.
Otherwise we choose k0 as above and use Bruhat–Tits theory to lift a group of type
A2 over k to a group of type A2 over k0. Since char k0 ¼ 0, the Rost invariant of the
latter has trivial kernel. This property being preserved under passage from k0 to k

(Gille, 2000, Théorème 2), the assertion follows.

(b) A substantial part of the preceding result may be phrased in purely Jordan-
theoretical terms as follows. Let J ; J 0 be absolutely simple Jordan algebras of degree
3 and dimension 9 over k and suppose they are isotopic. Then statements (iii)–(vi)
of 2.4 are equivalent.

2.6. Distinguished Involutions

The involution t of B is said to be distinguished if pðtÞ is hyperbolic or, what
amounts to the same, the octonion algebra of J ¼ HðB; tÞ is split (2.3). By 2.4,
distinguished involutions are unique up to conjugation, and over a finite field every
involution of the second kind on an algebra of degree 3 is distinguished. Before we
can establish the existence of distinguished involutions in general, we require a
preparation and define the index of a (possibly singular) quadratic form q over k,
denoted by indðqÞ, as the maximal dimension of totally isotropic subspaces of q. This
is clearly the ordinary Witt index if q is nonsingular or k has characteristic not 2.

2.7 Theorem. Notations being as in 2.2, let E � J be a cubic étale subalgebra. Then
the following statements are equivalent.

(i) t is distinguished.
(ii) Jred contains nonzero nilpotent elements.
(iii) SJ ffi ½�dK=k� ? 4h.
(iv) indðSJÞ 
 4:
(v) SJ jE? is isotropic.
(vi) indðS0JÞ 
 3.
(vii) indðS0JÞ 
 2.

Proof. The equivalence of (i)–(iv) has been established in Petersson and Racine
(1996a, 2.11). Furthermore, counting dimensions of totally isotropic subspaces we
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see that (iv) implies (v) and (vi). Since the implication (vi) ) (vii) is obvious, it
therefore remains to prove that both (v) and (vii) imply (i).

(v) ¼) (i). The property of SJ to be isotropic on E? by (1.11.1) carries over to
N ¼ NOct J .

(vii) ¼) (i). We first assume char k 6¼ 2. Then (vii) combines with (1.11.1) to
show that h�1i?N has index 
 2, forcing N to be isotropic. On the other hand,
assuming char k ¼ 2 and setting d ¼ dðK=kÞ þ 1 in H1ðk;Z=2ZÞ, (vii) combines with
(1.11.3) to show that the d-associate of N has index at least 2. But since N and Nd

agree on a linear hyperplane (1.3), N itself must be isotropic, and we are done
again. &

2.8 Remark. For char k 6¼ 2; 3, the equivalence of (i), (vi), (vii) may be found in
Knus et al. (1998, (19.10)); the characterization of distinguished involutions by
means of (v) seems to be new.

2.9 Lemma. Let E be a cubic étale k-algebra and u 2 E�. Then the quadratic form

qu : E �! k; x 7 �! quðxÞ :¼ TEðu; x]Þ
is isometric to hNEðuÞi: SE. In particular, E contains an invertible element v satisfying
quðvÞ ¼ 0 unless k ¼ F2 and E ffi k� k� k splits.

Proof. The assignment x 7 �! xu gives an isometry of the desired kind. Therefore,
since the quadratic trace of E satisfies the remaining assertion of the lemma
(Petersson and Racine, 1984b, Lemma 3), so does qu. &

2.10 Theorem. Notations being as in 2.2, let E � J be a cubic étale subalgebra.
Then there exists an invertible element v 2 E such that IntðvÞ 	 t is a distinguished
involution of B. In particular, B admits distinguished involutions fixing E.

Proof. By 1.14 there exist a quadratic étale k-algebra L as well as invertible
elements u 2 E; b 2 L satisfying NEðuÞ ¼ NLðbÞ such that J ffi JðE;L; u; bÞ. The case
of a finite field being obvious (put v ¼ 1), we may assume that k is infinite, whence
2.9 yields an invertible element v 2 E satisfying TEðuv]Þ ¼ 0. Since HðB; IntðvÞ 	 tÞ
is isomorphic to J ðvÞ, the v-isotope of J , and E? agrees with the orthogonal
complement of EðvÞ in J ðvÞ, it suffices to show that SJ ðvÞ is isotropic on E? (2.7).
Setting y ¼ ð0; 1Þ 2 E?, this follows from

SJðvÞ ðyÞ ¼ TJ

�ðv]; 0Þ; ð0; 1Þ]� ðby (1.4.3)Þ
¼ TJ

�ðv]; 0Þ; ð�u; tðbÞu�1Þ� ðby (1.9.2)Þ
¼ �TEðuv]Þ ðby (1.9.4)Þ
¼ 0: &

2.11 Corollary (cf. Haile et al., 1996, Proposition 17 or Knus et al., 1998,
(19:30)). Let t be a distinguished involution of B and E � B a cubic étale
k-subalgebra. Then HðB; tÞ contains a subalgebra isomorphic to E.
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Proof. By 2.4, it suffices to establish the existence of a distinguished involution t1
of B such that HðB; t1Þ contains E. In order to do so, we note that either k ¼ F2

and E ffi k� k� k splits or E ¼ k½x� for some x 2 E. While in the former case the
assertion is obvious, we may invoke (Knus et al., 1998, (4.18)) in the latter to find
a K=k-involution t0 of B satisfying E � HðB; t0Þ. Now 2.10 applies and proves what
we want. &

3. DISTINGUISHED INVOLUTIONS AND ÉTALE
FIRST TITS CONSTRUCTIONS

3.0. As in the preceding section, we let ðB; tÞ be a central simple associative
algebra of degree 3 with involution of the second kind over k and put
K ¼ CentðBÞ; J ¼ HðB; tÞ. We will be concerned with the interplay between
distinguished involutions and étale first Tits constructions. More specifically, we wish
to extend the description of this interplay given in Haile et al. (1996, Theorem 16)
and Knus et al. (1998, (19.14), (19.15), Ex. 19.9) to base fields of arbitrary
characteristic as follows.

3.1 Theorem. Notations being as in 3.0, the following statements are equivalent.

(i) t is distinguished.
(ii) There exists a cubic étale subalgebra E � J satisfying dðE=kÞ ¼ dðK=kÞ.
(iii) There exist a cubic étale subalgebra E � J and a 2 k� such that

J ffi JðE; aÞ is an étale first Tits construction.

This theorem answers a question raised by Petersson and Racine (1996a, 2.12)
in all characteristics. While the implication (iii) ) (i) has already been derived in
Petersson and Racine (1996a, 2.11), (ii) ) (iii) follows immediately from 1.14 and
1.12. It therefore remains to establish the implication (i) ) (ii), which is a difficult
result originally due to Albert (1963) for char k 6¼ 2; 3. Another approach working
in characteristic 2 as well (but still excluding characteristic 3) more recently
has been devised by Haile and Knus (1996); combined with Knus et al. (1998,
Ex. 19.9) it yields 3.1 in all characteristics. On the other hand, the approach
adopted here yields a few additional results of independent interest.

3.2 Lemma. Assume that t is distinguished and J is reduced. Then, given
d 2 H1ðk;Z=2ZÞ, there exists a cubic étale subalgebra E � J satisfying dðE=kÞ ¼ d.

Proof. By 2.11, it suffices to find g ¼ diagðg1; g2; g3Þ 2 GL3ðkÞ such that
J 0 ¼ H3ðK; gÞ contains a cubic étale subalgebra of the desired kind. We may
clearly assume d 6¼ 0. Given any g as above, Faulkner’s Lemma (1970, Lemma 1.5)
immediately adapts to the present set-up and shows that the Peirce-0-component of
J 0 relative to the diagonal idempotent e1 is given by

J 00ðe1Þ ¼ JðS00; e2 þ e3Þ;
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where S00 is the quadratic trace of J
0 restricted to J 00ðe1Þ and the right-hand side refers

to the Jordan algebra of a quadratic form with base point. Using (1.7.6), it now
follows easily that the minimum polynomial of

x ¼ e2 þ 1½23� 2 J 00ðe1Þ

in J 00ðe1Þ is X2 � X � g2g3. Writing M for the subalgebra of J 00ðe1Þ generated by x,
E :¼ ke1 �M � J 0 is a 3-dimensional subalgebra satisfying dðE=kÞ ¼ 1þ 4g2g3
modulo invertible squares for char k 6¼ 2 and dðE=kÞ ¼ g2g3 modulo Artin–Schreier
elements for char k ¼ 2. In any event, choosing g2; g3 appropriately, we obtain
dðE=kÞ ¼ d, and the proof is complete. &

3.3 Proposition. Notations being as in 3.0, we realize J ffi JðE;L; u; bÞ as an étale
Tits process, where L;E are étale k-algebras of dimension 2; 3, respectively, and
u 2 E; b 2 L are invertible elements satisfying NEðuÞ ¼ NLðbÞ. Then the Pfister form
of J satisfies

pðJÞ ffi NL ?hdE=kiðTEÞ�ðhuiÞ :NL

ffi NL ?hdE=ki : ðTEÞ�
�hui : ðNL � EÞ�:

Proof. This follows at once from Frobenius reciprocity (1.6.1) combined with
Petersson and Racine (1996a, 3.8, 3.9) and (1.3.4). &

3.4 Lemma. Hypotheses being as in 3.3, let us assume that J is a division algebra.
Given a nonzero element x 2 E� L, the minimum polynomial of y :¼ ð0; xÞ 2 J is
my ¼ X3 þ pX þ q, where

p ¼ �TE

�
uNLðxÞ

�
; q ¼ �TL

�
bNEðxÞ

�
:

Furthermore, F ¼ k½y� � J is a cubic subfield satisfying

dF=k ¼ 4TE

�
uNLðxÞ

�3 � 27TL

�
bNEðxÞ

�2

modulo nonzero squares and, if char k ¼ 2,

dðF=kÞ ¼ TE

�
uNLðxÞ

�3 þ TL

�
bNEðxÞ

�2

TL

�
bNEðxÞ

�2

modulo Artin–Schreier elements.

Proof. That my has the form as indicated follows immediately from (1.4.2)
combined with 1.9. The formula for the discriminant being standard, we are left
with the final formula in characteristic 2, which follows from Knus et al. (1998, p. 301)
or Petersson and Racine (1995, 3.6). &

Dealing with distinguished involutions has the technical advantage of allowing
some control over the discriminant of cubic étale subalgebras. This is mainly due
to 3.4 and the following fact.
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3.5 Lemma. Hypotheses being as in 3.3, let us assume that t is distinguished. Then

ðTEÞ�
�hui : ðNL � EÞ� ffi ðTEÞ�ðhuiÞ :NL ffi hdK=ki :NL þ 2h:

Furthermore, if E and L are fields, every d 2 K yields invertible elements
u1 2 E; b1 2 L satisfying NEðu1Þ ¼ NLðb1Þ; J ffi JðE;L; u1; b1Þ and TEðu1Þ ¼ d.

Proof. Since

pðJÞ ffi NL ?hdE=kiðTEÞ�ðhuiÞ :NL (by 3.3)

is hyperbolic, we obtain

hdE=kiðTEÞ�ðhuiÞ :NL ¼ h�1i :NL

in the Witt group of k, hence

ðTEÞ�ðhuiÞ :NL ¼ h�dE=ki :NL

¼ hdK=ki h�dL=ki :NL (by 1.14)

¼ hdK=ki :NL (by (1.3.4)).

Comparing dimensions, yields the desired formula. In particular, the quadratic form

ðTEÞ�
�hui : ðNL � EÞ�

being isotropic, must be universal, so some w 2 ðE� LÞ� satisfies TE

�
uNLðwÞ

� ¼ d.
Setting u1 :¼ uNLðwÞ; b1 :¼ bNEðwÞ and invoking 1.10 completes the proof. &

3.6 Proposition. Notations being as in 3.0, assume that t is distinguished and k has
characteristic not 3. Then there exists a cubic étale subalgebra F � J satisfying
dðF=kÞ ¼ dðK0=kÞ where

K0 ¼ k½X�=ðX2 � X þ 1Þ:

Proof. By 3.2 and 1.14, we may assume that J ffi JðE;L; u; bÞ is a division algebra
arising from the étale Tits process as in 3.3. Then 3.5 yields a nonzero element
x 2 E� L satisfying TE

�
uNLðxÞ

� ¼ 0. Putting y ¼ ð0; xÞ 2 J and F ¼ k½y� � J , 3.4
implies dF=k ¼ �3 ¼ dK0=k in k�=k�2 and dðF=kÞ ¼ 1 ¼ dðK0=kÞ in k=}ðkÞ for
char k ¼ 2. &

3.7. Proof of 3.1. (i) ¼) (ii) for char k 6¼ 3.
By 3.2 we may assume that J is a division algebra. By 3.6 combined with 1.14, we

may further assume that J ffi JðE;L; u; bÞ arises from the étale Tits process as in 3.3
where E satisfies dðE=kÞ ¼ dðK0=kÞ. After these reductions, we apply Petersson and
Racine (1996a, 4.1) to conclude that some isotope of J is a unital Tits process. More
precisely, there exists a K=k-involution t0 of B satisfying J 0 :¼ HðB; t0Þ ffi JðE;L; 1; b0Þ
for some b0 2 L having norm 1, but not belonging to k1 since, otherwise, J 0 would be
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reduced. Applying 3.4 to x ¼ 1 2 E� L, we now obtain a separable cubic subfield
F � J 0 which satisfies

dF=k ¼ �3
�
TLðb0Þ2 � 4NLðb0Þ

� ¼ dK0=kdL=k

in k�=k�2. Furthermore, for char k ¼ 2, we obtain

dðF=kÞ ¼ 1þ NLðb0Þ
TLðb0Þ2

¼ dðK0=kÞ þ dðL=kÞ

in k=}ðkÞ. Hence in all characteristics 6¼ 3 we have dðF=kÞ ¼ dðE=kÞþ
dðL=kÞ ¼ dðK=kÞ (by 1.14), so J 0 is an étale first Tits construction arising from F .
But this implies that t0 is distinguished ((iii) ) (i) of 3.1), forcing J and J 0 to be
isomorphic. Hence, as J 0 satisfies 3.1 (ii), so does J . &

It remains to prove the implication (i) ) (ii) of 3.1 for char k ¼ 3. Actually, the
following generalization can be established in this special case.

3.8 Theorem. Notations being as in 3.0, let us assume that t is distinguished and k

has characteristic 3. Then one of the following holds.

(a) K ffi k� k splits, and every separable cubic subfield of J is cyclic.
(b) Every d 2 k allows a cubic subalgebra of J having discriminant dmod k�2.

Proof. If J is reduced, it contains nilpotent elements other than zero (2.7), hence (b)
holds (3.2). We may therefore assume that J is a division algebra. Since J contains
cyclic cubic subfields (Petersson, 1999a, Theorem 3), it suffices to establish the
following claim.

Either (b) holds or every cubic subfield of J has discriminant dK=k mod k�2.
To prove this, suppose E � J is a separable cubic subfield satisfying dE=k 6¼ dK=k

in k�=k�2. Then J ffi JðE;L; u; bÞ arises from the étale Tits process as in 3.3, and L is a
field (1.14). Moreover, given d 2 k, we may assume TEðuÞ ¼ �ddL=k (3.5). Choosing
y 2 L satisfying L ¼ k½y�; y2 ¼ dL=k, we may apply 3.4 to x ¼ 1� y 2 E� L to
obtain a cubic subfield F � J such that dF=k ¼ TE

�
uNLðxÞ

� ¼ d in k�=k�2. Hence
(b) holds, and the proof is complete. &

3.9 Remark. (a) If J as in 3.8 is a division algebra, conditions (a) and (b) hold
simultaneously if and only if k is quadratically closed.

(b) As observed in Haile and Knus (1996), Wedderburn’s theorem on the
cyclicity of central associative division algebras D of degree 3 is a special case of 3.1:
Put B ¼ D�Dop and let t be the exchange involution.

4. ALBERT ALGEBRAS AND PFISTER FORMS

4.0. In this section, we will be concerned with the invariants mod 2 of Albert
algebras in arbitrary characteristic. The cohomological interpretation of these
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invariants (cf. Serre, 1995; Knus et al., 1998), which has to be modified in character-
istic 2 along the general lines indicated in Garibaldi et al. (2003), will not be
discussed here any further. Instead, we rely exclusively on their description by means
of Pfister forms. Throughout this section, J will be an arbitrary Albert algebra over k.

4.1. The Invariants mod 2 as Pfister Forms

Specializing 2.1 to J as in 4.0, the co-ordinate algebra C of J is an octonion
algebra over k, and the norm of C, i.e.,

p3ðJÞ ¼ NC; ð4:1:1Þ

is a 3-fold Pfister form, called the 3-invariant mod 2 of J . If J ffi JðB; t; u; bÞ arises
from a central simple associative algebra ðB; tÞ of degree 3 with involution of the
second kind by means of the Tits process as in 1.9, where u 2 HðB; tÞ; b 2 CentðBÞ
are invertible elements having the same norms, p3ðJÞ becomes isometric to the Pfister
form of tðuÞ ¼ IntðuÞ 	 t (Petersson and Racine, 1995, 1.8 combined with 2.3, or
Knus et al., 1998, (40.2)). On the other hand, returning to 2.1, in particular (2.1.5),

p5ðJÞ ¼ hhg1; g2ii :NC ffi NC ?h�1i :QJ ð4:1:2Þ

is a 5-fold Pfister form, called the 5-invariant mod 2 of J . Clearly, the invariants
mod 2 of J and Jred are the same. Also, by Racine’s characteristic-free version
(Racine, 1972, Theorem 3) of Springer’s criterion (1960), combined with the connec-
tion between SJ and QJ (1.7), two reduced Albert algebras are isomorphic if and
only if they have the same invariants mod 2. For char k 6¼ 2, the Arason invariants
fiðJÞ of piðJÞði ¼ 3; 5Þ yield the cohomological invariants mod 2 of J : fiðJÞ 2
Hiðk;Z=2ZÞ.

Our principal aim in this section is to give various characterizations of
those Albert algebras (some of) whose invariants mod 2 are hyperbolic. Since the
5-invariant is a multiple of the 3-invariant, by (4.1.1), (4.1.2), its hyperbolicity is
the weaker condition of the two and will therefore be discussed first. We begin with
two simple technicalities.

4.2 Lemma. Let J 0 be an absolutely simple Jordan algebra of degree 3 over k

whose generic trace is nondegenerate and E � J 0 a cubic étale subalgebra. Then

h?QJ 0 ffi NDðEÞ ? ðSJ 0 jE?Þ:

Proof. Since both sides have the same dimension, it suffices to carry out the
following computations in the Witt group of k. We first assume char k 6¼ 2. Then
(2.1.1), (2.1.3) imply

h�1i þQJ 0 ¼ SJ 0 ¼ SE þ ðSJ 0 jE?Þ
¼ h�dE=kiþ ðSJ 0 jE?Þ;
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and, adding h1i to both sides, the assertion follows. We are left with the case
char k ¼ 2. Then (2.1.2), (2.1.3) yield

Nkf1g þQJ 0 ¼ S0J 0 ¼ S0E þ ðSJ 0 jE?Þ
¼ NkfdðE=kÞþ1g ? ðSJ 0 jE?Þ;

and, passing to the 1-associates of both sides, (1.3.1), (1.3.2) lead to the desired
conclusion. &

The second technicality is an exercise in characteristic 2.

4.3 Lemma. Let R be a commutative associative k-algebra of degree 2 whose
generic trace is identically zero, g 2 GL3ðkÞ a diagonalmatrix andE � J 0 ¼ H3ðR; gÞ
a cubic étale subalgebra. For an element y 2 J 0, orthogonal to E relative to the
generic trace, to be nilpotent it is necessary and sufficient that SJ 0 ðyÞ ¼ 0.

Proof. The condition is clearly necessary. Conversely, suppose SJ 0 ðyÞ ¼ 0. After a
suitable base field extension we may assume that E ffi k� k� k is split. The relations
NRðu; vÞ ¼ TRðu; vÞ ¼ 0 for all u; v 2 R imply that R is a local k-algebra, its residue
field being purely inseparable of exponent 1 over k. Hence J 0 is simple modulo its
radical, and every complete orthogonal system of absolutely primitive idempotents
in J 0 is connected. Since R, thanks to the Isotopy Theorem of Petersson (1978),
is an invariant of J 0, reco-ordinatizing if necessary allows us to assume that E sits
diagonally in J 0. Extending the notational conventions of 1.7 to the present
more general set-up, and representing y as in (1.7.1), we conclude bi ¼ 0 for all
i;TJ 0 ðyÞ ¼ 0 (since y 2 E?), SJ 0 ðyÞ ¼ 0 (by hypothesis) and NJ 0 ðyÞ ¼ g1g2g3TRðv1v2v3Þ
(by (1.7.2)) ¼ 0. Hence (1.4.2) shows that y is nilpotent. &

4.4 Theorem. Notations being as in 4.0, let E � J be a cubic étale subalgebra. Then
the following statements are equivalent.

(i) p5ðJÞ is hyperbolic.
(ii) indðQJÞ 
 8.
(iii) QJ is isotropic.
(iv) indðSJÞ 
 9 for char k 6¼ 2; indðS0JÞ 
 8 for char k ¼ 2.
(v) indðS�JÞ 
 3.
(vi) Jred contains nonzero nilpotent elements.
(vii) indðSJ jE?Þ 
 7.
(viii) SJ jE? is isotropic.
(ix) There exist a central simple associative algebra ðB; tÞ of degree 3 with

distinguished involution of the second kind and invertible elements
u 2 B; b 2 CentðBÞ having the same norms such that J ffi JðB; t; u; bÞ.

Proof. (i) ¼) (ii). Since h�1i :QJ is a subform of p5ðJÞ (4.1.2), this follows by
counting dimensions of totally isotropic subspaces.
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The implications (ii) ) (iii), (iv) ) (v), (vii) ) (viii) are clear.

(iii) ¼) (i). (4.1.2) shows that the Pfister form p5ðJÞ is isotropic, hence
hyperbolic.

(ii) ¼) (iv). This follows immediately from (2.1.3), (2.1.1).

(v) ¼) (iii). For char k ¼ 2, we conclude from (2.1.3) that QJ is isotropic.
For char k 6¼ 2, (2.1.1), (2.1.3) give h1i?SJ ffi 2h?QJ , and we arrive at the same
conclusion.

(iii) () (vi). Since QJ ffi QJred , this is simply a restatement of 1.8.

(ii) ¼) (vii). Assuming (ii) and combining 4.2 with a dimension count of
totally isotropic subspaces yields (vii).

(viii) ¼) (ix). This requires a bit more effort. It obviously suffices to show the
existence of some ðB; tÞ as in (ix) such that HðB; tÞ is isomorphic to a subalgebra of
J . We begin by choosing a nonzero element y 2 E? satisfying SJðyÞ ¼ 0 and denote
by J 0 the unital subalgebra of J generated by E and y. Then dimk J

0 � 9. We now
consider the following cases.

Case 1. J 0 is a division algebra.
Then J 0 is absolutely simple of degree 3 and dimension 9. Since SJ becomes

isotropic on E? \ J 0, we conclude from 2.7 that J 0 has the form HðB; tÞ for some
central simple associative algebra ðB; tÞ of degree 3 with distinguished involution
of the second kind.

Case 2. J 0 is not a division algebra.
Then J is reduced, and our first aim will be to show that it contains nonzero

nilpotent elements. Assume the contrary. Then the base field is infinite and J 0 is semi-
simple of degree 3. If J 0 were not simple, it would have the form J 0 ¼ kc� J 00 as a
direct sum of ideals for some nonzero idempotent c 2 J 0 and some Jordan algebra
J 00 corresponding to a nondegenerate quadratic form with base point (Racine,
1972, Theorem 1). But since k is infinite and hence J 0 is generated by two elements,
so is J 00. This implies dimk J

00 � 3, and we conclude J 0 ¼ E� ky. Passing now to the
separable closure ks of k, we may co-ordinatize J � ks ffi H3ðCsÞ;Cs being the split
octonions over ks, in such a way that E� ks corresponds to the diagonal matrices.
Then y ¼ y� 1 2 J 0 � ks belongs to the sum of off-diagonal Peirce spaces relative
to the complete orthogonal system of diagonal idempotents. All Peirce components
of y belonging to J 0 � ks as well, we may in fact assume y ¼ v1½23� for some v1 2 Cs

since dim J 0 ¼ 4.WritingNs for the norm ofCs, we now concludeNsðv1Þ ¼ �SJðyÞ ¼ 0
from (1.7.6), and (1.7.3) implies y] ¼ 0, hence y2 ¼ y] þ TJðyÞy� SJðyÞ1 (by (1.4.1))¼ 0,
contradicting the absence of nilpotent elements in J . This contradiction shows that
J 0 is simple of dimension at most 9. Hence there exists a two-dimensional composi-
tion algebra K over k and a diagonal matrix g 2 GL3ðkÞ satisfying J 0 � J1 :¼
H3ðK; gÞ � J . By construction, SJ becomes isotropic on E? \ J1. Hence it follows
from 2.7 if K is étale, and from 4.3 otherwise, that J1 ffi J1red contains nonzero nil-
potent elements, again a contradiction. We have thus shown that J itself contains
nonzero nilpotent elements, allowing us to co-ordinatize it as J ffi H3ðC; gÞ;C being

Structure Theorems for Jordan Algebras 1039

D
ow

nl
oa

de
d 

by
 [

Fe
rn

U
ni

ve
rs

ita
et

] 
at

 0
5:

37
 1

0 
M

ar
ch

 2
01

5 



ORDER                        REPRINTS

the coordinate algebra of J and g ¼ diagð1;�1; 1Þ (1.8). Let K be any quadratic
étale subalgebra of C. Then J1 ffi H3ðK; gÞ contains nonzero nilpotent elements
and hence corresponds to a central simple associative algebra of degree 3 over k

with distinguished involution of the second kind.

(ix) ¼) (vi). We put J 0 :¼ HðB; tÞ. Since t is distinguished, J 0red contains non-
zero nilpotent elements (2.7) and hence may be co-ordinatized as J 0red ffi H3ðK; gÞ for
some quadratic étale k-algebra K and g ¼ diagð1;�1; 1Þ. Writing C for the co-
ordinate algebra of J , we conclude that Jred ffi H3ðC; gÞ (Petersson and Racine,
1996a, 2.5) contains nonzero nilpotent elements as well. &

4.5 Remark. Assume char k 6¼ 2. Then the equivalence of (i), (ix) and

ðxÞ indðTJÞ 
 8

is due to Knus et al. (1998, (40.7)). Here condition (x) fits into 4.4 as follows. Since SJ
and TJ up to a sign agree on linear hyperplane of J (by (1.4.4)), their Witt indices
differ by at most 1. Hence (iv) implies (x) and (x) implies (v), showing without
recourse to loc. cit. that (i)–(x) are equivalent.

4.6. Isotopy vs. Isomorphism of Albert Division Algebras

While it is easy to construct reduced Albert algebras which are isotopic but not
isomorphic, the case of Albert division algebras is more difficult. A unified solution
to this problem, for whose geometric significance we refer to Tits and Weiss (2002,
Sec. 38), will be given in the following application of 4.4.

4.7 Theorem (cf. Tits and Weiss, 2002, (38.9)). Notations being as in 4.0, let E � J

be a cubic étale subalgebra. Then there exists a v 2 E� such that p5ðJ ðvÞÞ is
hyperbolic. In particular, if p5ðJÞ is anisotropic, J ðvÞ cannot be isomorphic to J .

Proof. We may assume that k is infinite. Then Zariski density produces an element
y 2 E? satisfying the hypotheses of 1.16. Hence the subalgebra of J generated by E

and y, as it arises from the étale Tits process (1.16), has the form HðB; tÞ for some
central simple associative k-algebra ðB; tÞ of degree 3 with involution of the second
kind. By 2.10, some v 2 E� makes IntðvÞ 	 t a distinguished involution, and 4.4
implies that p5ðJ ðvÞÞ is hyperbolic. &

4.8. Example: Generic Matrices

Let J be the Albert algebra of generic matrices of k (Petersson, 1999b). Thus J is
anAlbert division algebra over some extension field of k (Petersson, 1999b, Theorem1)
and, given any separable cubic subfield E � J ; SJ is anisotropic on E? (Petersson,
1999b, Theorem 2). Hence p5ðJÞ is anisotropic as well (4.4), so E contains an
invertible element v such that J and J ðvÞ are not isomorphic (4.7).

We now pass to the 3-invariant mod 2 of J . The following technical result
generalizes Petersson and Racine (1996b, (4.12)). For simplicity, we confine ourselves
to division algebras.
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4.9 Lemma. Let ðB; tÞ be a central simple associative k-algebra of degree 3 with
involution of the second kind and b 2 K ¼ CentðBÞ satisfy NKðbÞ ¼ 1. Assume that
J ¼ JðB; t; 1; bÞ is a division algebra and let E � HðB; tÞ be a separable cubic
subfield. Writing J 0 for the subalgebra of J generated by E and y ¼ ð0; 1Þ 2 J , there
exists an element b0 2 K satisfying NKðb0Þ ¼ 1 and J 0 ffi JðE;K; 1; b0Þ.

Proof. J being a division algebra, we obtain K ¼ k½b� since, otherwise, b ¼ �1
would be a generic norm of B. Also, by (1.9.1), (1.9.2), TKðbÞ ¼ NJðyÞ 6¼ 0 and
y] ¼ ð�1; tðbÞÞ. Thus, since J 0 is a division algebra of degree 3 and dimension 9,
we may apply 1.16 to conclude J 0 ffi JðE;L; 1; b0Þ, where L ¼ k½c� is the quadratic
étale k-algebra generated by an element c with minimum polynomial X2�XþTKðbÞ�2

over k and b0 2L has norm 1. Hence b and TKðbÞc have the same minimum
polynomial, and the proof is complete. &

4.10 Theorem. Notations being as in 4.0, let E � J be a cubic étale subalgebra.
Then the following statements are equivalent.

(i) p3ðJÞ is hyperbolic.
(ii) QJ is hyperbolic.
(iii) indðQJÞ 
 9.
(iv) SJ has maximal Witt index for char k 6¼ 2, and ind ðS0JÞ 
 12 for

char k ¼ 2.
(v) indðS�JÞ 
 11.
(vi) indðSJ jE?Þ 
 11.
(vii) indðSJ jE?Þ 
 10.
(viii) Jred is split.
(ix) Every reducing field of J splits J .
(x) J is a first Tits construction.

Proof. (i) ¼) (ii). p5ðJÞ ffi p3ðJÞ ?h�1i :QJ (by (4.1.1), (4.1.2)), being a multiple
of p3ðJÞ, must be hyperbolic as well, giving (ii).

The implications (ii) ) (iii), (iv) ) (v), (vi) ) (vii) are clear.

(iii) ¼) (i). Combining (iii) with 4.4 we conclude that Jred contains nonzero nil-
potent elements and hence has the form Jred ffi H3ðC; gÞ, where C is the co-ordinate
algebra of J and g ¼ diagð1;�1; 1Þ (1.8). This implies QJ ¼ QJred ¼ h1;�1; 1i : p3ðJÞ
(by (1.7.2)) ¼ p3ðJÞ in the Witt group of k, and (i) follows.

(ii) ¼) (iv). This follows from (2.1.3), (2.1.1).

(v) ¼) (iii). This follows from (2.1.3) by counting dimensions of totally isotropic
subspaces.

(ii) ¼) (vi). This follows from 4.2 by counting dimensions of totally isotropic
subspaces.

(vii) ¼) (iii). Dito.
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(i) () (viii). This follows from p3ðJÞ ffi p3ðJredÞ.
(viii) ¼) (ix). Every reducing field E of J satisfies J � E ffi Jred � E (by 1.17)

and this is split.

(ix) ¼) (viii). There exists a field extension of degree 1 or 3 which splits J ,
hence Jred. By Springer’s Theorem, Jred must have been split to begin with.

(x) ¼) (ix). This is Petersson and Racine (1984a, Corollary 4.2).

(ix) ¼) (x). We may assume that J is a division algebra. By Petersson and
Racine (1984a, Theorem 4.8) all isotopes of J are isomorphic, so J can be obtained
by the unital Tits Process (Petersson and Racine, 1996a, 4.2): There exist a central
simple associative algebra ðB; tÞ of degree 3 with involution of the second kind as
well as an element b 2 K ¼ CentðBÞ satisfying NKðbÞ ¼ 1 and J ffi JðB; t; 1; bÞ. By
4.1, and since (i) holds, t is distinguished. Hence 3.1 yields a separable cubic subfield
E � HðB; tÞ satisfying dðE=kÞ ¼ dðK=kÞ, and 4.9 yields an element b0 2 K having
norm 1 such that the unital étale Tits process J 0 ¼ JðE;K; 1; b0Þ becomes a sub-
algebra of J . But by 1.14, J 0 has the form Dþ for some central associative division
algebra D of degree 3 over k, forcing J to be a first Tits construction. &

4.11 Remark. (a) Assume char k 6¼ 2. Arguing as in 4.5, we see that (i)–(x) of 4.9
are equivalent to

ðxiÞ indðTÞ 
 12,

thus recovering most of Knus et al. (1998, (40.5)).

(b) Assume chark ¼ 2. Then (2.1.2), (2.1.3) show that, if (i)–(x) of 4.9 hold,
S0J has maximal Witt index if and only if k contains the cube roots of 1. Thus 4.9
generalizes Petersson and Racine (1984a, Theorem 4.7) (see Knus et al., 1998, (40.6)).

5. A SKOLEM–NOETHER THEOREM FOR ALBERT ALGEBRAS

5.0. We now proceed to derive a Skolem–Noether type theorem, due to Parimala
et al. (1998) over base fields of characteristic not 2 or 3, in full generality. To this
end, we fix a central simple associative k-algebra ðB; tÞ of degree 3 with involution
of the second kind and write K ¼ CentðBÞ for the centre of B.

Besides the invariants mod 2 of an Albert algebra J , its invariant mod 3, denoted
by g3ðJÞ, also plays a central role in our subsequent investigation. We refer to Knus
et al. (1998, p. 537) for the definition of this invariant and to Rost (1991) for an
existence proof (provided char k 6¼ 2; 3). An elementary approach valid in all
characteristics has been described by Petersson and Racine (1996b, 1997). In
particular, we always know that J is a division algebra if and only if g3ðJÞ 6¼ 0.
Hence a standard argument, reproduced in Petersson and Racine (1994, p. 204)
or Knus et al. (1998, proof of (40.10)), for example, leads to the following general
conclusion.
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5.1 Proposition. Let A be a central simple associative algebra of degree 3 over k.
Then, given a; a0 2 k�, the following statements are equivalent.

(i) JðA; a0Þ and JðA; aÞ are isomorphic.
(ii) g3ðJðA; a0ÞÞ ¼ g3ðJðA; aÞÞ.
(iii) There exists w 2 A� satisfying a0 ¼ NAðwÞa.
(iv) The identity of A extends to an isomorphism from JðA; a0Þ onto JðA; aÞ.

Actually, the aforementioned theorem of Parimala–Sridharan–Thakur (which
we shall now represent in full generality) specializes to 5.1 if K is split, forcing
ðB; tÞ to have the form ðA� Aop; eÞ for some central simple associative algebra
A of degree 3, e being the exchange involution.

5.2 Theorem. Notations being as in 5.0, let u; u0 2 HðB; tÞ; b; b0 2 K be invertible
elements satisfying NBðuÞ ¼ NKðbÞ;NBðu0Þ ¼ NKðb0Þ. Then, setting J ¼ JðB; t; u; bÞ;
J 0 ¼ JðB; t; u0; b0Þ, the following statements are equivalent.

(i) J 0 and J are isomorphic.
(ii) J 0 and J are isotopic.
(iii) p3ðJ 0Þ ffi p3ðJÞ and g3ðJ 0Þ ¼ g3ðJÞ.
(iv) There exists w 2 B� satisfying u0 ¼ wutðwÞ; b0 ¼ NBðwÞb.
(v) The identity of HðB; tÞ extends to an isomorphism from J 0 onto J .

5.3 Proof of 5.2, Part I. The implications (v) ) (i) ) (ii) are obvious. For the
implication (ii) ) (iii) we refer to Thakur (1999, Theorem 2.2), where the restrictions
on the characteristic are actually unnecessary. Finally, since the implication (iv) )
(v) immediately follows from 1.10, it remains to show that (iii) implies (iv). To do
so, we require a preparation, generalizing Knus et al. (1998, (40.13)) to base fields
of arbitrary characteristic. &

5.4 Lemma. Let w 2 B� and suppose l ¼ NBðwÞ 2 K� satisfies NKðlÞ ¼ 1. Then
there exists an element w0 2 B� satisfying l ¼ NBðw0Þ and w0tðw0Þ ¼ 1.

Proof. We adapt the proof of Petersson and Thakur (to appear, 4.5) to the
present set-up and first assume that J1 ¼ HðB; tÞ is reduced, having the form
H3ðK; gÞ for some diagonal matrix g 2 GL3ðkÞ. This implies B ¼ M3ðKÞ, and
w0 ¼ diagð1; 1; lÞ 2 B does the job. We are left with the case that J1 is a division
algebra. Choosing m 2 K� such that l ¼ mtðmÞ�1, we pick y 2 K � k satisfying
TKðyÞ ¼ 1 and k 2 K� satisfying tðkÞ ¼ �k to define a cubic form F : J1 � k�! k by

F
�ðx; xÞ� :¼ k tðmÞNBðxþ xy1Þ � mNBðxþ xð1� yÞ1�� �

for x 2 J1; x 2 k. Then we distinguish the following cases.

Case 1. K ffi k� k splits.
Then ðB; tÞ ffi ðA� Aop; eÞ where A is a central simple associative k-algebra

of degree 3 and e stands for the exchange involution on A� Aop, forcing
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l ¼ ða; a�1Þ; a ¼ NAðw1Þ for some w1 2 A�. Hence w0 :¼ ðw1;w
�1
1 Þ does the job. We

also claim that F is isotropic. To see this, we write y ¼ ðb; 1� bÞ; b 2 k; 2b 6¼ 1 and
may assume m ¼ ða; 1Þ as well as w1 6¼ 1 (otherwise F

�ð1; 0Þ� ¼ 0). Setting
u ¼ ðw1 � 1Þ�1

�
b1þ ðb� 1Þw1

� 2 A and x ¼ ðu; uÞ 2 J1, a routine computation
gives F

�ðx; 1Þ� ¼ 0.

Case 2. K is a field.
We may assume l 6¼ 1. Since F , by the discussion of Case 1, becomes isotropic

after extending scalars from k to K, it must have been so all along (Springer and
Veldkamp, 2000, 4.2.11). This yields a nonzero element ðx; xÞ 2 J1 � k such that

tðmÞNBðxþ xy1Þ ¼ mNB

�
xþ xð1� yÞ1� ¼ mNB

�
tðxþ xyÞ�:

Hence xþ xy1 2 B�, and w0 ¼ ðxþ xy1Þtðxþ xy1Þ�1 satisfies l ¼ NBðw0Þ as well
as w0tðw0Þ ¼ 1, since the factors of w0 belong to the K-algebra generated by x and
hence commute. This completes the proof. &

5.5 Proof of 5.2, Part II. We can now settle the sole remaining implication
(iii) ) (iv) of 5.2. If K ffi k� k splits, J and J 0 are first Tits constructions, so 5.1
combines with 1.12 to give (iv). Hence we may assume that K is a field. Changing
scalars from k to K transforms J and J 0 into the first Tits constructions
JðB; bÞ; JðB; b0Þ, respectively, having the same invariant mod 3. This implies
b0 ¼ NBðw1Þb for some w1 2 B� (5.1), allowing us to assume b ¼ b0 (1.10). On the
other hand, we conclude from 4.1 that p3ðJÞ; p3ðJ 0Þ are the Pfister forms of the
involutions tðuÞ ¼ IntðuÞ 	 t; tðu0Þ ¼ Intðu0Þ 	 t, respectively, on B. Since p3ðJÞ ffi p3ðJ 0Þ
by (iii), we may apply 2.4 to find an invertible element v 2 B satisfying tðu

0Þ ¼
IntðvÞ	 tðuÞ 	 IntðvÞ�1. This implies u0 ¼avutðvÞ for some a 2 k�. Using the relations
NBðuÞ ¼ NKðbÞ ¼ NBðu0Þ, we deduce a3NBðvÞt

�
NBðvÞ

� ¼ 1, so v1 ¼ a2NBðvÞv 2 B�

satisfies v1utðv1Þ ¼ u0. Performing the same computations again, with v1; 1 in place
of v; a, respectively, we see that l ¼ NBðv1Þ satisfies ltðlÞ ¼ 1. Applying 5.4 to l�1

and tðu
0Þ yields an element v2 2 B� such that NBðv2Þ ¼ l�1; v2tðu

0Þðv2Þ ¼ 1. The latter
amounts to u0 ¼ v2u

0tðv2Þ, so w ¼ v2v1 satisfies all requirements of (iv) in 5.2. &

5.6 Remark. (a) In the spirit of Thakur (1999, Theorem 2.1) and its proof, 5.2
generalizes easily to the situation where two distinct involutions of the second kind
(rather than t alone) are allowed on B; no restrictions on the characteristic have to be
imposed.

(b) Just as in Knus et al. (1998, (40.15)) or Parimala et al. (1998, Sec. 3) one
may use 5.1, 5.2 to establish the classical Skolem–Noether theorem for 9-dimensional
separable subalgebras of Albert algebras in arbitrary characteristic.

6. THE TITS PROCESS AND PFISTER FORMS

6.0. As before, we let ðB; tÞ be a central simple associative algebra of degree 3 over k
with involution of the second kind and write K ¼ CentðBÞ for the centre of B. In 3.3
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we have described the Pfister form of J ¼ HðB; tÞ explicitly in terms of parameters
needed to realize J by means of the étale Tits process. On the other hand, for
char k 6¼ 2, (Knus et al. 1998, (19.25)) provides a similar description in terms of K
and an arbitrary cubic étale k-subalgebra of J . It is the purpose of the present section
to compare these two descriptions. In doing so, we will obtain a version of Knus
et al. (1998, (19.25)) that is valid in all characteristics. Our approach is based on a
number of elementary computations in the Witt group of k.

6.1 Lemma. Let E be a cubic étale k-algebra and u 2 E an invertible element.
Then

ðTEÞ�ðhuiÞ :NDðEÞ ¼ hNEðuÞi :NDðEÞ

in the Witt group of k.

Proof. By Springer’s theorem, we may assume E ¼ k� D;D ¼ DðEÞ. Then u ¼
ða; vÞða 2 k�; v 2 D�Þ, forcing ðTEÞ�ðhuiÞ ¼ hai? ðTDÞ�ðhviÞ, hence

ðTEÞ�ðhuiÞ :ND ¼ hai :ND þ ðTDÞ�ðhviÞ :ND ¼ hai :ND

in the Witt group of k since ðTDÞ�ðhviÞ :ND ¼ ðTDÞ�
�hvi: ðND � DÞ� (by Frobenius

reciprocity (1.6.1)) is hyperbolic. On the other hand, NEðuÞ ¼ aNDðvÞ implies

hai :ND ¼ hNEðuÞihNDðvÞi :ND ¼ hNEðuÞi :ND: &

6.2 Lemma. Notations being as in 6.0, let E � J be any cubic étale subalgebra and
write L for the quadratic étale k-algebra corresponding to dðK=kÞ þ dðE=kÞ 2
H1ðk;Z=2ZÞ: Then

pðJÞ ffi h�dK=ki : pðJÞ ffi h�dL=ki: pðJÞ ffi hdE=ki : pðJÞ: &

Proof. Since pðJÞ is a multiple of NK (by (2.2.3)) and of NL as well (by 3.3), the
first two relations follow from (1.3.4). Now 1.14 implies the rest. &

6.3 Lemma. Notations being as in 6.2,

NL ¼ NDðEÞ þ hdE=ki :NK

in the Witt group of k.

Proof. The idea is to compute the dðE=kÞ-associate of NK ? h in two different ways.
Using (1.3.1), (1.3.2), we obtain

ðNK ? hÞdðE=kÞ ffi ðNKÞdðE=KÞ ? h ffi NL ? h
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on the one hand and

ðNK ? hÞdðE=kÞ ffi ðNkf0g ?NKÞdðE=kÞ ffi NDðEÞ ? hdE=ki:NK

on the other. Comparing the two leads to the desired conclusion. &

6.4. Normalizing the Tits Process

Let K be a quadratic étale k-algebra, B a separable associative K-algebra
of degree 3, t a K=k-involution of B and u 2 HðB; tÞ; b 2 K invertible elements
satisfying NBðuÞ ¼ NKðbÞ. Just as in Knus et al. (1998, (39.2)) we may modify the Tits
process JðK;B; t; u; bÞ by setting w :¼ b�1u; v :¼ wutðwÞ; c :¼ bNBðwÞ to obtain

v ¼ NBðuÞ�1
u3; c ¼ tðbÞb�1

and an isomorphism JðK;B; t; u; bÞ�! JðK;B; t; v; cÞ via ðx0; xÞ 7! ðx0; xwÞ (1.10),
where the new Tits process is normalized in the sense that NBðvÞ ¼ NKðcÞ ¼ 1.

6.5 Theorem (cf. Knus et al., 1998, (19.25)). Notations being as in 6.0, let E � J

be any cubic étale subalgebra. Realizing J ffi JðE;L; u; bÞ as an étale Tits process
algebra (cf. 1.14), where L is a quadratic étale k-algebra and u 2 E; b 2 L are
invertible elements satisfying NEðuÞ ¼ NLðbÞ 2 k�2 (cf. 6.4), we obtain

pðJÞ ffi h1i? hdE=kiðTEÞ�ðhuiÞ
� �

:NK:

Proof. Since both sides have the same dimension, it suffices to show that they
determine the same element in the Witt group of k. Accordingly, we compute

pðJÞ ¼ NL þ hdE=kiðTEÞ�ðhuiÞ :NL (by (3.3)

¼ NDðEÞ þ hdE=ki :NK þ hdE=kiðTEÞ�ðhuiÞ :NDðEÞ þ ðTEÞ�ðhuiÞ :NK (by (6.3)

¼ NDðEÞ þ hdE=ki :NK þ hdE=ki :NDðEÞ

þ ðTEÞ�ðhuiÞ :NK (by (6.1) and NEðuÞ 2 k�2)

¼ hdE=ki : NK þ hdE=kiðTEÞ�ðhuiÞ :NK

� �
(by (1.3.4)):

Since pðJÞ ffi hdE=ki : pðJÞ by 6.2, the assertion follows. &
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