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After we have had a great time last night, and also the night before, I suppose it’s pretty
difficult for each one of us getting back to normal mode. But I can assure you I will do
everything I can to make the necessary transition as smooth as possible. Before doing
so, however, I strongly believe that Michel as our main host, Erhard as the principal
organizer of this event, and Henry Wong as our secondary host, deserve a standing
ovation.

If you look at Michel’s mathematical work up to now, you will notice that a substantial
part if not all of it is dominated by the following two features. The first feature is an
all-embracing love for Albert algebras. The second feature, intertwined with the first
one in various ways, is an equally all-embracing urge to understand the mysteries of
characteristic two.

Unfortunately, this lovely workshop comes just a few months too early to allow me
saying anything new about Albert algebras. But it comes at exactly the right time to
allow me giving a new twist to the mysteries of characteristic two. I will do so by turning
a few stones that I had left unturned more than thirty years ago, in a paper of 1974,
entitled Composition algebras over a field with a discrete valuation. In order to describe
the situation I was interested in at the time, and, indeed, I will be interested in today,
let me briefly remind you of a few basic facts about

1. Local fields.

By a local field I mean a pair (k, λ) consisting of a field k and a discrete valuation λ
on k, so λ : k → R∞ from k to the reals enlarged by an additional symbol ∞ is a map
satisfying the following four conditions, for all a, b ∈ k.

(i) λ is definite, so λ(a) =∞⇐⇒ a = 0.

(ii) λ is multiplicative, so λ(ab) = λ(a) + λ(b).

(iii) λ is sub-additive, so λ(a+ b) ≥ min {λ(a), λ(b)}.

(iv) λ is discrete, so the finite values of λ, denoted by Γk := λ(k×) ⊆ R, dependence on
λ here and always being understood, form a non-trivial additive subgroup of the
reals that is discrete with respect to the natural topology: there exists a unique
positive real number q such that Γk = Zq is the infinite cyclic group generated by
q.
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There is, of course, no harm in assuming q = 1, which I will do most of the time. Then
λ takes values in the integers and is said to be normalized.

While all this does not finish the definition of a local field, it already allows me to
make a number of

1.1. Important observations. The set

o := {a ∈ k | λ(a) ≥ 0}

is a subring of k, called its valuation ring. Indeed, o is well known to be a discrete
valuation ring in the sense that it is a principal ideal domain containing a unique non-
zero prime ideal, denoted by

p := {a ∈ k | λ(a) > 0}

and called the valuation ideal of k, even though, of course, it is only an ideal in o. In
particular, o is a local ring with maximal ideal p, and the quotient

κ := o/p

is called the residue field of k. The natural map from o to κ will always be indicated by
a 7→ ā.

This being so, it is straightforward to check that there exists a unique topology on k
making it a topological field and having the totality of subsets

pd := {a ∈ k | λ(a) ≥ d} (d ∈ Z),

λ assumed to be normalized, as a fundamental system of neighborhoods of zero. We say
that k or, more precisely, the pair (k, λ), is a local field if k is complete with respect to
the topology induced by λ in this way. The property of completeness has a number of
very nice consequences. For example, local fields satisfy the various equivalent versions
of Hensel’s Lemma.

Let me now consider

1.2. Basic examples of local fields. There are two cases, the equicharacteristic case
and the non-equicharacteristic case. In the

Equicharacteristic case, the residue field κ has the same characteristic as the original
local field k. All local fields of this type arise in the following manner.

Let κ be any field and t a variable. We denote by k := κ((t)) the field of formal
Laurent series in t with coefficients in κ and define λ : k → Z∞ by

λ(u) := inf
(
{n ∈ Z | an 6= 0}

)
(u =

∞∑
n=−∞

antn ∈ k),

where the greatest lower bound is always attained unless u = 0. One checks easily that λ
is a (normalized) discrete valuation making k a local field with valuation ring o = κ[[t]],
the formal power series ring in t with coefficients in κ, valuation ideal p = tκ[[t]] and
residue field κ. By contrast, the

Non-equicharacteristic case, where k and κ have distinct characteristics, is more delicate;
it can arise only if k has characteristic zero and κ is a field of positive characteristic. The
key notion in this context is
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1.3. The absolute ramification index. Let k be a local field with normalized discrete
valuation λ : k → Z∞ and suppose κ has characteristic p > 0. If k has characteristic
zero, we are in the non-equicharacteristic case, and the prime p ∈ Z ⊆ o is killed by the
natural map from o to κ since κ has characteristic p. Thus p ∈ p, forcing

ek := λ(p) > 0

to be a positive integer, called the absolute ramification index of k. On the other hand,
if k has characteristic p, we are in the equicharacteristic case and formally put

ek :=∞.
One of the most important results for non-equicharacteristic local fields is the following
existence and uniqueness theorem.

1.4. Theorem. (Witt−Teichmüller 1937) Given a field κ of positive characteristic,
there exists a local field k that up to isomorphism is uniquely determined by the following
three conditions.

(a) k has characteristic zero.

(b) The residue field of k is κ.

(c) k is absolutely unramified, that is, ek = 1.

1.5. Example. Let p be a prime. Then Qp, the field of p-adic numbers, is the unique
absolutely unramified local field of characteristic zero having residue field Fp.

I can now turn to the main topic of this lecture, namely,

2. Composition algebras over local fields.

Let k be a local field, with normalized discrete valuation λ : k → Z∞, and C a compo-
sition algebra over k, with norm nC , trace tC and conjugation x 7→ x∗. By the general
theory of composition algebras over arbitrary fields, composition algebras with zero divi-
sors over k are uniquely determined by their dimension, and their structure is explicitly
known. Therefore we may and always will assume that C is a division algebra. Our aim
is understand C by means of three invariants that are local in the sense that they are
intimately tied up with the structure of k as a local field. While two of these invariants
belong to the standard set of tools provided by valuation theory and, in fact, have al-
ready been put to good use in my paper of 1974, the third one, though actually pretty
obvious, does not seem to have been considered before. All three invariants are based on
the following extension theorem.

2.1. Theorem. (a) The map

λC : C −→ R∞, x 7−→ 1

2
λ
(
nC(x)

)
is the unique discrete valuation of C extending λ. It thus gives rise to

• oC := {x ∈ C | λC(x) ≥ 0} ⊆ C, an o-subalgebra, the valuation ring of C,

• pC := {x ∈ C | λC(x) > 0} ⊆ oC , a two-sided ideal, the valuation ideal of C,

• C̄ := oC/pC , a division algebra over κ, the residue algebra of C,

• x 7−→ x̄, the natural map from oC to C̄.

(b) The map
nC̄ : C̄ −→ κ, x̄ 7−→ nC̄(x̄) := nC(x),

is a well defined anisotropic quadratic form over κ permitting composition in the sense
that nC̄(x̄ ȳ) = nC̄(x̄)nC̄(ȳ) for all x, y ∈ oC . �
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2.2. Corollary. Either C̄ is a composition division algebra over κ in the sense that
the polar of its norm is a non-degenerate symmetric bilinear form, or C̄/κ is a purely
inseparable field extension of characteristic 2 and exponent at most 1.

�

Even if k has characteristic zero and C is an honest-to-goodness octonion division algebra
over k, we will see in due course that the second alternative in the preceding corollary
may very well occur. This gives you a first indication as to what kind of mysteries of
characteristic two I have in mind. But before pursuing this topic any further, let us first
turn to

2.3. The local invariants. (a) Z = Γk ⊆ ΓC := λC(C×) ⊆ 1
2Z is a chain of subgroups

which shows
eC := [ΓC : Γk] ∈ {1, 2}.

We call eC the ramification index of C.

(b) fC := dimκ(C̄) is called the residue degree of C. We have the fundamental relation

eCfC = dimk(C).

(c) We say C is unramified (resp. ramified) if eC = 1 (resp. eC = 2) and C̄ is a
non-singular composition algebra over κ. Since a detailed description of ramified and
unramified composition division algebras may already be found in my paper of 1974,
they will not concern us here. Instead, we will focus attention on the remaining case of
composition division algebras C over k that are residually inseparable in the sense that
C̄/κ is a purely inseparable field extension of characteristic 2 and exponent at most 1.
They will be investigated here with the aid of yet another local invariant.

(d) tC(oC) ⊆ o is an ideal, so there exists a unique element rC ∈ N0
∞ := N ∪ {0,∞}

such that
tC(oC) = prC

(where we agree to the convention p∞ := {0}.) We call rC the trace exponent of C. It is
easy to see that

0 ≤ rC ≤ ek and rk = ek,

where ek stands for the absolute ramification index of k. Moreover,

rC = 0⇐⇒ C is ramified or unramified.

Our main concern in this lecture will be to understand the behavior of the local invariants
eC , C̄, rC under the influence of the Cayley-Dickson construction. For this purpose, we
require a technical tool called

2.4. The norm exponent. In his book of 1963 on quadratic forms, O’Meara introduces
the concept of quadratic defect in order to describe the square classes of local fields having
characteristic not 2 and a finite residue field. It turns out that his approach can be
extended to composition division algebras over arbitrary local fields as follows.

Till the end of this lecture, we fix a prime element π ∈ o. Consider a non-singular
composition division algebra B over k, a unit a ∈ o× and a non-negative integer d ∈ N0.
Then it is straightforward to check that the following conditions are equivalent:

(i) a is a norm of B modulo pd, so there exists a v ∈ o×B such that a− nB(v) ∈ pd.
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(ii) There exist b ∈ o, v ∈ o×B satisfying

a = (1− πdb)nB(v).

We put
NB(a) := {d ∈ N0 | d satisfies (i)/(ii)} ⊆ N0

and note

0 ∈ NB(a), ∀d, d′ ∈ N0
(
d ∈ NB(a), d′ ≤ d =⇒ d′ ∈ NB(a)

)
.

Then
nexB(a) := sup

(
NB(a)

)
∈ N0

∞

is called the norm exponent of a relative to B. For example, if eB = 1, it is easily checked
that

nexB(a) = 0⇐⇒ ā /∈ nB̄(B̄×).

Moreover, in the special case B = k (char(k) 6= 2), pnexB(a) is the quadratic defect of
a in the sense of O’Meara. The key result about the norm exponent is the following
generalization of O’Meara’s Local Square Theorem.

2.5. Local Norm Theorem. For a ∈ o×, the following conditions are equivalent.

(i) a ∈ nB(B×).

(ii) a ∈ nB(o×B).

(iii) nexB(a) ≥ 2rB + 1.

�
The only non-trivial part of the proof is the implication (iii) ⇒ (i).

We are now in a position to deal with

2.6. The local invariants under the Cayley-Dickson construction. We fix a
composition division algebra C over k and a non-singular composition subalgebra B ⊆ C
such that

dimk(B) =
1

2
dimk(C) and eB = 1.

(Such a B always exists unless C is two-dimensional and k has characteristic 2.) Then
C = Cay(B,µ) for some scalar µ ∈ k×, and since we are allowed to multiply µ by
a non-zero norm of B, in particular, by a non-zero square in k, without changing the
isomorphism class of C, we may assume

µ ∈ o is a prime or a unit.

We now distinguish the following cases.

Case 1. B̄ is a non-singular composition algebra over κ. Then

• rB = rC = 0.

• eC = 1 ⇐⇒ C is unramified ⇐⇒ µ ∈ o× is a unit,
in which case C̄ = Cay(B̄, µ̄).

• eC = 2 ⇐⇒ C is ramified ⇐⇒ µ ∈ o is a prime,
in which case C̄ = B̄.
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The last two statements are already in my paper of 1974.

Case 2. B̄/κ is a purely inseparable field extension of characteristic 2 and exponent at
most 1. Then rB > 0.

Case 2.1. (easy) µ ∈ o is a prime. Then

eC = 2, C̄ = B̄, rC = rB .

Case 2.2. µ ∈ o× is a unit. Since C is a division algebra, µ is not a norm of B, hence by
the Local Norm Theorem has norm exponent d = nexB(µ) ≤ 2rB relative to B. Thus
µ = (1 − πdb)nB(v) for some b ∈ o, v ∈ o×B , and we may assume v = 1B . Summing up,
we are reduced to the case

µ = 1− πdb

for some b ∈ o and some d ∈ N0 satisfying 0 ≤ d ≤ 2rB . We do not assume that
d = nexB(µ) is the norm exponent of µ relative to B but, on the contrary, want to
obtain conditions that are necessary and sufficient for this to happen.

Case 2.2.1. d is odd. Then
d = nexB(µ)⇐⇒ b ∈ o×.

In this case,

eC = 2, C̄ = B̄, rC = rB −
d− 1

2
.

Moreover, if also b′ ∈ o, µ′ := 1− πdb′, then

Cay(B,µ) ∼= Cay(B,µ′) =⇒ b̄ = b′.

But the converse is false.

Case 2.2.2. d is even and d < 2rB . Then

d = nexB(µ)⇐⇒ b̄ ∈ κ \B2
.

In this case,

eC = 1, C̄ = B̄
(√
b
)
, rC = rB −

d

2
.

Moreover, if also b′ ∈ o, µ′ := 1− πdb′, then

Cay(B,µ) ∼= Cay(B,µ′) =⇒ b̄ ≡ b′ mod B
2
.

Again, the converse is false.

Case 2.2.3. d = 2rB . This is the most interesting case of them all. Let me simplify
matters a bit by restricting myself to dimension 8, so C is an octonion division algebra
containing B as a quaternion subalgebra. In fact, C turns out to be unramified over k,
forcing C̄ to be an octonion division algebra over κ containing B̄ as maximal inseparable
subfield of degree 4, and all of a sudden we are confronted with a set-up that hasn’t got
anything to do with local fields. The appropriate way to understand this set-up consists
in looking at what I call

2.7. The non-orthogonal Cayley-Dickson construction. Let F be any field of
characteristic 2, A be any octonion algebra (possibly split) over F , and L ⊆ A a (maxi-
mal) purely inseparable subfield of degree 4. The question is how to describe the structure
of A in terms of L and, possibly, a bunch of additional data. What is needed to achieve
this are

• an arbitrary scalar γ ∈ F ,

6



September 18, 2008 Talk-Ottawa08.tex

• a linear form δ : L→ F which is unital in the sense that δ(1L) = 1.

Once these data have been selected, the non-orthogonal Cayley-Dickson construction
leads to an octonion algebra A = Cay(L; γ, δ), and every octonion algebra over F con-
taining L as a unital subalgebra arises in this manner. Moreover, A is a division algebra
if and only if γ does not belong to the range of the Artin-Schreier map

℘L,δ : L −→ F, u 7−→ ℘L,δ(u) := u2 + δ(u).

Returning to our local field k, the non-orthogonal Cayley-Dickson construction enters

Case 2.2.3. (cont’d) in the following way. Recall from the definition of the trace exponent
that tB(oB) = prB , so we can find an element w0 ∈ oB satisfying tB(w0) = πrB , and it
is easy to see that this implies w0 ∈ o×B . We put b0 := nB(w0)b and consider the linear
form

δ : B −→ k, u 7−→ π−rBnB(w0, u),

which is easily seen to induce canonically a unital linear form δ̄ : B̄ → κ. Then

nexB(µ) = 2rB ⇐⇒ b0 /∈ Im(℘B̄,δ̄);

in this case
eC = 1, C̄ = Cay(B̄; b0, δ̄), rC = 0.

What are the applications of the preceding results?

For one, the local invariants may be arbitrarily pre-assigned in advance as long as they
satisfy a few rather obvious constraints. More precisely, we have the following

2.8. Theorem. Let e, r ∈ Z, n ∈ N0 and A a κ-algebra of dimension 2n. Then the
following conditions are equivalent.

(i) There exists a composition division algebra C over k having local invariants eC = e,
C̄ ∼= A, rC = r.

(ii) (a) e ∈ {1, 2}, 0 ≤ n ≤ 4− e, 0 ≤ r ≤ ek.

(b) A is either a non-singular composition division algebra over κ or a purely
inseparable field extension of characteristic 2 and exponent at most 1.

(c) A is a non-singular composition algebra if and only if r = 0.

�
For another application, the local invariants are lightyears away from classifying compo-
sition algebras over local fields. Indeed, using our previous results, it is easy to construct
examples for the following situation: k is a local field, L/k is a purely inseparable field
extension of degree 8 and exponent 1, r is an integer such that 0 < r < ek, and there
are an infinite number of mutually non-isomorphic octonion division algebras C over k
having local invariants eC = 1, C̄ ∼= L, rC = r. By contrast, unramified octonion di-
vision algebras over k (which correspond to the case r = 0) are known to be uniquely
determined by their residue algebras.

Let me close this lecture by stating an

2.9. Open question. Composition algebras over any field, in particular those over our
local field k (for simplicity assumed to be of characteristic not 2), are classified by their
dimension (2n) and a single cohomological invariant belonging to Hn(k,Z/2Z) in the
sense of Galois cohomology. It would be interesting to know how this cohomological
invariant of a composition division algebra over k relates to its local invariants.
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