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Abstract

This paper describes an algorithm which calculates the
approximate head pose of partially occluded faces with-
out training or manual initialization. The presented ap-
proach works on low-resolution webcam images.

The algorithm is based on the observation that for
small depth rotations of a head the rotation angles can
be approximated linearly. It uses the CamShift (Contin-
uous adaptive Mean Shift) algorithm to track the users
head. With a pyramidal implementation of an iterative
Lucas-Kanade optical flow algorithm, a certain feature
point in the face is tracked. Pan and tilt of the head are
estimated from the shift of the feature point relative to
the center of the head. 3D Position and roll are estimated
from the CamShift results.

1. Introduction

Immersive systems may display their graph-
ical user interface on a Head Mounted Display
(HMD). In this setup head pose estimation is a valu-
able Human-Computer Interface (HCI), but all head
pose estimation algorithms known to the authors as-
sume a completely visible face. Therefore navigation
using head movement detection has not yet been pre-
sented as an HCI in this setting.

For head pose estimation face detection in images is
an issue, because it helps limiting the computational ef-
fort to the area exhibiting the face. Manifold research
with respect to face detection was already conducted
with different objectives and scaffolding. For use in hu-
man computer interfaces real-time performance both
of face detection and of head pose estimation is com-
pulsory.

This paper focuses on real-time head pose estima-
tion in video images. At startup the algorithm detects
the head region using the temporal change between
subsequent images. From that head region a cutout
containing skin color is used to initialize the CamShift

algorithm, which tracks the head henceforth. In the
same cutout region the mouth is searched for by a com-
bination of heuristics giving its most probable location
and a set of image filters responding to the typical light-
dark intensity pattern resembling the mouth.

2. Related Work

Head pose estimation has become a broad area of
research over the recent years. Most researchers group
the various approaches with respect to the underly-
ing method into model-based, appearance-based, and
feature-based approaches [4, 16].

Model-based algorithms achieve good results but re-
quire training. Among these are Active Appearance
Models (AAMs); see for example [9]. These are nonlin-
ear parametric models derived from linear transforma-
tions of a shape model and an appearance model. Also,
Neural Network based algorithms can be trained to
distinguish between different persons or to distinguish
poses of one persons face. The basic research was done
by Rowley et al. [12]. Principal Component Analysis
(PCA) based algorithms in general need the broadest
training set. Their training is most often done in a way
first proposed by Turk and Pentland [15]. With their re-
search PCA was able to deal with images. As they are
statistically inspired, PCA approaches are sometimes
counted within the appearance-based approaches.

The main disadvantage of all AAMs, Neural Net-
work approaches and PCA methods is their lack of uni-
versality. Their detection rate and accuracy decreases
as soon as the head does not match the model. This will
happen if the user puts on an HMD (Head Mounted
Display). In the same manner the performance of any
Neural Network based vision system trained for a spe-
cific user decreases if confronted with unknown users.

Appearance-based approaches use filtering and im-
age segmentation techniques to extract information
from the image. Furthermore, optical flow algorithms
can be considered as appearance-based approaches.
Among the widely used filters are edge detectors and in
recent times Gabor wavelets. To the authors no head



pose estimation algorithms are known that are only
appearance-based. On the other hand, filtering and seg-
mentation play significant roles in head pose estima-
tion.

Gabor wavelets are widely known as good feature
detectors. These are complex sinusoids with a gaussian
envelope. Some approaches use them in an appearance-
based manner in a preprocessing step [10]. On the other
hand Krüger invented an approach where the weights
of a Gabor wavelet network directly represent the ori-
entation of the face. Gabor head pose estimation is de-
scribed in [16]. Its disadvantage, however, is the com-
putational effort involved in fitting the network to the
probe image. Moreover, they have to be trained and
are very user specific.

The algorithm proposed in this paper uses the Ga-
bor wavelet transform for parts of the face in order to
search for the mouth.

The majority of feature-based algorithms use the
eyes as features as these are easy to detect by symme-
try and because of their prominent appearance. The
nostrils often serve as trackable features as well, but
they become invisible as soon as the user tilts his head
downwards. The mouth can also be easy to find, pro-
vided it is not covered by a mustache or a beard. Sev-
eral authors use a set of these features to estimate a
3D head orientation.

Fitzpatrick shows another feature based approach
to head pose estimation without manual initialization
[5]. For feature detection and tracking he searches for
the cheapest paths across the face region, whereby the
cost of a path depends on the darkness of crossed pix-
els. The paths will therefore avoid dark regions. A pair
of avoided regions is supposed to be the pair of eyes.
The algorithm is thus dependant on the visibility of
the eyes. He then estimates head pose based mainly on
head outline and eye position.

Gorodnichy shows a way to track the tip of the nose
[7]. His approach can almost be called model free. He
uses the resemblance of the tip of the nose with a sphere
with diffuse reflection. This template is searched in the
image. He does not use it for head pose estimation, but
simply tracks the nose tip across the video images.

The idea presented in this paper resembles his ap-
proach in that an individual feature is tracked in the
images.

3. Pose Estimation with Partial Occlu-
sion

The intent of this paper is to present an algorithm
that is capable to adapt to every user and especially to
faces partially occluded by a HMD (see Figure 1). No

Figure 1. User with HMD

initial setup or training is needed. The algorithm deliv-
ers approximations of head roll, tilt and pan (see Fig-
ure 2). The head position in the image plane is given
directly and the z axis translation can be estimated.

The pose of a face may be depicted as a 3D vector
~d with its origin between the eyes. For head pose esti-
mation two pieces of information are needed: 3D head
position given at the middle of the head and the posi-
tion of a feature of the face.

The pose is then a linear transformation of the vec-
tor ~d in Figure 2. The user may define a certain po-
sition to be his ”straight ahead” direction. The vector
obtained in this position is stored and used as a refer-
ence. Then for small angles in depth rotation the ro-
tation angle can be linearly estimated. Head roll can
be estimated from the rotation of an ellipse in the im-
age plane approximating the head outline. This will be
described below.

Estimating mixed rotations around all three axes is
still challenging, because every position is ambiguous.
This problem is not discussed in this paper, but re-
mains open for further research.

The algorithm has two phases we call the initializa-
tion phase and the working phase (Figure 3).

Initialization extracts the face region from the video
sequence and finds a salient feature point to track. The
proposed method aims at finding the mouth as a promi-
nent feature. If the mouth is invisible or can not be de-
tected, the algorithm will track another feature which,
in most cases, is the tip of the nose or one of the nos-
trils. In case of failure the working phase returns to the
initialization phase.

3.1. Initialization phase

The initialization phase needs head movement to de-
tect the face of a user. Therefore, a state called motion
detection starts the initialization phase when motion
in the picture occurs. The initialization phase searches



Figure 2. Basic idea

the users head. In the estimated head region the algo-
rithm searches a salient trackable feature. It passes on
the coordinates and the size of a region to CamShift.
During the working phase the CamShift algorithm is
used to track the biggest object in the picture that is
of this regions dominant color.

Motion Detection. For the face detection step to
succeed, the head must have moved far enough. This
is ensured by calculating the difference between a base
image I(t0) and a subsequent image I(t1), I(t2), · · ·
from the video stream until the difference I(t0) 	
I(tk)for a certain k ≥ 1 exceeds a threshold τ . In
the prototype implementation, the 	-operator is im-
plemented as a sequence of operations: Subsequently a
XOR image (pixel-wise and per channel) is built. Mor-
phological opening (erosion then dilation) and closing
(dilation then erosion) operations account for closing
holes and deleting small outliers. From the remaining
image only intensity information is kept. This inten-
sity image will represent the most significant motion
with the brightest color. In this way thresholding fur-
ther removes noise.

Face Detection. After the above operation, a con-
tour search gives the largest remaining BLOBs (bi-
nary large objects) in the image. Given the assump-
tion that only head movement occurs during initializa-
tion, the biggest BLOBs can be considered to represent
the head. The image is saved for later steps.

The next step requires a skin color probe. Care must
be taken not to include the HMD in this extracted skin
color probe, because it may reflect arbitrary colors and
thus invalidate the results. We assume that a small re-
gion in the lower half of the moving part will mainly
contain skin. The coordinates and the size of this color
probe region are given by simple heuristic assumptions

Figure 3. Details of algorithm

about face biometrics. They are relative to the size and
location of the biggest BLOBs in the above image.

Skin color segmentation is done in the ”normed
green” color space. The algorithm calculates a normed
green image from the color camera image by applying
gnorm = G

R+G+B+1 to every RGB (Red Green Blue)
pixel of the image. A color histogram of the above
color probe region is then calculated in the gnorm im-
age. Thresholding the gnorm image within a tight band
around the maximum color value of the histogram gives
the locations of skin regions. The coordinates and the
size of the color probe region are passed on to CamShift
as well.

Skin color tones are tightly clustered in the
rnorm/gnorm color space [13]. Experiments show
that in the given context the gnorm part is suffi-
cient. The transformation into this space is inex-
pensive in terms of computational effort. It shows



Figure 4. Estimated head; search region for
mouth

more reliable results than thresholding the hue chan-
nel in the HSI (Hue Saturation Intensity) color
space.

Pixel-wise AND-concatenation of the biggest
BLOBs image with the binary thresholded gnorm im-
age gives a re- fined picture of the moving head region.
Figure 4 shows the result (white areas).

Position and size of a bounding box of these seg-
ments serve as the starting point for the search for a
salient trackable feature point. The mouth search re-
gion is found based on an initial heuristic estimation
of its most probable height. We assume 2

5 the height
of the bounding box, located in its lower region. The
width is that of the bounding box. The resulting initial
mouth search region is displayed in Figure 4; outmost
box. This box is shrunk to a size containing mostly
white pixels (innermost box in Figure 4).

Mouth Search. The mouth is a salient trackable fea-
ture, because it exhibits contrasting regions like edges
and corners. Simple heuristics give a rough estimate of
its position (the mouth search region). A near-frontal
position of the users face is assumed during initial-
ization. Figure 4 shows the segments displaying the
head (white areas) and subsequent mouth search re-
gions (grey rectangles, starting with the largest and
ending with the innermost).

A series of filters is then applied to the innermost re-
gion of the image. Figure 5 gives an example of a mouth
search region (top image in figure) and the series of in-
termediate results. Note that the size of this region is
variable.

The algorithm starts with a Sobel operator to en-
hance intensity changes (second from top). The Sobel
filter works with the first y derivative and an aperture
size of seven pixels.

Then the algorithm applies a horizontally oriented
Gabor filter to the result. Its frequency resembles the
smooth vertical intensity gradient of the lips to reduce
the higher and lower frequencies in the image. For the
result see the middle picture.

Figure 5. Filtering the mouth search region

Then a box three times higher than phase width is
shifted across the result image. The standard devia-
tion of every possible box codes the intensity of a cor-
responding pixel in a result image (second from bot-
tom). Figure 6 illustrates this. Here the resulting im-
age is normalized for better visibility of the results. The
box is currently of fixed size, but can be made depen-
dant on the size of the mouth search region.

A second fixed-sized box is shifted across the image,
this time with the expected size of the mouth. The box
with the greatest sum of standard deviations (i.e. high-
est pixel intensities) is considered to be the most likely
mouth region. In Figure 5, bottom image, this region
is marked with a rectangle.

The approach performs best for near-horizontal pic-
tures of the mouth, but is still accurate for head roll
up to 10°. Head pan up to 30° will not influence per-
formance and the same is true for head tilt.

3.2. Working phase

During working phase the algorithm performs three
tasks. Head Tracking is done with CamShift. Fea-
ture tracking is accomplished with an iterative Lucas
Kanade optical flow algorithm in image pyramids. The
results of both are combined for head pose estimation.
Each task is described below.

Head Tracking. The head is tracked using the
CamShift algorithm. CamShift is able to track ev-
ery object with a distinct hue value. We initialize it as
described above to track the moving object in the im-
age.

CamShift is an adaption of the MeanShift algorithm
for face tracking. Mean Shift is a non-parametric tech-
nique that climbs the gradient of a color distribution
to find its mode (peak) [1].

CamShift augments the Mean Shift algorithm by
adding a variably sized search region that gives rise
to its name: Continously Adaptive Mean Shift.



Figure 6. Shifting boxes across the image

The position of the tracked face is given by the cen-
troid of the color distribution. It is calculated from the
moments of the distribution, as given by the below for-
mulas. Utilizing the size of the search region, an esti-
mate of z-axis position can be obtained.

Let W be a search window with image points I(x, y).
The centroid of the distribution ~µ = (µx, µy)T is then
given by

µx =
M10

M00
; µy =

M01

M00
(1)

with Mij being the ith moment in x direction and
jth moment in y direction. Mij is defined as

Mij =
∑

x

∑
y

xiyjI(x, y)

The orientation of the color distribution can be cal-
culated using zeroth to second moments. CamShift de-
livers the center of a rotated ellipse and its axes lengths.
CamShift works by first back projecting the hue his-
togram of the color probe on the current image. Then
it calculates the first and second moments of the color
probability distribution. These give the lengths of first
and second axis and the ellipses rotation angle.

For implementation details for CamShift see [3]. The
implementation used in the prototype application is in-
cluded in the Intel OpenCV computer vision library
[11]. Some of its shortcomings are explored in [1].

Feature Tracking. For feature tracking the algo-
rithm uses an enhanced optical flow algorithm as pro-
posed by Bouguet [2]. It can be used to track features
in a video sequence.

The basis of the feature tracking approach is an iter-
ative Lucas Kanade optical flow algorithm. It works in
image pyramids to suit the task of robust feature track-
ing. The fundamental Lucas Kanade optical flow algo-
rithm was proposed by Lucas and Kanade in [8].

Figure 7. Image pyramid, levels 0-3

Let W ⊂ J be a window of size (2wx + 1)× (2wy +
1). Let its center be the coordinates ~u = (ux, uy)T of a
feature point in the preceeding picture J . Let I be the
current picture.

Then optical flow algorithms try to find a window
W ′ in I of equal size to W that is most ”similar” to
W . Similarity may be measured by the least square er-
ror between two images. In this case estimating optical
flow means minimizing ε in

ε(~d) = ε(dx, dy)

=

x=ux+wx
y=uy+wy∑
x=ux−wx
y=uy−wy

(I(x, y)− J(x + dx, y + dy))2

(2)

by finding the optimal image velocity ~d concerning
the image point ~u = (ux, uy)T .

The Lucas Kanade algorithm estimates ~d based on
discrete estimations of spatial intensity derivatives in
the current image. Assuming small displacement vec-
tors, the first order Taylor series expansion about the
feature point can substitute J(x + dx, y + dy) in the
above Equation 2, giving

∂ε(~d)

∂ ~d
≈ −2

x=ux+wx
y=uy+wy∑
x=ux−wx
y=uy−wy

[
∂J
∂x
∂J
∂y

](
Ixy − Jxy − ~d

[
∂J
∂x
∂J
∂y

])
(3)

Note that this is only valid for small displacement
vectors ~d.

The iterative Lucas Kanade iterates over this step
taking ~d from the previous step as an initial guess for



Figure 8. Displacement of feature with respect
to face center

the next step. This introduces greater accuracy but
alone cannot overcome the limitation to small displace-
ment vectors.

Bouguet [2] suggests the usage of image pyramids to
improve on this limitation. Image pyramids are pyra-
mids of subsampled images with successively lowered
resolution. For a 160×120 base image (zeroth pyramid
level), the first level image has a size of 80×60 etc. Fig-
ure 7 shows zeroth (top) to third pyramid levels of an
image, created with a 5×5 gaussian filter.

The iterative Lucas Kanade in image pyramids con-
ducts iterative Lucas Kanade steps in each level of an
image pyramid starting at the highest level, i.e. with
the lowest resolution. The result of the lowerresolution
level is propagated to the next higher-resolution pyra-
mid level and used as an additive offset.

This enables iterative Lucas Kanade to track optical
flow with large displacements and great accuracy.

Head Pose Estimation. Figure 8 sketches the idea
underlying depth rotation approximation. The center
of the head (i.e. the centroid of the color probability dis-
tribution as given by CamShift) is marked with a green
spot. The tracked feature is marked by a red spot. The
arrow gives the relative shift of the red spot with re-
spect to the ”straight ahead” position of the mouth.
From the current shift relative to the initial shift which
marks the straight ahead direction, the current depth
rotation is estimated. Currently, only a linear approx-
imation is calculated.

In the figure, the ”straight ahead” mouth position is
marked for clarity. In the prototype immersive system,
all estimated rotation parameters and z translation are
pictured by compass windows (see Figure 9).

Figure 9. Demo Application with Compass Win-
dows

4. Results

The algorithm performs with far more than cam-
era frame rate on a 1,066 MHz notebook. The tests
were conducted both on still images and live video se-
quences captured by a Logitech QuickCam 3000 and
aimed at evaluating quality and speed of the algorithms
protoype implementation.

Assessment of Speed. All tests on still images were
conducted by using two pictures I and J that were pre-
sented vice versa to the different parts of the algorithm.

Concerning initialization phase, no efforts were
taken to improve performance of the implementa-
tion. Nevertheless, the initialization phase calculated
about 25 pose estimations per second.

In the working phase, CamShift aims primarily at
high speed. With the described setup and given that
the area tracked covers about a quarter of the 160×120
picture, it performs at about 500 pictures per second.

The iterative Lucas Kanade feature tracker tracking
a singular point in the image performs at roughly 3000
pictures per second regardless of displacement of the
feature point.

When both algorithms were combined, a rate of
about 400 pictures per second was measured. Thus,
real time pose estimation can be achieved by means of
commodity hardware.

Assessment of Quality. The initialization phase was
tested for quality with various image pairs showing the
face of the user in slightly altered positions (approxi-
mately 5° change in pan angle).



The initialization phase proved to be insensitive to
lighting conditions. As well, long hair is tolerable as
long as certain thresholding values in motion detec-
tion are altered slightly. Most importantly, the usage
of an HMD will not influence the results of initializa-
tion. The algorithm thus achieves the goals it is de-
signed for.

Severely disturbing for the goals of initialization are,
however, all moving objects in the scene that are not
a users head, even more so, if they are of skin color.
The initialization phase will focus on whatever moves
in the scene and try to detect a mouth in the mov-
ing parts. Due to the model free nature of the imple-
mentation, no checks are currently possible to account
for this.

We then tested the overall performance quality in
a small demonstration application (see Figure 9). A
panoramic picture is presented to the user via HMD.
By panning and nicking his head, he may alter the
viewport to the panorama.

During working phase it is apparent that the linear
approximation of the angle does not provide enough
accuracy to feel fully immersed. Also, it is necessary
to dampen the pose and orientation estimates. Both
CamShift and the Lucas Kanade feature tracker some-
times pass on suddenly changing results that lead to a
shattering impression of image movement on the out-
put device.

Damping diminishes this impression, but with the
downside of retarded system reaction. Although the re-
action lags behind head rotation for only a fifth of a sec-
ond, this can be disturbing.

5. Further Work

Because reliable detection of the mouth region is
crucial to pose estimation, one task is to improve the
initialization phase of the algorithm. Incorporation of
recent research results making use of methods resem-
bling human eye movement (saccadic search, see [14])
promise more exact and more robust estimations. For
those approaches to work, a model of the feature and
consequently a training step is necessary. Current re-
search suggests that user specific training may not be
mandatory. Therefore it seems to be a promising ap-
proach.

Also, a modification to CamShift will enable it to
adapt to changes of the tracked color. This can im-
prove tracking results. The methods suggested in [1,
6] promise better color segmentation in difficult light-
ing conditions and the just-in-time adaption to chang-
ing hue values of the tracked object.

To overcome the restrictions in accuracy introduced
through the linear approximation of rotation values,
we consider tracking more than one feature to apply a
weak projection model for head pose estimation.

Also, as mentioned before, the problem of estimat-
ing mixed rotations around two or three axes remains
unsolved yet. With more feature points tracked, ambi-
guities might be overcome.

6. Conclusion

The purpose of this paper was to show how a user’s
head pose can be tracked in a video stream when parts
of his face are occluded. We presented an algorithm
composed of two dedicated phases, initialization and
working phase, that achieved this goal.

During initialization, the face is detected from sub-
sequent pictures by its motion. A color probe is drawn
and given to CamShift for tracking during working
phase. The mouth is searched for with a combination of
heuristics and filtering. Heuristics give the most prob-
able region where the mouth is expected. The mouth is
then detected by applying a series of filters to this re-
gion.

In the working phase, head and feature position are
tracked in time. The relative shift of the feature point
relative to both the ”straight ahead” feature position
and the center of the head gives the user’s head pose.
The algorithm estimates six degrees of freedom (rota-
tion and translation with respect to all three spatial
dimensions). The algorithm is usable as a HCI compo-
nent in immersive systems. This was shown in a demon-
stration application.
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