
A Parallel Branch–and–Bound Algorithm for
Computing Optimal Task Graph Schedules

Udo Hönig and Wolfram Schiffmann

FernUniversität Hagen, Lehrgebiet Technische Informatik I, 58084 Hagen, Germany
{Udo.Hoenig|Wolfram.Schiffmann}@FernUni-Hagen.de

http://www.informatik.ti1.fernuni-hagen.de/

Abstract. In order to harness the power of parallel computing we must
firstly find appropriate algorithms that consist of a collection of (sub)tasks
and secondly schedule these tasks to processing elements that commu-
nicate data between each other by means of a network. In this paper,
we consider task graphs that take into account both, computation and
communication costs. For a homogeneous computing system with a fixed
number of processing elements we compute all the schedules with mini-
mum schedule length. Our main contribution consist of parallelizing an
informed search algorithm for calculating optimal schedules based on a
Branch–and–Bound approach. While most recently proposed heuristics
use task duplication, our parallel algorithm finds all optimal solutions
under the assumption that each task is only assigned to one process-
ing element. Compared to exhaustive search algorithms this parallel in-
formed search can compute optimal schedules for more complex task
graphs. In the paper, the influence of parameters on the efficiency of the
parallel implementation will be discussed and optimal schedule lengths
for 1700 randomly generated task graphs are compared to the solutions
of a widely used heuristic.

1 Introduction

A task graph is a directed acyclic graph (DAG), that describes the dependencies
between the parts of a parallel program [8]. In order to execute it on a cluster or
grid computer, it’s tasks must be assigned to the available processing elements.
Most often, the objective of solving this task graph scheduling problem is to
minimize the overall computing time. The time that a task i needs to compute
an output by using the results from preceding tasks corresponds to the working
load for the processing element to which that task is assigned. It is denoted by a
node weight wi of the task node. The cost of communication between two tasks
i and j is specified as an edge weight cij . If both tasks are assigned to the same
processor, the communication cost is zero.

Task graph scheduling comprises two subproblems. One problem is to assign
the tasks to the processors, the other problem consists of the optimal sequencing
of the tasks. In this paper, we suppose a homogeneous computing environment,
e.g. a cluster computer. But, even if we assume identical processing elements, the



problem to determine an optimal schedule has been proven to be NP–complete,
apart from some restrained cases [8]. Thus, most researchers use heuristic ap-
proaches to solve the problem for reasonable sizes of the task graph. Three cate-
gories can be distinguished: list–based, clustering–based and duplication–based
heuristics. List–based heuristics assign priority levels to the tasks and map the
highest priority task to the best fitting processing element [10]. Clustering–based
heuristics embrace heavily communicating tasks and assign them on the same
processing element, in order to reduce the overall communication overhead[1].
Duplication-based heuristics also decrease the amount of communication while
simultaneously the amount of (redundant) computation will be increased. It has
been combined with both list-based [2] and cluster-based approaches [9]. In or-
der to evaluate the quality of all those heuristics in a unified manner it would
be desirable to compare the resulting schedules lengths of those heuristics to
the optimal values. The parallel Branch–and–Bound algorithm proposed in this
paper can be used to create a benchmark suite for this purpose. Of course, this
is only feasible for task graphs of moderate size (e.g. with lower than 30 tasks).

Usually, there are multiple optimal schedules that provide a solution set of
the task graph scheduling problem. All these schedules are characterized by the
same minimal schedule length. To compute these optimal schedules we have to
search for all the possible assignments and sequences of the tasks.

The simplest algorithm to compute the set of optimal schedules enumerates
all possible solutions and stores only the best ones. But, even for a small number
of tasks the number of solutions will be enormous. If we want to get the set of
optimal schedules in an acceptable period of time and with maintainable memory
requirements we have to devise a more skillful algorithm.

The basic idea to shorten the effort of an exhaustive search is to perform a
structured or informed search that reduces the state space. Thus, the number
of schedules that have to be investigated is much smaller than the number of
possible processor assignments multiplied by the number of possible sequences.
In this way, an informed search can manage more complex task graphs than ex-
haustive search strategies. The informed search is often based on a A* algorithm
([3], [5]). In this paper, we will present a Branch–and–Bound approach and its
implementation on a parallel virtual machine [4].

The paper is organized as follows. In the next section, the concepts of the
Branch–and–Bound algorithm will be explained. The third section is concerned
with the parallelization of that algorithm. It describes how the workload is parti-
tioned and how load balancing will be achieved. In the fourth section, we present
results and discuss the influence of various parameters on the efficiency of the
parallel implementation.

2 Branch–and–Bound algorithm

If we want to shorten the time to compute the set of optimal solutions, we are
not allowed to consider every valid schedule (assignment of the tasks to the
processing elements plus determination of the tasks’ starting times). Instead,



we have to divide the space of possible schedules into subspaces that contain
partially similar solutions.

These solutions should have in common that a certain number of tasks is
already scheduled in the same way. The corresponding subspace contains all the
schedules that are descended from the partial schedule but differ in the schedul-
ing of the remaining tasks. Each partial schedule can be represented by a node in
a decision-tree. Starting from the root, which represents the empty schedule, all
possible schedules will be constructed. At any point of this construction process,
we can identify a set of tasks that are ready to run and a set of idle processing
elements to which those tasks can be assigned. In this way, each conceivable
combination will produce a new node in the decision tree (Branch).

Supposed we have an estimate tbest for the total schedule length, we can
exclude most of the nodes that are created in the Branch part of the algorithm.
This estimate can be initialized by any heuristic. Here, we used the heuristic from
Kasahara and Narita [6]. After the creation of a new partial schedule (node of the
decision tree), we can estimate a lower bound of it’s runtime tpartial by means
of it’s current schedule length and the static b-level values of the remaining
(yet unscheduled) tasks. The lower bound tpartial is computed by the sum of
the partial schedule length plus the maximum of the static b-level values. If
tpartial is greater than tbest, we can exclude the newly created node from further
investigation. By this deletion of a node (Bound) we avoid the evaluation of all
the schedules that depend on the corresponding partial schedule (subspace of
the search space). In this way, we accelerate the computation of the solution set
for the task graph problem.

As long as a node’s tpartial is lower or equal to the current tbest we continue
to expand this node in a depth-first manner. When all the tasks of the graph
are scheduled, a leaf of the decision tree is reached. If tbest = tcomplete we add
the corresponding schedule to the set of best schedules. If tbest > tcomplete we
clear the set of best schedules, store the new (complete) schedule into the set of
best schedules and set tbest = tcomplete. Then we continue with the next partial
schedule.

The pruning scheme above is further enhanced by a selection heuristic that
controls the order of the creation of new nodes. By means of this priority con-
trolled breadth-first search we improve the threshold tbest for pruning the de-
cision tree as early as possible. Likewise to the Bound phase, this procedure
reduces further the total number of evaluations. By proceeding as described
above, all possible schedules are checked. At the end of the search procedure,
the current set of best schedules represents the optimal schedules for the task
graph problem.

3 The parallel algorithm

The parallelisation of the sequential Branch–and–Bound algorithm requires a
further subdivision of the search-space into disjunct subspaces, which can be
assigned to the processing units.



As already described in Section 2, every inner node of the decision-tree repre-
sents a partial schedule and every leaf node corresponds to a complete schedule.
The branching rule used by the algorithm, guarantees that the sons of a node
will represent different partial schedules. Since the schedules are generated along
the timeline, a later reunification of the subtrees, rooting in these sons, is im-
possible. Therefore two subtrees of the decision-tree always represent disjunct
subspaces of the search-space, if none of their roots is an ancestor of the other
one. Another result of these thoughts is that every part of the search-space can
unambiguously be identified by it’s root-node.

In order to achieve a balanced assignment of the computation to the avail-
able processing units, the algorithm generates a workpool, containing a certain
number of subtree-roots. This workpool is managed by a master-process, which
controls the distribution of the tasks to the slave-processes.

The workpool is created by means of a breadth-first-search which terminates,
when a user defined number of elements is collected in the workpool. The nodes
are numbered by the ordinal numbers of the nodes’ permutations. These ordinal
numbers allow an unambiguous identification of the nodes. By means of the
root’s ordinal number, it is possible to build the corresponding subtree. For that
reason, the only information, that need to be stored in the workpool, are the
ordinal numbers of the subtrees’ roots. This helps to keep the required memory
small.

The parallel algorithm can be partitioned into three parts, called Initialisa-
tion, Computation and Finalisation.

During the Initialisation-Phase, the master launches the slave-processes and
splits the whole task into a number of smaller subtasks. The number of subtasks
depends on the size of the workpool, which is specified by the user.

The Computation-Phase begins as soon as the master assigns a subtask to
every slave1. Then, the master has to wait until it receives a message from one of
the slaves which indicates that the slave has completely analysed a given subtree
or that it has found an improved schedule. In the last case, the master only stores
the broadcasted schedule length and the process-id of the sending slave. In the
other case, it sends a new subtask to the slave if the workpool is not empty,
otherwise the slave will stay idle.

As soon as all subtasks are processed and all slaves are idle, Finalisation-
Phase will take place. The master informs all slaves about the end of the computa-
tion-process. This request is necessary, because the sending of messages appears
asynchronously and it is not guaranteed, that every message that indicates a new
best solution was already sent and received. Every slave receiving the finalisation
message, compares the global best solution to it’s own recent results and possibly
deletes it’s own suboptimal results. If the slave recognizes, that it’s own recent
temporal solution is better than the global best solution, it sends an appropriate
broadcast to the master and to all other slaves. Then, the slave sends the mas-
ter an acknowledgement to indicate, that it finished the adjustment successfully.
The master waits, until it receives an acknowledgement from every slave. Then

1 It is required that the workpool contains more tasks than slaves.



it requests the complete schedule from the last slave that reported to have found
the best solution so far. Additionally it requests some bookkeeping information
of all slaves. The slaves terminate after sending their replies. Finally, the master
creates the output-file and terminates as well.

4 Results

To achieve an efficient informed search algorithm, there are some constraints
that should be analysed before starting the computation of larger problems.
It was found, that some of the most important constraints that influence the
search-speed are independent of the given task graph. These aspects belong to
the algorithm’s properties such as the size of the workpool and the number of
processing elements that are involved in the search-process.

Additionally, we demonstrate the suitability of our approach for the eval-
uation of scheduling heuristics. For this purpose, we analyse the heuristic of
Kasahara and Narita [6] using a test bench of approximately 1700 task graphs.

4.1 Size of the workpool

After it’s creation, the workpool includes the complete search space, subdivided
into a user-defined number of subspaces. Apparently, the size of a subspace
is determined by the number of schedules that it contains. If the number of
subspaces will be increased, the size of every subspace will be reduced. In this
way the workpool’s size determines the granularity of the search space and the
number of schedules one slave has to analyse.

Figure 1 shows how the runtime for different task graph problems depends
on the size of the workpool. On the left side, we see how an increase of the
workpool size can reduce the runtime on a parallel computing system with 30
processing elements. It is clearly visible that a workpool size between approx.
300 to 1200 elements (partial schedules) will be useful in this case. In contrast,
we see on the right side of figure 1, that the situation for light-weight scheduling
problems changes to get worse when using a parallel implementation. In this
case, the minimal runtime is reached with the sequential implementation and
no subtasks at all. The relative slowdown increases with the workpool’s size and
might become clearly more than 100 %.

Since it is difficult or even impossible to estimate the computational com-
plexity of a schedule, the workpool size has to be chosen carefully in order to
minimize the overall runtime.

4.2 Number of processing elements

Usually, the maximum speedup of a parallel program will be equal to the num-
ber of the available processing elements. In order to evaluate the scaling of the
parallel implementation we used three task graphs that had sequential runtimes
of approximately one minute each. The workpool size was set to 6000.



0

50

100

150

200

250

300

0 1000 2000 3000 4000 5000 6000

R
un

tim
e 

(s
)

Workpool size (Elements)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1000 2000 3000 4000 5000 6000

R
un

tim
e 

(s
)

Workpool size (Elements)

Fig. 1. Influence of the workpool’s size on the runtime. Sequential runtime on the left
side diagram: 50..250s; on the right side diagram: 0,01..1,2s

Figure 2 shows the relation between the speedup-factor and the number
of used processing elements. For smaller numbers of processing elements, the
speedup-factor increases almost linear (for one example even a slight superlinear
speedup can be recognized). If the number of processing elements gets larger than
8 the speedup differs from being linear and it begins to move to a saturation
limit of approximately 16.

0

5

10

15

20

25

30

0 5 10 15 20 25 30

S
pe

ed
up

Number of processing elements

Fig. 2. Influence of the number of processing elements on the speedup-factor

4.3 Analysing scheduling heuristics

The computation of optimal schedules is a rather time-consuming process which
is only possible for small to medium-size task graphs. Although most of the



proposed scheduling heuristics aim at large task graphs, this subsection should
show, that the efficiency of those heuristics can also be analysed by considering
smaller graphs for which the optimal schedule lenghts can be computed by the
proposed algorithm.

A test with approximately 1700 computed optimal schedules was carried out
to evaluate the heuristic’s efficiency. The used graphs were generated randomly
in terms of multiple possible settings of the DAGs’ properties, e.g. the connec-
tion density between the nodes. Using such a wide spread variation of task graph
properties, we can be sure that the results are independent of the chosen task
graph set. This way, our approach enables scientists to evaluate and compare
their heuristics’ results more objectively. To demonstrate this new opportunity,
we use the well-known heuristic of Kasahara and Narita, described in [6].

Table 1: Deviation of the analysed heuristic’s results

Deviation 0% < 5% < 10% < 15% < 20% < 25% ≥ 25%
Heuristic [6] 57.67% 71.46% 83.41% 90.96% 94.94% 97.14% 2.86%

Table 1 shows the deviation of this heuristic’s results from the optimal sched-
ule lengths. The heuristic finds a solution with the optimal schedule length for
57.67% of the investigated task graphs. Regarding to the other task graphs, the
observed deviation from the optimal schedule length is rather low (< 10%) in
83.41% of the cases. Only 2.86% of all solutions are worse than 25%.

The performance of heuristics is usually evaluated by comparing their solu-
tions with the ones of another (well known) heuristic. We argue that it would
be more meaningful to use the deviations from the optimal solutions introduced
above. For this purpose we will soon release a benchmark suite that provides the
optimal solutions for 36.000 randomly created task graph problems which cover
a wide range of different graph properties.

5 Conclusion

In this paper we presented a parallel implementation of a Branch–and–Bound
algorithm for computing optimal task graph schedules. By means of paralleliza-
tion the optimization process is accelerated and thus a huge number of test cases
can be investigated within a reasonable period of time.

The runtime needed for the computation of an optimal schedule is highly
dependent of the workpool’s size and the number of processing elements that
are available for computation. In order to reduce the runtime, the size of the
workpool has to be chosen carefully. A nearly linear speedup can be achieve,
provided that an appropriate workpool size is used.



By means of the parallel Branch–and–Bound algorithm, the optimal sched-
ules for a benchmark suite that comprises 1700 task graphs were computed. This
allows for a more objective evaluation of scheduling-heuristics than comparisons
between heuristics. We evaluated the solutions of the heuristic of Kasahara and
Narita [6] by comparing the corresponding schedule lengths towards the optimal
schedule lengths of all the 1700 test cases.

The authors’ future work will include the release of a test bench, which will
provide a collection of 36000 task graph problems together with their optimal
schedule lengths. This benchmark suite will enable researchers to compare the
performance of their heuristics with the actually best solutions.

6 Acknowledgement

The authors would like to thank Mrs. Sigrid Preuss who contributed some of the
presented results from her diploma thesis.

References

1. Aguilar, J., Gelenbe E.: Task Assignment and Transaction Clustering Heuristics for
Distributed Systems, Information Sciences, Vol. 97, No. 1& 2, pp. 199–219, 1997

2. Bansal S., Kumar P., Singh K.: An improved duplication strategy for scheduling
precedence constrained graphs in multiprocessor systems, IEEE Transactions on
Parallel and Distributed Systems, Vol. 14, No. 6, June 2003

3. Dogan A., Özgüner F.: Optimal and Suboptimal reliable scheduling of precedence-
constrained tasks in heterogeneous distributed computing, International Workshop
on Parallel Processing, p. 429, Toronto, August 21-24, 2000

4. Geist A., Beguelin A., Dongarra J., Jiang W., Mancheck R., Sunderam V.: PVM
3 Users Guide and Reference Manual, Oak Ridge National Laboratory, Tennessee
1993

5. Kafil M., Ahmad I.: Optimal Task assignment in heterogeneous distributed com-
puting systems, IEEE Concurrency: Parallel, Distributed and Mobile Computing,
pp. 42-51, July 1998

6. Kasahara, H., Narita, S.: Practical Multiprocessor Scheduling Algorithms for Effi-
cient Parallel Processing. IEEE Transactions on Computers, Vol. C-33, No. 11, pp.
1023-1029, Nov. 1984

7. Kohler, W.H., Steiglitz, K.: Enumerative and Iterative Computational Approaches.
in: Coffman, E.G. (ed.): Computer and Job-Shop Scheduling Theory. John Wiley &
Sons, New York, 1976

8. Kwok, Y.-K., Ahmad, I.: Static scheduling algorithms for allocating directed task
graphs to multiprocessors. ACM Computing Surveys, Vol. 31, No. 4, 1999, pp. 406–
471

9. Park C.-I., Choe T.Y.: An optimal scheduling algorithm based on task duplication,
IEEE Transactions on Computerss, Vol. 51, No. 4, April 2002

10. Radulescu A., van Gemund A. J.C.: Low-Cost Task Scheduling for Distributed-
Memory Machines, IEEE Transactions on Parallel and Distributed Systems, Vol.
13, No. 6, June 2002


