
An ACO-based Approach for Scheduling Task Graphs
with Communication Costs

Markus Bank Udo Ḧonig Wolfram Schiffmann
FernUniversiẗat Hagen

Lehrgebiet Rechnerarchitektur
58084 Hagen, Germany

{Markus.Bank, Udo.Hoenig, Wolfram.Schiffmann}@FernUni-Hagen.de

Abstract

In this paper we introduce a new algorithm for comput-
ing near optimal schedules for task graph problems. In con-
trast to conventional approaches for solving those schedul-
ing problems, our algorithm is based on the same principles
that ants use to find shortest paths between their nest and
food sources. Like their natural counterparts, artificial ants
cooperate by means of pheromone trails where information
about the quality of the possible solution’s building blocks
is stored. Based on this common communication structure,
new solutions emerge by means of cooperative interaction
between the ants. In the paper we demonstrate how this ba-
sic principle can be adapted to solve scheduling problems.
We also evaluated the performance of the proposed ANTLS-
algorithm (Ant List Scheduler) by means of a comprehen-
sive test bench with more than 30,000 test cases. Compared
to two conventional and two nature-inspired approaches it
performed very well.

1. Introduction

The number of networked computers world wide is
steadily increasing. If one has to conduct complex compu-
tations it is therefore useful to distribute the working load
over multiple computers. In this way one can not only ac-
celerate the computation but also improve the usage of the
available computers. To solve a specific problem, we need
a parallel algorithm whose components will be executed on
a homogeneous or heterogeneous network of more or less
spatial distributed computers (e.g. cluster or grid comput-
ers, respectively).

Dependencies between the parts of a parallel algorithm
can be described by means of a directed acyclic graph
(DAG), also known astask graph. In general, the nodes
and edges of a task graph are weighted. The work load of

a specific taski is indicated by the node’s weightwi. It
corresponds to the time needed by a task to compute new
outputs using the results of preceding tasks as inputs. The
cost of communication between two tasksi andj is spec-
ified by an edge weightcij . This cost must be considered
only if the communicating tasks will be mapped to different
processing elements.

If we want to execute an algorithm which is specified
by a task graph on a parallel machine like a cluster or grid
computer, we have to find a schedule that determines both,
optimal sequencing and optimal mapping of the tasks to the
available processing elements. Most often, the objective of
solving thistask graph scheduling problemis to minimize
the overall computing time by making efficient use of the
parallel processing elements. In this paper, we suppose a
homogeneous computing environment. Thus we can use
a greedy mapping strategy and can concentrate on solving
the sequencing (sub)problem. But despite the restriction to
identical processing elements, the problem to determine an
optimal schedule – apart from some restrained cases – has
been proven to be NP-complete [1]. Thus, most researchers
use heuristic approaches to solve the problem for reason-
able sizes of the task graph. Three categories can be dis-
tinguished: list–based, clustering–based and duplication–
based heuristics. List–based heuristics assign priority lev-
els to the tasks and map the highest priority task to the best
fitting processing element [2]. Clustering–based heuristics
embrace heavily communicating tasks and assign them on
the same processing element, in order to reduce the overall
communication overhead [3]. Duplication-based heuristics
also decrease the amount of communication while simulta-
neously the amount of (redundant) computation will be in-
creased. It has been combined with both list-based [4] and
cluster-based approaches [5].

In this paper we will introduce a list-based approach that
concentrates on finding a near optimal sequence for the
tasks. The mapping subproblem is solved by a so called

greedy mapperthat simply assigns the next task to be sched-
uled to that processing element where it can be started as
soon as possible. In order to find a nearly optimal sequence,
we use a quite new approach that models the behavior of ant
colonies.

In contrast to other list-based heuristics, our algorithm
mimics the successful strategies of ants in finding solutions
to the complex routing problems the ants are faced with in
real life. We compare the results found by this so calledAnt
Colony Optimization(ACO) approach with the performance
of other well known conventional and also nature-inspired
heuristics. This comparison is based on a comprehensive
test bench of task graph problems that provides the actual
optimalsolutions to a collection of various task graph prob-
lems [6]. By means of this test bench we can easily evaluate
and analyze the strengths and drawbacks of the proposed
ACO-approach. Even though the ACO-approach has been
applied to various optimization problems, e.g. the Trav-
eling Salesman Problem (TSP), in this contribution it has
been for the first time applied to task graph scheduling. By
the introduction of problem dependent rules for computing
the pheromone concentrations, the stability of the algorithm
and the quality of its results have been improved.

The paper is organized as follows: In the next sec-
tion the ACO-metaheuristic will be described. Then, we
introduce into the details of our ant list scheduler algo-
rithm (ANTLS) for computing near optimal sequences to
a given task graph scheduling problem by means of the
ACO-metaheuristic. Then, we compare the results achieved
by ANTLS with those of two conventional and two nature-
inspired approaches. We also analyze the influence of dif-
ferent parameter settings and the size of the task graphs to
the achieved performance.

2. The Ant Colony Optimization Metaheuristic

As a result of the considered task graph scheduling prob-
lem’s NP-completeness, researchers developed a large num-
ber of deterministic and stochastic heuristics in order to find
near optimal schedules in reasonable time, many of them
basing on metaheuristics (e.g. [7, 8]). Ametaheuristicis
a generic, to numerous different problems adaptable algo-
rithm that guides the processing of at least one subordinated
(local) heuristic which is specialized in the given problem.
A detailed description of general metaheuristics’ character-
istics as well as a survey of the currently most popular meth-
ods can be found in [9]. Some metaheuristics imitate natural
processes and are therefore callednature-inspired. Among
Simulated Annealing, Genetic Algorithms and many others,
the class of metaheuristics also comprises a method called
Ant Colony Optimization(ACO)[10, 11].

ACO is inspired by the indirect communication of a for-
aging ant swarm. By means of this communication behav-

ior, the swarm is enabled to find shortest paths between food
sources and the nest. While moving, every ant deposits a
trail of a chemical substance, calledpheromone, on its way.
The more ants pass by, the higher is the pheromone concen-
tration at a location. Although every ant selects its direc-
tion at random, a path’s probability of being chosen raises
with its pheromone concentration. Since every ant leaves
a pheromone trail at the selected path, it reinforces the al-
ready deposited pheromone and therefore raises the path’s
attractiveness for later ants. Without any limitation mech-
anism, this positive feedback would lead to a soon conver-
gence and the selection of a probably poor path. In nature,
this limitation is achieved byevaporationwhich reduces the
pheromone concentration by-and-by, if the path is not fre-
quently used. This way, an ant colony will ’forget’ a path if
it is of no further use.

The ACO metaheuristic applies the described behavior
of natural ants to optimize constructive search processes
for combinatorial problems. By usingartificial pheromone
trails, a swarm of independent agents, theartificial ants,
is guided through the investigated search space. The gen-
eral structure of the ACO metaheuristic, including some of
the later described optional extensions is shown in Figure
1. While a problem dependent termination criterion is not
satisfied, the following steps are conducted: Firstly, every
ant constructs a solution to the given problem. Next, the
found solutions are evaluated and the artificial pheromone
trails are updated. The third step is optional and deals with
so-calleddaemon actionswhich are centralized actions that
need global knowledge.

while termination criterion is not satisfied{
1. ants construct solutions
2. pheromone trail update

online delayed pheromone update (opt.)
evaporation

3. daemon actions (opt.)
elitism (opt.)
offline pheromone update (opt.)

}

Figure 1. The ACO-metaheuristic.

The termination criterion is usually a combination of a
demand on the found solution’s quality and an upper bound
of allowed loop iterations. If the search gets stuck in a lo-
cal extremum, this bounding ensures that ACO terminates
within a reasonable period of time.

An artificial ant performs its walk through the search
space by incrementally completing a solution of the given
problem. In every construction step, the ant has to select a

building block that should be integrated in its current par-
tial solution next. This decision problem corresponds to
the problem of natural ants to select a suitable direction.
Like their natural counterparts, artificial ants can use the
pheromone trails of preceding ants as a guideline for this
decision. In addition, a local heuristic provides further in-
formation that can be used to guide each ant.

To fulfill its task, every artifical ant is equipped with
enough memory to remember its path through the search
space. This information can be required to find a valid so-
lution, to evaluate the found solution or to deposit the ant’s
pheromone trail afterwards.

In contrast to nature, where every moving ant deposits
a continuous and constant pheromone trail, ACO permits
several alternative ways. The trail update can either be con-
ducted by the ant itself (online update) or a deamon process
(offline update). In case of an online update, the ant can de-
posit the pheromone immediately at every construction step
(online step-by-step pheromone update) or after finishing
the whole construction process (online delayed pheromone
update). A delayed trail generation enables the consider-
ation of a solution’s quality when selecting the amount of
pheromone to deposit. This way, the further search can be
biased more strongly to promising areas of the search space.

Like in nature, without any appropriate protection mech-
anism the artificial ants’ positive feedback would lead to
an early convergence of the algorithm with possibly bad
results. For this reason, ACO-algorithms usually imple-
ment some kind ofevaporation, allowing the artificial ants
to ’forget’ and therefore favoring the exploration of new
search space areas.

Many ACO-algorithms implement an ’elitism’-function.
Among plenty of possible alternatives, elitism can – for ex-
ample – be realized by considering only the best solution
of every run for the trail update [12], or by means of an
deamon action, that deposits an extra amount of pheromone
upon the global best ant’s path every run [13].

3. ANTLS (Ant List Scheduling)

In ANTLS, ants build sequences of tasks by visiting the
nodes of a DAG in a topological order. The scheduling
lists are used as an input of a greedy list scheduler which
maps the tasks to the processors. The length of the resulting
schedule is then used as a quality measure of the generated
solution.

Building a scheduling list for a DAG requires the con-
sideration of the predefined precedence constraints. If they
are not taken into account, it is most likely that the mapper
can not create a feasible schedule. This does not only limit
the set of starting nodes, but also the set of nodes that are
allowed to be scheduled at each step. In order to create fea-
sible scheduling lists, every ant’s memory has to store the

following information:

• The current node the ant is. This is the last scheduled
node.

• A set of nodes, the so-calledfree nodes, which are
ready for scheduling. This set will be updated after
every step.

• The number of unscheduled predecessors for each
node. This is used by the ant to detect when a node
becomes ready for being processed. The ant needs to
keep track of this information because a node must not
be scheduled if it has unscheduled predecessors.

• The scheduling list which is build by the ant.

At the beginning, the set of free nodes will be preset with
the entry nodes. The ant will be placed at a pseudo node
v0 6∈ V , V denoting the set of the DAG’s nodes, which will
not be scheduled. The purpose of this pseudo node is to let
the ants decide which entry node should be scheduled first.
The number of unscheduled predecessors for each node will
be initialized and the ants scheduling list is empty.

We now define the relationship between pheromone
and scheduling lists. For that purpose we introduce a
pheromone valueτ(v, w) that represents the benefit of
scheduling a nodew directly after nodev, wherev, w ∈ V .
If a scheduling list which schedules a nodew directly af-
ter a nodev results in a short schedule, this fact should be
saved for succeeding ants by depositing some pheromone
betweenv andw. Later ants will then be attracted to sched-
ule the nodes in an order that resulted in a short schedule.
The initial amount of pheromone at the start of the algo-
rithm will be initialized to τ(v, w) = τ0 for each pair of
nodes(v, w), so at the beginning there will be no guidance
by pheromone.

Additionally, the ants use a local heuristic, supporting
them to build good scheduling lists. At each step an ant has
to decide between several nodes to schedule next. Classical
task scheduling heuristics, such as HLFET [14] and MCP
[15] are making such a decision by assigning priorities to
the nodes. These priorities are often based on levels implied
by the structure of the DAG, for example:

• blevel(v) which is the length of the longest path from
v to an exit node, excluding the weight of nodev.

• sblevel(v) which is the same asblevel(v) but without
considering edge weights.

We compared the results of usingsblevel and blevel
ordering and found that scheduling nodes in descending
sblevel-order gives slightly better results than scheduling
in blevel-order. For this reason, we define a local heuristic

to schedule a nodew directly after a nodev (which is in fact
independent ofv) as:

η(v, w) = sblevel(w) (1)

We will now describe, how an antk selects the next node
to be scheduled. Assume the ant is at nodePosk and its set
of free nodes is denoted asFreek. At first, the ant decides
between the exploitation of a known good scheduling or-
der or the exploration of different orderings. The balance
of exploitation and exploration is controlled by a parameter
q0 ∈ [0, 1] which indicates the probability that an ant de-
cides to exploit a good order and schedules the node with
the highest attractiveness. This is the one, which possesses
the best combination of a highsblevel and a large amount
of pheromone.

Nextk = argmax
u∈Freek

{
τ(Posk, u) · ηβ(Posk, u)

}
(2)

whereβ is a parameter that controls the influence of the
local heuristic. If the currently considered ant decided to
explore, it selects one nodew ∈ Freek by using a so called
random-proportionaldecision rule. The probability the ant
selects nodew is:

p(w) =
τ(Posk, w) · ηβ(Posk, w)∑

u∈Freek

τ(Posk, u) · ηβ(Posk, u)
(3)

After the ant has selected a nodeNextk, it moves to this
node and updates its set of free nodes by decrementing the
number of unscheduled predecessors for each successor of
Nextk. If a successor’s number of unscheduled predeces-
sors reaches zero, it is added to the set of free nodes. After
maintaining its internal state, every ant immediately applies
a local pheromone update using the following rule:

τ(Posk, Nextk) ← (1−ρ) · τ(Posk, Nextk)+ρ · τ0 (4)

In the above rule, the parameterρ ∈ [0, 1] controls the
ratio of pheromone evaporation and reinforcement. Unlike
other ant algorithms, e.g.Ant Colony System(ACS) for the
TSP [13], we decided to update the pheromone directly after
an ant made its step. Since all ants start at the same pseudo
node and therefore the set of allowed nodes to schedule is
the same for all ants at the start of an iteration, without an
immediate update the probability that all ants choose the
same node would be quite high, leading to a soon conver-
gence.

After all ants have built their scheduling lists, these lists
are evaluated by mapping the nodes to the processors. We
used a greedy mapper which maps a node to the processor
that allows its earliest starting time. The ant whose schedul-
ing list resulted in the shortest schedule is called theitera-
tion best ant. Analogous we keep aglobal best ant, which
is the best ant over all iterations.

At the end of an iteration, a global pheromone update
is applied by allowing the global best ant to deposit some
extra pheromone between the nodes it has visited. This
will attract ants in later iterations to schedule the nodes in
a similar order which might also result in a short schedule.
Let (vi1 , . . . , vin) be the global best ant’s scheduling list.
Pheromone will be updated for eachj ∈ {1, . . . , n− 1} by
means of the following rule:

τ(vij
, vij+1) ← (1− α) · τ(vij

, vij+1) + α ·∆τ (5)

Similar to the local pheromone update, a parameterα ∈
[0, 1] controls the ratio of evaporation and reinforcement. In
[13] the amount of reinforcement is determined byLgb

−1,
whereLgb is the global best ant’s tour length. In ANTLS we
chose a different approach to compute the reinforcement.
In order to formalize this approach, we have to introduce a
lower bound of an optimal schedule length first.

Assume scheduling a DAG on an unbounded number of
processors. Then, the length of a critical path without con-
sidering communication costsCPlen will be a first lower
bound of an optimal schedule length which is implied by
the structure of the DAG. A second lower bound can be
achieved by assuming scheduling the nodes to a bounded
number of processorsp. If all nodes are equally distributed
to all processors and there are no idle times, the schedule
length is bounded by:

SLmin =




∑
v∈V

w(v)

p




(6)

By using these two bounds, we get a lower boundSLlb

of an optimal schedule length by:

SLlb = max {CPlen, SLmin} (7)

Now, let SLgb be the length of the global best ant’s
schedule. We define the amount of reinforcement as:

∆τ =
1

SLgb − SLlb + 1
(8)

Subtracting the lower boundSLlb makes the reinforce-
ment independent of the actual DAG. Assume an optimal
schedule has lengthSLopt. If SLopt = SLlb, the reinforce-
ment of an ant that created an optimal scheduling list will
always be 1.

As a consequence, the amount of pheromone deposited
by the global best ant will be much higher as if a reinforce-
ment of SLgb

−1 was used. This needs to be considered
when computing the initial amount of pheromoneτ0 at the
start of the algorithm. In ANTLS we therefore initially de-
posit

τ0 =
1
|V | (9)

between each pair of nodes(v, w).

4. Results

In order to conduct an unbiased analysis of our algo-
rithm, we used the test bench proposed in [6] as test set.
This test bench comprises 36000 task scheduling problems
with task graphs ranging from 7 to 24 nodes and target ar-
chitectures ranging from 2 to 32 parallel computers. Since
the optimal schedules comprised by this test bench are not
yet available for all test cases, the interim version used for
the presented analysis is limited to 30511 task graphs with
known optimal solutions. To our knowledge there exists
no comparable test bench for the evaluation of heuristic
scheduling algorithms. Although in [16] a test bench for
task graphs with up to 5000 tasks is provided these task
graphs do not take communication overhead into account.
Also, it is not guaranteed that the minimum schedule length
is given for every task graph problem, because of the NP-
completeness the run time of the search algorithm was lim-
ited to 10 minutes. In [17] a performance study of 15 heuris-
tic scheduling algorithms is presented. In contrast to the test
set used, the number of task graphs is much lower (≈ 350)
and for most of the investigated task graphs (250) the opti-
mal schedules are not known.

Like other metaheuristics, ACO allows for a wide range
of alternative options for several parameters. Our first in-
vestigation was therefore to find a setting, enabling the algo-
rithm to find as many optimal schedules as possible. Since
ACS performed well considering the Traveling-Salesman-
Problem, we decided to realize an ACS-like implementation
(see fig. 2(A)) as starting point for our search. The number
of iterations was set to 60, with an iteration-size of 17 ants,
totaling 1020 ants. We selected

• the local heuristic,

• the amount of reinforcement∆τ ,

• the initial amount of pheromoneτ0 and

• the timing of the pheromone update’s conduction

for variation. Figure 2 can show only some of the ob-
tained results. Implementations using thesblevel as lo-
cal heuristic are slightly superior to those using theblevel
(fig. 2(A) and (B)). Increasing∆τ from ACS’s default to
∆τ = 1

SLgb−SLlb+1 produces worse results if the initial
amount of pheromone (τ0) is unchanged (see fig. 2(C)). In
combination with an increased initial amount of pheromone
(τ0 = 1

|V |), this value for∆τ achieves much better results
(fig. 2(D)). In comparison to ACS’s pheromone update, an
early pheromone update after every single ant’s move shows
no observable difference as can be seen in figure 2, (D) and
(E). This way, we found the implementation described in
section 3, which will be further analyzed.

78.17 78.10

74.11

80.15 80.15

71,00

72,00

73,00

74,00

75,00

76,00

77,00

78,00

79,00

80,00

81,00

(A) (B) (C) (D) (E)

Analysed parameter settings

P
e
rc

e
n
ta

g
e

o
f

o
p
ti
m

a
l
s
o
lu

ti
o
n
s

Figure 2. Results of several variations of our
ACO-algorithm.

Our next aim is to investigate the influence of the
ant/iteration-ratio on the quality of the achieved results. The
number of total ants is fixed to a value of about 1024. As can
be seen in table 1, the results of different ant/iteration-ratios
differ by a maximum of only 1,47%. Although the results
of [13] are approximately confirmed, at least for small task
graphs our algorithm seems to be quite stable here.

While the ratio of ants and iterations is of minor impor-
tance considering the test set used, the number of ants that
move accumulated over all iterations has a strong influence
on the quality of ANTLS’s results. For a closer investi-
gation, we varied this parameter within a range of 1 and
2048 ants and analyzed the effects with respect to several
task graph properties. Exemplarily, we will now focus on
the task graphs’ sizes. Figure 3 shows the achieved results
for task graphs consisting of 7, 15 and 24 tasks as well as
the overall test set with all task graph sizes. It is obvious
that the algorithm finds the optimal schedules more often,
the smaller the considered task graphs are. Independent
of the task graphs’ size, the benefit of adding more ants to
the search process declines soon and finally reaches a level
where it is almost zero. The bigger the task graph is, the
more ants are required to reach this level.

The compared heuristics were originally all designed for
static scheduling. Although the runtime of an algorithm
is less important in static scheduling environments, a too
extensive overhead would make it inapplicable for larger
task graphs. For this reason, we investigated the scaling
behaviour of our ANTLS algorithm and compared the ob-
tained results with those of other heuristics. The experi-
ment was conducted upon a PC with an Athlon-1000 MHz
processor. Figure 4 shows the runtimes of the considered
nature inspired heuristics. The deterministic algorithms are
not considered since their runtimes are all within a few sec-
onds and would therefore appear as flat lines only. ANTLS,
SA and GA obtain similar results, with the GA perform-

Table 1. Results of different ant/iteration-ratios

Number of Ants 1 2 4 8 16 21 32 64 128 256 512 1024
Number of Iterations 1024 512 256 128 64 49 32 16 8 4 2 1

Optimal Results (in %) 78.78 79.26 79.55 79.91 80.11 80.25 80.09 80.15 79.86 79.45 79.21 79.03

10

20

30

40

50

60

70

80

90

100

1 4 16 64 256 1024

P
er

ce
nt

ag
e

of
 o

pt
im

al
 S

ol
ut

io
ns

Number of Ants

Overall
TG-Size-7

TG-Size-15
TG-Size-24

Figure 3. Influence of the number of ants in-
volved in the search process.

ing the best and ANTLS the worst. Although this over-
head prevents these heuristics from being applied in dy-
namic scheduling environments, the shown performance is
sufficient for static scheduling and analysis purposes.

0

20

40

60

80

100

0 50 100 150 200 250 300 350 400 450 500

R
un

tim
e

(in
 s

ec
.)

Task Graph Size

ANTLS
GA
SA

Figure 4. Comparison of the nature inspired
algorithms’ scalability.

ANTLS achieves promising results when being com-
pared to other nature-inspired stochastic as well as to de-
terministic scheduling heuristics. As can be seen in figure
5, it performs best with exception of Simulated Annealing

(SA). In general, the nature-inspired stochastic algorithms
perform much better than the deterministic ones.

12397

22511

24446 24609

12039

0

5000

10000

15000

20000

25000

30000

HLFET MCP GA ANTLS SA

O
p
ti
m

a
l
re

s
u
lt
s

fo
u
n
d

Figure 5. Comparison of several scheduling
heuristics.

These observations hold to a large extend, when con-
sidering larger task graphs with a maximum of 250 tasks.
ANTLS is still the second best after SA. The better deter-
ministic algorithms close up to the Genetic Algorithm (GA)
but are far-off to SA and ACO. A more detailed compar-
ison can be found in [18]. Although our algorithm’s cur-
rent version already provides good results, we nevertheless
expect a further improvement when exchanging our algo-
rithm’s greedy mapping heuristic by an ACO-based map-
ping.

5. Conclusion and future work

In this paper we demonstrated how the emergent behav-
ior of cooperating ants can be simulated to solve task graph
scheduling problems. We proposed the ANTLS-algorithm
and evaluated its performance by means of a comprehensive
test bench with over 30,000 test cases. By the introduction
of problem dependent rules for computing the pheromone
concentrations, the stability of the algorithm and the qual-
ity of its results have been improved. ANTLS performs very
good compared to several other investigated nature-inspired
as well as conventional approaches. We plan for the future
work to improve the greedy mapping part of the ANTLS-
algorithm. Especially, it would be interesting to investi-
gate if this component can also be realized by an integrated
ACO-based approach.

References

[1] Kwok, Y.-K., Ahmad, I.: Static scheduling algo-
rithms for allocating directed task graphs to mul-
tiprocessors, ACM Computing Surveys, Vol. 31,
No. 4, 1999, pp. 406–471

[2] Radulescu, A., van Gemund, J.C.:Low-Cost Task
Scheduling for Distributed-Memory Machines,
IEEE Transactions on Parallel and Distributed
Systems, Vol. 13, No. 6, June 2002

[3] Aguilar, J., Gelenbe E.: Task Assignment and
Transaction Clustering Heuristics for Distributed
Systems, Information Sciences, Vol. 97, No. 1& 2,
pp. 199–219, 1997

[4] Bansal, S., Kumar, P., Singh, K.: An improved du-
plication strategy for scheduling precedence con-
strained graphs in multiprocessor systems, IEEE
Transactions on Parallel and Distributed Systems,
Vol. 14, No. 6, June 2003

[5] Park, C.-I., Choe, T.Y.: An optimal scheduling al-
gorithm based on task duplication, IEEE Transac-
tions on Computers, Vol. 51, No. 4, April 2002

[6] Hönig, U., Schiffmann, W.: A comprehensive
Test Bench of optimal Schedules for the Eval-
uation of Scheduling Heuristics, Proceedings of
the sixteenth IASTED International Conference on
Parallel and Distributed Computing and Systems
(PDCS 2004), Cambridge, U.S.A., 2004

[7] Greenwood, G.W., Gupta, A., McSweeney, K.:
Scheduling Tasks in Multiprocesor Systems Using
Evolutionary Strategies, International Conference
on Evolutionary Computation, pp. 345–349, 1994

[8] Kwok, Y.-K., Ahmad, I.: Efficient Scheduling of
Arbitrary Task Graphs to Multiprocessors Using a
Parallel Genetic Algorithm, Journal of Parallel and
Distributed Computing, Vol. 47, No. 1, pp. 58–77,
1997

[9] Blum, C., Roli, A.: Metaheuristics in Combinato-
rial Optimization: Overview and Conceptual Com-
parison, ACM Computing Surveys, Vol. 35, No. 3,
2003, pp. 268–308

[10] Dorigo, M., Maniezzo, V., Colorni, A.: Ant Sys-
tem: Optimization by a colony of cooperating
Agents, IEEE Transactions on Systems, Man and
Cybernetics, Part B, Vol. 26, No. 1, 1996, pp.1–13

[11] Dorigo, M., Sẗutzle, T.: The Ant Colony Opti-
mization Metaheuristic: Algorithms, Applications
and Advances, In F. Glover and G. Kochenberger
(Eds.), Handbook of Metaheuristics, volume 57
of International Series in Operations Research &
Management Science, pp. 251–285, Kluwer Aca-
demic Publishers, Norwell, MA, 2002

[12] Stützle, T.: An Ant Approach to the Flow
Shop Problem, Proceedings of the 6th European
Congress on Intelligent Techniques & Soft Com-
puting (EUFIT’98), 1998, Vol. 3, pp. 1560–1564

[13] Dorigo, M., Gambardella, L. M.: Ant Colony Sys-
tem: A Cooperative Learning Approach to the
Traveling Salesman Problem, IEEE Transactions
on Evolutionary Computation, Vol. 1, No. 1, pp.
53–66, 1997

[14] Adam, T. L., Chandy, K. M., Dickson, J. R.: A
comparison of list schedules for parallel process-
ing systems, Communications of the ACM, Vol.
17, No. 12, pp. 685–690, 1974

[15] Wu, M.Y., Gajski, D. D.: Hypertool: A Program-
ming Aid for Message-passing Systems, IEEE
Transactions on Parallel and Distributed Systems,
Vol. 1, No. 3, pp 330-343, 1990

[16] Kasahara Laboratory, http://www.kasahara.elec.
waseda.ac.jp/schedule/index.html, 2004

[17] Y.-K. Kwok, I. Ahmad, Benchmarking the Task
Graph Scheduling Algorithms,Proceedings of the
12th International Parallel Processing Sympo-
sium, Orlando, U.S.A., 1998, 531-537

[18] Hönig, U., Schiffmann, W.: Comparison of na-
ture inspired and deterministic scheduling heuris-
tics considering optimal schedules, In B. Ribeiro
et al. (Eds.), Adaptive and Natural Computing Al-
gorithms, ISBN 3-211-24934-6, Springer-Verlag,
2005

