
Fast optimal task graph scheduling by means of
an optimized parallel A∗-Algorithm

Udo Hönig and Wolfram Schiffmann

FernUniversität Hagen, Lehrgebiet Rechnerarchitektur, 58084 Hagen, Germany
{Udo.Hoenig, Wolfram.Schiffmann}@FernUni-Hagen.de

http://www.informatik.ti1.fernuni-hagen.de/

Abstract. The development of high speed local networks and cheap, but
also powerful PCs, lead to an extensive use of PCs as building blocks in
modern parallel computer systems. In order to exploit the available re-
sources at the best, any program has to be split into parallel executable
tasks, which have to be scheduled to the available processing elements.
The need for data communication between these tasks leads to dependen-
cies, which strongly effect the schedule. In this paper, we consider task
graphs that take computation and communication costs into account.
For a completely meshed homogeneous computing system with a fixed
number of processing elements, we compute schedules with minimum
schedule length. Our contribution consists of parallelizing an informed
search algorithm for calculating optimal schedules based on the IDA∗-
algorithm, a memory-saving derivative of the well known A∗-algorithm.
Due to the resulting memory requirements, the application of the A∗-
algorithm is restricted to task graph scheduling problems with a quite
small number of tasks. In contrast, the IDA∗-algorithm can compute
optimal schedules for more complex task graphs.

1 Introduction

As PCs and computer networks advance, they become attractive building blocks
for cheap and powerful parallel computing systems. A parallel program consists
of (sub)tasks that can be executed in parallel. In order to exploit effective paral-
lelism these tasks must be assigned to the available processing elements and the
starting times on those processing elements must be determined. The dependen-
cies between the tasks of a parallel program can be described by means of a task
graph that consists of a directed acyclic graph (DAG) [6].

In this paper, the objective of solving the task graph scheduling problem is to
minimize the overall computing time. The time that a task i needs to compute
an output by using the results from preceding tasks corresponds to the working
load for the processing element to which that task is assigned. It is denoted by a
node weight wi of the task node. The cost of communication between two tasks
i and j is specified as an edge weight cij . If both tasks are assigned to the same
processor, the communication cost is zero.

Apart from some restrained cases the task graph scheduling problem is NP-
hard [6]. Thus, most researchers use heuristic approaches to solve the problem



for reasonable sizes of the task graph. Three categories can be distinguished: list–
based, clustering–based and duplication–based heuristics. List–based heuristics
assign priority levels to the tasks and map the highest priority task to the best
fitting processing element [8]. Clustering–based heuristics embrace heavily com-
municating tasks and assign them on the same processing element, in order
to reduce the overall communication overhead[1]. Duplication-based heuristics
also decrease the amount of communication while simultaneously the amount
of (redundant) computation will be increased. It has been combined with both
list-based [2] and cluster-based approaches [7]. In order to evaluate the quality
of all those heuristics in a unified manner it would be desirable to compare the
resulting schedules lengths of those heuristics to the optimal values.

In this paper, we describe an informed search method for computing optimal
schedules for the task graph scheduling problem. It is based on the well known
A∗–Algorithm [9] and extended to the a space–saving variant, namely the IDA∗–
Algorithm. We used this algorithm to compute optimal schedules for task graphs
with up to 24 tasks. In dependance of the task graphs’ structure, the algorithm
could be used for even larger graphs.

The paper is organized as follows. In the next section we introduce the prob-
lem representation by means of a decision tree. Then, we describe the sequential
and parallel versions of the algorithm. Finally, we present and discuss our results
and conclude the paper.

2 Problem representation by a decision tree

The task graph problem can be represented by a tree of states. At the root of
that decision tree no tasks have been scheduled at all. Every intermediate node
corresponds to a partial schedule. This means that a specific number of tasks is
already assigned to the processing elements and that the starting times for those
tasks are already determined as well.

Due to the dependencies of the remaining tasks, usually only a subset of
these tasks can be scheduled in the next step. A specific node of the decision
tree is expanded by creating new nodes for every ready task in combination with
the mapping to the available target processing elements (TPE). If each of these
tasks can be assigned to one of p target processing elements the total number of
expanded nodes will be p times the number of ready tasks.

When all the internal nodes have been expanded this way we will get the
leaves of the decision tree that represent valid schedules for the corresponding
task graph. Obviously, the path length from the root to a leaf (the depth of
the tree) is equal to the number of tasks. Each leaf is characterized by a spe-
cific schedule and a corresponding schedule length. The leaves with the minimal
schedule length represent the optimal solution to the task graph problem.

As one can imagine, the decision tree comprises a huge number of states.
Suppose n denotes the number of tasks. In the worst case, we have to expand
p·n nodes from the root node, p·(n−1) nodes from each node of depth 1, p·(n−2)
from each node of depth 2 and so on. Finally, after n expansions we get p leaves



from each node of depth n. In total there will be 1+pn ·n! states in the decision
tree. Obviously, in the worst case there are no dependencies between the task.
This means that the number of states will decrease as soon as we consider true
task graphs with more constraints due to data dependencies. Nevertheless, the
term pn will persist and thus the task graph problem will be intractable.

The computation of the optimal schedules requires the construction of the
decision tree’s leaves. This can be accomplished by means of search algorithms.
In order to accelerate the search for an optimal solution it will be useful to use
informed instead of blind search algorithms. While a blind search generates the
complete decision tree, the informed search uses additional information about the
partial schedules in order to reduce the number of states that must be considered.
One of the most popular informed search algorithms is the A∗–Algorithm [9].
The A∗–Algorithm requires that the whole decision tree is stored in memory.
Thus, the space complexity is as worse as the time complexity and therefore
we have to reduce the space complexity further. In this paper, we propose to
use a modification of the A∗–Algorithm that expands the nodes of the decision
tree in a depth–first manner which is called iterative deepening A∗–Algorithm
(IDA∗) [9]. By means of IDA∗ the space complexity can be reduced from O(pn)
to O(p · n). While the A∗–algorithm has already been applied to task graph
problems [3, 5] — to our knowledge — the IDA∗–algorithm hasn’t yet been used
to solve the task graph problem so far. In the next section we will give a short
introduction to both of these algorithms.

3 A∗– and IDA∗–algorithm

Compared to an exhaustive (blind) search, the A∗–algorithm reduces the number
of the decision tree’s nodes that must be expanded. Thus, the optimal schedules
can be found in shorter time. In the context of task scheduling, the basic idea
of the A∗–algorithm is to use a function f that estimates the remaining sched-
ule length of all schedules that originate from a specific partial (incomplete)
schedule.

The function f is composed of two subfunctions g and h. For a specific
state s of the decision tree, g(s) represents the partial schedule length so far.
h(s) estimates the remaining time to a complete schedule that originates from
the partial schedule specified by state s. h is called a heuristic function. If it
overestimates the remaining time it can be shown that the A∗–algorithm will
find all optimal schedules for the task graph problem under investigation. In the
case of task graph scheduling we can use the so called static bottom–level (sbl)
to define such a heuristic function. The sbl(i) of a task i can be computed as the
maximum of summing up all working loads between that task and a terminal
task while the communication costs between the tasks are ignored. We define
the heuristic function h(s) as follows:

h(s) :=
max
s′

sbl(s′)



Here, s′ denotes a successor task of the partial schedule s. Obviously, h(s) over-
estimates the remaining costs and thus it can serve as a admissable function, e.g.
a heuristic function that guarantees to find the complete and optimal solutions
by means of the A∗–algorithm.

Additionally, in order to ensure the monotonicity of the function f(s) we
define this function as

f(s) =
max
s′

(f(s′), g(s) + h(s))

Where s′ denotes any of the ancestor states of the partial schedule s.
The A∗–algorithm works as follows: First, for each combination of a ready

task and the available processing elements, a node in the decision tree is created.
Then, the corresponding f -values are computed and we expand the node with
the smallest f -value. This procedure will be repeated with all the expanded
nodes until we get complete schedules (leaves of the decision tree). Notice, that
we will get p schedules for each complete run through the decision tree because
there are p processing elements.

In order to further reduce the computational effort of the A∗–algorithm we
propose to use an estimate f∗ for the optimal schedule length. This estimate can
be easily computed by any heuristic scheduling algorithm or by the first depth–
search to a leaf of the decision tree (as described above). If f(s) > f∗ for any
expanded state s it can be deleted because all ancestors of the corresponding
partial schedule will have a schedule length that is worse than optimal. This
avoids a lot of computation because the total number of evaluations is reduced.
As already shown, the space complexity of the A∗–algorithm is O(pn). Due to the
resulting memory requirements, the application of the A∗–algorithm is restricted
to task graph scheduling problems with a quite small number of tasks.

This restriction can be softened by using an iterative deepening search. The
corresponding IDA∗–algorithm doesn’t simultaneously expand all the partial
schedules but it executes separate depth–searches. The space complexity de-
creases to O(p · n). Additionally, we also apply the estimation function f∗ to
eliminate redundant partial schedules as soon as possible. By means of this im-
proved IDA∗–algorithm, we were able to process task graph scheduling problems
up to 24 tasks mapped to 10 TPEs. If we suppose only one byte per state a con-
ventional A∗–algorithm would require an inconceivable amount of 1024 byte in
the worst case. In contrast, the memory requirements of the IDA∗–algorithm can
be easily fulfilled.

4 Parallelizing the IDA∗-Algorithm

Our parallel IDA∗-Algorithm was developed and tested on a PC-Cluster with 32
Computers (Athlon 800 MHz-Processors) using Linux and PVM. The program
is started by a call of the master-module, which starts the required number1 of
slave-modules automatically. The parallelisation of the IDA∗-Algorithm requires
1 This number is given by the user.



a further subdivision of the search-space into disjunct subspaces, which can be
assigned to the slave processes.

As already described in Section 2, every inner node of the decision-tree repre-
sents a partial schedule and every leaf node corresponds to a complete schedule.
The algorithm’s decision-tree guarantees that the successors of a node will rep-
resent different partial schedules – a later reunification of the subtrees, rooting
in these sons, is impossible. Therefore two subtrees of the decision-tree always
represent disjunct subspaces of the search-space, if none of their roots is an an-
cestor of the other one. Another result of these thoughts is that every part of
the search-space can unambiguously be identified by it’s root-node.

In order to achieve a balanced assignment of the computation to the avail-
able processing units, the algorithm generates a workpool, containing a certain
number of subtree-roots. This workpool is managed by a master-process, which
controls the distribution of the tasks to the slave-processes.

Fig. 1. Example of a small workpool

The workpool is created by means of a breadth-first-search which is halted,
when a user defined number of elements is collected in the workpool.

Creation and management of the workpool are just two of the master’s tasks
which are embedded in several other duties, like management of the slaves and
file I/O-Control. The master firstly reads the given parameters and the task
graph. Then it generates the workpool and starts the slave processes. Next, it
forwards one of the workpool’s tasks to every slave process. As soon as one slave
finishes it’s task, the master receives and evaluates the slave’s results. If the
workpool is not empty, the master forwards another task to the idle slave and
waits for further slaves to finish their work. Else, the master terminates the idle
slave and tests, if there are any busy slaves left. If so, it waits for further slaves



to finish their work, else it prepares some bookkeeping information, creates the
output-file and terminates.

The slave processes can be described more easily: When started, every slave
process waits for an initial subspace to search. The search-process is realized by
the means of the sequential IDA∗-algorithm. When a slave finishes it’s work, it
sends the computed results to the master and waits for the next piece of work.

5 Results

5.1 Simplifying the search with a first estimate

Depending on the task graph’s structure, the search space can become very huge
even for small graphs. The significant strength of an informed search algorithm
like the popular A∗ or the proposed IDA∗-algorithm is their ability to use gained
knowledge to reduce the search space’s size as much as possible. The already
described h-function is such an information, which can reduce the search space
to a large extend. For the task graph given in figure 2, the h-function excludes
5 times as many partial schedules which have to be observed by the algorithm.

Algorithms like A∗ can be improved by using a first estimate of the real result
for reducing the search space’s size. This value has to be an overestimation of the
optimal schedule length, because otherwise the algorithm would fail to provide
a correct output. In contrast to the A∗-algorithm, the IDA∗-algorithm can not
profit by using such an estimation.

We will illustrate this observation by regarding the task graph used as ex-
ample in [10]. The schedules are computed for a target system’s size of nine
processors. For this system size, the optimal schedule length is 16 time units.

Fig. 2. The investigated task graph [10]



As it can be seen in the left part of figure 3, the number of observed partial
schedules is almost independent of the estimation value. Hence, the runtime of
the algorithm stays constant, see the right part of figure 3. The A∗-algorithm
shows a completely different behavior: if the estimation is near the optimal so-
lution, the algorithm is faster than IDA∗, but with a decreasing quality of the
estimate, the size of the search space and therfore the runtime increases at a
high rate.

0

100000

200000

300000

400000

500000

600000

16 17 18 19 20 21 22 23 24

ob
se

rv
ed

 p
ar

t. 
sc

he
du

le
s

Approx. Value

A*
IDA*

1.6

1.8

2

2.2

2.4

2.6

2.8

16 17 18 19 20 21 22 23 24

S
ea

rc
ht

im
e 

(in
 s

ec
.)

Approx. Value

A*
IDA*

Fig. 3. The influence of a good first estimate

This observation can be explained as follows. Considering the approximation
value of 16 time units, the IDA∗-algorithm has to search more partial schedules
than A∗, because it additionally has to process all partial schedules with a partial
schedule length of 16 to ensure, that 16 really is the optimum. IDA∗ is immune
to changes of the initial estimation because it adapts every newly found best
schedule length at once.

Obviously, the A∗-algorithm’s performance can be highly improved by using
a heuristic for computing an estimate of the expected result. If the estimation
is near the optimal solution, A∗ performs better than the here proposed IDA∗-
algorithm. Else, IDA∗, which is not affected by an initial guess at all, performs
much better than A∗. Since the IDA∗-algorithm shows a good overall perfor-
mance, it is a good choice especially for those scheduling problems where no
estimate of the optimal schedule length exists.

5.2 Effects of the target’s system size

The target architecture system’s size influences two significant aspects of our
algorithm: the time required to compute an optimal schedule and the optimal
schedule length itself. Although both dependency-relations are known in general,
every algorithm behaves different concerning the first one. To demonstrate our
algorithm’s behaviour, we use the task graph shown in figure 2 again.

Table 1 shows the behavior of our algorithm when the number of TPEs
changes. The optimal schedule length can be achieved by using 3 processing



elements – an enlargement of the target system would not improve the perfor-
mance. The maximum number of used TPEs is 6 – forcing the algorithm to use
more processors would lead to a slowdown. This value is determined by the task
graph’s structure: the arising communication cost will outweight the advantage
of any additional parallelization.

Table 1: Effect of changing the target system’s size

TPEs opt. SL TPEs used part. Complete schedules Part. Schedules Runtime
1 30 1 640 1721 0.02
2 17 2 675 11879 0.15
3 16 3 3021 52917 0.71
4 16 4 11103 100757 1.49
5 16 5 15843 132150 2.11
6 16 6 16461 137915 2.33
7 16 6 16462 138273 2.31
8 16 6 16463 138275 2.28
9 16 6 16464 138275 2.30

As one can see in the last three columns of table 1, the increasing number of
TPEs enlarges the algorithm’s decision tree and therefore the efforts to find an
optimal schedule. Additionally it is obvious, that the maximum system size is
limited to 6 processing elements. The estimating function h prevents the usage
of further processing elements and hence shrinks the search space.

5.3 Application

Considering, that task graph scheduling is a NP-hard problem, the question
arises, why someone might be interested in a scheduling algorithm, which pro-
vides optimal solutions, but only for small task graphs.

We used the proposed algorithm to compute a database of 3600 optimal
schedules for randomly generated task graphs. The task graph’s size is equally
distributed between 7 and 24 tasks. This test base is structured by some of
the task graphs’ properties, like the meshing degree, or the nodes’ and edges’
weights.

The first purpose for creating this test bench was the creation of an objective
baseline for the evaluation of scheduling heuristics. Up to now, scientists evalu-
ate their heuristics by simply comparing their algorithm’s results with those of
other, already know heuristics. This method does neither guarantee an unbiased
selection of the used test cases, nor does it provide any information about the
absolute heuristic’s quality. With an comprehensive test bench, one will be able
to create more reliable and expressive evaluations. Currently, a test bench with
36000 test cases with up to 24 tasks is generated which will soon be published for
this purpose. As presented in [4], these task graphs are large enough to provide
a sophisticated analysis of scheduling heuristics.



The second purpose for creating this test bench is to test the reliability of
other algorithms which promise to calculate optimal schedules. Although it is
impossible to guarantee an implementation’s correctness, this test bench can
be used to check an algorithm’s quality. The test bench itself was validated by
a branch-and-bound-algorithm [4], which computed the same optimal schedule
lengths in all cases. To improve the reliability of this validation, the second algo-
rithm was implemented by a different programmer. Today, we use this test bench
to verify, that improvements of these algorithms do not effect the optimality of
the computed results. Interestingly, the smaller task graphs of our test bench are
more sensitive to incomplete search algorithms than the larger ones. This can
be explained by the huge number of optimal solutions, most larger task graphs
possess. It is therefore less likely that their optimal solution is overlooked.

6 Conclusion

In this paper, we presented a parallel implementation of the IDA∗-algorithm
for computing optimal task graph schedules. This informed search algorithm is
faster than any exhaustive search and less memory consuming than the well
known A∗-algorithm. In combination with the parallelization, this allows the
computation of more complex task graph schedule’s in reasonable time.

In contrast to A∗-, the IDA∗-algorithm has been almost insensitive to any
given initial estimate of the schedule length. The size of the considered target
architecture affects the size of the resulting search space. Thus, the runtime of
the IDA∗-algorithm depends highly on the chosen target architecture. Although
the algorithm’s runtime prohibits its online application it nevertheless can be
used to create a test base for the evaluation of scheduling heuristics and the
verification of future algorithms which promise near optimal results.

The described algorithm is currently in use to compute the optimal schedules
for a benchmark suite that comprises 36,000 task graph problems with up to 24
tasks. In the near future, this benchmark suite will enable researchers to evaluate
the performance of their heuristics with the actually best solutions.

7 Acknowledgment

The authors would like to thank Mr. Johann Zeiser who contributed some of the
presented results from his diploma thesis.



References

1. Aguilar, J., Gelenbe E.: Task Assignment and Transaction Clustering Heuristics for
Distributed Systems, Information Sciences, Vol. 97, No. 1& 2, pp. 199–219, 1997

2. Bansal S., Kumar P., Singh K.: An improved duplication strategy for scheduling
precedence constrained graphs in multiprocessor systems, IEEE Transactions on
Parallel and Distributed Systems, Vol. 14, No. 6, June 2003

3. Dogan A., Özgüner F.: Optimal and Suboptimal reliable scheduling of precedence-
constrained tasks in heterogeneous distributed computing, International Workshop
on Parallel Processing, p. 429, Toronto, August 21-24, 2000

4. Hönig U., Schiffmann W.: A Parallel Branch–and–Bound Algorithm for Comput-
ing Optimal Task Graph Schedules, Second International Workshop on Grid and
Cooperative Computing, pp. 747–755, Shanghai, Dec. 7-12, 2003

5. Kafil M., Ahmad I.: Optimal Task assignment in heterogeneous distributed com-
puting systems, IEEE Concurrency: Parallel, Distributed and Mobile Computing,
pp. 42-51, July 1998

6. Kwok, Y.-K., Ahmad, I.: Static scheduling algorithms for allocating directed task
graphs to multiprocessors. ACM Computing Surveys, Vol. 31, No. 4, 1999, pp. 406–
471

7. Park C.-I., Choe T.Y.: An optimal scheduling algorithm based on task duplication,
IEEE Transactions on Computerss, Vol. 51, No. 4, April 2002

8. Radulescu A., van Gemund A. J.C.: Low-Cost Task Scheduling for Distributed-
Memory Machines, IEEE Transactions on Parallel and Distributed Systems, Vol.
13, No. 6, June 2002

9. Russel S., Norvig P.: Artificial Intelligence, A Modern Approach, Prentice Hall, 1995
10. Kwok, Y.-K.: High-Performance Algorithms for Compile-Time Scheduling of Par-

allel Processors PhD-Thesis, University of Hong Kong, 1997




