FernUniversitat in Hagen

Abschlularbeit im Studiengang

Master of Science in Informatik

Efficient Normalization of IT Log Messages under
Realtime Conditions

Rainer Gerhards
Mat.-Nr. 7033990

Themensteller: Prof. Dr. Wolfram Schiffmann
Betreuer: Prof. Dr. Schiffmann

Lehrgebiet Rechnerarchitektur

Fakultét fiir Mathematik und Informatik
Datum der Abgabe: 27. April 2016

Table of Contents

1 Introduction 1
2 Related work 3
3 Definition of Terms 4
4 Understanding Log Message Formats 10
5 The Log Normalization Problem 20
6 An improved normalization method 30
7 Experimental Verification 55
8 Results 65
9 Conclusion and Outlook 68
A Detail Data from Experimental Verification 70
B Supported Motifs and their Time Complexity 81
Abstract

In computer log analysis, normalization of a large variety of different message formats
is often required. Ideally normalization is done in real-time. Traditionally regular
expression based methods are used, but that approach is typically too slow for real-
time normalization.

We show a novel normalization method based on an analysis and classification
of log message formats and consideration of existing normalization approaches. Our
method is evaluated both by theoretical reasoning and experiment. We show that
while theoretical worst-case complexity is not considerably better than that of exis-
ting approaches, practical performance is superior. We provide backing theoretical
argument why this is the case. Our method offers sufficient performance to handle
large workloads under real-time conditions and is easily and efficiently parallelizable

for even larger workloads.

1 Introduction

Computer log messages are important for many use cases including I'T system opera-
tion management, I'T security, (telecom) billing, and criminal investigation, to name
a few. Log messages are generated by programs running both on regular as well as
embedded systems. Typical log sources are general purpose operating systems (like
Linux or Windows), applications installed on these systems (like mail servers or offi-
ce applications), and devices like firewalls, routers, and switches. Unfortunately, log
messages from different sources have very diverse formats, many of which look like
free text, are not documented, and are hard to interpret automatically. Sometimes
the format of messages is even different in different versions of the same source.

While for some use cases it is acceptable to store and process log messages “as is”,
many others require the transformation of the various incoming log message formats
into some common format. We call this process “log (format) normalization” and
it is especially important for applications like Intrusion Detection Systems (IDS)
which need to handle messages from a diverse variety of log sources.

There have been various efforts to standardize log formats at the message genera-
ting software and make normalization obsolete. For example, a recent (2014) effort is
Mitre’s CEE [13]. Unfortunately, none of these efforts were able to attract sufficient
attention. Instead, each just added to the format variations instead of reducing it. So
it can be concluded from history that we need to deal with those format differences
rather than trying to unify them at the message source, which would require change
to all applications generating log messages. This is the core motivation behind log
normalization.

The classical approach to normalization is to use a set of regular expressions
(regex) to transform incoming log messages, where data from the message is extrac-
ted by sequentially applying the regexes until a match is found. That matched data
is then transformed to the normalized output data. One of the earliest projects to
employ this method was the “logcheck” tool [50]. According to source file copyright
statement, “logcheck® was begun in 1996. It still is an active project today. The reg-
ex method used by it is also still state of the art. For example, the popular Logstash
[8] log processing tool uses a system called “grok” [7] for its log normalization. Grok
bases on the idea of sequentially iterating regexes. Grok has become very popular
in recent years.

While regex-based solutions extract data reasonably well, it is known that they
are computationally intense. In practice, many users complain that their runtime

requirements make them unsuitable for large classes of applications, at least in en-

terprise environments with a large log volume. For example, Security and operation
management tools usually require processing incoming log messages in realtime or
at least very close to realtime. This is usually impossible to do with regex based
approaches.

To solve that problem, two different approaches have been used: the traditional
one is to hardcode parsers for each log format. Due to the wide variety of formats,
this is only possible for very important formats or formats specifically requested
by users. Nevertheless, this seems to be the approach taken by many commercial
software packages. Note that we cannot proof this, as the source code for those
packages is not available. But from private talks we had with developers, it is highly
likely they take this approach.

An alternative approach, developed around 2010, is to use advanced data struc-
tures suitable for fast parsing. Details are given in section 2 “Related work”. These
normalizers offer a good compromise between speed and flexibility, and are in most
cases useful for near-realtime normalization. However, there are still open questions:
Memory consumption can become quite large, runtime can deteriorate and paralle-
lization is not formally researched. Most importantly, none of these approaches have
been published or formally documented.

Also, no formal survey of log formats or a classification of log format types
exist. This is unfortunate, as knowing formats is fundamental to normalizers, yet
still normalization methods base on “common understanding” rather than analysis.
With this thesis, we will create a classification of log message formats. In support of
this, we create a publicly accessible repository of log messages for research purposes.

We will develop an algorithm capable of realtime normalization that is parelliz-
able in a well-defined way. Furthermore, we will create a prototype implementation
of that algorithm and do experimental verification of our findings. The prototype
also is of practical relevance, as it will be usable by millions of users worldwide as
part of the rsyslog project [25] (the default Linux syslog daemon).

The reminder of this thesis is structured as follows: Section 2 discusses related
work. Section 3 introduces basic concepts and definitions. Section 4 analyzes log
formats. Section 5 describes the log normalization problem and explains normaliza-
tion algorithms. Section 6 describes our improved normalization method. Section 7
describes the experimental verification of our method. Section 8 explains the results
gained by it. And Section 9 provides the conclusion and an outlook for further work.

Detail data of the experimental verification can be found in the Appendix.

2 Related work

Unfortunately, there are few publications on the topic of log message normalization
itself.

Among others, we tried to research on this topic at the ACM digital library,
CiteSeerX, the electronic catalog of the university as well as the SANS institute,
Google Scholar and regular web search engines. Please note that Google Scholar in-
cludes results from IEEE, Springer and Elvesir publications, so they were included

[

in the research. Search terms used were ”log normalization®, ” computer log norma-
lization“, ”log canonicalization®, ”computer log canonicalization* and other terms
related to this topic. We also followed citations of the relevant syslog RFCs.

Very few results appeared, and the fast majority of them either referenced to
standardization efforts (like CEE [13], DMTF [15], or SIP CLF [44]) or structured
vendor formats like (WELF [33] or GELF [28]). These results discuss properties of
the respective structured format and some also talked about the need of converting
free-form log messages to structured format. However, most gave no information on
that conversion process other than that it is desirable. Some vendor links, especially
from Security Information and Event Management (SIEM) vendors, claim that their
respective product can do this conversion based on proprietary technology. Again,
no details were given on that process, but it commonly looked like they either used
a hard-coded parser approach for each format or a regular expression based one.

One of the best sources of non-academic community information on logging for-
mats and tools was the www.loganalysis.org web site [5]. Unfortunately, it was aban-
doned some time after 2005 and is no longer online. Some content is still available
via the "Internet Archive Wayback Machine [4]. Of course, that does not cover any
recent developments.

Some information was available from related topics, namely the clustering and
correlation of log records. A notable academic source of information is R. Varaandi’s
PhD thesis " Tools and Techniques for Event Log Analysis“ [53] and associated rese-
arch papers. Unfortunately, it does not cover the specifics of the log normalization
process nor does it provide a precise description of the structure of log data.

Generally, descriptions of the nature of log data are sparse. Most papers simply
imply that a log message is a single line of text, treated as a string. Or they quo-
te standard formats, most notably RFC3164 or the RFC5424 series. However, all
these RFCs describe the encapsulation format, but not the actual free-form content
format. Concrete descriptions can be found in Vaarandi [52][Sect. III a], which is

coarse, and in an early work of ourselves [21], which goes into some more detail.

Three larger projects exist which address the log normalization topic directly:
"libgrok“ [48] ("grok* in the following), ”syslog-ng pattern db“ (syslog-ng in the
following), and ”liblognorm“ [20]. The latter two aim at real-time normalization.

Grok is an open source project. It is part of the popular Logstash [8] logging
solution. No academic paper on it exists, but its regular expression based norma-
lization approach is well described in the user manual. To gain more insight into
the actual algorithm, we have analyzed the relevant source code [16, commit hash
ech6358547952]. We concentrated our analysis on the code that builds the regular
expressions.

The syslog-ng project is open sourced and also available as a feature-extended
commercial solution. No paper is published over the project or the exact algorithm
it uses. Its marketing brochure indicates it uses a ”longest prefix match radix tree“
[46], but no further details are available anywhere. To gain more insight into the
method, we did a source code review based on the open source version [47, commit
hash 99b3ee346443ae]. Reviewing the full source code would have been too time-
consuming, so we concentrated on the code most probably associated with search
tree handling. It resides in the file path ”./modules/dbparser “ and the most relevant
code in files "radix.[ch]“. The source code is mostly uncommented and contains
no description of the algorithm. Syslog-ng uses a search tree based approach at
normalizing.

The liblognorm project is open source. It was developed by us and the existing
v1 version is a Proof of concept (PoC), but in production quality. It is being used
frequently as part of the popular rsyslog [25] logging solution. No paper has been
published about it, but we obviously know the algorithm details. The current form
will be replaced by what is being developed in this thesis. Liblognorm uses a search
tree based approach for normalization.

In a broader sense, the log normalization problem is a specialized text search
problem. As such, the full tool set of text search algorithms is related to this work.
Also, theory on languages and finite automata provides good ideas and solutions for

log normalization.

3 Definition of Terms

Terminology in logging has a large number of variations with important slightly

different meanings. In order to avoid ambiguity, we define even base terms precisely.

3.1 Base Terms

A byte is a storage unit which is used to store integers in the interval [0..255]. In
data communications, this is often called an “octet”. A character is the basic unit
of information. For example “0”7, “a”, “4”, and “a” are characters. A code table
maps characters to integer values. A (character) encoding describes how code table
values are mapped onto byte sequences. Many different encodings exist. Important
ones in the western hemisphere are US-ASCII [9]' and Unicode [51]. A single byte
character encoding always uses a single byte to encode all characters supported by
the encoding. US-ASCII is an example. A multi byte character encoding uses one or
more bytes to encode characters supported by the encoding. Unicode is an example
of such an encoding. Note that US-ASCII is part of Unicode and all US-ASCII
characters are encoded in Unicode with exactly the same values as in US-ASCII.
As such, all these characters use only a single byte. This also means that from a
character value alone (in the US-ASCII range) one cannot deduce whether US-ASCII
or Unicode encoding is used. A single byte character is a character that is represented
by a single byte. A multi byte character is a character that is represented by two
or more bytes. Note the difference to the definition of “character encoding”. Here,
a value inside the US-ASCII range is clearly defined as a “single byte character”
regardless of the encoding used.

An invalid character is a sequence of bytes that does not properly correspond
to a given encoding and thus cannot be assigned a character. A control character
is a character that is intended to control the processing of other characters inside a
string. For example, it can be used to control rendering (like US-ASCII LF) or data
transmission (like US-ASCII ACK). In logging, the most important control charac-
ters are the US-ASCII characters with byte values {0,1,...,31,127}. Additional
control characters exist in other encodings. A printable character is a character that
is not a control character.

Let ¥ :={0,...,255} be the alphabet of byte values. A string S := (s1, S2,. .., Sn)
is an element of ¥*. Note well that this definition permits arbitrary byte sequences,
including invalid characters and incomplete multi-byte characters (these can happen
in logging due to truncation).

The length of a string S is denoted by |S|. The string € with |e| = 0 is called the

empty string. In logging, we often need to work with parts of strings. As such, we

"We cite RFC20 rather than the original ASA standard X3.4-1963 because RFC20 contains

additions more relevant to logging.

. si...8; itVi,j:1<i<j<n)
define substring S;; = , and as special cases the
€ otherwise

prefiv with S ; and suffiz with S; 5.

We often need to split strings into substrings. This is frequently done based on
specific bytes. A word delimiter is a byte that is used to indicate the begin and end
of substrings. In log text, this is typically the US-ASCII SP character. Often more
than one byte value is used for this purpose. Such a set D is called word delimiters.
A word is a substring S;;,Vi < k < j : s, € D inside a string that is delimited
by word delimiters. A subword is a substring inside a word that is not delimited by
word delimiters.

A line is a concept based on a line in printed publications. All characters of a
string are “printed” at the same vertical position: let S be the string that is to be
“printed” in one line on a two dimensional coordinate system with start coordinates
(x,y) for the print operation, than s; is printed at (z + (i — 1),y)

A line terminator is an operating system specific indication of the end of a line
(where for the next character the y-coordinate needs to be advanced to y + 1 and
the z-coordinate be reset to 0). Typically, control characters are used to indicate
line termination. In Linux and Unix, US-ASCII LF is the line terminator, whereas

under Windows the two-byte sequence CR LF is the line terminator.

3.2 Logging

A log message is a string that was created with the intention to log data. It can be

sub-classed depending on the presence of line terminators:

e A single line log message is a log string that does not contain line termina-
tors. This is the form usually expected by logging tools, like the Linux text

processing tool-chain?.

o A multi line log message is a log string that potentiality includes line termi-
nators. As such, it is somewhat uncertain where a log message inside a file
begins and where it ends. In practice, this is solved by using regular expres-
sions to describe either the begin or the end of the log message (this varies
by tool). For example, lines starting with US-ASCII SP characters are called
to be “indented”. Such indented lines may be treated as part of a multi line
message which started by the first non-indented log message. Often, multi-line

log messages are preprocessed and transformed into single line log messages.

2tools like grep, sed, we, awk

This is, for example, usually done by replacing the line terminators by special

character sequences, e.g. converting LF to “\n” [6] or “#012% 3.

In order to avoid the problems associated with multi-line log messages, we re-
quire that multi-line log messages be converted to single-line log messages before
normalization. All of the methods described in this thesis will work on single-line
log messages, only. As such, we will use the term log message as a synonym for single
line log message in this thesis.

A motif is a substring inside a log string that is frequently being used and has a
specific syntax and semantic (e.g. an IPv4 address). The term is based on the idea of
”sequence motif“ in bioinformatics [38, pg. 183]. A motif may spawn multiple words
but may also be a subword.

A motif parser (also called ”parser for brevity) extracts substrings matching a
given motif from log messages.

A set of log messages is called a log data set.

Logs are being processed by applications. These are usually called (logging) tools
and we will use that nomenclature in this thesis as well. A logging tool is any program
that is used to process log messages. This does not require that the program was
originally written for log processing. Under unixoid operating systems, for example,
many generic text processing applications (like "grep* or "sed“) are often used as
logging tools.

The log processing chain (also known as tool chain) is a sequence of programs
that are coupled together in order to process log. Various ways exist to couple tools.

Some important ones are:

e One tool writes an output file, which is read by the next tool as input. The
tools may be executed immediately after another or some time may be left

between.

e A variant of this method is using the Unix ”"pipe“ method, where tools are
executed concurrently and one tool’s output is immediately forwarded to the

other as input.

e Log messages are exchanged via the network.

Tools and systems can be classified according to their position inside the tool
chain: originators are log sources, they originally create the log record, based on

events that happen. Typical originators are firewalls, which generate traffic flow

3Using '#’ followed by the octal representation is somewhat suggested by [23, Sect. 6.3.3].
g y P gg y

7

messages, or authentication processes, which generate logs about successful and
unsuccessful login attempts.

Relays forward log messages from some source to some destination. They may
or may not apply transformations while relaying.

Consumers consume log records and do not transfer them to any other system.
They form the tail end of the tool chain. Typical consumers are IDS systems or file
stores (where log records be stored e.g. for legal reasons).

With these definitions a log chain can be more precisely defined as a directed
graph where the nodes represent tools and the edges represent data flow between
the tools. Originator nodes have an indegree of zero, whereas consumers have an
outdegree of zero. Relays have non-zero in- and outdegrees.

In practice, the log processing chain usually serves multiple use cases. A single
use case is usually represented by a single consumer o. This consumer induces a
subset of the log processing chain specific to the use case. It consists of all nodes
on all pathes that terminate in o. In this thesis, we always speak of such use case

specific log chains, except when otherwise noted.

3.3 Realtime Requirements

For many use cases it is important to have log messages available in realtime or
at least close to realtime. One obvious example is intrusion detection: in order to
counter an attack, one must know as soon as possible that an attack is underway.

The IDS system is the consumer inside the log processing chain. For obvious
reasons, all tools inside the chain must be tied tightly together and each one pass
its output on to the next one as quickly as possible.

A typical intrusion detection tool chain consists of originators, one or more levels
of relay, a collector, a normalization tool and the IDS (example in Fig. 1). Note that
the normalization tool can also be placed on relays, and sometimes it is part of
the IDS. The IDS often is also able to work on unnormalized data, in which case
it is expected to work on meta data and a subset of events that it knows how to
normalize (exact details are not available as the majority of major IDSes are closed
source).

To specify the real time requirement precisely, we need to define two properties:
latency and sustained rate.

With latency we mean the time it takes for a single log message to be transferred
from the originator to the consumer. We further include the time the consumer

requires to process the message. Latency is influenced by many factors, with the

| Originator

Qriginataor

Relay

Qriginator

Collector |—3 Normalizer [—m IDS

Central Site!

Originator

Originator

Figure 1: A typical workflow in log processing.

most important ones being available network connectivity, bandwidth and speed as
well as the time normalization requires. Latency is usually measured in time units,
in this context often in seconds.

The sustained rate is that rate at which the overall system (from originator,
through network, through other processing steps, to the final consumer) is able
to process all generated messages without building up queues or notably increasing
latency. The maximum sustained rate is the rate at which messages can be generated
and being processed successfully over a long period of time. The sustained rate
is measured in messages per second. The expected mazimum sustained rate is the
sustained rate that a user expects to occur within the system. This is in contrast
to the actual maximum sustained rate that describes the processing capability of a
system.

In practical use, occasional traffic spikes may occur and they may be higher than
the actual maximum sustained rate. Usually the system buffers excess messages until
they can be processed. If so, these spikes manifest as an increase in latency. As long
as latency is not increased above the point the end system (e.g. IDS) requires, traffic
spikes are unproblematic. Some systems may be forced to discard traffic spikes, what
may be problematic (this can happen for example with syslog messages transported
over UDP). In order to be able to handle traffic spikes sufficiently well, the maximum

sustained rate of a log processing chain must be higher than the expected maximum

sustained rate.

The log normalization processor is an important part of the processing chain,
and it can cause considerable latency. Message consumers typically expect a latency
of several seconds (which is inevitable due to network traffic in any case), and may
even tolerate some minutes of latency during traffic spikes. However, normalization
processing also limits the maximum sustained rate, and this is the core problem
behind realtime processing requirements.

A typical large installation generates several ten- to hundred-thousand messages
per second. If an intrusion actually happens, one can often see a traffic spike, which
should not immediately be increasing delay. As such, the systems need to have a
sufficiently higher maximum sustained rate than the rate at which regular traffic is
coming in. For attacks, this can mean at least twice the regular traffic rate.

For the log normalization process it means it must be fast enough to keep up
with the expected maximum sustained rate, while not increasing the latency by more
than a few seconds.

That requirement makes log normalization unavailable for real time processing

when slow normalization algorithms are used.

4 Understanding Log Message Formats

In order to understand the need for a log normalization process and its limits, we

need to understand log message formats as they exist in practice.

4.1 Format Variations

Log messages are generated by software programs. For obvious reasons, these ha-
ve been developed by different companies and by different developers in different
years. As usual in software engineering, standards and development trends change
over time. Developing software is costly and consequently many parts of programs
remain unchanged for a long time if there is no hard need to change them. Further-
more, logging formats are especially hard to change, because some consumers may
depend on a specific format. Also, different companies have different development
standards, and different developers have different educational background. Even
worse, the logging format may change depending on user-selected configuration. For
example, Cisco ISO devices optionally include a sequence number into log messages
if configured to do so [10, pg. 29.8].

As said in the introduction, this leads to a large variety of different logging

10

formats. The lack of a well-accepted logging standard format is another reason for
the large number of different formats. The only common ground is that a log message
is a string, thus we use this definition.

As such the logging format depends on the application a generating the log
message, but it also depends on the application’s version v as well as its configuration
k. So the triple (a,v, k) describes the log format being used to generate a specific
message. Note that the mapping of a format is not bijective: the same log format may
be generated by different (a,v, k) triples. In theory, two (a,v, k) triples generating
the exact same format may convey different information. In practice, this case has
not been seen and would be considered misleading or erroneous. So in the context
of this thesis, we assume that (a, v, k) triples generating the same message will also
convey the same information.

The set of potentially different formats inside an installation is finite but can be
large. Let £ be the set of all log messages seen at an installation and let F be the

set of all message formats seen in £. Then the function

mfmt : £ — F

maps each [€ L to the format it was created with. Note that the format is
usually not explicitly included and the message and thus must be deduced based on

the message content itself.

4.2 Research Data Sets and Repositories

In order to analyze log message formats, real-life sample logs are very useful. The-
re have been some efforts to create repositories of those, for example initiated by
Balabit, the company that sponsors syslog-ng development [45]. We could not find
any result of this effort. There has also been a very small repository at the loganaly-
sis.org [5] web site (now offline and only available via the Internet Archive as cited).
Another small set of examples can be found at the MonitorWare web site [22].
Most "log samples® that can be found online are actually not log messages but
packet captures (in PCAP file format), mostly used for IDS challenges. They can be
found at various sites, for example at NETRESEC [1]. PCAP files contain network
packet captures, and usually only very few, if any, actual log messages. As such,
there is little use in trying to mine these data source as the outcome is very little.
All in all, no easily accessible and sufficiently large repository with log samples
for research existed when we began working on this thesis. So in order to support

our own work as well as that of followers, we built our own as part of this thesis.

11

The goal of our repository, named ”log samples for research“, is not to have well-
documented logs; the goal is to have logs at all. So if a format is used in practice,
we would like to have a sample of it inside the repository, even if we do not know
what exactly it means. Similarly, it is best but not mandatory to have large samples,
because that enables us to use statistical methods to analyze the content. Also, a
large variety of real world log samples is useful.

Unfortunately, it is very hard to obtain real-world log samples. A major concern
is privacy, which often blocks potential contributions. A solution is anonymization,
but this needs to be done by the contributor himself. That puts a burden on the
potential contributor, which often causes unwillingness to contribute. Also, good log
anonymization tools are not readily available.

So we ended up populating the repository with larger samples from our own
systems, which are sufficiently anonymized. We also included smaller log samples
that we got contributed. All of this is published as a publicly available git archive [24].
We plan to continue to maintain and promote the repository when this thesis work
is concluded and hope the repository will become an important tool for researchers
in the logging field.

In order to prove some points in our thesis, we amend the public repository by
some large real-world log data sets which are not fully anonymized and are not
available for publishing to the general public. However, upon request these data sets
are available for researchers. In the medium term, we also plan to anonymize them
and add them to the public repository (we have discussed this with the contributors).

The main data sets used for this thesis are:

e PIX data set - a real-world sample of log messages generated by a Cisco PIX
device [26]. It contains roughly 2 million messages. This is a very good example
for firewall syslog messages and includes many different variants of descriptions

of traffic flow as well as host address formats.

e enterprise combined data set - this is a real world data set with combined
log records from many sources typically found in large enterprises. It contains
router and firewall logs, Windows logs, Linux logs, WiFi logs, and logs from
various applications. Note that this data set contains all classes of logging
formats. This data set contains nearly 56 million log records and is 27GiB in
size. This data set is not yet included in the public repository but is the one

that is available upon request from researchers.

12

4.3 Format Classification

In this chapter, we describe formats commonly found in practice and describe how
they can be normalized.

There are three main classes of log formats
o free-text log formats

e semi-structured log formats

e structured log formats

Each of these will be described in the following subsections.

As we will see below, log messages can generally be viewed as a sequence of
motifs (like IP addresses, numbers or user names) which are bound together via
some literal text. At a very minimum, the literal text is used to discern the end
of one motif and the beginning of the next one. The only exception from this rule
is formats which contain fixed-width motifs (often called ”fields* in this context),
which are delimited by just their position.

We can unify this description by considering literal text as motifs as well. This is
also useful from an application point of view because literal text sometimes contains
important information, so it does not solely serve as delimiter.

It must be noted that motifs can be nested. For example, an IPv4 address is
obviously a motif. However, we can describe the IPv4 address itself as consisting
of seven motifs, 4 of which are integer numbers in the interval [0..255] and the
remaining three are literal text motifs, namely the dot character. Multiple levels of
motif hierarchy are possible inside log messages. An example is JSON [6] strings
that are sometimes included in log messages. As JSON is recursively defined, the
JSON motif will potentially contain multiple levels of sub-motifs.

When we talk about log normalization, we usually mean the top level motif by
our term motif. If we need to refer to sub-motifs, we will do so explicitly.

If we have a motif m and a string s, we say m matches s (and vice versa) if and
only if the structure of s is identical to the structure defined by m. For example, an
IPv4 address motif matches any proper textual representation of an IPv4 address.
In case of literal text motifs, matches means that the byte sequence in s is identical
to the byte sequence described by m.

Tying this all together, we can improve our definition of a log message from
chapter 3.2: A log message is a string that was created with the intention to log

data and it consists of a sequence of substrings each matching a motif.

13

4.3.1 Free-text Log Formats

Free-text formats are commonly called ”"unstructured“ in trade publications. Howe-
ver, this classification is incorrect. These logs have structure, but the structure is
not well defined.

In general, these types of logs were originally meant to be human consumable,
thus they resemble natural language text. Usually, this text is generated in a way
that parameters (like account names or IP-addresses) are embedded in an otherwise
fixed-text message.

As such, free-text formats always contain multiple motifs. If they would contain

a single motif, only, we would have one of these cases:

e motif with sub-motifs - for example a message consisting only of a JSON body.
In such cases, do not really have free-text messages but rather a well-defined

structure.

e a single motif without sub-motifs - we have never seen an example of such a
message in practice. However, one might consider a message containing only
an integer value as an example. Such a value could be a measurement, like
temperature or CPU utilization. The exact meaning would need to be conveyed
implicitely, e.g. by the system the message originated from. In any case, such
messages have a well-defined structure, even though this is not obvious to an

external observer.

In both cases, the message has a specific structure and so cannot be classified as
free-text format.

This shows that free-text messages are always a sequence of two or more motifs.

Generation of Free-text Log Messages Most operating systems provide APIs

for generating free-text log messages.

Linux and Unix Under Linux and Unix, the POSIX syslog() API [31] and
helpers are used, at least in most C programs. This API permits a programmer to
log a message much like in the C language’s printf() function. As such, the official
API documentation does not mandate any specific log format, nor does it provide
guidelines on how to log specific objects. In the Linux Kernel, an equivalent API
named printk() exists.

In order to get some understanding of the consequences, we did a brief analysis

of open source software code repositories. We use the FreeBSD github repository [11]

14

S Ot e W N

as well as the Linux Kernel git repository [49]. Both repositories were downloaded
in May 2015.

After download, we did a search over the whole source tree for calls of the syslog()
respective printk() API. We extracted all lines where these were called, but only
the single line where the call started. This often did not provide the complete call
parameters, but usually the formatting argument, which was sufficient for our needs.
This resulted in 4638 code lines for FreeBSD and 37608 for the Linux Kernel. This
data set can be found inside an online repository created as part of this thesis [24].
It must be noted that the result is probably a small subset of the actual logging
calls, as many projects tend to wrap their own log handlers around the syslog()
API and then call this log handler. This also explains the big difference in number
between all of FreeBSD and Linux kernel (printk() looks like it is very seldomly,
if ever, wrapped). We manually reviewed the data set and watched for consistency
and format similarities. While this was not an exhaustive survey, it permitted us to
find important properties.

Typical use cases (here from the FreeBSD tree) look like this:

syslog (LOG.CRIT, ”Attempted_login._by._%s._on_%s”, user, tt);

syslog (LOGERR, "user: %s:._shell _exceeds_maximum.pathname_size” ,
syslog (LOGERR, ”"tried._to_pass_user.\"%s\”_to_login”,

syslog (LOGDEBUG, ”login.name.is 4%s+,_of_length %d,.[0] _=-%d\n",
syslog (LOGERR, ”setlogin(%s): %m.—_exiting”,

syslog (LOGAAUTH, ”Attempt_to_use.invalid_username: _%s.” , name);

All of these samples output user names. Even from this very small sample, a
couple of issues can be seen:

No formal indication of parameters happens inside the API. For a log consumer,
the fixed and the variable text is not directly discernible.

Embedded spaces in parameters cause issues. While this should not be an issue
in the case of operating system user (account) names, there are ample other motifs
where embedded spaces may be possible. Depending on the platform, even user
names may include spaces, if properly escaped. If we now look at line 1, we note
that a space inside the user name is very hard to detect when just looking at the
resulting message. Even relying on the fixed substring "on* would not always be
sufficient without additional context, as the value for user could be "user on“. In
the second line, the situation is slightly better because a colon is less likely to be part
of the motif. Depending on the parameter value this still can lead to misdetection.
Lines 3 to 5 mostly solve that problem by embedding the motif inside characters

that are unlikely to happen within the motif itself. This, too, will not always work

15

as the same character can potentially occur inside the motif and as such would need
to be quoted.

Motifs may contain delimiters As can be seen in line 6 the user name is termi-
nated by a period, obviously in an attempt to mimic a natural-language sentence.
As user names may validly contain periods [34, Sect. 3.426], proper detection of the
user name is problematic. As described above, this applies to a lesser extent to lines
3 to 5.

No consistency is found in the way the same motif is written to the log. It very
much depends on the actual code how the motif is written. Even within the same
code base, different formats are found to write the same motif.

Intended for human consumption Looking at these points, developers target log
records obviously primarily for human consumption. In practice, though, enterprises

need to process log records automatically due to the large volume of them.

Microsoft Windows Under Windows, log message are formatted and gathe-
red via the Windows Event Log subsystem [12] introduced in 1993. A strong focus
at that time was to provide an easy way to support message text localization to
different natural languages [41, Pg. 21]. To support this, structural elements had to
be added, being most importantly [41]:

e common header - containing some key metadata elements, like the creation

time in precisely defined format

e cvent id - a key that uniquely can identify a specific message type. This pro-
vides a method to precisely define the semantics and the syntax of a specific

message.

e parameters - each message can have multiple parameters (like account cre-
dentials, time values or IP addresses). These parameters were initially only
indexed by a numerical index, but in combination with the event id and other

header information it was possible to identify them.

A major new version of the Event Log subsystem was released with Windows
Vista in 2007. This version of the subsystem is also in use today with current Win-
dows releases. Most importantly, it offers more structured parameters, for example
in XML format [37].

The Windows event log offers considerably more structure than the POSIX sys-
log() API, but only if used correctly. Unfortunately, when working with real-world

Windows logs, one notices quickly that most software developers do not make good

16

use of that API. Instead, it is treated much like the POSIX syslog() API. As most
Windows applications are closed source and licenses usually prohibit reverse engi-
neering, we cannot cite exact samples of the misbehavior. However, we known both
from personal experience as well as working with other researchers on log processing
that the actual event log content does not offer much useful benefit. For example,
third-party software vendors often tend to use a single event id, which contains a
single parameter, which then contains the actual message string. So in essence, the
output format is exactly like on Linux and Unix. One might speculate if this stems
back to code that originally existed on Unix, uses the syslog() API and has been
ported with little effort to Windows.

To further complicate things, when Windows events are integrated into enterpri-
se log management systems, they are frequently sent via forwarding tools like Snare
Windows Agent [42] or Adiscon EventReporter [27]. This is done because most en-
terprise log management systems require heterogeneous sources and as such do not
support event log format natively. The forwarding tools usually take the Windows
event log database and convert entries into syslog-like messages. During that con-
version step, the distinction between constant text and dynamic parameter is often
lost, so that the same problems mentioned for POSIX apply.

It must be noted that recent versions of these tools also support formats like
JSON which permit to retain structure. However, that mode is currently seldom
used in practice and so from a practical perspective the Windows event log format,
as seen on a central log management system, is mostly equivalent to the typical

Linux log.

Other Device Vendors Other important vendors of network equipment like
Cisco, Huawei, or many others follow the POSIX paradigm. They either run Linux
kernels on their systems, in which case using POSIX is obvious or they use closed
source software. In the latter case, review of the source code is impossible, nor are
there documented APIs. However, one can suspect the use of the POSIX syslog()

paradigm from analyzing a large set of emitted messages.

4.3.2 Semi-Structured Log Formats

We call those formats semi-structured which have some structure, but are not well-

defined or at least not easily recognizable. Prime examples are:
e comma-separated values (CSV)

e name-value pairs

17

While both of them are well known, many variants exist, some of which may
not even be reliably parsable. Let us use CSV as an example: the format simply
has values which are delimited by commas. In some variants, it is not clear how to
represent a comma inside the value part. In some, this case is even undefined, so
embedded commas will introduce errors. In some, quoted values exist. Those are
values surrounded by quotation characters. Some demand that if quotation is used,
all values must be quoted. Others permit both quoted and unquoted values. Some
do not permit quoted values at all. These are just some quick examples. In general,
those formats have some structure, but are usually equally hard to interpret like
free-text formats.

Log normalizers still tend to represent these formats by a specific motif.

4.3.3 Structured Log Formats

Structured log formats have a well-defined structure and can be parsed based on
that definition. If the parsing of a specific message fails, one can conclude that it
is either erroneous or in a different format. So a clear rule for format detection and
parsing exist.

Formats commonly found are:

e ArcSight CEF [32]

o CEE [13]

e GELF [28]

e plain JSON 6]

e RFC5H424 Structured Data [23]
o SIP CLF [44]

o Web CLF [55] 4

e WELF [33]

As each of these formats is well defined, it is a single motif from our point of

view. These are obviously the easiest to work with formats in log normalization.

4Note: some variations of the Web CLF format exist, but all are well documented and discernible

from each other.

18

4.4 Motif classification

Motifs are derived from real-world objects used in log messages. They can be clas-

sified in terms of complexity in comparison to regular expressions.

1. Motifs that can easily be implemented via regular expressions, like MAC layer

addresses. The majority of motifs is in this class.

2. Motifs requiring elaborate regular expressions. An example is the ipv4address
motif. The key point here is that each address octet must be in the interval
[0..255]. As numerical checks are not supported, the regex must be built based
on valid digit sequences. This class can occur quite frequently and is present

in many actual log files.

3. Motifs actually outside the class of regular expressions as specified in computer
science (cs). Very few motifs are in this class, but we have seen in 5.2.1 that
some are even context-sensitive. A prime example of this class is the CEF
format which requires look-ahead in order to differentiate names from values
(see also Sect. B).

Furthermore, motifs can be classified in how precisely they match a substring.

Take for example these two motifs which are frequently used in practice:

e word - a motif that describes a sequence of characters not containing the space
character. The first occurrence of a space character or end of string terminates
this motif. This is a base type that may be used, for example, to represent

user narnes.

e ipujaddress - a motif describing the textual representation of an ipv4address

If we take the string 7192.0.2.1%, it obviously matches both of these motif defi-
nitions. On the other hand, the string ”hostname“ matches the "word“ motif, but
not the ”ipv4address* motif. In those cases, we say that the "ipv4address“ matches
more specifically than the ”word“ motif, or we may say that "word“ is broader (in
scope) than ”ipv4address ‘.

Usually, we have a subset relationship on the specificality of motifs, in that some
motifs match a subset of some other motif. However, we may also have motifs which
only have a partial overlap, e.g. an intersection of message formats. To show these,

let us consider two other motifs:

e hexnumber - the hexadecimal representation of an integer number

19

e float - the representation of a floating-point number

The string ”7123“ matches both of the motifs, while ”1a3“ matches only the
"hexadecimal “ motif and ”1.3“ matches only the "float“ motif. We say that such
motifs are conflicting.

We call both conflicting motifs and those with different specificality ambiguous.
Also, we need to remember that motif structure is dictated by real-world objects,

so we cannot forbid or easily overcome such ambiguities.

5 The Log Normalization Problem

5.1 Problem description

Let L be a set of log messages. Let the mfmt function be as described on page 11.
Let F' = {mfmt(/)|l € L} the set of all formats used inside L. Let f, be a desired
format, which not necessarily is in F. Let F' = F U f,. Let ¢ = extr(l, f) be a
function that extracts motifs from message [€ L in format f € F' and returns them
in an interim format . Let fmt(7, f) be a function that takes a message in interim
format 7 and formats it in format f. Let I’ = fmt(¢, f). Note that [and I’ may contain
different information; deletion and insertion of information is permitted during the
normalization process. For example, in practice it is common to annotate normalized
log messages with some classification information.

Then the log normalization problem is: for each [€ L detect its format and

transform the message to be in f, format. This is formalized in algorithm 1:

Algorithm 1 log normalization problem
for all/ € L do

f = mfmt(])

i = extr(l, f)

' = fmt(i, fo)
end for

The core problem is the mfmt function implementation, because the message
format is hard to detect. The other functions are rather simple.

In implementations, the mfmt and extr functions are often combined, because
the extraction of data items is usually a side-effect of the detection algorithm.

Log normalizers use format databases to implement the mfmt function. Various

names exist for these databases and they vary greatly in content and structure. In

20

this thesis, we use the term rulebase to refer to such a database. A rule is a formal
description of a specific format. A rulebase is set of rules. In some normalizers rule
bases are ordered sets.

As we have seen in section 4.3, the format of log messages belongs to different
language classes. As such, rules must be able to detect all of them.

Each rule describes a specific log message. The rule is like a template for a specific
message: it contains the same sequence of motifs as the message itself. Each motif
can be constant or dynamic text. Let M be the set of all possible motifs. Than a

rule r is formally defined as follows:

r=(my,....my)[1<i<n:m; €M

Reconsider that a log message [€ L is a sequence of substrings s; representing

motifs:

Il=1(81,---,8n)

A rule is said to match a message if and only if both the rule and the log
message have the same number of components n and substring s; matches m; for
all 1 <7 <n.

The naive implementation for the mfmt(l) function is as follows:

Algorithm 2 mfmt function (naive)
for all r € R do

if [matches r then

return r (success)
end if
end for

return no match (failure)

Let ¢,, be the time complexity of the "matches* operation. Then the time com-
plexity of the naive algorithm is O(|R|c,,). If we assume that ¢, is O(1), then the
naive algorithm is linear in |R|. So this algorithm does not scale well for large rule-

bases. As we will soon see, it nevertheless is used in practice.

5.2 Normalization Algorithms

For the rest of this section let R be a rulebase of required type, r € R a rule, and

n = |R|. Let L be a set of log messages, [€ L an individual log message in some

21

input format, and [’ the normalized message in desired output format f,. Further

let k& be the maximum configured log message size in bytes (so VI € L : |I| < k).

5.2.1 Regular Expression based Normalizer

As said in the introduction, the traditional approach to normalization is to use
regular expressions to describe motifs (except for literal text). However, it must be
noted that the term "regular expression® is not used in a strict cs sense. Rather, it
refers to implementations used in practice, like PCRE [17]. These implementations
support many extensions to the cs model, for example back references. As Aho
has shown in [3, Sect. 2.3] regular expressions with backreferences do not describe
"regular or even context-free languages®. In [3, Sect. 6.1] the author shows that
deciding these regular expression class is NP-complete, so based on the assumption
P # NP there exists no polynominal-time algorithm for deciding them. This is in
sharp contrast to cs regular expressions, which can be decided in O(k). As Ross Cox
shows in [14] the feature-rich regular expression libraries used in practice actually
have a very bad runtime performance. This is in line with user reports of the slowness
of regex-based normalizers (for an example report for ”grok“, see [40]).

The regex-based normalizers treat rulebases as an ordered set of rules. Format
detection happens by iterating over the rules until a match is found. In each iteration,

all rule regular expressions are executed. This leads to normalization algorithm 3.

Algorithm 3 mfmt function (typical regex approach)
for all » € R do

if [matches r via regular expression then

return 7 (success)
end if
end for

return no match (failure)

This basically is the naive algorithm, but now the "matches“ operation has time
complexity O(exp). This leads to O(exp) = O(|R|) - O(exp)) time complexity of the
overall algorithm. In practice, few regular expressions actually have exponential time
complexity. Nevertheless, they usually have runtime costs that cause notable delay
if repeatedly executed. From a practice point of view, the time required to execute
a single rule is considered constant, but "high“. So this algorithm is considered to
have runtime cost linear to the number of rules being used. That is problematic be-

cause due to the large variance in message formats large rule sets are often required.

22

Due to the "high“ cost of evaluating a single rule, even small rulebases have pro-
blematic runtime requirements (see our test results in 7.2.1). See [40] for a practical
report where even after optimizing the regex only 500 messages per second could be
processed, far less than what is usually required by larger organizations.

As a further problem, some of the to be processed formats, like ArcSight CEF
[32] are context-sensitive languages and cannot be expressed by the regex engines
used. While such formats are rare, they create the need for special handling in regex

based normalizers or are simply not supported by them.

5.2.2 Prefix Search Normalizer

The performance of regex-based normalizers could be improved by removing the
iteration over R. Looking at the deterministic finite automaton (DFA) form of the
regular expression, this can be done by combining all individual DFAs into a single
one. It will remove the O(|R|) overhead for looping through R, which means that
we could support large rule sets, just as we would like to. This thought path leads
to prefix search normalizers.

Furthermore, when looking at existing regex rule sets, one notices that motifs
are usually simple objects like user names, IP addresses, timestamps, literal text and
so on. Full regexp capabilities are not required to extract them. Finally, matching
always occurs from the initial character of the message towards the end, so no
matching within a larger text is required.

This leads to the idea to use a data structure specialized in high-performance
matching as basis for a single DFA. That was the core idea used around 2010 in
syslog-ng and liblognorm.

This approach is based on the idea of prefix search trees in string processing
[35, Sect. 6.3]. In order to understand prefix search normalizers, we first need to

understand search trees.

Tries

The first search tree proposed [35, pg. 492] was the trie data structure [19]. It
was introduced in 1960 by E. Fredkin and developed for high performance searches.
A trie is is a search tree which does not contain the key in each node, but rather
key prefixes as edge labels. A sample is depicted in figure 2. For any path, the key
can be constructed by concatenating the edge labels. In the example, "and“ can be
constructed by walking the path (a,n,d). Parsing a string s = (s1,...,s,) is done
selecting the top-level edge by s;, then the second level edge by s and so on, until

either a mismatch or a terminal is found. This means each s; is only evaluated once,

23

Figure 3: A sample PATRICIA tree.

and so the trie decides s in O(|s|) time. If an upper bound for |s| exists, a trie decides
in constant time.

The original trie had some problem areas associated, among others excessive
memory use for inner nodes. Inner nodes have large fixed-length branching tables
representing edge labels. Tries have continuously been improved. For example, Mor-
rison described the PATRICIA tree [39] in 1968, which addresses the problem of
memory usage by nodes not strictly necessary. Let (sq,. .., s,) by a tree path. Then,
an empty path is any subpath (s;, Sit1,. .., Sitm) With 1 <@ < n,i+m < n where
indeg(sx) = outdeg(sx) = 1 with ¢ < k < i+ m. As there are no alternatives bran-
ches, an empty path must be walked completely if the string matches the search

tree. As such, all empty path nodes can be collapsed into the corresponding edge

24

label in node s;_1, which then matches multiple characters. As trie nodes have high
memory requirements, this can considerably reduce memory usage. This process is
called empty path compression.

Our sample as PATRICIA tree can be found in figure 3. Note that PATRICIA
trees are also referred to as radiz trees. We will use that term in our thesis, as it
seems more popular in recent literature.

Several improvements of tries lead to the 2013 introduction of the ”adaptive
radix tree“ [36] (ART) by Leis et al. It provides even better space compression and
works better with the modern computer main memory system, namely CPU caches.
Note that Leis, in Section III, offers a good overview of radix tree advantages, which

we refer the interested reader to.

Parse Radix Tree Radix trees in their pure form provide matching of literal text
only. So for a string s, they can guarantee O(|s|) complexity.

We need to adapt the definition for use in log normalizing, where the matching
bases on motifs. To support this, we introduce the parse radiz tree (PRT). It is a
radix tree where edges are labeled with motifs rather than constant text.

As we have seen in Sect. 4.4, this introduces a new problem: different mo-
tifs may match the same substring. For example, let us consider the "word“ and
"ipvdaddress“ motif from 4.4.

If we now look at the log message ” Attempted login by guest on 192.0.2.1¢, the
substring ”192.0.2.1° matches both of these motifs.

So after our modification the PRT is no longer represented by a simple DFA.
Instead, it now is a nondeterministic finite automata (NFA) [2, sect. 3.6.1] N =
(@Q,%,0,q, F) with

e () being the set of internal states

] being the set of input symbols, which consist of motifs

0 is the transition function, which is represented by a tree

qo, the start state, is at begin of the log message

F' being the set of terminal states contains all states in which a rule has

completely matched the to-be-processed log message.

The PRT is the tree-representation of . When we implement an algorithm for
N, we can no longer rely that the matching is always done by constantly evaluating

a single path in the PRT. Matching can now require a much more elaborate walk.

25

'Attempted login by "

word \ipv4address

Figure 4: A sample parse radix tree with potentially conflicting motifs.

Let us consider a case from practice. We have potential log messages ” Attempted
login by guest on 192.0.2.1“ and ” Attempted login by 192.0.2.1 failed “. The following
rulebase describes both of these messages:

b b

(” Attempted login by 7, word, on 7, ipvdaddress)
(” Attempted login by 7, ipv4address, 7 failed”)

Note that constant text motifs are shown by giving just the literals. If we con-
struct the PRT out of this rulebase, it looks like shown in figure 4.

Node 2 shows a potential problem during tree walk: there are two branches
with motifs that both matches a set of common substrings. Now let us consider the
message ” Attempted login by 192.0.2.1 failed “.

From a theoretical perspective, the NFA evaluates all potential pathes. As such,
the message is matched and the path for this match is (1,2,4,6).

In an implementation, however, we need to do matching sequentially. Let us
assume the "word“ motif would be evaluated first. As the substring 7192.0.2.1¢
perfectly matches the ”word “ motif, parsing would continue with node 3. There, the
substring ” failed “ is tried to match, but that fails. In a regular trie, parsing would
now be completed and a mismatch returned. In contrast, the PRT needs to take
into account that it does motif matching and as such another path might provide

a match. So the matching algorithm needs to go back one layer (from node 3 to

26

node 2 in our example), and check if there are other edges available whoms motif
match ("ipvdaddress in our sample). If so, the algorithm must try to match via
that edge. In our case, this means it branches to node 4, will now correctly match ”
failed“ and return match success. So the complete walk for this matching operation
is (1,2,3,2,4,6).

This ability to go back upwards inside the tree and continue the evaluation of
not yet tested motifs is a new property of the parse radix tree. We call this process
backtracking. Note that this is a recursive process, which can happen on multiple
tree levels. As such, a PRT unfortunately no longer has time complexity of O(|s|) for
a string s. In theory backtracking can cause exponential runtime. For now just let
us note that this does not happen in practice due to the structure of log messages.
We will show details in section 6.4 "Time Complexity“ on page 42. Nevertheless,
backtracking, if it happens too frequently, has a negative effect on PRT performance.

Algorithm 4 describes the core idea of a recursive PRT matching algorithm.

Data Structures used by Popular Projects Syslog-ng uses a PRT basing on an
ART. Tt is unknown if syslog-ng initially used a different algorithm in the past (the
ART was published in 2013, and the first version of syslog-ng pattern db around
2010) and it is also unknown, though likely, if the commercial version uses the same
algorithm.

Liblognorm utilizes a PRT which bases on a PATRICIA tree. Additionally, the
PRT includes some trie-like quick lookup capability for children based on the next
literal character. In each node, it contains large literal lookup tables with one pointer
entry for each of the 256 potential byte values. The intent is to increase lookup speed,
but it comes at the cost of large memory consumption.

Both syslog-ng and liblognorm v1 use a variant of algorithm 4. Most importantly,
they treat literal text different from other motifs. The liblognorm v1 algorithm gives
literal matches priority, whereas syslog-ng prioritizes other motifs. This is done by
evaluating literals in different places inside the algorithm. The liblognorm method
is shown in algorithm 5, where literal matches are done after other motifs. For
syslog-ng, this is just the opposite. Note that other details may also be different for
syslog-ng. Liblognorm v1 does empty path compression by storing the literal that
corresponds to the empty path as a string inside the node. We call this "empty path

prefix“ in the algorithm description.

27

Algorithm 4 prefix search normalizer (basic algorithm)

if s is the empty string then
if n is a terminal node then
return success
else
return failure
end if
else
for all edges e of n do
if e matches prefix of s then
recursively call ourselves with node pointed to by e and unmatched suffix
of s
if success returned then
return success
end if
end if
end for
end if

return failure

For a log message [, the algorithm receives the substring s, which is the not yet
matched suffix of [. Also, it receives the node n from where the PRT is to be walked.
Initialization happens by calling the algorithm with the complete message [and the
root of the PRT.

28

Algorithm 5 liblognorm v1 search algorithm

if s is the empty string then
if n is a terminal node then
return success
else
return failure
end if
else
if prefix of s is equal to the empty path prefix then
set s to first char after empty path prefix
for all non-literal motifs e of n do
if e matches prefix of s then
recursively call ourselves with node pointed to by e and unmatched suffix
of s
if success returned then
return success
end if
end if
end for
use literal lookup table to see if edge exist labeled with first character of s
if such edge exists then
recursively call ourselves with node pointed to by e and unmatched suffix
of s
if success returned then
return success
end if
else
return failure
end if
else
return failure
end if
end if

return failure

For a log message [, the algorithm receives the substring s, which is the not yet
matched suffix of [. Also, it receives the node n from where the PRT is to be walked.
Initialization happens by calling the algorithm with the complete message [and the
root of the PRT.

29

6 An improved normalization method

6.1 Goals and alternatives for an improved method

Our PoC with liblognorm v1 proved that a prefix search normalizer works reasonably

well in practice. However, we noticed a number of problem areas with the PoC:

e space requirements - memory consumption is rather high, especially for larger
rulebases. Among others, a core problem is the edge label tables, which alone

consume 2KiB per node on a 64-bit system.

e motif evaluation order - as we have seen, some strings are matched by multiple
motifs. This can lead to mismatches. With liblognorm v1, we have seen some of
those cases in practice. It must be noted that this ambiguity can not simply be
avoided: there is ambiguity within the language of the rulebase. As described

in [30, Sect. 5.4] such ambiguity cannot automatically be removed.

e speed increases - even though the prototype is already much faster than regular

expression based normalizers, we would like to further improve the speed.

o CPU cache friendliness - the prototype algorithm was designed without regard
to cache performance. This shall be changed not only to improve runtime

performance but also put less burden on system resources in general.

e limited set of motifs - the prototype includes only a very small set of motifs,

what often poses a problem in practice.

o user-defined motifs - the success of grok is partly claimed to the fact that it is
very easy for users to extend the set of supported motifs. For liblognorm v1,
this requires C programming skills, which means no extensibility for ordinary

users.

e one normalizer for all formats - it is very desirable to be able to use a single
normalizer for all kinds of message formats, because this is what is seen in
typical log streams. If we would restrict our algorithm to the normalization of
free-text log formats, in practice other system components would need to be
extended to cover the other ones. So it is best to include that capability in the

algorithm itself.

e runtime analysis - no runtime performance analysis of any normalizer has been
published so far. Thus is is unclear which runtime behavior can be expected

for typical workloads.

30

We can base the new algorithm on regex or search tree concepts to reach the-
se goals. The following paragraphs describe advantages and disadvantages of the

approaches. In the following, let [be a log message.

regex-based normalizer As we have seen in Section 5.2, the main problem of
the regexr based approach currently used in practice is that it executes regexes se-
quentially and regex libraries support advanced features outside the class of regular
languages, what leads to exponential runtime.

As we have already said, we can overcome the sequential execution problem by
building a single automata for the complete rulebase. That would be the approach
we would need to look into.

We discuss this based on the motif classification in regard to regular expressions
in Sect. 4.4. These classes need different implementation in a regex-based normalizer:

Classes 1 and 2 can be dealt with by an e-NFA [30, Sect. 2.5] which then could
be converted to a DFA. The result could then be amended by an algorithm that
handles the few remaining class 3 cases. This could be implemented, for example,
by a hierarchy of different automata which work together. It must be noted, though,
that a pure DFA implementation is impossible because we need to support motif
class 3, which is outside the class of regular languages.

This approach has the advantage that it provides an O(|l|) runtime guarantee
whenever no class 3 motif is used. This would be in the vast majority of cases
and as such be an advantage. However, the e-NFA would have a large number of
states because of class 2 motifs. Further, it is expected (but not experimentally pro-
ven) that the translation from e-NFA to DFA will lead to a very large state set.
Implementation-wise this would mean large state tables and a transition function
implementation that would frequently need to access spatially remote areas of me-
mory. That leads to a very cache-unfriendly implementation. Finally, the e-NFA does

not solve the ambiguity problem described in 4.4.

search tree-based normalizer With the search tree concept, all motif classes can
be handled in an uniform way. The ambiguity problem can be solved with relative
ease by motif prioritization.

Nodes are the search tree analogon to DFA states. The search tree requires fewer
nodes than the DFA states because a) we can compact them and b) motif parsers
themselves do not use explicit states. The current memory consumption can be
reduced by following the ART paradigm. Fewer nodes increase spatial proximity

of frequently accessed data items, which can be further improved by proper layout

31

of the data structures as part of algorithm engineering. This makes the approach
attractive from a memory consumption and cache performance point of view.

On the contrary, we cannot prove the desired O(|l|) time complexity, not even
for the important subset of motif classes 1 and 2. However, practical experience
with the liblognorm v1 PoC indicates that observed run time is "sufficiently “ fast
and backtracking happens only infrequently, so that it does not negatively affect the
heuristically expected O(|l|) runtime. As with the regex-based normalizers, the use

of class 3 motifs inside rulebases causes worst-case exponential runtime.

Conclusion Weighing these arguments, we conclude that an algorithm based on

the search tree concept is best for solving our problem. The main arguments are:

e it provides a simple solution for solving the ambiguity problem
e it provides a unified solution for all motif classes

e it promises less memory consumption and better cache performance

6.2 The data structure

We base our data structure on the PRT as described in Section 5.2.2, but change the
structure from tree to DAG. In the following, we continue to use the terminology we
introduced for search trees and mean the analogon for DAGs. Let us further define:
if (ny,...,n,) is a walk inside a graph, then any subsequence of nodes in that walk
is a subpath.

This DAG offers important new capabilities to improve search trees:

common subpathes It frequently happens that two log messages [y, ls consist of
mostly the same motifs, but have small differences in some places. For example, [y
may contain a host name at the same location where [, has an IP address. In such
cases, the subpath from that location to the next difference is equal for both mes-
sages. We call this a common subpath when walking the DAG. A common subpath
that leads to the same terminal symbol is also called a common suffiz. If we assume
the user is interested in parsing such messages via different rules, inside a tree we
will duplicate common subpathes (see figure 5 for an example). With a DAG, we
can eliminate these duplicates and need to include the path only once inside the
DAG (see figure 6 for the example as DAG). This results in reduced memory usage.
Also, cache performance increases, because we need to walk only a single memory

area for all instances of the common subpath.

32

hostname

" was reset by user " word
-

" was reset by user " word @
-

Figure 5: A search tree with a common suffix
@ "host " hostname h " was reset by user " word @
ipv4address

Figure 6: A search DAG with a common suffix

ipvd4address

disconnected components Disconnected components permit to store common
subpathes as their own component inside the DAG. Let us show a simplified example
based on what is found inside the PIX data set. Let us assume we have messages

like in the following:

traffic flowing from hosta to hostb permitted

traffic flowing from 192.0.2.1 to hostb permitted

traffic flowing from 192.0.2.1/80 to hostb /5432 permitted
traffic flowing from 192.0.2.1/80 to 192.0.2.2/5432 permitted
traffic flowing from hosta to 192.0.2.2/5432 permitted

As one might suspect from these samples, the actual motif structure is as follows:
(" traffic flowing from”, HOSTSPEC, ” to ”, HOSTSPEC, ” permitted”)

Here, "HOSTSPEC* is a combined motif which consists of a host name (which
may be an IP address) optionally followed by the slash character and a port number.
Let us assume a motif "hostname“ exists, which represents either an alphanumeric
name or an IP address. Let us further assume "HOSTSPEC* is not within the
motif set provided by the core implementation. This is quite likely for many of such
combined motifs, because there are so many possibilities. So we need to build it out
of the available motifs hostname, literal, and number.

In a pure search tree, we need to represent this as shown in figure 7. This is
the structure that liblognorm v1 actually generated. With the search DAG, a first
simplification is possible, shown in figure 8. Note that this representation is also
much closer in structure to the actual message format.

With the introduction of disconnected components, we can finally fully model
the actual message structure. We permit to use individual disconnected components

for combined motifs like "HOSTSPEC® in our sample. This results in a further

33

'traffic flowing from "

" permitted"” portnumber \" permitted”

' permitted”

Figure 7: search tree of the firewall sample

" permitted”

34

'traffic flowing from "

ortnumber ' permitted”

Figure 8: search DAG of the firewall sample

35

ortnumber

" permitted”

Figure 9: search DAG with disconnected component of the firewall sample

simplification of the search DAG, as can be seen in figure 9.
In practice, the simplification due to disconnected components is even more
radical: In real Cisco PIX logs, a "HOSTSPEC“ is a much more complex construct,

with more optional motifs. It is specified as follows:
[interface :|ip/port [SP (ip2/port2)] [[SP](username)]

Brackets indicate optional parts. Also, this combined motif may occur multiple
times inside a log message. So a search tree will grow rapidly in size. This is a well-
known problem in liblognorm v1. Actually, we implemented this combined motif as
a base motif in liblognorm v1. We did so because it is a very important object for
many users. However, there are many similar combined motifs in practice, which
cannot be supported by adding native types for each of them. Consequently, it is

very hard to handle such cases with regular search tree based algorithms.

unified edge labels We do not treat literals and motif parsers differently. Instead,
we introduce a new "literal“ motif, which provides the match over a literal. This
enables us to keep the data structure small and relieves us from special case handling
for literals inside the algorithm, resulting in a simplified solution. Furthermore, this
removes the need for the large edge label tables liblognorm v1 kept in each tree node.

This is a considerate space saving but comes at the cost of slightly worse lookup

36

times when many literals exist in a single node. As evaluation results show, this is
not a real issue, especially as usually there are not many edges labeled with literal

motifs.

prioritized edge labels As we have shown, motif ambiguity causes problems
during normalization. We introduce the ability to prioritize motifs and so affect the
search order. This will solve all issues where motifs have a subset relationship and

it enables to solve conflicting motif issues by proper configuration.

rooted DAG Each disconnected component d has exactly one node with indegree
0. This is called the root node of d. Parsing always starts at the root node. Exactly
one of the PDAGs component is designated as the root component. Parsing of a log

message starts with the root node of the root component. For convenience, we call
this node the root of the PDAG.

loops Some motifs have a set of one or more values. During normalization, we
would like to extract the individual items of this set and present them to the ap-
plication (for example as an array). This requires looping capabilities. One way to
design this is to natively support loops inside the data structure, which then no
longer would be a DAG. Another approach is to implement such loops as a motif,
outside of the DAG itself. We follow this latter approach because loops actually only
occur in motifs, not within the normalization process itself. So implementing them

on the motif level is the right thing to do.

parse DAG We call the data structure described in this Section a parse DAG
(PDAG).

6.3 The Algorithms

There exist two important operations for a PDAG:
e construction of the PDAG
e parsing a message via the PDAG

Also a number of utility algorithms, like PDAG deconstruction, are needed. We will
not describe them as they are obvious.
Note that we do not describe an algorithm for searching the PDAG but rather

for parsing a message via the PDAG. The reason is that parsing the message and

37

searching is done at the same time because of efficiency reasons. We prefer the term
"parsing“ over "normalization® in this somewhat broader context.

The anticipated use case is that the PDAG will be constructed once and then
be used unaltered for parsing many messages, possibly over many hours or days. So
PDAG construction is not a time-critical operation, whereas parsing via the PDAG
is. Realtime requirements exists only for the parsing algorithm. Consequently, we
will permit the construction algorithm to use extra runtime if that helps to speed
up the parsing process. This includes potentially long-running optimizations.

The only constraint on construction time complexity is that the construction
must be 7sufficiently fast“ to permit acceptable restart times of the normalizer.
With the implementation developed for this thesis, this is the case. But let us assume
this would not be the case: then, we could split the construction process into two

subprocesses:

1. read the rulebase, do all lengthy operations and store the finally resulting

PDAG in an easy-to-load binary format in file f

2. read f and proceed with parsing

Step 1 would be done in its own process, which could be run concurrently to the
active instance of the normalizer which runs unaffected. Once step 1 is done, the
normalizer can re-read the PDAG via step 2, which would only introduce a small
delay. As we see, we can always ensure that PDAG construction is sufficiently fast.

The fact that the PDAG is read-only after construction is also helpful for paralle-
lization: we do not need to place restrictions on the number of concurrent operations

that utilize the data structure itself at the same time.

6.3.1 PDAG Construction

The construction process works in two stages: the actual load stage and preparation
and optimization of the data structure.

During load, it builds PDAG components and nodes based on the provided ru-
lebase. For each rule, the already existing PDAG is walked with the motif sequence
specified inside the rule. When a not yet known edge motif is found at some node,
the edge is added and a new node created for it. During this process, literal strings
are converted into individual one-character literal motifs. So the string "and“ be-
comes the literal motif sequence (a,n,d). This initially creates a very deep PDAG,

but simplifies the construction process greatly. The PDAG will be shrunk again in

38

the optimization phase. Terminal nodes are flagged as such when the end of a rule
is reached.

In the preparation and optimization phase all PDAG components are processed
individually. Motif priority order is established by simply keeping motifs in an array
and sorting this in order. This permits fast processing in motif order in the parsing
algorithm.

More importantly a process similar to empty path compression inside a PATRI-
CIA tree is performed: all pathes of the DAG are evaluated for sequences of nodes
n with indeg(n) = outdeg(n) = 1 where the only edge is labeled by a constant.

If those are found, these nodes can be compressed. Let (ni,ng,...,ng_1,nx) be a
subpath where indeg(ny) = outdeg(ny) = ... = indeg(ny_1) = outdeg(ng_1) = 1
which contains only literal motifs, then (no, ..., n;_1) are removed and their literals

are concatenated to the motif of the (ny,ns) edge, which is further updated so that
the subpath becomes (nq,ny).

We call this process literal path compression. It undoes the expansion of literals
done in the load step, but now this is very simple to do. If we would instead do this
at load time, we would permanently need to reconstruct parts of the PDAG when
literal nodes would need to be broken up due to new rules. As we do not have any
parsing operations concurrently to building the PDAG, there is no need to follow
that more complex paradigm.

The algorithm is shown more formally in algorithm 6.

39

Algorithm 6 PDAG Construction

{load phase}
set current component to root component
for all rules r in rulebase do
if r requires change of current component then
create new component, if required
switch current component
else
set node n to root of current component
split r into motif sequence M {each character of a literal is its own motif}
for all m € M do
if n does not yet have an edge identical to m then
create new node n’
add edge for m, let it point to n’
end if
set n to next node pointed to be edge labeled m
end for
flag n as terminal node
end if
end for
{preparation and optimization phase}
for all disconnected components do
sort all edge labels by motif priority
do literal path compression

end for

6.3.2 Parsing via the PDAG

The parsing operation is essentially a search, with the added functionality that
parsed data items are assigned to the respective to-be-extracted fields. This way, we
can do search and parsing in a single step. Note that if we were to split these two
operations, we would during the search stage need to record information of where
the extraction stage needs to extract the data items. That recording overhead is
very similar in processing time to the time required for the actual extraction. As
such, the combined algorithm performs faster and thus is preferable.

This algorithm 7 is conceptually very similar to the basic prefix search normali-

zation algorithm 4. This is a great simplification over the liblognorm v1 PoC algo-

40

Algorithm 7 Parsing via PDAG
if s is the empty string then

if n is a terminal node then
return success
else
return failure
end if
else
for all edges e of n {in priority order} do
if e matches prefix of s then
recursively call ourselves with node pointed to by e and unmatched suffix
of s
if success returned then
extract matching data item
return success
else
discard already extracted data items
end if
end if
end for
end if
return failure
For a log message [, the algorithm receives the substring s, which is the not yet
matched suffix of [. Also, it receives the node n from where the PDAG is to be

walked. Initialization happens by calling the algorithm with the complete message
[and the root of the PDAG.

41

rithm (5). This simplification was possible due to the data structure changes, most
importantly the treatment of literals as regular motifs. The new algorithm increases
maintainability of the actual implementation. It also helps to improve processing
speed, because the CPU instruction path is shorter and so better fits into caches.
It must be noted that even though the new algorithm is simpler, it is more capable
than the previous one. For example, it supports user-defined types (disconnected
components) as well as looping structures.

One important detail that not directly visible from the algorithm is the way
disconnected components are treated. They represent motifs and are named. So a
generic motif parser for this type is defined, which recursively invokes the algorithm
at the root of the disconnected component with s. In regard to algorithm 7, the only
special handling required is that this recursive invocation terminates successfully
when a terminal node is reached and does not require all of s to be parsed (because a
motif is usually not a suffix). We have not added this detail to algorithm 7 because it

would detract from actual algorithm structure and is easy to add in implementation.

6.4 Time Complexity
6.4.1 Theoretical Worst-Case Complexity

The PDAG consists of potentially many disconnected components. As shown in
Algorithm 7, parsing is done by walking the PDAG. Disconnected components are
used for user-defined motifs, to which the regular parsing algorithm is applied. So
without loss of generality, we can focus our analysis on a single component.

We call the time complexity of the parsing algorithm O(PDAG). Without loss
of generality, only successfully matching operations are considered. Non-matchings

ones always terminate earlier. Time complexity depends on
e motif parser complexity
e amount of backtracking

Individual motif parser complexity is shown and analyzed in Appendix B.

In a first approach to O(PDAG), let us assume that the rule base does not
need to use backtracking. Note that this can happen in practice, as we have seen in
Experiment 7.2.6.

Let [be a log message and |{| be its size in bytes. The empty word is not permitted
as motif. As such, all motif parsers need to obtain at least one byte from [during the
parsing process. As the parsing algorithm always works on the yet-unparsed suffix

s of [, a longest walk inside the PDAG can at most include |I| nodes.

42

Let us now consider motif parser behavior. Let us consider two cases
1. for all nodes, always the first edge matches
2. for all nodes, always the last edge matches

Case 1 cannot be used for worst-case complexity, but provides us some interesting
insight. In it, if a motif parser matches, it processed b bytes from [. These bytes are
removed from s. So after this step, the walk can mostly contain additional |s| — b
nodes. This means the number of nodes inside a walk is limited so that the sum B of
bytes processed by each parser equals |{|. In other words, no matter how many nodes
are present inside a walk, their combined complexity is always O(|l|) as that is the
exact number of bytes which are being processed. So in case 1, we have complexity
o(li).

Now let us consider case 2, where always the last edge matches. This is the worst
case and so includes all other cases where interim edges match.

Let us first assume a maximum size PDAG where all edges are literal motifs.
Then, by PDAG construction, we can at worst have 1 byte per edge label and so
have 256 edges per node. By applying the principle from case 1, all walks from
PDAG root to a terminal node will then involve |I| nodes. The worst case here is
that always the last edge of each node matches. In this specific case, the literal
parser calls are O(1), because each one matches exactly 1 byte. As a result, in this
scenario we have a maximum of 256 matching operations per nodes, and we have a
maximum of || nodes. This gives us a complexity of O(256](|), which is in O(]]).

Now let us consider what happens if motifs other than literal are used. Now, the

situation is different:

e we no longer have a limit of 256 edges per node. Let m be the number of motifs

other than literal. Then, we have a maximum of 256 + m edges per node.

e we cannot guarantee that edge labels be evaluated in O(1)

The number of additional motifs c¢ is relatively small in the current implementati-
on, but may be greatly extended. In any case, the maximum number of edges 256+ ¢
would still be a constant, and so the resulting time complexity would O((256 + ¢)|l|)
and thus still be in O(]!]). The more severe problem is edge label evaluation time.
Several motifs exist which have O(|l|) complexity. Let use assume all those ¢ motifs
are O(]!]) and are used in the topmost edges of each node and thus be evaluated first.
For the worst case, let us further assume none of them matches and the matching

edge is always the last literal as discussed above. In this case, each node needs to

43

evaluate 256 + ¢ edges, where ¢ edges are in O(]l]). So the evaluation process for a
single node is O(|l]) = O(c|l]) = O(256 + c|l|). As the parsing algorithm needs to
evaluate || nodes, we have an overall complexity of O(|I|*) = O(|l|]l]).

Other cases cannot exist if no backtracking is involved. So the worst case time

complexity of the PDAG parsing algorithm is
o(lif*)

if no backtracking is involved.

With backtracking involved, edge label matches are no longer final. If edge e
matches, the associated sub-PDAG is evaluated and a mismatch during this eva-
luation is not considered a terminal mismatch. Instead, processing continues with
next edge following after e. This means that the complexity of edge evaluation is the
combination of the complexity of the sub-PDAG evaluation. Again, let us consider
a PDAG with 256 + ¢ edges in every node where ¢ edges are O(]l]). We can the
recursively define the cost function cf(h) for evaluating edge with is the root of a
sub-PDAG of height h.

256 + c|l], if h=1

cf(h) =

(256 + c|l]) - cf(h — 1), otherwise

This leads to the closed formula
cf(h) = (256 + c|i|)"

As such, evaluation of a sub-PDAG representing a suffix s of [has the complexity
O((256 + c|I|)!*!. We could now rightfully argue that there is some cost amortization
involved, because the O(|l|) motifs at suffix s only require time |s|. However, that
does not change the complexity class. Let us set |l| := 1 for the inner part of
the formula, than we still have O(cl*l) = O((256 + ¢)*) and as such exponential
complexity. This leads to this somewhat unfortunate fact:

The PDAG parsing algorithm with backtracking has exponential theoretical

worst-case time complexity of

O(c")

In conclusion, the theoretical worst-case complexity is not better than the theo-
retical worst-case complexity of regex-based normalizers. It must be noted, however,
that regex-based normalizers are actually O(|R| - ¢!!) for the rule base R. The factor

|R| is irrelevant in theoretical analysis, but is important for practical considerations.

44

6.4.2 Practical Worst-Case Complexity

Thankfully, the structure of real-world log messages is greatly different from what

we assumed for the theoretical worst case scenario:

1. the length of motifs is usually larger than a single byte. For example, an
IP v4 address requires at least 7 bytes (71.2.3.4%) and a date motif 8 bytes
("01/01/15%). Also, literal motifs often match more than one byte. For mes-
sages containing structured data, long motifs are even more frequent. Often

structured messages may consist of a single motif, for example 7 JSON “.

So in real-world log messages, the longest path from PDAG root to termi-
nal node is usually much shorter than |/| nodes. For example, the maximum
path length was 44 in Experiment 7.2.6 (Table 14a), which represents a large

enterprise rule base.

2. motifs usually detect mismatches early inside the matching operation. The
reason is again the structure of log data as well as the specificality of the motif.
Other motifs are so broad that the will never return a mismatch: for example,
the "word “ motif will always succeed because it simply matches data up to
the next space or the end of the message. Either of this conditions will always
hold, so no mismatch happens (but if the messages as whole is mismatched,

backtracking may occur).

3. the number of edges per node is considerably smaller in practical cases. For
example, over 90% of the nodes had at most two edges in Experiment 7.2.6. We
suspect that the reason for this is that even free-form log messages differentiate
each other relatively early in the message and so only few nodes close to the

root have a larger number of edges.

4. full sub-PDAG evaluation will usually not happen in practice. Matching usual-
ly will stop relatively quickly because motifs in the suffix are considerably dif-
ferent. This is probably the result of the same effect that keeps the number of

edges per node low.

Reason 4 is the most interesting in regard to our theoretical worst case result:
if we can assume that the sub-PDAG evaluation terminates early, the cost of back-
tracking is considerably reduced. Let us assume that on average only v levels of the

sub-PDAG are evaluated. Then the equations change as follows:

45

256 + c|l|, ifv=0
(256 + c|l|) - cf(v — 1), otherwise

This leads to the closed formula
cf(h) = (256 + c|l])"

This is in O(c|l|”) for a constant v. Note that this is only the complexity for the
mismatch case. We still need O(|l]?) for the matching case, resulting in an overall
complexity of

O(JU***) = O(JI]* + |U") = O(|U[* + ell]")

for the PDAG parsing algorithm. So under our assumptions, the algorithm is no
longer of exponential complexity.

Now let us now consider the effect of motif size and early mismatch detection.
This primarily affects the matching case. In this scenario, edge label evaluation time
drops from O(|l|) to O(k) for some constant k < |I|. This leads to O(k) for evaluating
each edge label and results in O(|l|") = O(k|l|") for the overall PDAG parsing
algorithm. Note that we may have some cases where k ~ |I|. Then we usually have
a structured motif, which usually matches either completely or mismatches quickly.
Under this assumption, our result still holds. This reasoning is most important if we

consider cases without backtracking. Then, the overall algorithm complexity is
o(li)

under our assumptions.

6.4.3 Conclusion

The worst-case time complexity of the PDAG parsing algorithm is
O(c‘ll)

Due to the structure of real-world log messages, we expect much better worst-case

behavior in practice. Here, for a constant v, we expect
O([1>*)
for cases where backtracking is involved and

o(l)

46

for cases without backtracking.

Out expectation cannot be formally proven, but is backed by the experiments
we carried out (Sect. 7) as well as the structure of log messages.

In any case, it must be noted that the size of the rule base does not have any
influence on the runtime performance. The complexity solely depends on the length
of the log message. This is a big practical advantage over regex-based normalizers,

where the rule base size is typically the limiting factor.

6.5 Algorithm Engineering

With current memory architectures, good cache hit rates are vital to implement
highly performing code. As such, we also propose to apply several methods of algo-

rithm engineering and have used these in liblognorm v2.

Read-only PDAG We have made all PDAG data structures read-only after in-
itial construction. This also is desirable because we do not want to re-do the opti-
mization stage. From an algorithm engineering perspective, it avoids costly writes
to these frequently accessed data structures. Also, it facilitates parallel processing.
Any write state is either kept inside the log message object or on the stack. This
keeps writes at to the currently processed item. Also, it ensures that PDAG values
are less likely to be evicted from cache as these are more often accessed than a single

message object.

Replace Pointers with Indexes In liblognorm v1, motif parsers where stored
as pointers to their implementation inside the nodes. In v2, we have replaced them
with 1 byte wide indexes into a global motif parser call table. This provides two
benefits:

e Pointers require 8 bytes on current hardware. So by using the 1 byte index,
we can save 7 bytes for each pointer entry. Especially nodes with larger edge

label tables benefit from the resulting decreased cache utilization.

e The read-only table with the pointers to motif parsers is very likely to stay in
cache for extended periods of time because it is frequently being accessed and

very compact.

Structure Sizes We have limited data type sizes inside PDAG data structures

where useful. We used this methods:

47

e Flag values (for example ”terminal node“ status) are stored inside bit fields,
usually represented by a single bit. While this requires some masking overhead
for reading the value, we save some bytes inside the data structure, resulting

in more nodes per cache line.

e For numerical data types, we have carefully thought about the interval that
needs to be supported and have used a data type that provides this and can
sufficiently fast accessed. For example, edge labels are represented by a dy-
namically sized table. We keep the current table size inside an 8-bit unsigned
integer (native data type ”unsigned char“). We could have further reduced
the size by just using 6 bits and packing these into an empty slot inside a
bit field definition. From the table growth perspective, 6 bits would have been
sufficient. However, this data item is frequently being accessed in comparisons
and it is more likely that the native "unsigned char* data type provides gain

over the bit field access operation.

e We did not use compiler structure packing, as the resulting unaligned accesses
can be very costly and will probably more than outweigh the gain from better

cache utilization.

inlined parser tables All but terminal nodes have an out-degree of 1 or higher.
Many are anticipated to have an out-degree of exactly 1. This happens when lite-
ral and non-literal motifs are intermingled, in which case empty path compression
cannot be applied. The motif parser tables is dynamically allocated because of its
dynamic size. The node structure contains a pointer to it. Now let us assume the
table were of fixed size. Then, we could ”inline* this table directly into the node,
as part of the node data structure. This would have the advantage of close spatial
proximity so it becomes more probable that the table is in the same cache line. On
the other hand, the node structure would be large, and thus reduce the likelihood of
a cache hit. We can build a hybrid solution: we can use a dynamic table, but inline
a fixed size 1 element table directly into the node data structure. Almost all nodes
have at least one motif parser, so we do not waste space. Many nodes are anticipated
to have only one motif parser, so we keep close spatial proximity in these cases. If,
however, more motifs are used, we fall back to allocating the table dynamically. In
this case, we can store the pointer to the dynamically allocated area in the same
memory that otherwise holds the 1-element table (as is done via a "union“ in the C
programming language). This method provides benefits from both approaches and

does not notably increase code complexity.

48

array embedding of PDAG It is expected that further improvement could be
gained by embedding nodes into an array instead of dynamically allocating memory
for them. The reason is that the whole PDAG would be stored more compact and
nodes would be in closer spatial proximity. This is especially true as each dynami-
cally allocated memory block has a system header, which also requires some space
and even puts nodes sequentially allocated into distributed regions of memory. Fi-
nally, the 8-byte node pointers can be replaced by 4-byte integer indexes, what both
reduces memory requirements and decreases processing time by smaller items that
need to be computed. On the contrary, pointers need to be computed from array

indexes, what may outweigh that effect.

Side-note on external libraries It must be noted that runtime libraries and
other libraries being used on an implementation have strong influence on the per-
formance.

We experienced this in our implementation as well. Even after algorithm enginee-
ring, we noticed that performance was somewhat less than anticipated. We analyzed
this with the ”callgrind “ profiler from the valgrind system [54]. It showed that run-
time performance was largely dominated by functions inside the json-c library [29],
up to the point that performance counters for our own code were very hard to find.
Unfortunately, we needed to use this library to persist normalized data in order to
keep compatible with the liblognorm v1 API. As a solution, we created a new project
for optimizing json-c. This was successful and enabled us to greatly improve library
performance. We needed to make some incompatible changes and so had to release
our optimized version of json-c under the new name of libfastjson [43]. It must be
noted that libfastjson also brought some notable speedup to liblognorm v1.

Another area of potential improvement is the dynamic memory allocation sub-
system. The standard system provided on Linux is outperformed by the jemalloc
project [18]. We experimentally built liblognorm with jemalloc support and noticed
some performance improvement. However, we stayed with the default allocator in
order to base our method evaluation on a system being as standard as possible. For

very high demands, it is suggested to switch to building with jemalloc.

6.6 Parallelization

In order to find a suitable appropriate parallelization method, we need to consider the
use case: we want to process log messages under real-time conditions. If the message

volume is low, we obviously meet this goal without special effort and do not need

49

speedup from parallel processing. So a sufficiently large workload is a necessary
precondition to consider parallelizing. Further, we normalize messages to supply
them to some intelligence tools. Some of these tools may consider message sequence
important. For these, the normalization process should not re-order messages. It
must be noted, though, that log message often occur in a sequence different from
the sequence in which they were emitted by the originator. A simple example is
syslog messages sent over UDP protocol. By UDP design, there is no provisioning
inside the protocol for keeping message sequence. Neither is there any provisioning
inside the syslog protocol. As such, messages often arrive slightly out of sequence.
Thus analytics tools should be able to handle this situation in order to work fully
correct. If we know we normalize message for well-behaved tools, we can relax the
requirement to preserve sequence.

The PDAG is read-only after construction. Also, the parse algorithm (7) only
modifies state attached to the log message currently being processed. As such, we
have no interdependencies other than sequence between messages. This enables us

to select from these parallelization methods:

e fine-grained parallelism can be found inside the PDAG parsing algorithm. An

approach would be to evaluate more than one search path in parallel.

e coarse-grained parallelism can be found easily by running the PDAG parsing
algorithm on multiple messages in parallel. For this, we need to split the log

message set into independent partitions and process these individually.

Looking at the use case, it is clear that using coarse-grained parallelism is prefe-
rable: it has lower overhead and promises near-linear speedup because the partitions
are independent of each other and very little coordination is required.

We call the partitions (message) batches. Each batch is processed sequentially
by one thread. However, multiple threads concurrently process multiple batches. As
the consumer expects to receive a sequential stream of messages, we must serialize
the batches before passing messages to it. This leads to a design with one input
queue, which receives messages to be normalized, a pool of worker threads which do
the actual normalization, and one output queue, which receives the finished batches
and serializes them for consumption by the destination. The work flow is shown in
figure 10.

Preserving sequence, if required, can be done by keeping a monotonically incre-
menting batch ID. It is assigned on batch creation. Then, the batch is processed

and once it is finally completed, given to the output queue. The output queue re-

20

Log Input

o

Input
Queue

norma-
lization
worker
thread

9

Output
Queue

norma-
lization
worker
thread

reordering (optional)

Log Output

Figure 10: Workflow for parallel normalization of log messages.
The basic unit of work is the batch, which consists of multiple messages. The actual
number of messages inside a batch is decided when dequeuing from the input queue
(up to a configured maximum). The reordering step after the output queue is optio-

nal and only needs to be done if the destination does not accepts slight reordering

of messages.

o1

ceives the batch and emits it, and possibly other waiting batches, to the consumer
if suitable.

With a sufficiently large batch size, the overhead for queue locking is negligible.
Sizes around 1024 or above seem reasonable for busy systems. Unfortunately, large
batches can introduce non-tolerable delays in low-traffic situations. To mitigate this
problem, we introduce a mechanism for dynamically selecting batch sizes. This is
based on a similar method as used by our rsyslog [25] project. An upper limit u is
specified for the batch size. If a new batch needs to be extracted from the input
queue, up to u messages are obtained from it. However, if only n < u messages
are currently queued, only these n messages are extracted and batch construction is
completed. The algorithm does not wait for the arrival of the missing u—n messages.
This obviously results in a smaller batch size and can potentially lead to additional
overhead in batch processing. However, this scenario can only happen under low-load
conditions, because otherwise the input queue would have held u or more messages.
When the system receives larger load, the input queue will build up and so under
heavy load steady-state conditions, always batches of u messages will be extracted.
This way, batch processing adjusts itself to current demands and guarantees low
latency under low-load conditions while being able to keep the overhead minimal at
high load.

Algorithm 8 details worker thread processing. Algorithm 9 details consumer side
processing if preserving order is required. We do not provide details for the input
queue enqueue and output queue dequeue algorithms (non-reordering case), as these
are straightforward standard algorithms.

Note that the parallel algorithm can also easily be adapted to large non-shared-
memory, message-passing clusters, for example via the Message Passing Interface
(MPI) [57, Sect. 6]. As a rough sketch, if we have n > 2 processors, rank 0 can run

the master node, which does
e loading the PDAG
e broadcasting it to all other nodes

e reads input data, builds batches and sends each one to a compute node (ranks
[1..(n —1)]).

Note that the read-only nature of the PDAG after load makes it very simple to
broadcast it once during initialization. The compute nodes carry out work described

above for the normalization worker thread. Once finished with a batch, they send

02

Algorithm 8 parallel normalizer worker thread
while worker thread shall not terminate do

wait for data in input queue {signaled by producer}
lock input queue mutex
n = number of messages in queue
if n < u then
dequeue n messages from queue to batch B
else
dequeue u messages from queue to batch B
end if
assign batch sequence ID i+ 1 to B {if required}
unlock queue mutex
{main worker activity begins here}
for all log message | € B do
normalize [
store normalized result in B
end for
{main worker activity done}
lock output queue mutex
enqueue all normalization results from batch
signal output queue not empty to consumer
unlock output queue mutex
end while
Details of mutex and signaling behavior are not described and need to be matched
to the actual system used, for example POSIX threads. Most importantly, an imple-
mentation need to re-query predicates like ”queue data present® to ensure proper

operations. The batch sequence ID 7 is maintained inside the queue data structure.

23

Algorithm 9 reordering algorithm
while system shall not terminate do

wait for data in output queue {signaled by worker}
lock output queue mutex
dequeue batch B from output queue
insert B into B
unlock output queue mutex
while ID of batch on head of B equals 7; + 1 do
remove head batch B from B
=1+ 1
for all log message [€ B do
provide [to consumer
end for
end while

end while

The algorithm keeps the batch ID ¢; of the last batch sent to the output destination.
This needs to be properly initialized on startup (details not shown for clarity). The
utility list B is a list of all batches which cannot be processed because they wait for
a batch to arrive with a lower batch ID. B is ordered on ascending batch 1D, that is
the lowest batch ID is at the top of the list, the highest at the tail.

o4

the result to the node with rank n, which re-orders and outputs them as described

above.

7 Experimental Verification

7.1 Method

We have two classes of experiments:

e timing experiments, which time runtime performance of an implementation.

Absolute results are obviously sensitive to the lab environment.

o structural experiments, which analyze the structure of the parsing process or
the PDAG. These are insensitive of the lab environment, because given the

same input data, those experiments will always lead to the exact same results.

7.1.1 Timing Experiments

To keep timing experiments consistent, all were executed in a controlled environ-
ment. We used the same lab machine for all experiments. We used a single machine
only, because no machine specifics are being used, so the results are comparable to
each other. We used a real machine, not a virtual environment. The machine had

the following specification according to Linux tool ”Ishw“:

CPU Intel Core 2 Quad
Cores per CPU 4

CPU-Sockets 1

Clock Speed 2,40 GHz

L1-Cache 64 KiB

L2-Cache 4 MiB

Mainboard Gigabyte 965P-DS3P

Main Memory 8 GiB

Disk RAID 5; 3 WDC WD5000AAKS-2 (ATA, 500 GiB)

The operating system was Ubuntu 14.04LTS. Whenever possible, we used dis-
tribution provided packages for software components. When we had to build com-
ponents ourselves, we built with default C compiler (gcc) with optimization set to
7-02%. We used the default memory allocator. Both liblognorm v1 and v2 were build
with libfastjson, commit hash f96b6c6.

25

This lab machine was dedicated to the experiment. No other processing in parallel

was permitted. Besides these restrictions, timing can be slightly different due to

e background actions, like the operating system checking for package updates

o different disk access patterns, e.g different distribution of blocks in dynamically
updated files (including the OS page file)

e operating system scheduling policies, e.g. frequency of change of processor core

(which results in higher cache access times after each switch)

In order to limit these factors, output was only generated if inevitable. We did
this because we are interested in the computational performance of the algorithm. If
we write output, we get a strong dependency on disk speed, which blurs experiment
results. Avoiding output was not an option with grok and syslog-ng, which do not
provide an option to suppress it. For consistency, we also generated output with
liblognorm in those cases. Output was always written to /dev/null, which means it
was immediately discarded after being generated. So the time overhead for output
generation and API calls is included in the experiment results, only the actual disk
speed is not reflected.

To further limit the influence of environmental fluctuations, each experiment was
executed 25 times. This was done automatically via a script. There was a pause of
10 seconds between executions which was given to permit the system to settle back
to idle state. The time for each execution was taken and the average computed. We
also manually checked for strong variations in execution times, which would be an
indication of problems with the experiment. We were prepared to investigate such
cases, but did not discover any.

The computed average of the 25 controlled execution times is then used as test

result. Detail results are shown in tables in the Appendix.

7.1.2 Structural Experiments

Structural experiments explore PDAG properties and are not timing-sensitive. They
can be reproduced on any type of machine. Consequently, no specific controlled en-
vironment was used for them. We manually verified that the result was valid by
doing at least one control run and verifying the correctness of the program out-
put. Structural experiment data is generated by special instrumentation code inside
liblognorm. In the following, this structural data is presented. Again, the Appendix

contains detail data.

26

7.1.3 Test Data Sets

We use log data sets from those described in Sect. 4.2. Note that these data sets are
real life data and contain some malformed records. For use in our experiments, we
have removed those malformed records. From those cleaned-up data sets, we have
derived the actual data sets use in the experiments.

The following data sets are used inside the experiments:

PIX2m data set This data set is based on the "PIX data set* described in 4.2.
The original data set contains duplicate time stamps and some malformed records
which possibly stem from networking problems. We have processed this data set as

follows:

e removed duplicate timestamps and other extra header information. The re-
sult is the format usually found in Linux log files. Most importantly, this is
the only format that the syslog-ng tool understands, at least without deep

configuration.

e removed malformed log records. This was necessary only for a small number
of log messages. The result is a data set the parsed cleanly with all tools we

use in our experiments.

e duplicated some records to achieve a data set of exactly 2 million records. As
log normalization itself has no interdependencies between log messages, we

picked random messages for duplication.

The result of this transformation is called the ”"PIX2m data set* and is 289MiB

in size.

PIX20m data set This data was build based on PIX2m by simply duplicating
it 10 times. So it now consists of 20 million records. The larger record count is
necessary for better performance evaluation as the fast tools do not run sufficiently
long with the PIX2m to provide good results. This data set has a size of 2.9GiB.

PIX20m-single First, we identified a rule r that was frequently matching records
inside the PIX2m data set. The rule r matched approximately 288 thousand messa-
ges. Then, we extracted those messages from PIX2m and duplicated them multiple
times to reach a 20 million message data set. This is what we call PIX20m-single.
Note that while the whole data set matches a single rule, the actual messages are

different (except for duplication).

27

ent55m data set This data set is based on the ”enterprise combined data set®
described in 4.2. The original data set contains some malformed records which most
probably stem from networking problems or failure of the recording applications.
We have removed these malformed records and received a slightly smaller 25GiB
data set of 55,057,137 messages. We have not done any other modifications to the

original data set.

7.1.4 Experiment Rule Bases

We used a consistent set of rule bases for each test.

PIX For the PIX family of data sets, we created different rule bases for use with

liblognorm v2 (37 rules)

liblognorm v1 (37 rules)

syslog-ng patterndb (37 rules)

grok (34 rules)

The slight differences in rule numbers stem back to different motifs being used
in the respective description languages. These rule bases match all records inside
the PIX family of data sets and were consistently used for all tests involving them.
It must be noted that the liblognorm rule bases were intentionally constructed in
a way that in made them least specific: log messages often contain a message type
identifier early in the message (the so-called syslog "TAG*). This is a literal string,
which usually identifies a class of formats. The syslog-ng tool, for example, bases
its normalization on that TAG and selects the rules based on TAG. This can result
in fewer conflicting rules and as such reduce backtracking. For liblognorm, we have
used the generic "word“ motif instead of specific TAG values, so this in theory
makes parsing slower, what was our intent to fully validate the performance of the
algorithm under hard conditions. Note that some experiments made modifications

to the rulebase. If so, details are contained in the experiment description.

ent Similarly, we used a rule base for the ent data set. Here, only rule bases for
liblognorm v1 and v2 were created. These rule bases were contributed from the same
user who also contributed the combined enterprise data set. Both rule bases consist

of 1,124 rules which are representative for large enterprise normalization needs.

o8

7.2 Experiments
7.2.1 Scalability of Regular Expression based Normalizers

Description We used the PIX20m-single data set where all messages match rule

r. We ran experiments with different rule bases:

e 7 is the only rule inside the rule base (1/1)
e 7 is the first rule in a rule base of 34 rules (1/34)

e 7 is the last rule in a rule base of 34 rules (34/34)

Note: in the (z/y) description, x denotes the position of r inside the rule base

and y denotes the size of the rulebase.

Results As can be seen from table 1 on page 71, the rule base structure has
strong influence on performance. At (1/34), more than 18k messages per second
(mps) could be processed, but at (34/34) only less than 1k mps could be processed.
This difference between is exactly as expected and shows the typical behavior of
regex-based normalizers.

The (1/1) 103k mps vs. (1/34) 18k mps result is a bit surprising: in theory, a
regex-based normalizer iterates over all regexes and terminates as soon as the first
match is found. So if all messages match the first regex, it should not make any
notable difference in performance if more regexes follow the first matching rule.
Note that grok has a setting that tells whether or not processing should continue
after the first match (break-tf-match:true), which we enabled. We do not have
enough insight into the way grok operates to provide a good explanation of this
situation. So this cannot be the cause for the performance difference. We assume
that some reordering of rules happens.

This kind of makes the experiment results in regard to the position of rule ques-
tionable. However, the core intent of this experiment was to show that regex-based
normalizers scale very badly in regard to growing rule base sizes and the results

clearly shows that this is the case.

7.2.2 Scalability of liblognorm

Description This experiment is similar to Experiment 7.2.1. We used the PIX20m-
single data set where all messages match rule r. We ran experiments with different

rule bases:

29

e 7 is the only rule inside the rule base (1/1)
e 7 is the first rule in a rule base of 37 rules (1/37)

e 7 is the last rule in a rule base of 37 rules (37/37)

Note: in the (z/y) description, x denotes the position of r inside the rule base
and y denotes the size of the rulebase. In comparison to Experiment 7.2.1 note that

liblognorm needs a slightly larger rule base to process the data set.

Results As can be seen from Table 2 on page 72, the performance did not notably
change with the number of rules. We achieved around 381k mps in all cases. For an
equal number of rules, position of the matching rule inside the rule set is irrelevant.
The small difference between (1/1) 386k mps and (1/37) 381k mps is explained by
the PDAG size. With more rules, more literal motifs need to be evaluated, what

very slightly decreases performance.

7.2.3 Comparison of different Normalizers

Description We use the PIX20m data set and have created rule bases for liblo-
gnorm v2 and vl, syslog-ng, and grok. All of these rule bases match all messages

from the data set.

Results As can be seen from Table 3 on page 73, the performance of the grok
regex-based normalizer (2k mps) is much worse than that of the search tree based
normalizers (80/150/192k mps). Even for such a small rule base solely aimed at nor-
malizing firewall log messages the performance is insufficient for realtime processing
of any but very low message rates.

The search tree based normalizers all achieve message rates that make them
suitable for realtime processing, with syslog-ng being able to handle only a more
moderate workload. Liblognorm v2 performs notably better than liblognorm v1,
which shows that the new algorithm not only creates a more compact parsing data

structure but also performs faster.

7.2.4 Performance in Relation to Rule Base Structure

Description We use the PIX20m data set and the rule base created for it. We
amend this rule base by the one created for the ent55m data set. The, we do one
sub-experiment where the rule base consists of the PIX rules followed by the ent55m

rules and another one where the entb5m rules are followed by the PIX rules. Note

60

that this is an extreme scenario: the PIX rule base has 37 rules and the entb5m
ruleset has 1124 rules none of which match the input data. All matching is done by
the PIX rules. The intent of this experiment is to show how far rule base structure

affects performance.

Results As can be seen from Table 4 on page 74, the performance is somewhat
affected by the load order of the rule base. If the matching rules are loaded last, we
see roughly a 20% increase in runtime. The reason is that load order influences edge
order and as such the number of motif evaluations during the parsing algorithm. In
an extreme case like here, where only 3% of the rules match and they are all loaded
last, edge order becomes somewhat important. In essence, we have ”polluted“ PDAG
nodes with dead edges that are never needed. In practice, matching is more evenly
distributed among nodes, so the performance loss is expected to be even milder.

It must be noted that it would be a wrong conclusion to split rule bases to avoid
the small performance loss. If splitting requires a selection operation on which rule
base to use, this selection operation may be more costly than running a combined
rule base. Also, if such a split is possible, it could possibly be used to change the
rule base in a way that the PDAG itself can rely on that split.

7.2.5 Scalability in Relationship to Message Size

Description Here, we evaluate how message size influences performance. We have
fabricated both the data sets as well as the rule base in a way that shows the
relationship in a simple but closely controlled case.

Real-world log data is hard to analyze in regard to message sizes. The reason is
that a specific message type usually fluctuates only relatively little in size. So large
size fluctuations usually mean that we deal with different message types, which in
turn have different (and usually more) motifs. As such, getting a solid analysis out
of real-world log data on this topic is very difficult. This is the prime reason why we
used these fabricated data in this experiment.

We use a single rule inside the rule base which extracts four ”word “ motifs and
has a single space character between each of them. The data sets exactly match this
rule and have four equal-length part. The messages are all the same and are 20, 200,
800, and 2000 bytes in size.

Results As can be seen from Table 5 on page 75, the performance of PDAG

parsing depends on the message size. This is to be expected because motif parsers

61

600,000 250,000,000
500,000 \

- 200,000,000

- 150,000,000
I Bytes per Second

300,000
- 100,000,000 =—Msgs persecond
200,000
- 50,000,000
100,000 I (s
o+ : : -0
20 200 800 2000

Figure 11: Performance in Relation to Message Size.

need to process more data with increasing size and also more data needs to be put
into normalized form.

Figure 11 on page 62 plots the relationship. At 20 byte messages, we can process
approximately 518K messages per second. If the message is 100 times larger, we can
still process roughly one fifth of that rate (106K messages per second). Consequently,
the amount of data processed per second (shown in red) increases with increasing
message size. This is also expected, because there is some fixed processing time
required for the parsing algorithm itself.

Again, we caution against using this result on real-world data without proper

consideration of the different nature of real-world log message.

7.2.6 Evaluation of Backtracking

This is a structural experiment which aims at generating insight into how the PDAG
parse algorithm performs in practice. Most importantly, we want to have information
about the backtracking behavior, which is important for upper bound performance
behavior.

In order to support this, the liblognorm v2 implementation has been amended

with code that permits to gather

e static structural data, which gives insight into properties of the PDAG itself,

like the number of nodes and motifs used.

e dynamic data, which gives insight into the parsing algorithm itself. Among

62

others, this records the exact PDAG walk that was being used during parsing

of a message, and how often backtracking was necessary during the walk.

The code outputs both summary records as well as statistics for individual rules.
At a very verbose level, dynamic data can also be amended to each message being
processed. This instrumentation is turned on with command line options. We have
used the -S option to the lognormalizer utility, which outputs structural data
as well as dynamic summary data and per-rule statistics. This output is still very
verbose, so we have only included the most relevant information in tables shown
inside the thesis. The full, verbose, information is available upon request or may be

regenerated by redoing the experiment again based on our input data.

Relatively small PDAG

Description This experiment uses the PIX2m data set and accompanying rule

base. It shows behavior for a smaller PDAG.

Results The result can be seen in Table 13a on page 76. The most interesting
finding is that there was no backtracking at all during this experiment. This is
especially interesting as the rule base was deliberately constructed less specific than
it could be (see 7.1.4).

Further, Table 12b on page 70 shows that almost all nodes have an outdegree of
less than 2, and 179 of 230 have an outdegree of exactly 1. This proves that inlining
of parser tables into the node as part of algorithm engineering is a useful technique

(see 6.5 on page 48).

Large PDAG

Description This experiment uses the entb5m data set and accompanying rule
base. It shows behavior for a large PDAG.

Results In this experiment, we had some backtracking, see Table 15a. However,
still the majority of messages (over 97%) were parsed without any backtracking
involved. For the remaining ones, there were on average less than 6 backtracking
operations required. Judging from the path length (Tables 15b, 15¢) backtracking
never caused excessive computational cost: the average path length was below 18
nodes and more than 45 nodes needed to be walked only in very few cases. The

worst-case path length was just 101 nodes.

63

Table 14b on page 77 also shows that almost all nodes have an outdegree of less
than 2, and 70% (4121 of 5860) have an outdegree of exactly 1. This again proves

our algorithm engineering approach (see 6.5 on page 48).

7.2.7 Execution Profiler Analysis of liblognorm v2

Description This experiment provides insight into the flow of execution during
the normalization process. Most importantly, we wanted to know which parts of the
code use most of the execution time. To do so, we use the valgrind profiling tool
"callgrind “ and execute the liblognorm v2 normalizer under its control. We use the
entbhm data set, but only the first 200,000 (200k) records from it. This is because
the profiler slows operations dramatically down and may also get integer overflows
on extended runs. We manually verified that the subset contains sufficient diversity,
even those this is not critical to the correctness of this test. We used the kcachegrind

call graph viewer tool [56] to interpret callgrind results.

Results Figure 16 on page 79 shows an image of the kcachegrind viewer (it has no
export capability). The tool is configured to sort functions based on the percentage
that the execution spent in themselves (column ”Self*). This is purely time spent in
the function, including any inlining done by the optimizer but excluding any func-
tions called (the latter is included in the ”"Incl.“ column). The ”Function® column
has the name of the function in question and ”Location* (truncated) shows in which
software component the function is located.

We have analyzed only functions which contribute at least 1% to the overall
execution time. Table 17a on page 80 tell us that those functions summed up to
over 81% of the total execution time. It also tells us that liblognorm itself only used
17% of the time, while libfastjson needed 34% and the memory allocator subsystem
needed 30%. Accompanying Diagram 17b shows that the execution time of our
algorithm is dominated by those third-party components.

One must further note that this result is obtained after we have replaced the
original json-c library by libfastjson, because json-c required considerably more pro-
cessing time.

In conclusion, it is very important to keep aspects other than the core algorithm
and its optimization in focus when further improvements are considered. It obviously
is more promising to help speed up those third party components, which requires
64% of execution time than to speed up the 17% liblognorm requires. Of course,
liblognorm uses this components in order to perform specific tasks, so they cannot

simply be removed. However, optimizations can be possible by, for example:

64

e improve the performance of those third-party components. We have actually
done this by developing libfastjson based on json-c. Also, replacing the system

default memory allocator by jemalloc usually results in increased performance.

e algorithm engineering can be used to improve some aspects of the implemen-
tation. For example, we could reduce the number of memory allocations by
using different allocation methods. In our concrete example, however, there
is limited capability to do so, as in-depth analysis shows that most memory
allocations stem back to libfastjson. As a side-note, this technique has very
successfully been used in the optimization of libfastjson and so is known to

work well.

e in the practical implementation, APIs are important. We could remodel liblo-
gnorm’s APIs so that, for example, it does not provide JSON back to callers.
This could probably speed up liblognorm, but at the cost of compatibility
breakage.

8 Results

Our goal was to develop an algorithm that is sufficiently fast for real time normali-
zation under practical conditions.

As we have seen in Sect. 6.4, we unfortunately cannot proof that our algorithm
performs better than regex-based normalizers. However, we have argued why we
heuristically expect much better performance and experimental results backs that
expectation.

A key property of our algorithm is that its performance is independent from
the rule base size. We have seen in Experiment 7.2.2, for a smaller, yet practical,
rule base size of 37 rules that liblognorm performance does not notably change by
rulebase growth. Neither is the position of a matching rule inside the rule base of
importance. We have further verified this with Experiment 7.2.4 which uses a much
larger rulebase of 1,161 rules. Here, we see that the position of rules actually has
some effect. Out of the total rules, only 37 matched. Processing was by a factor
of 1.2 slower if we moved those 37 matching rules to the bottom of the rulebase
versus the top. It is also interesting to compare this to Experiment 7.2.3 (liblognorm
part), in which the same data set and the same matching 37 rules were used. The
difference between both experiments is only that the non-matching 1,124 rules were
not not included in 7.2.3. The first thing we notice is that we get almost exactly

the same performance compared for both rule bases when the 37 matching rules

65

are on top of the rule base (the very small difference can easily be explained by
influences on the lab machine, like scheduling order). This effect proves the point
that the PDAG is still somewhat sensitive to load order, as we have explained in the
Experiment descriptions for each experiment individually. Nevertheless, the effect
on rule position and rule base size is marginal: while the rule base grew by a factor
of 31.4 in Experiment 7.2.4, the execution time just increased by a factor of 1.2. So
for practical purposes we can say that the algorithm performs almost independent
from rule base size and rule position.

Most importantly, the small effect rule base structure and growth has on perfor-
mance is in sharp contrast to regex-based normalizers, as we have seen in Experiment
7.2.1. Consequently, our algorithm performs much better. Take for example Experi-
ment 7.2.3 which bases on real-world firewall log messages. Here, regex-based grok
was only able to process 2k mps, whereas liblognorm v2 could process 192k mps. One
might argue that we can use the same parallelization methods we have proposed for
our algorithm in Sect. 6.6 in order to improve the overall speed of a grok-based sys-
tem. This seems possible. However, we would need roughly 100 times the hardware
resources liblognorm needs (assuming linear parallel speedup). So from a practical
point of view this is not a desirable solution.

Also from Experiment 7.2.3 we learn that the syslog-ng normalizer, also influ-
enced by the search tree paradigm, performs at 80k mps, much closer to the per-
formance of liblognorm v2. The liblognorm v1 prototype performed at 150k mps
which is good for many use cases but still slower than the 192k mps the new PDAG
structure in liblognorm v2 can handle.

Absolute performance numbers need to be considered with care. For example, we
have seen that liblognorm v2 can handle 380k mps in Experiment 7.2.2 but only 192k
mps in Experiment 7.2.3. This difference results from differences in input data, most
notably the average log message size as well as on the motif structure. Experiment
7.2.2 used a single, smaller, message from the full data set used in Experiment 7.2.3.
To proof that effect, we did Experiment 7.2.5 in which we can clearly see that effect
message size has on performance, even though a sub-linear one. We also need to
be a bit careful if we apply the findings from Experiment 7.2.5 to real-world log

messages, because

e real data usually has more motifs in larger messages. So processing time in-
creases not only for effects explained in Experiment 7.2.5 but there are also

increases due to processing a larger motif parser (edge) set.
e the likelihood of backtracking increases. For example, in Experiment 7.2.6 we

66

see that the PIX20m data set with its 37 rule rule base requires no back-
tracking whereas the ent55m data set with its 1,124 rule rule base requires 3%

of backtracking.

In any case, the degradation of performance due to these circumstances is far
from the theoretical worst case exponential time complexity. For practical purposes,
the algorithm can be considered to scale linearly depending on the message size and
be almost constant in regard to rule base size and structure. This corresponds to
what we expect by theoretical argument (Sect. 6.4.3). Also, based on Experiment
7.2.7 we suspect that part of the performance degradation is related to third party
components, which could be optimized to gain even better results.

This good performance is offered with sequential processing. To further increase
performance, we also have shown a simple and efficient algorithm to partition large
workloads for parallel processing (Sect. 6.6). If desired, it can keep message sequence
intact and does so with very limited additional overhead. The algorithm works wi-
thout introducing additional latency and is self-optimizing based on workload, which
is important for real-world cases where workload varies greatly over time periods.
As we use very coarse-grained parallelism, it is expected that this method can be
used to run many instances of the parsing algorithm in parallel. The practical limit
depends on the reordering need as well as available hardware. On a current typical
enterprise multi-processor, multi-core machine, it is expected that all cores (16, for
example) can be used with close to linear speedup. The parallel algorithm can also
be used with large non-shared-memory, message-passing clusters.

Our algorithm implementation in liblognorm v2 does not include the parallel

processing algorithm. There are two reasons for this:

e liblognorm is a library and intended to be used with any threading model a
potential caller might already employ. Implementing multi-threading at the
library level without affecting caller’s choices in regard to threading models

and abstraction libraries is complex and worth a project in itself.

e a prime user of liblognorm is rsyslog, which already employs multi-threading
for workload processing. Rsyslog provides the necessary support to automati-
cally execute multiple normalizer invocations in parallel, what provides almost
the same benefits like native threading support. This can easily be used be-

cause the PDAG is read-only after construction.

As we did not implement multi threading, we could not experimentally proof our

expectations in regard to the achievable speedup by the proposed parallelization

67

method. However, we did some experiments with liblognorm inside rsyslog, which

makes us believe that the speedup actually is near linear.

9 Conclusion and Outlook

As discussed in Sect. 8 our algorithm has shown to be able to provide sufficient
speed for real-time performance: a single instance can process message rates of 100k
messages per second or more on practical workloads and on a very modest machine.
The algorithm scales well and is only mildly dependent on the size of the rule base.
The message size has a somewhat larger impact but this was expected and as we
have argued in Sect. 8 is a property that it shares with the other methods we have
examined. Furthermore, the algorithm can easily be parallelized and is expected
to offer near-linear speedup with growing number of processors. So we expect it
to be able to handle very large workloads on real deployments. Most importantly,
experimental results correspond to theoretical expectations.

Besides our primary goal of real time capability, the new algorithm and its imple-
mentation provides additional benefits. Most importantly, the PDAG architecture
supports custom data types via disconnected components. This is an important fea-
ture from a practice point of view. The ability for users to easily extend the available
motifs is, for example, a key advantage of grok and a key reason why grok is being
used even though it is extremely slow in comparison. From a maintenance perspecti-
ve, the new implementation is actually simpler than its predecessor, the liblognorm
vl prototype, because its processing is more generic.

Results (especially Experiment 7.2.7) suggest that the implementation can fur-
ther be speeded up. However, when doing so one should put the the focus on sup-
porting libraries and algorithm engineering rather than on improving the theoretical
approach. The reason is that in the current implementation the majority of time is
spent outside of the core algorithm (Fig. 17b). This argument is backed by the
fact that we speeded up and changed the JSON support library, because the one
originally used was too slow to actually measure core liblognorm performance. See
the result description of Experiment 7.2.7 for further details of how performance
could potentially be improved without changing the algorithm itself. Work on core
algorithm improvements should be done only when it can be proven that the core
algorithm becomes a bottleneck.

For potential further work we see these promising areas:

e implementation optimization, as just suggested.

68

e the proposed parallel processing mode should be considered if the algorithm
shall be used by applications which do not natively support workload parti-

tioning.

e as a loosely related item, we think that some of our findings on log file clas-
sification and formats can be useful for clustering log records. This has useful

applications in the try to semi-automatically generate rule bases.

e the current state can be very useful for creation of anonymization tools. A
core function for an anonymization tool is to detect motifs and decide for
which motifs actual values need to be anonymized (e.g. IP adresses need to,
byte counts probably not). Our current implementation provides the ability to

amend output data so that an anonymizer can easily obtain motif information.

Finally, we have also created a repository of log messages usable for research
purposes and provided a classification of message types. We hope that both will be
useful for research in the field and plan to maintain and extend the repository in

the future.

69

A Detail Data from Experimental Verification

The following tables contain the detail results from experimental verification. They

are discussed in section 7 on page 55.

Figure 12: PDAG structural data (PIX2m Data Set)

(a) Objects, overall

nodes 230
terminal nodes 37

edges (motifs) 229

longest path 23
(b) nodes by outdeg (c) motif counts
outdegree mnode motif occurs
0 35 literal 119
1 179 date-rfc3164 1
2 12 number 20
3 1 ipv4 29
4 1 word 22
5) 1 rest
14 1 quoted-string 6
duration
cisco-interface-spec 24
string-to
char-to 3

70

Table 1: execution times (in seconds) for grok in relation to rule base structure

rule structure: 1/1 1/34 34/34

18.95 107.74 2865.92
18.99 107.80 2867.90
19.00 107.86 2868.54
19.01 107.90 2868.55
19.09 108.02 2869.58
19.10 108.09 2870.69
19.11 108.12 2870.76
19.13 108.12 2871.11
19.17 108.19 2871.12
19.23 108.21 2871.13
19.25 108.22 2871.24
19.34 108.27 2874.40
19.37 108.28 2874.45
19.41 108.33 2874.74
19.43 108.34 2876.45
19.44 108.35 2876.70
19.44 108.38 2878.35
19.48 108.45 2879.09
19.49 108.47 2880.87
19.51 108.51 2880.98
19.52 109.15 2881.10
19.52 110.14 2884.60
19.61 111.53 2891.10
19.69 111.62 2906.92
19.84 111.72 2924.13

average 19.32 108.71 2878.02
msgs per sec 103,494 18,397 695

71

Table 2: execution times (in seconds) for liblognorm v2 in relation to rule base

structure

1/1 1/37 37/37

20.95 51.81 51.96
51.09 51.85 52.00
51.15 51.86 52.00
01.27 51.87 52.00
51.28 5191 52.00
51.30 51.91 52.05
51.30 51.99 52.08
01.35 52.02 52.14
51.60 52.02 52.21
51.62 52.05 52.29
01.72 52.08 52.31
01.73 5211 52.37
01.74 52.16 52.38
51.76 5221 5241
01.78 5221 52.42
01.83 5246 52.49
51.83 5248 52.50
51.86 52.56 52.54
51.88 52.60 52.55
51.98 52.70 52.57
52.08 5294 52.60
5242 53.04 52.71
52.55 53.15 53.19
52.58 53.71 53.19
02.63 53.99 53.26

average 51.73 52.39 52.41
msgs per sec 386614 381770 381615

72

Table 3: Comparison of different Normalizers

liblognorm v2 liblognorm v1 syslog-ng grok
103.26 133.49 245.90 882.80

103.33 133.65 247.25 893.37

103.40 133.78 247.42 893.40

103.49 133.79 247.53 893.51

103.57 133.84 247.89 893.85

103.63 133.84 247.90 893.95

103.71 133.84 248.22 894.36

103.72 133.88 248.25 894.43

103.76 133.93 248.28 894.67

103.83 133.96 248.33 894.71

103.85 133.99 248.33 894.75

103.85 134.07 248.38 894.75

103.87 134.08 248.38 894.93

103.90 134.11 248.53 894.97

103.90 134.12 248.55 895.00

104.03 134.13 248.88 895.01

104.06 134.14 248.99 895.04

104.06 134.14 248.99 895.08

104.13 134.15 249.12 895.13

104.14 134.15 249.16 895.20

104.17 134.18 249.28 895.28

104.17 134.21 249.33 895.44

104.18 134.22 249.33 895.46

104.24 134.22 249.37 895.65

104.24 134.22 249.41 895.72

average 103.88 134.03 248.55 894.74
msgs per sec 192,521 149,224 80,468 2,235

All execution times are shown in seconds.

73

Table 4: Execution times (in seconds) in Relation to Rule Base Structure

rule order PIX+4entbbm entbom+PIX

102.48 123.78
102.55 123.89
102.71 123.96
102.86 124.03
102.93 124.06
103.02 124.13
103.16 124.22
103.18 124.43
103.19 124.43
103.30 124.50
103.30 124.52
103.31 124.63
103.33 124.80
103.34 124.85
103.43 124.86
103.46 124.92
103.54 124.93
103.55 124.96
103.57 125.22
103.77 125.26
103.85 125.30
104.02 125.31
104.15 125.49
105.38 126.98
113.72 127.89
average 103.80 124.85
msgs per sec 192,671 160,187

74

Table 5: Execution times (in seconds) in Relation to Message Size

bytes/msg: 20 200 800 2000
3.76 5.81 9.73 18.26

3.76 5.83 9.83 18.36

3.77 5.83 9.85 18.50

3.78 5.84 9.88 18.53

3.80 5.86 9.91 18.56

3.80 5.86 9.91 18.60

3.81 5.87 9.96 18.62

3.83 5.88 9.97 18.63

3.84 5.88 9.98 18.65

3.84 5.88 9.98 18.66

3.85 5.89 9.99 18.67

3.85 5.90 10.00 18.67

3.85 5.90 10.01 18.67

3.86 5.91 10.01 18.69

3.87 5.92 10.04 18.71

3.88 5.93 10.05 18.71

3.88 5.93 10.05 18.73

3.88 5.93 10.10 18.86

3.89 5.93 10.11 18.92

3.89 5.95 10.13 18.93

3.90 5.95 10.16 19.01

3.92 5.96 10.16 19.10

3.92 5.97 10.20 19.20

3.94 5.98 10.25 19.21

3.98 6.03 10.59 19.22

average 3.8 5.90 10.03 18.75
msgs per sec 518,941 338,707 199,322 106,685

bytes per sec 10,378,820 67,741,400

159,457,600 213,370,000

75

Figure 13: PDAG dynamic data (PIX2m Data Set)

(a) Backtracking Count

(b) Path Lengths

Backtracking count | messages length messages
0 2000000 avg 16.114158
avg 0 max 23
max 0 10 11
msgs total 2000000 11 9806
msgs with backtr. 0 12 3934
% backtracking 0 13 141149
14 551509
15 648384
16 62
17 333290
18 5926
20 594
22 16865
23 288470

76

Figure 14: PDAG structural data (ent55m Data Set)

(a) Objects, overall

nodes 5860
terminal nodes 1108
edges (motifs) 5859

longest path 44
(b) nodes by outdeg (¢) motif counts
outdegree mnode motif occurs
0 1068 literal 3461
1 4121 repeat 39
2 512 date-rfc3164 5
3 81 number 284
4 33 float 6
5) 21 hexnumber
6 7 kernel-timestamp 1
7 6 whitespace 86
8 1 ipvd 322
9 3 ipvb 1
11 1 word 479
13 2 rest 163
14 1 date-iso 1
18 1 time-24hr 1
21 1 duration 2
25 1 cisco-interface-spec 91
name-value-list 8
json
cee-syslog 1
mac48 95
string-to 12
char-to 825
char-sep 3

7

Figure 15: PDAG dynamic data (ent55m Data Set)

(a) Backtracking Count

(b) Path Lengths

(c) Path Lengths, entd

Backtracking count messages length messages length messages
0 53411698 avg 17.711578 30 13428
1 458055 max 101 31 59847
2 6464 7 1241559 32 8257
3 60404 716 33 29
4 262517 9 19964706 34 2291
5 634679 10 56708 35 17491
6 16289 11 100139 36 22792
9 112327 12 313725 37 9392
12 10204 13 18313 38 3964
43 84500 14 175689 39 180
avg 0.176912 15 135809 40 11161
max 43 16 161927 41 17060
msgs total 55057137 17 586429 42 149
msgs with backtr. 1645439 18 134392 44 628587
% backtracking 299 19 6417985 45 2985
avg backtr. if needed 591 20 82321 46 2088
21 6904664 52 84514
22 2108 53 14
23 7167369 54 8052
24 7031 56 1
25 1642200 72 34
26 718 85 12510
27 8025324 91 14817
28 975213 95 21720
29 728

78

Figure 16: Normalizer Execution Profile (kcachegrind screenshot)

Incl. self Called Function Location

[| 44121 10.52 4340437 o In_normalizeRec'2 liblognorm.so.4.0.0: pd

[11.26 1 7.63 6045462 M json_escape_str libfastjson.s0.3.0.0: jso

I 8031 7.60 6202570 M _int_free libc-2.21.s0: malloc.c

I 815 T7.28 6199921 W _int_malloc libc-2.21.50: malloc.c

I 885 5.00 21083 M json_tokener_parse_ex libfastjson.s0.3.0.0: jso

I 926 425 3719551 M calloc libc-2.21.50: malloc.c
416 4.16 6383355 M In_v2_parseLiteral liblognorm.so.4.0.0: pa
409 409 13096657 B __memcpy_sse2_unalig... libc-2.21.50: memcpy-s:
3.97 397 4453688 W |h_perllike_str_hash libfastjson.so0.3.0.0: link
3.71 3.71 15326 357 o printbuf_memappend_c... libfastjson.s0.3.0.0: prii
6.22 3.05 10084 321 M printbuf_memappend_n... libfastjson.s0.3.0.0: prii
318 296 3363320 W |lh_table_insert_ w_hash libfastjson.s0.3.0.0: link

[10.66 2.64 6994843 H free libc-2.21.50: malloc.c

B 8720 1.69 1 M normalize lognormalizer: lognorn

I 12.58 1.54 352548 M In_v2_parseCiscolnterfa... liblognorm.s0.4.0.0: pa
6.10 1.53 2476309 m malloc libc-2.21.s0: malloc.c

I 837 147 2555977 M json_object_new string... libfastjson.s0.3.0.0:jso
143 143 3470700 ® _ GlI_memset libc-2.21.50: memset.S
6.03 1.35 2789673 M json_object_object_add... libfastjson.s0.3.0.0: jso
223 131 1601108 M |h_table_lookup_entry ... libfastjson.s0.3.0.0: link

[21.62 1.31 372 323 MW json_object_object_to_j... libfastjson.s0.3.0.0: jso
1.28 128 364919 M malloc_consolidate libc-2.21.50: malloc.c

[11.51 1.19 365404 M json_object_object to j... libfastjson.s0.3.0.0:jso
2.28 1.05 662526 W |lh_table_new libFastjson.s0.3.0.0: link

I 854 0.89 2812631 M json_object string_to js... libfastjson.s0.3.0.0: jso
1.74 0.87 864972 M In_v2_parselPv4 liblognorm.so.4.0.0: pa
086 086 1258370 M _ GI_memcpy libc-2.21.50: memcpy.5
086 0.86 2428998 M chkiPv4AddrByte.isra.0 liblognorm.so.4.0.0: pa
0.83 083 2274010 m _ strcmp_sse2_unaligned libc-2.21.50: strcmp-sse
1.42 072 739790 o In_v2_parseNumber liblognorm.so.4.0.0: pa
066 0.66 1513222 W strlen libc-2.21.s0: strlen.s

[] 46.66 0.66 200000 M In_normalizeRec liblognorm.s0.4.0.0: pd

1 1N AK NAS INT2 772 W icnn nhiart nuk'? lihFackicnn =n 2 00" icn

callgrind.out.98791 [1] - Total Instruction Fetch Cost: 6 617 191 513

79

Figure 17: Profile analyzer result of execution time distribution between liblognorm

and runtime library

(a) Frequently Executed Functions (> 1%) (b) Time Distribution

Function Exec Time (%)

In_normalizeRec 10.52
In_v2_parseLiteral 4.16
normalize 1.00
In_v2_parseCiscolnterfa.. 1.54
liblognorm 17.22

json_escape_str 7.63
json_tokener_parse_ex 5.00 ™ liblognorm
Ih_perllike_str_hash 3.97 :::‘:’:v"at

printbuf_memappend_c.. 3.71 # not analyzed (< 1%)
printbuf_memappend_n.. 3.05
lh_table_insert_w_hash 2.96
json_object_new_string.. 1.47
json_object_object_add 1.35
lh_table lookup_entry 1.31
json_object_object_to_j.. 1.31
json_object_object_to_j.. 1.19
lh_tablenew 1.05

libfastjson 34.00

_int_free 7.60
_int_malloc 7.28

calloc 4.25
_memcpy-sse2_unalig.. 4.09
free 2.64

malloc 1.53

__Gl_.memset 1.43
malloc_consolidate 1.28

memory allocator 30.10

total analyzed 81.32

80

B Supported Motifs and their Time Complexity

Table 6 on page 83 lists motifs available in liblognorm v2 together with their com-
putational complexity. The complexity is shown in relation to a log message [and

determined as follows:

e simple motif parsers read at most as many characters from [as there can be

inside the motif. No looping is done. As such, all simple parsers are in O([{|).

e very specific simple motif parsers, like the IP address or date parsers only read

a fixed maximum amount of characters from [. So they are O(1).

e The cisco-interface-spec motif parser is a combination of multiple simple, very
specific parsers. Each of these parsers is O(1), but cisco-interface-spec needs

to do some limited look-ahead, so it is classified as O(]l|).
o structured motif parsers also read [only once, so they are O(|l|).

e The CEF structured parser is an exception: at worst case, it needs to read
the input twice, so it is O(2|l]|), which also is in O(]l]). The reason for the
need to read twice is that CEF is defined in a very complex way: there is no
clear indication of the end of a parameter value. To detect its end, the next
parameter name needs to be read, which can theoretically result in most parts

of the message being read twice.

e The alternative "motif* is actually a structural element implemented as a mo-
tif. It permits to branch between different sub-PDAGs. As such, it is subject to
backtracking and so its computational complexity is O(PDAG) what denotes
the complexity parsing the PDAG as whole has.

e The repeat "motif“ is also a structural element implemented as motif. It per-
mits to loop over the message and extract repeated elements. Those some-
times occur in log messages, for example to show multiple users doing the
same operation or showing connection flags associated with a traffic flow in
firewall traffic. With repeat, one can specify motifs that need to be repeatedly
matched. As such, the complexity of repeat is that of those parsers. For many
practical cases, this means "repeat “ is O(|l|). However, the ”alternative“ motif

may be used, and so in general "repeat“ is O(PDAG).

o As user-defined motifs are disconnected PDAG components, and as such are
PDAGs themselves, they also have O(PDAG) complexity.

81

The O(PDAG) complexity for the PDAG as whole is discussed in Sect. 6.4 on
page 42.

Note that some motif parsers mainly exist for compatibility reasons with liblo-
gnorm v1. This is a practical requirement to provide compatibility to existing rule
bases. In v2, many of them can be replaced with base-type parsers constrained in

their parameter range or by using user-defined motif parsers.

82

Table 6: Motif Parsers in liblognorm v2

motif type complexity
date-iso simple O(1)
date-rfc3164 simple O(1)
date-rfch424 simple O(1)

ipv4 simple O(1)

ipv6 simple O(1)
mac48 simple O(1)
time-12hr simple O(1)
time-24hr simple O(1)
kernel-timestamp | simple O(1)
alpha simple O(|1])
char-sep simple O(]1])
char-to simple O(]1])
duration simple O(]1])
float simple O(|1])
hexnumber simple O(J1])
literal simple O(]1])
number simple O(]1])
op-quoted-string simple O(|1])
quoted-string simple O(]1])

rest simple O(]1])
string simple O(|)
string-to simple O(|1])
whitespace simple O(J1])
word simple O(]1])
cisco-interface-spec | simple (combined) | O(]l])
json structured O(|1])
v2-iptables structured O(]1])
checkpoint-lea structured O(]1])
cee-syslog structured O(]1])
name-value-list structured O(|1])

cef structured O(|l]) = O2|1))
alternative branching construct | O(PDAG)
repeat loop construct O(PDAG)
user-defined motif | sub-PDAG O(PDAG)

83

Literatur

1]

[10]

[11]

NETRESEC AB. Publicly available pcap files. http://www.netresec.com/
?page=PcapFiles. Online, last access November, 23rd 2015.

A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers principles,
techniques, and tools (second edition). Addison-Wesley, Reading, MA, 2007.

Alfred V. Aho. Algorithms for finding patterns in strings. Algorithms and
Complexity, 1:255, 2014.

The Internet Archive. Internet archive wayback machine. https://archive.
org/web/. Online, last access June, 29th 2015.

T. Bird and M Ranum. Loganalysis.org. Online via the Internet Archive, last

access June, 29th 2015; original site no longer available.

T. Bray. The JavaScript Object Notation (JSON) Data Interchange Format.
RFC 7159 (Proposed Standard), March 2014.

Elasticsearch BV. grok. https://www.elastic.co/guide/en/logstash/
current/plugins-filters-grok.html. Online, last access June, 1st 2015.

Elasticsearch BV. Logstash. https://www.elastic.co/products/logstash.
Online, last access November, 20st 2015.

V.G. Cerf. ASCII format for network interchange. RFC 20 (INTERNET STAN-
DARD), October 1969.

Inc. Cisco Systems. Catalyst 2960 and 2960-S Switch Software Configu-
ration Guide, Cisco I0S Release 12.2(55)SE. Cisco Systems, Inc., 170
West Tasman Drive, San Jose, CA 95134-1706, USA, 2010. also online
at http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst2960/
software/release/12-2_55_se/configuration/guide/scg_2960.pdf, last
access November, 23nd 2015.

The FreeBSD Developer Community et al. Freebsd src tree. https://github.
com/freebsd/freebsd. Online, last access June, 1st 2015.

84

http://www.netresec.com/?page=PcapFiles
http://www.netresec.com/?page=PcapFiles
https://archive.org/web/
https://archive.org/web/
https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html
https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html
https://www.elastic.co/products/logstash
http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst2960/software/release/12-2_55_se/configuration/guide/scg_2960.pdf
http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst2960/software/release/12-2_55_se/configuration/guide/scg_2960.pdf
https://github.com/freebsd/freebsd
https://github.com/freebsd/freebsd

[12]

[14]

[15]

[20]

[21]

[22]

[23]

[24]

[25]

Microsoft Corporation. Windows event log service. https://technet.
microsoft.com/en-us/library/dd315601 (v=ws.10) .aspx. Online, last ac-
cess March, 15th 2016.

MITRE Corporation and CEE Editorial Board. Common event expression.
http://cee.mitre.org/. Online, last access June, 1st 2015.

Russ Cox. Regular expression matching can be simple and fast. https://

swtch.com/~rsc/regexp/regexpl.html. Online, last access July, 2nd 2015.

DMTF. Distributed management task force inc. https://www.dmtf.org/.
Online, last access March, 15th 2016.

Jordan Sissel et al. grok on github. https://github.com/jordansissel/grok.
Online, last access July, 2nd 2015.

Philip Hazel et al. Pcre - perl compatible regular expressions. http://www.
pcre.org. Online, last access July, 2nd 2015.

J. Evans et al. jemalloc, an alternative memory allocator. http://www.

canonware.com/jemalloc/. Online, last access December, 8th 2015.

Edward Fredkin. Trie memory. Communications of the ACM, 3(9):490-499,
1960.

R. Gerhards. liblognorm. http://www.liblognorm.com/. Online, last access
June, 1st 2015.

R. Gerhards. On the nature of syslog data. http://www.monitorware.com/
en/workinprogress/nature-of-syslog-data.php. Online, last access June,
29th 2015.

R. Gerhards. Syslog log samples. http://www.monitorware.com/en/
logsamples/. Online, last access November, 23rd 2015.

R. Gerhards. The Syslog Protocol. RFC 5424 (Proposed Standard), March
2009.

R. Gerhards et al. a repository with sample log files for research purposes. http:
//git.adiscon.com/7p=log-samples-for-research.git;a=summary. Onli-

ne, last access November, 24st 2015.

R. Gerhards et al. rsyslog, a modern syslogd. http://www.rsyslog.com. On-
line, last access June, 9th 2015.

85

https://technet.microsoft.com/en-us/library/dd315601(v=ws.10).aspx
https://technet.microsoft.com/en-us/library/dd315601(v=ws.10).aspx
http://cee.mitre.org/
https://swtch.com/~rsc/regexp/regexp1.html
https://swtch.com/~rsc/regexp/regexp1.html
https://www.dmtf.org/
https://github.com/jordansissel/grok
http://www.pcre.org
http://www.pcre.org
http://www.canonware.com/jemalloc/
http://www.canonware.com/jemalloc/
http://www.liblognorm.com/
http://www.monitorware.com/en/workinprogress/nature-of-syslog-data.php
http://www.monitorware.com/en/workinprogress/nature-of-syslog-data.php
http://www.monitorware.com/en/logsamples/
http://www.monitorware.com/en/logsamples/
http://git.adiscon.com/?p=log-samples-for-research.git;a=summary
http://git.adiscon.com/?p=log-samples-for-research.git;a=summary
http://www.rsyslog.com

[26]

[27]

28]

[29]

[31]

[32]

[34]

[35]

[36]

R. Gerhards et al. sample pix log messages. http://git.adiscon.
com/?p=log-samples-for-research.git;a=tree;f=freetext/cisco;h=
879bf£34d58532220db7025dd1df2bf£84254a60;hb=HEAD. Online, last access
November, 24st 2015.

Adiscon GmbH. Eventreporter - windows event monitoring & forwarding. http:

//www.eventreporter.com/en/. Online, last access November, 24th 2015.

Graylog. Gelf — graylog extended log format. https://www.graylog.org/
resources/gelf/. Online, last access November, 24th 2015.

E. Haszlakiewicz et al. Json-c, a json implementation in c. https://github.

com/json-c/json-c/wiki. Online, last access December, 8th 2015.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to
Automata Theory, Languages, and Computation (3rd Edition). Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2006.

The TEEE and The Open Group. closelog, openlog, setlogmask, syslog -
control system log. http://pubs.opengroup.org/onlinepubs/9699919799/

functions/closelog.html. Online, last access June, 11st 2015.

ArcSight Inc. Common event format, revision 16. https://kc.mcafee.
com/resources/sites/MCAFEE/content/live/CORP_KNOWLEDGEBASE/78000/
KB78712/en_US/CEF_White_Paper_20100722.pdf. Online, last access July,
2nd 2015.

Trustwave Holdings Inc. Info: What is the welf log file format? https:
//www3.trustwave.com/support/kb/article.aspx?7id=10899. Online, last
access March, 15th 2016.

Andrew Josey, DW Cragun, N Stoughton, M Brown, C Hughes, et al. The
open group base specifications issue 6-ieee std 1003.1. The IEEE and The
Open Group, 20(6), 2004.

Donald E. Knuth. The Art of Computer Programming, Volume 3: (2Nd Ed.)
Sorting and Searching. Addison Wesley Longman Publishing Co., Inc., Red-
wood City, CA, USA, 1998.

Viktor Leis, Alfons Kemper, and Tobias Neumann. The adaptive radix tree:
Artful indexing for main-memory databases. In Data Engineering (ICDE), 2013
IEEE 29th International Conference on, pages 38—49. IEEE, 2013.

86

http://git.adiscon.com/?p=log-samples-for-research.git;a=tree;f=freetext/cisco;h=879bff34d58532220db7025dd1df2bff84254a60;hb=HEAD
http://git.adiscon.com/?p=log-samples-for-research.git;a=tree;f=freetext/cisco;h=879bff34d58532220db7025dd1df2bff84254a60;hb=HEAD
http://git.adiscon.com/?p=log-samples-for-research.git;a=tree;f=freetext/cisco;h=879bff34d58532220db7025dd1df2bff84254a60;hb=HEAD
http://www.eventreporter.com/en/
http://www.eventreporter.com/en/
https://www.graylog.org/resources/gelf/
https://www.graylog.org/resources/gelf/
https://github.com/json-c/json-c/wiki
https://github.com/json-c/json-c/wiki
http://pubs.opengroup.org/onlinepubs/9699919799/functions/closelog.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/closelog.html
https://kc.mcafee.com/resources/sites/MCAFEE/content/live/CORP_KNOWLEDGEBASE/78000/KB78712/en_US/CEF_White_Paper_20100722.pdf
https://kc.mcafee.com/resources/sites/MCAFEE/content/live/CORP_KNOWLEDGEBASE/78000/KB78712/en_US/CEF_White_Paper_20100722.pdf
https://kc.mcafee.com/resources/sites/MCAFEE/content/live/CORP_KNOWLEDGEBASE/78000/KB78712/en_US/CEF_White_Paper_20100722.pdf
https://www3.trustwave.com/support/kb/article.aspx?id=10899
https://www3.trustwave.com/support/kb/article.aspx?id=10899

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Val Menn. New tools for event management in windows vista. https:
//technet.microsoft.com/en-us/magazine/2006.11.eventmanagement.
aspx. Online, last access March, 15th 2016.

R. Merkl and S. Waack. Bioinformatik Interaktiv (2. Auflage). WILEY-VCH
Verlag GmbH & Co. KGaA, Weinheim, 20009.

Donald R Morrison. Patricia - practical algorithm to retrieve information coded
in alphanumeric. Journal of the ACM (JACM), 15(4):514-534, 1968.

Chris Moultrie. Logstash grok speeds. http://ghost.frodux.in/
logstash-grok-speeds/. Online, last access July, 2nd 2015.

James D Murray. Windows NT Fvent Logging. O’Reilly & Associates, Inc.,
1998.

InterSect Alliance Pty. Snare enterprise agent for windows.
https://www.intersectalliance.com/our-product/snare-agent/
operating-system-agents/snare-agent-for-windows/. Online, last
access November, 24th 2015.

E. Haszlakiewicz R. Gerhards et al. libfastjson, a fast json library for c. https:
//github.com/rsyslog/libfastjson. Online, last access December, 8th 2015.

G. Salgueiro, V. Pascual, A. Roman, and S. Garcia. Indicating WebSocket
Protocol as a Transport in the Session Initiation Protocol (SIP) Common Log
Format (CLF). RFC 7355 (Informational), September 2014.

Balazs Scheidler. Collecting log samples. https://bazsi.blogs.balabit.
com/2010/11/collecting-log-samples/. Online, last access November, 23rd
2015.

Balabit IT Security. Pattern db. https://www.balabit.com/
network-security/syslog-ng/opensource-logging-system/features/

pattern-db. Online, last access June, 1st 2015.

Balabit IT Security. syslog-ng on github. https://github.com/balabit/
syslog-ng. Online, last access June, 26th 2015.

Jordan Sissel. libgrok. https://github.com/jordansissel/grok. Online, last
access November, 20st 2015.

87

https://technet.microsoft.com/en-us/magazine/2006.11.eventmanagement.aspx
https://technet.microsoft.com/en-us/magazine/2006.11.eventmanagement.aspx
https://technet.microsoft.com/en-us/magazine/2006.11.eventmanagement.aspx
http://ghost.frodux.in/logstash-grok-speeds/
http://ghost.frodux.in/logstash-grok-speeds/
https://www.intersectalliance.com/our-product/snare-agent/operating-system-agents/snare-agent-for-windows/
https://www.intersectalliance.com/our-product/snare-agent/operating-system-agents/snare-agent-for-windows/
https://github.com/rsyslog/libfastjson
https://github.com/rsyslog/libfastjson
https://bazsi.blogs.balabit.com/2010/11/collecting-log-samples/
https://bazsi.blogs.balabit.com/2010/11/collecting-log-samples/
https://www.balabit.com/network-security/syslog-ng/opensource-logging-system/features/pattern-db
https://www.balabit.com/network-security/syslog-ng/opensource-logging-system/features/pattern-db
https://www.balabit.com/network-security/syslog-ng/opensource-logging-system/features/pattern-db
https://github.com/balabit/syslog-ng
https://github.com/balabit/syslog-ng
https://github.com/jordansissel/grok

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

L. Torvalds et al. Linux kernel source tree. https://github.com/torvalds/

linux. Online, last access June, 1st 2015.

Tod Troxell et al. logcheck. http://logcheck.org/. Online, last access June,
1st 2015.

CORPORATE Unicode Staff. The Unicode Standard: Worldwide Character
Encoding. Addison-Wesley Longman Publishing Co., Inc., 1991.

Risto Vaarandi. A data clustering algorithm for mining patterns from event logs.
In Proceedings of the 2003 IEEE Workshop on IP Operations and Management
(IPOM), pages 119-126, 2003.

Risto Vaarandi. Tools and Techniques for Event Log Analysis, PhD Thesis.
Tallinn University of Technology Press, 2005.

The valgrind developers. Valgrind, a system for debugging and profiling linux
program. http://valgrind.org. Online, last access December, 8th 2015.

w3c consortium. Extended log file format, w3c working draft wd-logfile-960323
(work in progress). http://www.w3.org/TR/WD-logfile.html. Online, last
access November, 25th 2015.

J. Weidendorfer. kcachegrind call graph viewer. http://kcachegrind.
sourceforge.net/html/Home.html. Online, last access December, 15th 2015.

B. Wilkinson and M. Allen. Parallel programming: techniques and applications

using networked workstations and parallel computers. Prentice-Hall, Inc. Upper

Saddle River, NJ, USA, 2004.

88

https://github.com/torvalds/linux
https://github.com/torvalds/linux
http://logcheck.org/
http://valgrind.org
http://www.w3.org/TR/WD-logfile.html
http://kcachegrind.sourceforge.net/html/Home.html
http://kcachegrind.sourceforge.net/html/Home.html

Ich versichere, dass ich diese Master-Abschlussarbeit selbststéndig verfasst und
keine anderen Quellen und Hilfsmittel als die angegebenen benutzt habe. Die
Stellen, die anderen Werken dem Wortlaut oder dem Sinn nach entnommen wur-
den, sind in jedem einzelnen Fall unter Angabe der Quelle als Entlehnung (Zitat)
kenntlich gemacht. Das gleiche gilt fiir beigefiigte Skizzen und Darstellungen.
Auflerdem rdume ich dem Lehrgebiet das Recht ein, die Arbeit fiir eigene Lehr-
und Forschungstétigkeiten auszuwerten und unter Angabe des Autors geeignet zu

publizieren.

Hagen, den 2016-04-27

Rainer Gerhards

	Introduction
	Related work
	Definition of Terms
	Understanding Log Message Formats
	The Log Normalization Problem
	An improved normalization method
	Experimental Verification
	Results
	Conclusion and Outlook
	Detail Data from Experimental Verification
	Supported Motifs and their Time Complexity

