
WEB-BASED SUPPORT FOR COMPUTER ENGINEERING

HELMUT BÄHRING , JÖRG K ELLER , WOLFRAM SCHIFFMANN
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Abstract – Learning about Computer Engineering is a highly constructive process. At our depart-

ment, computer engineering encompasses three courses and a laboratory session. In order to suc-

cessfully learn the subject, the students should have hands-on experience with tools. While tools to

program (compilers, interpreters, development environments) are widely available for free on the in-

ternet, the situation is different for computer engineering. To learn the foundations of digital design,

a tool to design and simulate digital circuits is needed. To master microprocessors and microcon-

trollers, access to assemblers and simulators is needed. To master computer architecture, access to

an architectural simulator is needed. The laboratory session requires either an extended on-campus

phase or necessitates web access to the devices (processor test cards, oscilloscopes, etc) in the lab.

We present an overview of our efforts in the last five years, through which we have provided students

with web access to all the tools and devices above.

INTRODUCTION

FernUniversiẗat is Germany’s Distance Teaching University, serving also Austria and the Ger-
man speaking parts of Switzerland. The computer science department offers study programs
leading to bachelor, master and doctoral degrees. Students receive printed course texts and as-
signments, and send their solutions by surface mail. The solutions are then corrected, scored
and returned. In order to improve the study situation, FernUniversität provides course portals
where students can access the study materials online, and via which a course supervisor can
communicate with the students enroled in his course. Furthermore, the opportunities of multi-
media and online access are used to improve the course materials themselves.

The field of computer science shares some characteristics with other natural sciences and
engineering disciplines. First, the topics taught involve many situations where dynamic pro-
cesses are explained, e.g. how a sorting algorithm progresses during its execution. This can be
supported by providing Java applets with visualizations and simulations. Second, the assign-
ments often involve constructing programs or circuits. This can be supported by giving students
access to the appropriate tools, and to provide them with feedback as fast as possible. Third,
besides lecture courses, computer science involves a number of laboratory courses. In order to
relieve students from long on-campus times (which are difficult to realize because most students
work), students can be provided with access to the respective computers and laboratory devices.

The support mentioned above has made great progress in theoretical computer science
and the software domain. Many visualizations for algorithms are available, and compilers and
software development tools are freely available over the internet for many platforms. Access
to servers over the internet viassh and other protocols is standard. In contrast, computer
engineering suffers from the fact that CAD tools, simulators, and device simulators are not



widespread. In the following sections we will present how we support the computer engineering
courses that are part of the computer science curriculum in Germany. First we briefly sketch
how applets can help to understand basics of computer engineering. Second, we sketch how
students can learn to construct digital circuits in their assignments with the help of CAD tools.
Third, we describe how we substitute part of the on-campus phase of our hardware lab course
by a virtual lab. Last, we give an outlook on our current research.

COURSE UNITS WITH APPLETS

Many introductory course texts about computer engineering deal with combinatorial or sequen-
tial logic. Unfortunately, the operation of those circuits cannot be illustrated by a single picture,
because it depends on the great number of different input patterns (combinatorial logic) or also
on the internal state of the circuit (sequential logic). Additionally, propagation delay times in-
crease the complexity of the dynamic behavior of these logic circuits. If one can only use textual
descriptions and a restricted number of pictures it is very difficult to explain the operation of
logic circuits. It is also not useful to include series of pictures for every different state of a
circuit.

In order to solve this problem we extended the course texts by links to applets that provide
simulations of the logic circuits discussed in the course unit. The applets are referenced at
the margins of the text by a Java logo and can be accessed either by means of a link in the
corresponding pdf-file or by an extra web page that contains all the link to applets. By means
of these applets the students can better grasp the logic and dynamic behavior of the introduced
circuits.

Figure 1 shows an example applet that simulates a full adder constructed from two half
adders. After the student has read the text he can click on the Java logo and then an appropriate
applet will be opened in a web browser. On the left side, a block diagram displays the full adder
circuit. The logic assignments of the connecting wires are denoted by colors. Simultaneously,
the truth table with the current input pattern being highlighted is displayed on the right side.
The student can choose any of the possible input patterns and after pressing the calculate button
he immediately sees the full adder’s response to this input pattern. Similar applets illustrate the
dynamic behavior of sequential logic, e.g. the state sequence of counters or microprogrammable
finite state machines.

DESIGN AND SIMULATION OF DIGITAL CIRCUITS

Exercises in computer engineering often comprise the design of logic circuits that transform
binary input patterns to output patterns. This kind of exercises poses some problems for distance
learning students because of their isolation from lecturers and fellow students. Thus, they cannot
discuss their solutions with others and they are unable to check the correctness of their designs
in advance. In conventional paper-based exercises it often takes up to four weeks until they
get back the revised and scored exercises. In order to improve the motivation and the learning
situation of the students it is important to provide opportunities to test the logic circuit designs in
advance. This can be accomplished by means of a CAD tool for schematic entry and simulation.
Because commercial CAD tools are expensive, complex and difficult to use they cannot be used
for this purpose.

The HADES (HAmburger DEsign System) [3] is a portable, open source and easy-to-use
CAD program that accomplishes all the needs for conducting exercises in computer engineering.
By means of HADES, students can enter the schematics of any logic circuit (combinatorial or



Figure 1. Screenshot of an applet that illustrates the operation of a full adder made of two half adders.

sequential). In order to stimulate a circuit and to display the values of its outputs, different
kinds of I/O devices are provided. In addition, hierarchical designs are supported to cope with
complex designs by means of modularization. Also, in contrast to commercial CAD tools,
HADES offers a number of other benefits:

• It can be used on any platform because it is written in Java.

• It is open source. Thus, it can be easily adapted to the specific needs of a course, e.g. the
symbols of the gates can be changed to the German DIN format.

• The program size is less than 4 Megabytes. Therefore, it can be downloaded in reasonable
time even via a modem connection.

• After the download, HADES can immediately be used and its usage is easy. This feature
is most important for the acceptance by the students.

• While simulation in commercial CAD tools requires the start of a separate program,
HADES has a built-in simulation facility. Thus, the students do not have to switch from
schematic entry to simulation mode and vice versa.

Self Tests by Means of Testbenches

Testbenches are used to check the functional correctness of a design. Students can benefit from
testbenches by evaluating their solutions before submission. Later on, the same testbenches can
be used for checking the submitted solutions automatically. For this purpose a so-called correc-
tion server is provided. The services from this server are requested by the WebAssign platform



Figure 2. Screenshot of a HADES testbench with PG (left), SA (right) and the student solution (middle).

which is used by the students to submit their solutions via the web (see next subsection). By
means of the correction server the WebAssign platform informs the correctors whether the stu-
dent’s solution implements the required functionality or not. Therefore, the human correctors
can concentrate on evaluating the design in terms of other requirements e.g. if it conforms to
design rules such as naming conventions, or if it contains unnecessarily complex parts.

The testbenches help the students to get a quick feedback while they try to find solu-
tions to the exercises. This improves their motivation because they have a chance to modify
their solution until they find a correct one. Our evaluation of the students’ performance in the
assignments of the summer semester 2003 confirms this assumption [4].

In order to enable automatic tests we extend the logic circuit by two additional compo-
nents which represent the testbench. While the first component, called the pattern generator
(PG), provides stimuli signals to the logic circuit, the second component traces the response of
the logic circuit to those stimuli signals. To generate the stimuli a linear feedback shift register
(LFSR) is used. The LFSR has a word width of 16 to 32 bits and is initialized with a bit pattern
calledseed. Due to the feedback the LFSR produces a sequence of bit patterns that are used as
stimuli signals. The response signals of the device under test are fed to a signature analyser (SA)
that is realized like an LFSR. Additionally, the outputs of the test circuit are combined with the
feedback in order to generate the follow-up states of the flipflops. After a given number of clock
cycles a specific bit pattern will be generated in the SA. This so-calledsignaturedepends on the
properties of the PG (seed, feedback structure), the functional behavior of the device under test
and the properties of the SA (seed, feedback structure). The signature summarizes the function
of the test circuit by a single (hexadecimal) value. It is important to notice that the signature is
invariant to details of the realization of the device under test (so-calledblack box test). Also, it
is extremely unlikely that an incorrect realization will generate the correct signature. Thus, we
can use the signature to test the functionality of a logic circuit designed by the students.

For each exercise a specific testbench is provided, but to avoid confusion all have identical
feedback structures for PG and SA and identical seeds for the PG. Only the seed of the SA is
varied. The students are provided with a seed-signature pair to test their designs at home.
Another seed-signature pair is used by the correction server to check the submitted designs.



Figure 3. The ECU.

WebAssign for Conducting Exercises

WebAssign is a platform that supports the interaction of the parties involved in conducting
internet-based exercises [1]. One of the objectives of WebAssign is to shorten the process-
ing times by using the internet instead of conventional mail. In the past, the exercises were
printed and sent to the students via yellow mail. When the students solved the assignments they
returned them to FernUniversität, from where the submissions were distributed to the correc-
tors who are spread all over Germany and the neighboring countries. The corrected exercises
were returned to FernUniversität and finally forwarded to the students. This was complicated,
time-consuming, error-prone and expensive (because of the mail charges).

WebAssign offers a web-based access to a database for the parties concerned: lecturers (or
teaching assistants), students and correctors. The lecturers can enter assignments and sample
solutions for their courses. They are also able to establish deadlines for the submission of the
assignments and the release of solutions, to determine the distribution of submissions among
the external correctors and to access the scores of the correctors for the students’ solutions.
Students can access assignments and upload their solutions. When the deadline for submitting
solutions is passed they also can access the sample solutions to the assignments. In accordance
to the distribution given by the lecturer, WebAssign allocates the submitted solutions to the
correctors. WebAssign also returns the corrected submissions to the students via email.

In order to support the correctors we extended WebAssign by a correction server that
automatically checks the correctness of the submitted solutions by means of the testbenches
described in the previous subsection. For each assignment the students must download a specific
testbench and insert their solution. Figure 2 shows a screenshot of a testbench together with the
solution module that was inserted by a student. As already described, the students can test their
designs at home by using the testbench together with a given seed-signature pair. After they
have entered the seed value in the SA, a simulation run of the complete testbench is performed.
If the resulting signature in the SA coincides with the given one students know that their design
solves the assignment0. In the same way the submitted solution is automatically checked by
means of the correction server. The result of this test is stored in the database of WebAssign
and forwarded to the corrector together with the student’s solution.



Figure 4. Starting page of the GAL Editor.

Connecting HADES with a GAL device

In order to connect and to control external hardware from the HADES graphical user inter-
face, we developed a cheap and easy-to-use measurement device, theexperimental control unit
(ECU), see Fig. 3. It can be connected to a parallel port of any PC and it is based on an ATMEL
microcontroller. By means of this device one can easily generate test patterns and sample the
response of external hardware components. We also developed a device driver for integration in
HADES. In this way one can combine hardware and CAD designs (similar to hardware/software
codesign). The ECU is mainly used to connect an in-circuit programmable GAL (Gate Array
Logic) device 22V10 to the HADES system. This device consists of a circuit with up to 22
inputs and 10 outputs that can be used either in combinatorial or registered mode. The students
can program this GAL chip by means of a Java application that allows a graphical programming
of a matrix with approximately 6000 fuses. As shown in Fig. 4 the students select the output pin
that should be programmed and the GAL editor displays the corresponding part of the fusemap
that now can be easily programmed by clicking the intersection between input (or feedback)
wires and an AND-term of output function (see Fig. 5). After programming of all the output
lines the final fusemap can be uploaded via the Internet to the remote lab in Hagen where it will
be used to configure the GAL chip which is connected to the HADES system by means of the
ECU. The students are able to control this HADES system by means of a VNC server (Virtual
Network Computer) that can be accessed by any Java-enabled webbrowser.

REQUIREMENTS FOR VIRTUAL AND REMOTE MICROPROCESSOR LABS

When students want to get familiar with microprocessor programming and deployment, they
must have access to a software development environment and a target system. Our computer
engineering lab course1 is divided into four phases. First of all, the students work through a
course text that describes the basics for the experiments. For instance, the processors to be pro-
grammed are described, and the pitfalls and fallacies of assembler programming are explained.

1In the German curriculum, a basic computer engineering education is part of the computer science programme.



Figure 5. Configuring a registered output.

In the second phase they use development tools to practice machine language programming.
The development system consists mainly of an editor and an assembler for compiling programs
written in assembler language into the microprocessor’s object code. These tools — cross-
assemblers in particular — are widely and freely available, and are either installed locally at the
students’ computer or accessed remotely. In the third phase the students test their program on
a target system and watch it running there. For this purpose, we had to develop an appropriate
target system that operates and looks like the real microprocessor system which is used in our
laboratory on campus.

The target system should serve as a remote control for a real microprocessor system in
Hagen, so that the execution of students’ programs can be observed in real-time. In the simulator
mode the students can use the target system as avirtual laboratory for testing the object code
at home. Although they can test the functionality of their programs in this phase by simulation,
they are not able to either check the real-time behavior, nor can they control external hardware
that is connected to a real microprocessor system. In order to provide these facilities the students
should be able to connect via the Internet to a real target microprocessor system located at the
lab on the Hagen campus, i.e. they use aremotelaboratory. By switching into the remote control
mode the students will be able to remotely control an experimental setup in the lab, consisting
of the processor itself and some additional hardware. By means of additional measurement
devices that can also be controlled remotely the students can conduct experiments with external
hardware (e.g. a traffic light panel or a radio frequency controlled clock). In addition to the
software tools, web cams provide live pictures of how the setup in the lab behaves, e.g. which
lights are on or off.

Students thus develop their programs locally and test them on a simulator. If they do not
have the rights to install software on the computer they are using (because of missing software
licences), they can also use a development system on a server on campus via the Internet (typ-
ically using VNC). When a student is confident that his program works, then he accesses the
remote lab, uploads his program to the target system, and conducts his experiment on real hard-
ware. If an error occurs or the real-time behavior differs from what is expected or required, he
corrects the program until he is satisfied. In the end, he submits his results and his program via
the WebAssign system to the correctors for grading. In this manner, the virtual lab mode saves



Figure 6. Structure of the microprocessor lab.

valuable online time for many students, as they can develop at home in an offline mode. This
also distinguishes our approach from online labs.

Despite the two modes of operation, students should not be required to learn two sets of
user interfaces, as this would incur a lot of additional learning time. Hence, the virtual lab and
the remote lab should share a common user interface. For example, a student should be aware
whether he is running code on a simulator or on real hardware, but the controls for starting the
program run should be the same.

The remote laboratory is realized by a client-server approach. Figure 6 outlines the sce-
nario of our microprocessor lab. Students who want to use the remote lab have to download a
number of client programs that serve as remote controls for the microprocessor system and the
measurement equipment, such as an oscilloscope or a web cam. These clients connect to server
processes that run on a server computer (named telematics server) in the laboratory at Hagen.
Some of those clients also have simulator functionality (e.g. the microprocessor client), so stu-
dents can seamlessly switch between the virtual lab and the remote lab. The server computer
in turn is connected to the hardware devices in the lab: microprocessor card, oscilloscope, web
cam, and so on. The microprocessor card itself is connected to some additional hardware such
as a traffic light kit or the RC clock (see next subsections). The server also provides a central
installation of the development software and the simulator for students who are not allowed
to install software on their local computer. Those students may access the server either via a
remote shell or session, or web-based via VNC.

To accomplish more complex experiments with attached devices, such as a radio con-
trolled clock (see next subsections), the simulator establishes a TCP/IP-connection via the in-
ternet to the server at our laboratory, thus allowing students to switch seamlessly to the remote
lab. After authentication, the user gets access to the remote control software of different compo-
nents of the experimental setup. These components include one or more oscilloscopes, function
generators and mainly the microprocessor system hardware. Attached to this system will be
different devices, e.g. the above mentioned radio controlled clock or a model of a traffic light.

The user is able to upload his programs to the remote microprocessor system via the user
interface and to start them there. He can adjust the already mentioned instruments remotely,
perform different measurements, and gets back the results. To give him the possibility of ob-
serving the experiments, and thus the feeling of being in the laboratory room, all instruments
and devices — but also the whole laboratory — are accessible by controllable web cams. (E.g.,
look at Fig. 11 where the control applet of an oscilloscope is shown in a window on the left and
the web cam image of the oscilloscope in another window on the right.)



Figure 7. Microprocessor lab in a box.

The client programs are preferably programmed in Java. The software is programmed
in two parts: one part that is independent of the particular device for which the client is the
frontend, and one part which realizes the particular device’s frontend. The former part can be
re-used for all devices, the latter part is programmed in a way that realization of an additional
device can be done with the least possible effort. Using Java also had the advantage of being
more independent from the type of computer the students have locally, than with any other
realization.

Of course, the implementation of the lab is not restricted to a particular microprocessor
card. There are cards with a universal microprocessor, a microcontroller and a digital signal
processor, respectively, that can be accessed in the same manner. We will demonstrate this by
two examples in the next subsections.

A Lab in a Box

In a number of experiments no server machine is needed to control the offered measurement
equipment and microprocessor systems with their attached components. For those experiments
we develop a remote lab with a smaller form factor which can be implemented in a box of
moderate size. Its structure is shown in Fig. 7. In this lab all instruments, the microprocessor
system, the web cams and even the power supply and the light are connected to the internet via
a LAN/Ethernet switch. The power supply socket and the web cams have their own built-in
Ethernet interfaces. The other devices are equipped by small Ethernet/RS232 interfaces (called
XPORTS, denoted as E-I/F in Fig. 7) which are connected to their serial interfaces. These
XPORTS offer an integrated web server and 384 kbyte of flash memory, enough to implement
comfortable control programs for the attached units. The total lab has only two interfaces to the
outside – one for the power supply and one for the internet. This kind of implementation al-
lows the cost– and space-saving realization of remote labs: The small boxes can be stacked and
placed in small laboratory rooms, allowing the simultaneous use by many students. Their mod-
ular realization eases maintenance, repair and replacement. The integrated control of the power
supply saves energy and increases the lifetime of all components because they are switched off
when not used.



Figure 8. Lab for a universal microprocessor.

A Lab for Universal Microprocessors

In this subsection we demonstrate how the virtual and remote lab can be used by the students
to study fundamentals of microprocessor technology. In our basic practical course we use a
universal microprocessor to get the students acquainted with the basic processor and instruction
set architectures and the common interface and control units. The structure of this lab is shown
in Fig. 8. The microprocessor system consists of a custom-designed microcomputer, integrating
an 8-bit processor, a keyboard and a seven-segment display. As peripherals it offers two parallel
ports, two serial interfaces and three 16-bit timers. A small operating system (monitor program)
allows to store programs or data and to control the display, the keyboard and the peripherals.
The RS232 Interface is used to communicate with a PC or an XPORT (see above).

In basic experiments the students have to write a number of rather small programs con-
cerning all the above mentioned microcomputer components. For ”higher” experiments dif-
ferent devices can be attached to the microcomputer. In Fig. 8 you can see a radio frequency
controlled clock (DCF-77) which shows the exact mean time of central Europe. The objective
in this experiment consists of writing a program that should evaluate the signals of this radio
controlled clock. The students can watch these signals remotely with the help of an oscillo-
scope. There they see the analog signal received by the antenna of the clock module and the
generated digital signal (see Fig. 8). Their job is to write a program which analyzes this digital
signal and derives the demanded time and date.

When the students have worked through the course text, which describes the basics for
the experiment, they can conduct the experiment first with the help of the simulator. Figure 9
shows that the graphical interface of this simulator resembles very much the appearance of the
real microcomputer, so the student can easily operate both. Besides, this graphical interface can
also be used as a remote control during the remote laboratory experiment. When – in this mode
– the user operates the clear key C of the graphical interface a special signal is sent to the real
microcomputer which is thereby reset into its initial state. By means of a pull down menu the
user can switch between the two modes: simulator – remote control. For the remote mode the
IP of the remote lab server must be entered. Access control (see Section on Gridlabs) avoids
conflicts due to simultaneous access by several students.



Figure 9. The real microcomputer (left) and the graphical interface of its simulator/remote control (right).

A Lab for Digital Signal Processors

In this subsection we describe the second remote lab which we have already realized. Its main
subject is the architecture of digital signal processors (DSP). As our clients study computer
science and not electrical and electronic engineering, our DSP lab does not aim at the theory
and practice of digital signal processing itself. Consequently our students are only confronted
with the function of digital filtering by FIR filters (finite impulse response) – surely the simplest
function of digital signal processing. Figure 10 shows the assembly of our remote DSP lab.

To motivate the students and to convince them of the elegance of DSP solutions they first
have to study in simple experiments the behavior of analog filters (i.e. circuits of resistors and
capacitors) in the time and frequency domain. By the help of a remotely controllable switching
unit they can select between the outputs of a low-pass filter, a high-pass filter and a band-pass
filter with the same characteristic frequency and watch it on the oscilloscope. The input signal
of the filters is generated by a remotely controlled function generator and can be a square wave
signal, a sinus signal or a triangular signal with selectable frequencies.

In the next step the students have to realize a microprocessor solution for the above filter
problem. Therefore they can select — by the switching unit — a system consisting mainly of
a digital signal processor (DSP) and a codec for the conversion of analog to digital signals and
vice versa. They have to write programs using a professional software development environ-
ment via VNC and to upload them into the DSP. As an example, Fig. 11 shows the graphical
user interface of the DSP lab. On the left side you can see the remote-control interfaces for the
instruments used: the function generator at the top and the oscilloscope below. At the top of the
right side you can see the window to select and upload programs from the client PC to the DSP.
At the bottom is shown a window displaying the streaming video of the oscilloscope screen
captured by a web cam. For experts only: both the remote-control interface and the web cam
image of the oscilloscope show a 1500-Hz square-wave signal as input (upper channel) and the
typical low-pass filtered signal as output (lower channel).

A Computer Architecture Lab

The purpose of the previous laboratories was the use of a certain device, e.g. learn how to
program a microprocessor in assembler. In contrast, the computer architecture lab deals with
questions about the architecture of the microprocessor under study, e.g. to determine the optimal
cache size for a given set of benchmark programs. Obviously, these questions can be solved by
simulations, as is usual in computer architecture research. However, processor simulators tend



Figure 10. Structure of the DSP Lab.

to be either focussed on a particular instruction set and/or microarchitecture, see e.g. WinDLX
[5], or are more general but complex to install and maintain, like SimpleScalar [2]. Moreover,
a simulator like SimpleScalar demands for a powerful machine to be executed on, in order to
deliver results in a reasonable time.

Our Computer Architecture Lab (CA Lab)resolves this conflict by providing an installa-
tion of SimpleScalar on a powerful server, and by giving access to this installation via a web
page. Via the web page, the command line parameters of SimpleScalar can be set, e.g. the
size of the instruction cache. In this manner, the students get access to a state-of-the-art tool in
computer architecture research, but are freed from the burden of managing its details. If several
users access the web page concurrently, a separate instance of SimpleScalar is invoked for each
of them. In order not to overload the server, and thus provide a reasonable response time, the
number of users can be restricted.

The web page can be further customized in order not to set all parameters but only those
that are relevant for the task at hand. In this manner, a complete suite of pages can be constructed
quickly for all assignments in a course on computer architecture2. It is also easy to extend
the system to host several installations of SimpleScalar, each targeting a different one of the
supported instruction sets. In this way, also comparative studies are possible.

GRIDLAB: WORLDWIDE SHARING OF REMOTE LABS

We have already discussed that laboratory experience represents a valuable component of dis-
tance learning. The students can conduct experiments while they study the written course ma-
terials and this helps to improve the comprehension of the subject matter.

We admit that it is costly to develop remote labs. Also, each experiment is still only used
to full capacity during specific periods of time, although the utilization of a virtual lab is typi-
cally higher than that of a local lab. Hence it may be useful to share remote labs among several
organizations, that can be distributed worldwide. The idea thatvirtual organizations share re-

2To be more exact: processor architecture.



Figure 11. The graphical user Interface of the DSP Lab.

sources is essential to the emerging field of grid computing. In our current research we adopt
this idea to develop a web portal that provides a marketplace for remote labs of different disci-
plines. This portal, calledGridLab, will enable the users to search for appropriate experiments,
book the remote laboratory for a specific period of time, conduct the experiment together with
other students and get support from a tutor on demand. Furthermore, an economic model for
laboratories’ providers and users will be developed. The providers should get free access to
other remote labs to the same extent they provide labs by themselves. Alternatively, users can
also purchase credits for remote experimentation time by paying money.

The GridLab web portal, illustrated in Fig. 12, will be based on an existing CSCL por-
tal (Computer Supported Collaborative Learning) that mimics the concept of a real university
building. Starting from an entrance hall there are virtual learning rooms that can be accessed
by means of virtual keys, which are only valid during the booked period of time. In contrast to
the existing CSCL portal, GridLab will provideaugmentedvirtual learning rooms that contain
remotely controllable devices and that can be observed by web cams. When a student leaves a
learning room the current state of the experimental setup is stored. In this way one can continue
experimentation later on.

We will also provide support for setting up new experiments by reusing the concept of a
lab in a box (see appropriate section). Physically the experiments will be located in boxes of
four different sizes. Inside each box there is a light source that will be switched on together
with the other measurement devices when a user enters the learning room, to enable experimen-
tation at night time. Internet web cams will be mounted on the sides of the box to observe the
experimental setup and to verify the data displayed on the remote panels of the measurement
devices. To enable users to easily integrate all the components into the GridLab portal, an API
will be provided.



Figure 12. Example structure of GridLab.
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