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Abstract

We introduce a novel framework for analyzing coalition formation, applied to cli-

mate cooperation. Our model allows for multiple rounds of negotiations and is able

to explain the formation of large coalitions. The incentive of each coalition member

to join and subsequently to sign a long-term contract is to prevent inefficient delay

that arises as soon as a single country deviates. This undermines the free-rider

incentive that destabilizes large coalitions in static coalition formation games. The

equilibrium coalition size is then determined by a “threshold effect” due to which

deviations of coalition members become unprofitable for sufficiently large coalitions.
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1 Introduction

Climate cooperation is a prime example where a coalition can help to internalize external-

ities between players, or to provide a public good that would otherwise be undersupplied,

due to the free-rider incentive. It is well-documented that international environmental

agreements play a significant role in practice, and many of them involve a substantial

number of countries (see Barrett, 2003). Economic theory has, however, struggled to

provide a sound explanation for successful cooperation in the light of the free-rider in-

centive: why would a player join a coalition in the first place, if she could also abstain

from contributions to the public good (e.g., climate protection) by remaining an out-

sider, while benefiting from the efforts of others? An influential strand of literature that

analyzes participation in international environmental agreements finds that due to the

free-rider incentive, usually only small coalitions form, and especially so when the poten-

tial gains from cooperation are large (Barrett 1994). Kolstad and Toman (2005) coined

the term “Paradox of International Agreements” in the context of the finding that large

coalitions are typically only stable when the potential welfare gains from cooperation

(compared to the non-cooperative Nash equilibrium outcome) are modest.

In this paper we present a novel theoretical framework that sheds new light on the

issue of coalition formation, and climate cooperation in particular. Departing from the

bulk of the literature on open membership games, we present a dynamic model, where

countries may suspend the current negotiations and continue negotiating in the next

period. Introducing dynamics changes each country’s trade-off. If no long-term climate

contract is signed today, then there is a delay and a new round of negotiations starts in

the next period. Such a delay is costly in the short-run, but may be profitable in the

long-run if the countries anticipate that a better agreement can be signed in the future.

Surprisingly, we find that this simple modification (i.e., allowing countries to restart

negotiations tomorrow if no agreement is reached today) of an otherwise standard coali-

tion formation game leads to fundamentally different results. As the main result, we

show that large coalitions that achieve substantial welfare gains can be stable under mild

conditions. At the heart of our analysis lies an endogenous threshold effect: coalition

members only sign an agreement today if the resulting welfare is at least as large as their

expected welfare under delay. This requires a sufficiently large number of participants.

The corresponding threshold equilibria have the property that if a single country deviates,

no agreement is signed in the current period and negotiations are delayed.

In line with much of the existing literature, we assume that there is only one (long-

term) agreement that can be signed, and each country is free to join the agreement.

Once an agreement is signed, the game effectively ends. However, most climate coalition

formation models assume that there is only a single participation stage, so that countries
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can decide only once and for all if they join the coalition or not.1 In such a case, countries

always sign an agreement, but generally with few members.

Our dynamic model shows that the pessimistic predictions of many static models

depend heavily on the one-shot nature of the negotiation process: while a unilateral

deviation in a static model leads to the signature of a smaller agreement (with one

member less), in our dynamic model a deviation by a country supposed to be a coalition

member leads to a period of delay. The incentives to join are, thus, significantly different

from those in a static model. Paying more attention to the dynamics of reaching an

agreement is, therefore, crucial for a deeper understanding of the trade-offs involved in

countries’ decisions whether or not to cooperate.

In order to determine a country’s welfare in case of delay, it needs to anticipate whether

it will become a signatory or not, if an agreement is signed in the future. This creates a

coordination problem: For any coalition size, the countries need to be able to determine

which of them become coalition members. In order to resolve this coordination problem,

we analyze two variants of our model, one where the identity of coalition members is only

determined during each round of negotiations (random membership approach), and one

where there exists some pre-defined ordering of countries (deterministic membership ap-

proach). Under the random membership approach, countries overcome the coordination

problem with the help of an external public randomization device, which (for a given

coalition size) selects the identities of the coalition members in each period. The random

membership approach may be justified in particular when countries are ex-ante sym-

metric (as in our model). But even with asymmetric countries, no country would have

an incentive to build up a reputation of being more cooperative than others (to avoid

becoming locked in a coalition, while it is preferable to be a non-signatory).

By contrast, under the alternative deterministic membership approach, for any given

coalition size, it is ex-ante known which countries should (in equilibrium) be in the coali-

tion and which should be outside.2 This approach is more suitable to analyze situations

where countries have already built up some reputation for being more or less cooperative

than others. In static models, the two approaches are isomorphic and lead to identical

predictions about the size of stable coalitions. Most authors have, therefore, paid little

attention to how countries overcome the coordination problem at the participation stage,

and simply assumed that countries can coordinate to reach the equilibrium coalition size

(or one of these coalition sizes in case of multiple equilibria at the participation stage).

In a dynamic coalition formation model such as ours, by contrast, it matters for the

equilibrium outcome how countries coordinate at the participation stage.

Under the random membership approach, in our model the equilibrium coalition size

1See Hoel (1992), Carraro and Siniscalco (1993), Barrett (1994), Dixit and Olson (2000), Karp and
Simon (2013).

2This latter approach has also been adopted by Battaglini and Harstad (2016).
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is determined by two basic motives. On the one hand, by signing an agreement today,

coalition members give up the chance to free-ride by becoming non-signatories in the

future, when new negotiations start (in case of delay). Therefore, coalition members

are willing to sign an agreement today, only if the agreement is sufficiently attractive

(relative to the expected outcome of future negotiations) to compensate them for the

forgone benefits of free-riding in the future. This makes coalition members demanding,

and explains why only large coalitions are stable if countries are sufficiently patient. On

the other hand, there is a countervailing force: Countries may be willing to sign a weaker

agreement today than what would be expected tomorrow in case of delay, in order to

avoid inefficient delay. This undermines the stability of cooperation when countries are

impatient, because it makes them less demanding. Overall, we find that an equilibrium

coalition size (for a given discount factor) is such that these two motives are balanced.

Our central result (that large coalitions that achieve high welfare gains are stable when

countries are sufficiently patient) is preserved also under the deterministic membership

approach. However, the underlying intuition is different. If countries are optimistic and

anticipate the formation of a large coalition in the next period if current negotiations fail,

then countries become demanding already in the current period: rather than locking-in

an inefficient agreement, they prefer to wait a period until a larger coalition forms in

the next period. However, if the same coalition that is expected to form next period,

already forms today, then countries are better off signing a long-term agreement already

today. Hence, the formation of a large coalition already in the first period is, then, an

equilibrium (self-fulfilling expectations).

Related literature

In a closely related paper, Karp and Sakamoto (2018) introduce another dynamic frame-

work that is based on the idea of randomization. While under our random membership

approach, the identities of countries that are supposed to join a coalition (for some equi-

librium coalition size) are determined randomly during each round of negotiation (as long

as no long-term agreement has been signed yet), in their model, the randomization device

selects among the set of equilibria that exist at the participation stage. Unlike in our

model, where the game ends when coalition members sign a long-term agreement, in Karp

and Sakamoto (2018), the members of today’s coalition can decide at the beginning of

the next period whether they maintain the coalition, or dissolve it, in which case the ran-

domization device is again used to coordinate on a new stable coalition (without delay).

Hence, in their model, an agreement that lasts indefinitely can arise following a number

of short-term agreements that last for only one period each. Our model is simpler, as

we assume that countries can coordinate immediately on a long-term agreement. Yet,

commitment to a long-term agreement is not strictly required even in our framework.
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Even if coalition members that signed an agreement today, could decide to dissolve the

coalition again at the beginning of the next period, they would have no incentive to do

so, as long as the same countries would subsequently be asked again if they wish to form

a new coalition or not (in the latter case there would be a delay of one period). Hence,

in our model there is no incentive to opt out of a coalition for a country that volunteered

to join in a previous period.3 It is also worth mentioning that it is not only the dynamic

nature of our model that explains large stable coalition sizes. Simply allowing repeated

negotiations (without delay) about short-term agreements would yield the same equilib-

rium conditions as in the static case. It is rather the opportunity cost of signing a weak

agreement today (thereby giving up a possibly better agreement tomorrow) that makes

small agreements unstable in our framework.4

In another related paper, Battaglini and Harstad (2016) analyze a dynamic climate

coalition formation model that, similar to our model as well as Karp and Sakamoto

(2018), can help to resolve the Paradox of International Agreements, by showing that

large coalitions that achieve substantial welfare gains can be stable in equilibrium. They

demonstrate how an endogenous length of the commitment period in conjunction with

incomplete contracts that exclude countries’ technology investments (leading to a hold-

up problem) can explain larger coalition sizes than predicted by static models. While

Battaglini and Harstad (2016) find large coalitions only to be stable under those specific

circumstances (requiring an endogenous length of the commitment period and a hold-up

problem at the same time), we demonstrate that large coalitions can emerge under much

more general conditions. This neither requires countries to determine the contract dura-

tion endogenously, nor the presence of a hold-up problem related with (non-contractible)

technology investments. Indeed, to highlight this point, our paper abstracts from tech-

nology investments altogether, and focuses entirely on countries’ emission choices. In

our model, it is the sheer possibility to negotiate again in the future that makes large

agreements stable, while such agreements would not be stable in a comparable static

framework where countries can negotiate only once.

In order to facilitate a comparison of our model to Battaglini and Harstad (2016), we

also consider an extension where the countries may sign short-term agreements under the

deterministic membership approach. However, we depart in one specific detail from the

way in which these authors model short-term agreements. It turns out, that the results of

dynamic climate coalition formation games such as our’s and their’s, are rather sensitive

to such modeling details (i.e., if countries are able to sign short-term agreements or not,

and if so, the details of how the negotiations about these are modeled). We explain in

Section 5 how we model short-term agreements, and why we believe that our assumptions

3To simplify the exposition, we do not allow countries to opt out. Hence, we assume that a long-term
agreement is binding once it has been signed.

4We are grateful to Hiroaki Sakamoto for pointing this out.
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are plausible. A small change in those details explains why Battaglini and Harstad

(2016) only find large coalitions to be stable in a much more complex framework that

involves also countries’ R&D investments and a hold-up problem related with those. The

sensitivity of our models to such seemingly small modeling differences, should however

not be seen as a failure of our models to adequately describe possible trade-offs in real

world negotiations. Instead, it may well be, that negotiations in the real world are

equally sensitive to such details in the mode of negotiating. This may explain why

some negotiations led to a success (Paris Agreement) while others failed spectacularly

(Copenhagen climate summit), and why negotiators have paid so much attention to

the mode of negotiating. For example, while in previous negotiations countries tried to

commit to emissions targets, later they switched to the so-called “pledge-and-review”

process.5

The open membership approach to study climate negotiations builds on earlier pa-

pers by d’Aspremont et al. (1983) and Palfrey and Rosenthal (1984). Their concepts have

later been adopted by Barrett (1994), Carraro and Siniscalco (1993), and other papers

that followed in this strand of literature, to analyze the formation of International Envi-

ronmental Agreements (IEAs) using game-theoretic tools.6 Similar to Karp and Simon

(2013), we also adopt a non-parametric modeling approach, that does not rely on specific

functional forms. While these authors demonstrate that under very specific conditions,

a large coalition that achieves substantial welfare gains can form even in a static model,

we show that a similar result can be obtained in a dynamic coalition formation model

under much more general conditions.7

Hong and Karp (2012) consider mixed-strategy equilibria at the participation stage,

which allows for the possibility of a coordination failure. In their model, there is a critical

coalition size below which no positive abatement efforts are implemented.8 In our model,

a coalition may form that fails to sign an agreement (off the equilibrium path).9 However,

this is not because an agreement would not be welfare-enhancing, but because coalition

members anticipate an even better outcome (from their perspective) in the future. In

an extension, Hong and Karp (2014) study the interaction of endogenous risk (stemming

from mixed strategies) and exogenous risk (stemming from uncertainty about costs and

benefits), when countries are risk averse.

5Inspired by the Paris climate-change agreement, pledge-and-review bargaining is analyzed formally
by Harstad (2019).

6For an overview, see Barrett (2005) and Finus (2008).
7Alternative approaches to model coalition formation are analyzed by, among others, Bloch (1996)

and Ray and Vohra (1997, 2001), and applied to analyze climate treaties by de Zeeuw (2008) and
Diamantoudi and Sartzetakis (2015). A mechanism design approach to climate agreements is presented
by Martimort and Sand-Zantman (2016).

8This effect stems from the assumption of linear benefits and costs of abatement (up to a maximum
level), that effectively leads to binary abatement decisions.

9Relaxing the Markov restriction, delay can also occur on the path, as we demonstrate in the Sup-
plementary Appendix B.3.
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Other climate coalition formation games that are also able to generate larger sta-

ble coalition sizes often depart more fundamentally from the basic setup introduced in

Barrett (1994). Helm and Schmidt (2015) analyze the size of stable coalitions under

trade with border carbon adjustment. Barrett (1997) considers the possibility of trade

sanctions to foster participation in a climate agreement. Finus and Maus (2008) assume

that signatories do not fully internalize the environmental externalities between them.

Hoel and Schneider (1997) assume there is a social cost of non-cooperation. The role of

side-payments in fostering participation is investigated by Barrett (2001) and Carraro,

Eyckmans, and Finus (2006), among others. Karp (2010) analyzes the role of safety

valves in permit trading. Barrett (2006) and Hoel and de Zeeuw (2010) consider the

possibility of a technological breakthrough in low-carbon technologies and how it affects

the stable coalition size. Cooperation in the light of an approaching climate catastrophe

is analyzed by Barrett (2013) and Schmidt (2017).

Finally, there is a literature analyzing self-enforcing agreements in repeated emissions

games (see Barrett 1994; Harstad, Lancia, and Russo 2019 among others). Barrett (1994)

shows that even for discount factors arbitrarily close to 1, full cooperation may not be

sustainable if countries’ strategies must be renegotiation-proof. By contrast, we assume

that countries can sign a binding long-term climate contract (so compliance is not an

issue). Breitmeier, Young, and Zürn (2006) provide empirical evidence for their finding

that most international environmental rules are complied with, most of the time. See

also Young (2011).

2 “Toy model”

Before introducing our full dynamic model, we first present a simple “toy” version of our

model, to illustrate the basic ideas that are underlying our approach. Our full model

involves considerable technical detail and therefore requires more heavy notation. Ana-

lyzing first a drastically simplified version of our model will foster intuition and thereby

facilitate the understanding of our general setup that is analyzed in the following sections.

Below, we will also provide a brief discussion and motivate different extensions of our full

model that we analyze in later sections (Outlook).

The (presumably) simplest abatement game among N countries involves a binary

abatement choice of each country: abate or not abate. Assuming a constant marginal

benefit of b > 0, each country’s total benefit from abatement (that is a pure public good)

is bk, when k countries decide to abate. The cost incurred by a country that chooses to

abate is c, while there are no costs if the country does not abate. In order to make this

an interesting problem, we assume that b < c (otherwise, ‘abate’ is a dominant strategy

for each country). A coalition of k countries, by contrast, chooses to abate if and only if

bk ≥ c, or equivalently k ≥ c/b. For simplicity of the exposition, let us assume that the
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coalition members abate if indifferent.

In a static climate coalition formation model, the abatement game is embedded in

a three-stage game. In the first stage, each of the N countries can decide to join or

stay outside of the coalition. In stage 2, the coalition members collectively determine

their abatement activities, so as to maximize their joint welfare. And in stage 3, the

remaining outsiders determine their efforts non-cooperatively (see Barrett, 1994). Then

the above abatement game yields the following equilibria in pure strategies: (i) a set of

trivial equilibria in which a sufficiently small number of countries enters the coalition

such that nobody abates, even if one additional country were to join, so that k < c/b−1,

and (ii) a threshold equilibrium, where k is the (unique) integer k that satisfies

c/b ≤ k < c/b+ 1. (1)

In this case, k is just large enough, so that a coalition of this size decides to abate

(left inequality), but it is not so large, that the coalition would still decide to abate if

one country were removed from it (right inequality). Hence, the “last” country to join

induces the coalition to become active. No additional country would volunteer to join, as

the private costs (equal to c) of doing so outweigh the additional private benefits (equal

to b < c).

Now our dynamic climate cooperation model is based on the simple idea, that abate-

ment efforts are chosen not just in a single period, but in infinitely many periods. Coun-

tries can negotiate about a long-term climate agreement in every period. However, once

a long-term agreement has been signed by a number of countries, the game ends. In

other words, there can be only one climate change agreement, and once an agreement

is reached, countries are committed to stick with it in all future periods. However, as

long as no agreement has been signed yet, in every new period, countries can start to

negotiate again (in the same way as in the static game). This is presumably the simplest

possible extension of the static coalition formation game to a dynamic framework.

Let us now analyze how the equilibrium outcomes change for our simple emissions

game introduced above, as compared to the static approach. As in most of our main

analysis, we restrict attention to Markov perfect equilibria.10 Hence, if along the equilib-

rium path, a coalition of size k is supposed to form and sign a long-term climate agreement

in period 1, but (say, following some deviation) the coalition that actually forms signs no

agreement, then all countries expect that in the following period 2, again a coalition of

size k forms. Furthermore, under a deterministic membership approach which we assume

here,11 the identities of these k countries in the next period will be the same as in the

current period (if countries had chosen to stick with their equilibrium strategies today).

10We thereby rule out tacit collusion or grim trigger strategies, which may sustain abatement efforts
even in the absence of a binding climate contract.

11In the following sections, we also study an alternative random membership approach.
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Then clearly, the set of trivial equilibria remains the same as in the static game. However,

the set of threshold equilibria is now changed.

Formally, a threshold equilibrium in the dynamic game must simultaneously fulfill the

following two conditions (with δ being the discount factor):

1

1− δ
(bk − c) ≥ δ

1− δ
(bk − c), (2)

1

1− δ
[b(k − 1)− c] < δ

1− δ
(bk − c). (3)

The first condition states that if a coalition of size k forms in some period t, then coalition

members sign a long-term agreement in that period, thereby ending the game, because

the discounted payoff per signatory (left-hand side) is at least as large as the payoff if

the coalition does not sign an agreement, in which case new negotiations start in the

next period. In the latter case, the payoff in the current period of all countries is zero, as

nobody abates. It is easy to see, that condition (2) reduces to k ≥ c/b, the same condition

as in the static game for a coalition to become active. Intuitively, if it is profitable for

coalition members to sign a long-term agreement of size k in the next period, assuming

that no agreement is signed today, then it is profitable for the same k countries to already

sign such an agreement today.12

The second condition, however, has changed in the dynamic game, as compared to the

static one. Now (3) requires that if one country that should be in the coalition in period

t along the equilibrium path (payoff on the left-hand side of the inequality) does not

join, the remaining coalition members decide not to sign a long-term agreement today to

avoid locking-in an inefficient agreement. They prefer to wait a period for the remaining

country to join the coalition (right-hand side).

Rewriting conditions (2)–(3), we obtain

c

b
≤ k <

c

b
+

1

1− δ
. (4)

Now there might be several equilibrium coalition sizes, while the static equilibrium also

remains an equilibrium in the dynamic model.13 Moreover, if δ is sufficiently large (close

to 1), the set of threshold equilibria in the dynamic game can be substantially larger than

in the static game, and even the grand coalition (i.e., k = N) can be sustained if the

right-hand side is greater than N . This points to a significant degree of multiplicity of

threshold equilibria in the dynamic game, as compared to the unique one in the static

12The incentive of each coalition member to join the coalition in the first place (so-called internal
stability condition in static coalition formation games) is captured by the same conditions ((2) and (3)).
External stability is then automatically satisfied, as no additional country would join a coalition that is
willing to sign an agreement and abate also without this country.

13In the case δ = 0, the second condition collapses to k < c/b+1 and we obtain only a single equilibrium
coalition size, which is the same as in the static game.
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game. The reason is self-fulfilling expectations: if countries are optimistic and believe

that a large coalition will sign an agreement in the next period, then the same coalition

may as well form already today and sign an agreement.

Outlook

In the remainder of this paper, we generalize the above ideas by considering a dynamic

coalition formation game. We take a reduced form approach and consider general welfare

functions that depend only on the number of signatories. These welfare functions may

be considered as equilibium outcome of an underlying abatement game. We present ex-

amples of such abatement games with continuous abatement choices (as opposed to just

binary ones in our “toy model”). Furthermore, we introduce an alternative assumption of

how the identities of coalition members in the next period are determined, in case the cur-

rent coalition decides not to sign a long-term agreement (random membership approach).

However, under both deterministic and random membership approaches, large coalitions

can form in equilibrium if countries are sufficiently patient. We illustrate our results for

the random membership approach in Section 4 with the help of specific functional forms

known from the literature. In Section 5, we extend our model to allow countries to sign

a short-term agreement in a period in which no long-term agreement is (or has been)

signed yet. We demonstrate that the possibility to sign short-term agreements can foster

participation in a long-term agreement. Section 6 analyzes the (simpler) deterministic

membership approach (which we assumed also in the toy model) within our general mod-

eling framework. Other extensions include a finite number of periods in which countries

can negotiate (Section B.2 in the Supplementary Appendix), and a departure from the

Markov restriction towards non-stationary equilibria (Section B.3).

3 Full dynamic model

There are N ex-ante symmetric countries that negotiate about an international environ-

mental agreement (IEA). The time horizon is infinite. The negotiations start in period

t = 1, and as long as no agreement has been signed in any previous period, a new round

of negotiations starts in each period. If an agreement is reached in period t, an IEA is

implemented from that period onwards and the game (effectively) ends. As usual in this

strand of literature, we restrict our attention to the case where only one coalition (and

not multiple coalitions) can sign a binding long-term climate contract.

If the coalition signs an agreement, the abatement targets of the signatories are chosen

so that their aggregated welfare is maximized, whereas each of the remaining countries

(non-signatories) chooses its emissions individually in this and all future periods so as

to maximize its welfare. Let Πs(k) denote the present value of payoffs (welfare) of a
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signatory of a long-term agreement with k members and Πn(k) denote the present value

of payoffs that a non-signatory obtains when k other countries sign the agreement. The

welfare functions Πs and Πn can be derived from an underlying emission game. We do

not model such a game specifically here, but rather take a reduced form approach without

imposing specific functional forms. We provide several examples of emission games and

corresponding welfare functions in Section 4.

We assume that the welfare Πs(k) is the same for all signatories and the welfare Πn(k)

is the same for all non-signatories. Moreover, we assume that the welfare is independent

of the time when the agreement is signed.14 Although it is sufficient to consider Πs(k) and

Πn(k) only for integer values of k, it will turn out to be convenient to define them over the

whole interval [0, N ] and to assume that the functions Πs(·) and Πn(·) are continuously

differentiable.

 

random / 
deterministic 
assignment of 

countries 
 

sign 
agreement 

(y/n) 

no 

yes 

abatement (long-term) 
→ welfare Πs(kt), Πn(kt) 

 
 

abatement  
(non-cooperative 

or short-term) 
→ welfare π0 

 

game ends 
 

nature 
 

Participation 
stage 

 
N countries 

 

participation 
decisions 

 
 

Signature 
stage 

 
kt members 
 N countries 

 

period t  

Figure 1: Timing of actions in period t

In our full dynamic game, each round of negotiations involves two stages (see Figure 1).

In the participation stage, each country decides individually whether to join the coalition

or not; let kt denote the number of countries who join in period t (provided that period is

reached). In the signature stage stage, the kt coalition members decide whether to sign an

agreement in this period or not. If they indeed sign the agreement, the game (effectively)

ends, the IEA is implemented and the resulting payoffs from subsequent abatements,

14Later, we consider a special case, where these payoffs are outcomes of time-independent per period
interactions. For the time being, the dynamics of the interaction after an agreement is signed, are
irrelevant. We are interested in the dynamics of reaching an agreement. The setup resembles stopping
games, where stopping corresponds to a coalition signing a binding long-term climate agreement.
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namely Πs(kt) for a signatory and Πn(kt) for a non-signatory, are realized. If they do not

sign, the coalition dissolves, and all N countries choose their emissions non-cooperatively

in that period.15 A new round of negotiations then starts in the next period. Let π0 ≥ 0

denote the (constant) per-period payoff for a country in a period where no agreement has

been reached yet. Let δ ∈ (0, 1) be the common discount factor.

As a benchmark, let kst be the stable coalition size in the static case, based on the

welfare functions Πs(k) and Πn(k), that is obtained when countries can negotiate only in

period 1, or if future payoffs are fully discounted away (i.e., δ = 0). The static model has

been studied thoroughly in the literature (e.g., Barrett 1994; Karp and Simon 2013). The

following conditions of external and internal stability characterize a Nash equilibrium at

the participation stage in the static case:

Πn(k) ≥ Πs(k + 1), (ES)

Πs(k) ≥ Πn(k − 1). (IS)

External stability (ES) requires that outsiders (non-signatories) have no incentives to

join the coalition, while internal stability (IS) requires that insiders (signatories) have

no incentives to deviate by staying outside the coalition.

In order to analyze our dynamic model, we need to impose additional structure on

the payoff functions Πs(k) and Πn(k).

Assumption 1 (Welfare comparison). There is k0 ∈ [0, N) such that Πn(k0) = Πs(k0)

and Πn(k) ≶ Πs(k) for k ≶ k0. In addition, Πn(k0) = Πn(0).

Assumption 2 (Monotonicity). Πn(k), Πs(k), and kΠs(k) + (N − k)Πn(k) are strictly

increasing for k > k0.

Assumption 3 (Free-rider incentives). There is a unique threshold k̃ ∈ (k0, N − 1) such

that Πn(k̃) = Πs(k̃ + 1). In addition,

(a) Πn(k)− Πs(k + 1) is strictly increasing for k > k̃.

(b) Πn(k) < Πs(k + 1) for k < k̃.

Assumption 4 (Non-cooperative payoff). Πn(0) ≤ π0
1− δ

≤ Πs(k
st).

According to Assumption 1, the welfare of a non-signatory is larger than that of a

signatory (for a sufficiently large coalition size), because non-signatories enjoy the same

benefits of abatement as the signatories (with pollution being a global public bad), but

incur lower costs of abatement. Only for small coalition sizes, this relation may be

15In Section 5, we assume instead that countries negotiate about a short-term agreement in a period
in which no long-term agreement is reached. Our general modeling framework developed here allows us
to accomodate also this case.
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reversed. The value k0 represents the smallest coalition size above which non-signatories

are better off than signatories. This is generally also the critical coalition size above

which signatories reduce their emissions more than the non-signatories. The second

part of Assumption 1 postulates that both for coalition sizes k = 0 as well as k = k0,

the countries attain an identical welfare, since in both cases there are N countries that

behave in the same way. Note also that for a given emissions game, the value of k0 is

determined by the underlying welfare functions Πs(k) and Πn(k). In our examples in

Section 4, we obtain k0 = 0 when assuming that the non-signatories do not reduce their

emissions, but also larger values of k0, depending on the shape of the underlying benefits

from abatement.

Assumption 2 reflects the property that in a sufficiently large coalition, with increas-

ing coalition size, the signatories lower their emissions more and more to internalize

environmental externalities between them. This consequently increases the welfare of

each individual country, as well as the total welfare.

Assumption 3 is a single-crossing assumption for the free-rider incentives represented

by the expression Πn(k)−Πs(k+1). This expression corresponds to the gain from leaving

a coalition of k + 1 countries and it plays a central role in determining the equilibrium

of the static model. It is assumed that the free-rider incentives are negative for small

coalitions and increasing for large coalitions, as larger coalitions internalize more of the

externalities.

Finally, Assumption 4 implies that welfare from non-cooperation in all periods (equal

to π0/(1− δ) per country) is bounded from below by the welfare when no country signs

an agreement and bounded from above by a signatory’s welfare in the equilibrium of the

benchmark static case. It follows from Assumption 1 that Πs(k0) ≤ π0/(1− δ). Although

we treat π0 as an independent parameter (bounded only by Assumption 4), in specific

models (see Section 4), its value can be derived as an equilibrium payoff from the same

underlying interaction as the welfare functions Πs and Πn.

Before proceeding with the analysis of the dynamic model, let us point out that the

above assumptions also provide enough structure to characterize the equilibrium coalition

size in the static model. With threshold k̃ defined in Assumption 3, kst = dk̃e is an

equilibrium coalition size in the static model.16 In order to avoid duplicity and a tedious

discussion of a knife edge case, we will assume that k̃ is not an integer (otherwise, both k̃

as well as k̃ − 1 satisfy internal and external stability). Moreover, due to Assumption 4,

the equilibrium coalition of kst countries prefers to sign an agreement compared to no

agreement at all.17

16Given an arbitrary x ∈ R, dxe is defined as the unique integer such that dxe− 1 < x ≤ dxe. It is the
smallest integer at least as large as x.

17It is worthwhile to point out that our “toy model” from Section 2 is not nested in the general model,
since there the free-rider incentive is equal to bk − [b(k + 1) − c] = c − b, which is constant. Moreover,
the “toy model” features a threshold equilibrium also in the static benchmark case. By contrast, due to
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Now consider some coalition of size kt that would form in period t, provided that period

is reached. If kt ∈ [1, N), there is a coordination problem at the participation stage of the

negotiations where each of the N countries simultaneously and non-cooperatively decides

whether to become a coalition member in that period. Clearly, the incentives to become a

coalition member today and to sign the agreement depend on whether a country expects

to become a coalition member in the next period (if no agreement is reached today).

In the following, we will assume that the identity of the coalition members in period

t (for some given coalition size kt) is randomly determined. Intuitively, as countries are

ex-ante symmetric, there is no reason why any specific country should be more likely to

join the coalition than another country. Hence, if countries coordinate on a coalition size

of kt, the ex-ante probability of any country to become coalition member is kt/N . To fix

ideas, we assume that countries coordinate with the help of a randomization device (na-

ture) that selects an assignment (or an ordering) of countries (see Figure 1). Of course,

the actual participation decision of a country can differ from the recommendation, as the

participation decision of each country remains voluntary and non-cooperative. However,

in equilibrium each country is willing to follow the recommendation. Conceptually, this

corresponds to a correlated equilibrium, where, for a given coalition size kt, the pub-

lic randomization device selects randomly one of the
(
N
kt

)
= N !

kt! (N−kt)! equilibria with

coalition size kt.
18

We say that the negotiations in period t are successful if the coalition signs an agree-

ment. Otherwise, we say that the negotiations have failed. We assume throughout the

paper that the coalition members in period t use an unanimity rule when deciding whether

or not to sign a climate contract. Hence, every country that has joined the coalition has

a veto right, and the negotiations in period t fail as soon as at least one coalition mem-

ber uses its veto right.19 For most results in this paper, the choice of the decision rule

is inconsequential. Nevertheless, we would like to point out that giving each coalition

member a veto right at the signature stage gives potentially rise to another coordina-

tion problem with other equilibria at the signature stage, where no agreement is signed

(leaving each coalition member indifferent between signing and not). Similarly as we did

regarding the participation stage, we assume that countries can overcome this coordina-

tion problem. To this end, we assume that coalition members select a Pareto dominant

equilibrium (if such exists) at the signature stage. This is a plausible selection criterion

since the countries are engaged in negotiations (see the discussion in Farrell and Maskin

Assumption 4 in our full model, threshold equilibria can only exist in the dynamic case, not in the static
one.

18The alternative deterministic membership approach is analyzed in Section 6. Most of our analysis
presented here, remains valid also in this case, as shown formally in Appendix A.2.

19This modeling choice is also inspired by the UN climate negotiations that led to the Paris Agreement,
where each member country had a veto right. See also Finus and Rundshagen (2003) for an analysis of
the role of an unanimity rule.
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1989).20, 21

Whether the participating countries sign an agreement in period t, depends on their

outside option. This is determined by the continuation value in case no agreement is

signed. Assuming that kt+1 = k countries sign an agreement in period t + 1, a country

achieves in the next period an expected welfare of

V (k) = p(k)Πs(k) + (1− p(k))Πn(k), (5)

where p(k) = k/N denotes the probability of being assigned as a coalition member in

period t + 1.22 Clearly, Πs(k) < V (k) < Πn(k) for all k ∈ (k0, N). Moreover, due to

Assumption 2, the function V (k) is strictly increasing for k > k0.

A coalition member (and hence, the whole coalition) is willing to sign the agreement

in period t rather than not signing and thus delaying negotiations until period t + 1, if

and only if

Πs(kt) ≥ π0 + δV (kt+1). (6)

The left-hand side represents the welfare from signing an agreement among kt countries

in the current period. The right-hand side represents the welfare from a delay when there

will be an agreement signed among kt+1 countries in the next period. This yields welfare

of π0 in the current period and expected welfare of V (kt+1) in the following period.

Let us for any coalition size k ∈ [k0, N ], define ξ(k) as the critical coalition size such

that ξ(k) ∈ [k0, N ] and

Πs(ξ(k)) = π0 + δV (k), or equivalently, ξ(k) = Π−1s (π0 + δV (k)) . (7)

We show in Appendix A.1 (Lemma 2) that the function ξ is well defined and increasing,

and that ξ(k) ∈ [k0, N) for all k ∈ [k0, N ]. A coalition of size kt = ξ(k) thus leaves its

members indifferent between signing an agreement in the current period, and delaying

the negotiations until the next period where a coalition of size kt+1 = k would be formed.

Of course, ξ(k) may not be an integer in general. Hence, let ξ̂(k) = dξ(k)e be the

smallest integer at least as large as ξ(k). Note, that since kt is an integer, the inequality

kt ≥ ξ(kt+1) is equivalent to kt ≥ ξ̂(kt+1). These considerations together with inequality

(6) yield the following lemma (all proofs are relegated to the Appendix).

Lemma 1. If countries anticipate that a coalition of size kt+1 ≥ k0 will sign an agreement

in the following period (period t + 1), provided no agreement is signed in period t, then

20Note that if signing an agreement is an improvement for each coalition member, it is also an im-
provement for non-members who even obtain a higher payoff.

21As an alternative approach, one could assume that coalition members decide collectively whether to
sign an agreement or not (e.g., by delegating their individual decisions to a social planner who decides
on behalf of all signatories).

22Under the deterministic membership approach, p(k) = 1. See Section 6 for further details.
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the coalition of size kt ≥ k0 signs an agreement in period t, if and only if kt ≥ ξ̂(kt+1).

Note that the finding that function ξ is increasing reflects our intuition that, whenever

countries anticipate the formation of a larger coalition in the next period (in case of a

delay), the threshold ξ̂(kt+1) for signing a long-term agreement in the current period

becomes (weakly) larger. In other words, countries are more demanding today when they

anticipate a more favorable outcome in the future.

In the main part of this paper, we focus on Markov perfect equilibria in pure strate-

gies.23 This means that countries’ strategies may depend only on payoff-relevant events.

Given the stationary structure of the model (in particular the time-invariant payoff func-

tions), the only payoff-relevant event is when an agreement is signed by a coalition in

some period t. However, this ends the game, so under the Markov restriction, countries’

equilibrium strategies are stationary.

First note, that there is a trivial equilibrium where countries never sign an agreement,

if and only if Πs(1) ≤ π0/(1−δ). Under this condition, it is not profitable for any country

to join the coalition (and sign a single-country agreement), provided that no other country

joins.24 From now on we focus on equilibria where the countries indeed sign an agreement.

Due to the stationary nature, in equilibrium, countries thus clearly sign the agreement in

the first period.25 Let us denote k∗ the equilibrium coalition size. Following a deviation

in period t that induces a delay in the negotiations, countries expect equilibrium behavior

from the following period onwards so that a coalition of size kt+1 = k∗ is expected to form

in the next period with probability 1.

In what follows we provide conditions for k∗ to be an equilibrium coalition size. As a

first observation, consider when the k∗ countries are indeed willing to sign an agreement

on the path. According to condition (6), this is the case when

Πs(k
∗) ≥ π0 + δV (k∗), or equivalently, k∗ ≥ ξ̂(k∗), (8)

where the equivalence follows from Lemma 1. Thus, condition (8) is necessary for k∗ to

be an equilibrium coalition size.26 This captures a threshold effect regarding the coalition

size that arises endogenously in our model. In particular, if a coalition forms in a period

t that is perceived as “too small” by its members (i.e., kt < ξ̂(k∗)), then this coalition

dissolves.27 Below we show that this logic gives rise to a novel type of equilibrium, where

23In Supplementary Appendix B.2 we analyze a variant of the model with finitely many periods of
negotiations, and in Supplementary Appendix B.3 we relax the Markov assumption and analyze equilibria
with delay. The Markov restriction in the infinite-horizon model narrows the set of equilibrium coalition
sizes and leads to sharper predictions.

24A single-country agreement can affect payoffs in games with complex interactions, for example, when
the signatory becomes a Stackelberg leader (see the Example 4 in Section 4).

25Equilibria with delays are characterized in Supplementary Appendix B.3, where we relax the Markov
restriction.

26Note that k∗ < ξ(k∗) would imply that in each period a coalition forms that remains inactive.
27Note that since V (k) ≥ Πs(k), inequality (8) implies that Πs(k

∗) ≥ π0/(1− δ).
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coalitional stability is driven by the endogenous threshold effect regarding the minimum

size of an active coalition (i.e., a coalition that is sufficiently large for its members to be

willing to sign a long-term agreement). Furthermore, there can also be an equilibrium

that parallels the one in the static model. In that case the endogenous threshold effect

does not play any role.

Next, we argue that (assuming that k∗ satisfies (8)) the external stability condition

is the same as in the static model. To see this, consider a potential deviation by an

outsider who joins the coalition. In such a case, we obtain a coalition of size k∗+ 1 in the

current period. This coalition clearly signs an agreement, because (by Lemma 1) even a

smaller coalition of only k∗ countries would sign an agreement. Comparing the payoff of

the deviating country, Πs(k
∗+ 1), to the equilibrium payoff Πn(k∗), we indeed obtain the

same external stability condition (ES) as in the static case. In addition, notice that for

all k ≥ kst, external stability is satisfied.

Finally, let us characterize internal stability in the dynamic game. To this end, con-

sider a deviation by an insider (i.e., a country assigned to be a coalition member by the

public randomization device in period t) who deviates by not joining the coalition. The

payoff from such a deviation depends on whether the remaining k∗ − 1 countries sign an

agreement or not. We distinguish two cases. First, let (8) hold with a strict inequality,

i.e., k∗ > ξ̂(k∗). Then, since both k∗ and ξ̂(k∗) are integers, we have k∗ − 1 ≥ ξ̂(k∗).

Due to Lemma 1, the remaining k∗ − 1 countries sign an agreement, yielding a payoff of

Πn(k∗− 1) to the deviating country. Comparing it to the equilibrium payoff Πs(k
∗) from

no deviation, we obtain the same internal stability condition (IS) as in the static model.

Now, since kst is the only integer satisfying both external and internal stability, the only

equilibrium coalition size that satisfies k∗ > ξ̂(k∗) is the static one, i.e., k∗ = kst.

Second, let (8) hold with an equality, i.e., k∗ = ξ̂(k∗). In that case, after the deviation

of an insider, the coalition of size k∗ is just large enough to sign an agreement. Thus,

the coalition of the remaining k∗ − 1 does not sign an agreement in the current period,

causing a delay with payoff of π0 + δV (k∗) to the deviating country. Such a deviation is

not profitable, since by assumption Πs(k
∗) = π0 + δV (k∗) in this case. Thus, there is no

profitable deviation for the insiders when k∗ = ξ̂(k∗).

Let us sum up the above findings. For k∗ to be an equilibrium coalition size in the

dynamic model, then it must hold that either

Πn(k∗) ≥ Πs(k
∗ + 1), Πs(k

∗) ≥ Πn(k∗ − 1), and k∗ > ξ̂(k∗), (9)

or

Πn(k∗) ≥ Πs(k
∗ + 1), Πs(k

∗) ≥ π0 + δV (k∗), and k∗ = ξ̂(k∗). (10)

In both cases, the first two conditions reflect the individual incentives of a country whether

or not to join the coalition (external and internal stability), whereas the third condition
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reflects the incentives of the coalition members whether or not to sign an agreement.

Conditions (9) and (10) specify two equilibrium types, which differ in what happens after

one of the countries deviates and does not join the coalition: In the second equilibrium

type that is based on the threshold effect regarding the coalition size, a deviation by a

single country is sufficient to induce a delay in the negotiations. In the first equilibrium

type, also a coalition of size k∗ − 1 signs an agreement (following a deviation).

The case when k∗ = ξ̂(k∗) (second equilibrium type) represents a crucial difference to

the static model, where a coalition still signs an agreement after one of its member has

deviated. Now a deviation by an insider causes a delay. As we have shown above, the

second condition in (10) is implied by the third condition. The static internal stability

condition is then effectively replaced by the new condition k∗ = ξ̂(k∗), which can be

rewritten as28

ξ(k∗) ≤ k∗ < ξ(k∗) + 1, (11)

which is equivalent to Πs(k
∗ − 1) < π0 + δV (k∗) ≤ Πs(k

∗). As we will see later, the two

inequalities in (11) yield an upper and a lower bound on the equilibrium coalition size.

Summing up the above arguments, we can formulate the following two propositions.

Proposition 1. There is a Markov perfect equilibrium of the dynamic game with coalition

size kst, if and only if kst ≥ ξ̂(kst), or equivalently kst ≥ ξ(kst).

Proposition 2. In any non-trivial Markov perfect equilibrium of the dynamic game, the

coalition is at least as large as in the equilibrium of the static model (k∗ ≥ kst). An integer

k∗ > kst (where k∗ ≤ N) is an equilibrium coalition size, if and only if it is a fixed point

of function ξ̂, i.e.,

k∗ = ξ̂(k∗). (DS)

As argued above, the new dynamic stability condition (DS) replaces the internal

stability condition (IS) from the static model. We will be particularly interested in

equilibria characterized by this condition, hence, equilibria with a coalition size k∗ that

is larger than in the static model. Let us thus analyze fixed points of the function ξ̂.

In Appendix A.1, we show that the function ξ̂ has indeed a fixed point in the interval

(k0, N ] (Lemma 3).29

As follows from Proposition 2, such a fixed point represents an equilibrium coalition

size, if it is larger than the static coalition size kst. In general, the equilibrium coalition

size in the overall game does not need to be unique. In particular, ξ̂ may have several

28The former follows directly from the definition of ξ̂, since the equality dξ(k)e = k can also be rewritten
as ξ(k) ≤ k < ξ(k) + 1 (see footnote 16).

29Note that in the special case when Πn(k0) = π0/(1−δ), i.e., when the left condition in Assumption 4
holds with equality, a trivial fixed point of ξ is k = k0. To see this, recall that due to Assumption 1, we
have V (k0) = Πs(k0) = Πn(k0) = π0/(1− δ), and thus Πs(k0) = π0 + δV (k0), or equivalently k0 = ξ(k0).

If, in addition, k0 is an integer, it is also a fixed point of ξ̂.
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fixed points if ξ has several fixed points or when ξ has a slope close to 1. The latter case

is illustrated in Figure 2, that shows the functions ξ and ξ̂, based on a specification of

payoff functions Πs and Πn from an example introduced in the following section. (We

omit further details at this point.) As can be seen from the figure, ξ has (besides k0) a

single fixed point equal to approximately 5.4. However, ξ̂ has three fixed points: k = 6,

k = 7, and k = 8.

As suggested by (11), in order to characterize equilibrium coalition sizes, we need to

identify the fixed points of functions ξ and ξ+1. The following assumption provides suffi-

cient conditions, assuring that each of these functions indeed has at most one fixed point.

This allows for a particularly simple and parsimonious characterization of equilibrium

outcomes. Below we also provide a rationale for the assumption.

Assumption 5 (Single-crossing). (a) There exists k ∈ [k0, N ] such that k ≶ ξ(k) if

k ≶ k.

(b) There exists k̄ ∈ [k0 + 1, N ] such that k − 1 ≶ ξ(k) if k ≶ k̄.

Assumption 5 postulates that each of the functions ξ and ξ + 1 has at most one fixed

point, and if it does, it is the point k and k̄, respectively. Moreover, at the fixed point,

the corresponding function (ξ or ξ + 1) crosses the 45◦-line from above. The assumption

also allows for cases, where k = k0, when ξ lies below 45◦-line on the interval [k0, N ], and

where k̄ = N , when ξ+ 1 lies above 45◦-line on the interval [k0 + 1, N ]. In order to avoid

a tedious discussion of non-generic cases, we assume that N is not a fixed point of ξ + 1

(i.e., that ξ(N) 6= N − 1). Moreover, it clearly follows from Assumption 5 that k < k̄.

Intuitively, the function ξ captures the willingness of coalition members to sign a

long-term agreement (or to use their veto right instead). There are two basic motives

that determine the willingness of countries to sign a long-term agreement today: (i) the

requirement of a sufficiently strong agreement in order to compensate its members for

the forgone opportunity to become free-riders in the future (with probability 1−p(kt+1));

and (ii) the willingness to sign something weaker today than what would be expected in

the future in order to avoid inefficient delay. A fixed point of the function ξ is where these

two motives are balanced for a marginal country, i.e., when the integer constraint on k is

neglected. The fixed points of the function ξ̂ are the coalition sizes where the two motives

are (almost) balanced for a non-marginal country, i.e., when the integer constraint on k

is taken into account.30

The first of the two basic motives mentioned above becomes weaker when a larger

coalition is expected to form tomorrow in case of a delay, because the probability to

30They are not exactly balanced, unless ξ̂ coincides with ξ at a fixed point of ξ which requires that
the latter is an integer. Otherwise, at a fixed point of ξ̂ the coalition is just large enough to sign an
agreement. Hence, the motive to sign may be slightly larger than the motive to delay.
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become non-signatory in the next period (1− p(kt+1)) is then smaller. The second effect

results from impatience (discounting of future payoffs) and does not directly depend

on the coalition size. Therefore, if the first effect is sufficiently strong for small k, it

dominates (hence, Πs(k) < π0 + δV (k) and thus ξ(k) > k), whereas it always vanishes

for coalition sizes close to N (as 1− p(k) = (N − k)/N) so that Πs(k) > π0 + δV (k) and

ξ(k) < k for k sufficiently large. Assumption 5 assures that there is a smooth transition

from the region where the first effect dominates (for small k) to the region where the

second effect dominates (for large k).

Note that Assumption 5 is trivially fulfilled if ξ is concave. Lemma 4 in Appendix A.1

provides an alternative sufficient (albeit not necessary) condition for Assumption 5(a)

to hold, based on monotonicity of the functions Πs and Πn. It can be verified that the

assumption in Lemma 4 is indeed satisfied in all our examples in Section 4 (in Examples

1 and 3, the ratio in Lemma 4 is simply a constant).

Now we are ready to provide a characterization of the set of equilibrium coalition

sizes in the dynamic game. Recall from Proposition 1 that the sufficient and necessary

condition for the stable coalition size in the static model, kst, to be an equilibrium coalition

size also in the dynamic game is kst ≥ ξ(kst). Under Assumption 5, this is equivalent to

kst ≥ k. Moreover, it follows from Proposition 2 that any other equilibrium coalition size

k∗ is a fixed point of ξ̂ such that k∗ > kst. It follows from (11) that, under Assumption 5,

the set of all fixed points of ξ̂ is in the interval [k, k̄). Depending on the size of kst relative

to k and k̄, we thus obtain the following characterization of equilibrium coalition sizes:

Proposition 3. The set of all equilibrium coalition sizes (in any non-trivial Markov

perfect equilibrium in pure strategies) in the dynamic game is

(a) all integers from the interval [k, k̄), if kst < k;

(b) all integers from the interval [kst, k̄), if k ≤ kst < k̄;

(c) {kst}, if kst ≥ k̄.

The proposition implies that any equilibrium coalition sizes in the dynamic game are

bounded from below by max{kst, k} and from above by max{kst, k̄}. In the case where

kst < k (case (a)), we obtain that the static equilibrium coalition size is not an equilibrium

coalition size in the dynamic model. To understand the intuition why this is the case,

suppose to the contrary that in the first period of the dynamic game, a coalition of size

kst forms and its members are willing to sign a long-term agreement (hence, kst is an

equilibrium coalition size). Then it must hold that in case of delay (i.e., if the coalition

members do not sign an agreement in the first period), another coalition of size kst forms

in the next period. But since kst is typically small (see Barrett 1994), this implies that

for each member of the coalition in period 1, the probability to become a free-rider (non-

signatory) in the next period is high. This makes it unprofitable to sign an agreement
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in the first period. By contrast, equilibria that fulfill (DS) entail (in case (a)) a higher

coalition size than kst (see Section 4 for examples). The chances of becoming a free-rider

in the next period in case of a delay are, then, smaller, so that the members of a larger

coalition are willing to sign an agreement (in the first period). Figure 2 illustrates these

equilibria for a specific example (Example 2 in Section 4) where case (a) from the above

proposition applies for the underlying parameter values. Observe that all fixed points of

ξ̂ (namely 6, 7, 8) are integers from the interval [k, k̄), where k ≈ 5.4 is a fixed point of ξ

and k̄ ≈ 8.2 is a fixed point of ξ + 1 (note that k0 = 1 and kst = 3 in this example).
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Figure 2: Illustration of ξ(k) and ξ̂(k) for Example 2 (Section 4) with δ = 0.6, N = 10

The multiplicity of equilibria in our model can be explained intuitively: If coalition

members in period t are optimistic and anticipate that a larger coalition k∗ will form

in the following period, if no agreement is signed in period t, then they also become

more demanding in the current period. The threshold level ξ̂(k∗) is, then, larger. This is

an example of self-fulfilling expectations, because under these circumstances, of course, a

larger coalition forms immediately and signs an agreement. If countries are less optimistic

and anticipate a smaller coalition size k∗ in the future in case of delay, then also the critical

coalition size ξ̂(k∗) is smaller and an agreement is signed immediately by fewer countries.

We now provide comparative statics with respect to the discount factor δ and the

per-period payoff when no agreement is signed, π0. Due to multiplicity of equilibria, we

consider comparative statics on k. Recall that Πs and Πn denote present values of payoffs.

Until now we did not impose any intertemporal structure on the interaction of countries

after an agreement is signed, which gives rise to these present values. In order to provide

comparative statics results, more structure is needed, and we simply assume that these
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present values are derived from time-independent interaction, so that

πs(k) = (1− δ)Πs(k) and πn(k) = (1− δ)Πn(k) (12)

reflect the (constant) per-period payoffs once an agreement among k countries has been

signed. Clearly, the internal and external stability conditions (first two conditions in (10)

resp. (9)) can now be formulated for the per-period payoffs πs(k) and πn(k), that do not

depend on δ nor on π0. Thus, also the value of kst does not depend on δ nor on π0.

In conjunction with Proposition 2, the next result thus indicates that in our dynamic

climate cooperation model, an increase in δ or in π0 leads to (weakly) larger equilibrium

coalition sizes.

Proposition 4. Assume that the per-period payoffs after signing an agreement are con-

stant over time. If k > k0, then the value of k is increasing in δ and in π0.

To see the intuition, consider an equilibrium coalition size k∗ (such that k∗ > kst).

An increase in δ or in π0 makes countries less eager to sign an agreement in period t and

leads to a larger equilibrium coalition size. This is because in both cases, the outside

option (i.e., when coalition members in period t do not sign an agreement) becomes

more attractive, which leads to a larger endogenous threshold for the minimum size of

an active coalition. Clearly, when π0 increases, then not signing a long-term agreement

in some period becomes less costly. This makes countries less eager to reach a long-term

agreement in any period. At the same time, it implies that the critical coalition size

that must be reached for countries to be willing to sign a long-term agreement increases.

Consequently, the value of k increases in π0. Similarly, when the discount factor increases,

a delay in climate negotiations is relatively less costly because most of the benefits from

cooperation are incurred in the future. Hence, again the countries are less eager to sign

a long-term agreement in any period, and the value of k increases in δ.

The best way to sharpen our intuition for this model is to look at specific examples.

4 Examples

In this section we consider examples where we model the interaction that gives rise to

the payoff functions Πs and Πn. Similarly as in Proposition 4, we consider the case where

the present values Πs and Πn are outcomes of time-independent (and myopic) interaction

(see (12)). In addition, we assume that in periods without an agreement, the countries

obtain the non-cooperative equilibrium payoff π0 = πn(0) = (1− δ)Πn(0).31

All examples that we consider in this section share some basic properties (described in

the following). We refer to emission games that have these properties as simple emission

31In Supplementary Appendix B.1 (Lemma 5) we show that for the class of games considered in this
section, we obtain πn(0) = πn(k0). This means that π0 attains its lower bound from Assumption 4.

22



games. In such games, a country’s payoff can be expressed in a simple benefit-cost form

B(X)− C(xi),

where X denotes the aggregate abatement and xi denotes the country i’s abatement

level. This captures the idea that all countries benefit equally from the overall abatement

but each country bears the costs of its own abatement efforts. Furthermore, let B′ > 0,

B′′ ≤ 0, C ′ > 0, and C ′′ > 0, i.e., the costs and benefits are increasing but benefits

are (weakly) concave in the aggregate abatement level, while the costs are increasing

and convex in the country’s abatement level. We also assume that the coalition acts

as a Stackelberg leader vis-à-vis the non-signatories. This is a plausible assumption,

as signatories commit themselves to long-term abatement targets while non-signatories

choose their efforts on a short-term basis in all periods. We consider symmetric equilibria,

where all signatories choose the same abatement level, denoted xs, and also all non-

signatories choose an identical abatement level, denoted xn.

The coalition (with size k) chooses the abatement level xs in order to maximize the

coalition’s joint welfare k[B(X) − C(xs)], where X = kxs + xn,1 + · · · + xn,N−k. As to

the behavior of non-signatories, we consider two possibilities. In Example 1, we assume

that they are non-strategic and do not reduce their emissions at all, i.e., xn,i = 0. In

Examples 2 and 4, we assume that they are strategic and choose their abatement levels

in order to maximize the welfare B(X) − C(xn,i) = B(xn,i + X−i) − C(xn,i), where

X−i = X − xn,i denotes the aggregate abatement level of all other countries. It follows

from the above assumptions that this welfare is strictly concave in xn,i. The first-order

condition then becomes B′(xn,i +X−i) = C ′(xn,i), which under symmetry yields

B′(kxs + (N − k)xn) = C ′(xn). (13)

Note that, even though the above considerations apply only for integer values of k, we

can extend the equilibrium welfare functions also to non-integer values of k (by using con-

dition (13) and the corresponding solution to the coalition’s maximization problem). We

provide further general results for simple emission games in Supplementary Appendix B.1

(Lemma 5).

Let us now turn to the specific examples. We first focus on a simple emissions game

with linear benefits and quadratic costs of abatement, that has often been considered in

the literature. In Example 4, we allow for concave benefits of abatement.

Example 1: Linear-quadratic example (basic case)

Suppose, in each period there is a constant marginal benefit of abatement b > 0. In this

case, the benefit function is linear and has the form B(X) = bX. Moreover, assume that
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the costs are quadratic and have the form C(xi) = 1
2
cx2i (where c > 0).

In the basic example we assume for simplicity that non-signatories do not regulate

their emissions, i.e., xn = 0 and π0 = 0. Relaxing this assumption will lead us to our next

Example 2 (below). The coalition then chooses the abatement level xs to maximize the

aggregate coalition payoff k[B(X)− C(xs)] = k(bkxs − 1
2
cx2s). This yields the coalition’s

optimal abatement per signatory x∗s(k) = bk/c (in all periods once an agreement is signed)

and the following welfare functions:

πs(k) =
b2k2

2c
and πn(k) =

b2k2

c
. (14)

The discounted payoffs Πs and Πn are then given by (12). Note, that in this example,

each non-signatory obtains a payoff that is twice that of a signatory: Πn(k)/Πs(k) =

πn(k)/πs(k) = 2 for any k > 0. This nicely illustrates the free-rider incentives in this

model.32 For the above payoff functions it is easy to verify that k̃ = 1 +
√

2 (see Assump-

tion 3). Thus, in the static case we obtain the pessimistic result that only a coalition

with kst = 3 countries is stable.

In the dynamic game, it follows from the expressions in (14) and from π0 = 0 that

ξ(k) = k
√
δ (2− k/N).33 Now recall that k is a fixed point of the function ξ, i.e.,

k = ξ(k), if such exists. This is the case when δ ≥ 1
2
, which then yields

k

N
= 2− 1

δ
. (15)

On the other hand, if δ < 1
2
, then ξ(k) < k for all k > k0 = 0, and thus k = 0.

The simple condition (15) nicely captures the central result of this paper: For suffi-

ciently large values of δ (and N), the equilibrium coalition size is strictly larger than in

the static model, and for δ close to 1, the grand coalition (i.e., k∗ = N) is stable. Unlike

in the static model, this holds even when the gains from cooperation are large. Only if

the discount factor is close to or below 1
2
, the equilibrium coalition size is small. In this

case, the coalition size is determined by conditions (9), rather than (10) and the dynamic

model leads to identical results as the static one. Notice that in this example, the lower

bound (k) for the size of a stable coalition (for δ ≥ 1
2
), (15), is independent of the benefit

and cost parameters b and c.

Example 2: Linear-quadratic example (standard case)

We now extend the previous linear-quadratic example by relaxing the (non-standard)

assumption that non-signatories do not regulate their emissions. This assumption was

made for simplicity, and simplified the algebra considerably. The standard case consid-

32For k = 0 we have Πs(0) = Πn(0) = πs(0) = πn(0) = 0. Thus, also k0 = 0.
33Recall that πs(ξ(k)) = (1− δ)π0 + δv(k), where v(k) ≡ k/N · πs(k) + (1− k/N)πn(k).
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ered in the literature is where all countries choose some positive abatement efforts. In

equilibrium, each non-signatory chooses an abatement level that satisfies the first-order

condition, which now becomes b = cxn. Thus, x∗n = b/c.34 The coalition then chooses

the abatement level xs that maximizes k[B(X)−C(xs)], where X = kxs + (N − k)xn. It

follows from the first-order condition that x∗s = kb/c.

This yields the following per period payoffs (see also Barrett 2005):

πs(k) =
b2

2c
[k2 + 2(N − k)] and πn(k) =

b2

2c
[2k2 + 2(N − k)− 1]. (16)

The payoff per country in a period without an agreement equals the non-cooperative

payoff π0 = πn(0) = b2/(2c) · (2N − 1).35 Then we obtain k̃ = 2, an integer. Thus, in the

static model we obtain equilibrium coalitions with 2 or 3 countries.36

Using (16) and (7), we obtain ξ(k) = 1 +
√
δk(k − 1)[2− (k + 1)/N ], and can deter-

mine k to obtain for the dynamic model:

k

N
= 1− 1

2δ
− 1

2N
+

√
1

δN
+

(
1− 1

2δ
− 1

2N

)2

. (17)

It is easy to show that for large values of δ, the values of k defined by (15) and (17)

are close (see Figure 3 for an illustration). Thus, the simple formula (15) for the lower

bound on the size of the stable coalition in the basic Example 1 where only signatories

abate delivers a good approximation for the respective value in the standard case where

all countries abate. As indicated in the intuition below Proposition 4, the equilibrium

coalition size is rather large when the countries are patient (δ is large). As can be seen

from (16), for large k, the payoff ratio Πn(k)/Πs(k) = πn(k)/πs(k) is then close to 2, while

this ratio is exactly 2 in the basic Example 1. This observation leads us to a straight-

forward generalization of the linear-quadratic example presented in the following.

Example 3: Generalized example with linear benefits of abatement

Now we generalize the basic Example 1 in another direction. Recall that in the basic

example it is the case that the payoff ratio Πn(k)/Πs(k) is constant and equal to 2 (when

k > 0). Let us now consider the case where this ratio is constant but equal to some value

α > 1, i.e.,
Πn(k)

Πs(k)
=
πn(k)

πs(k)
= α (18)

34Observe that due to the assumption of linear benefits, this abatement level is a dominant strategy
for each non-signatory. Thus, we obtain identical equilibrium abatement levels also in a model where all
countries choose their abatement levels simultaneously.

35Note, that now we have Πs(1) = Πn(1) = Πn(0). This also implies that k0 = 1.
36Recall that for convenience we have assumed in the general analysis that k̃ is not an integer. This

assumption is not crucial, it only facilitates the formulation of our results.
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Figure 3: k as function of δ (for N = 200), in Example 1 (xn = 0) and Example 2 (xn > 0)

for all k > 0. Furthermore, let π0 = πn(0) = 0 as in the basic example.37 The parameter α

captures the free-rider incentives. If α is close to 1, then it is only slightly more profitable

to be a non-signatory rather than a signatory when a long-term agreement is signed.

Conversely, if α is large, then being a non-signatory is a lot more profitable than being

a member of an active agreement.38 A fixed ratio α as in (18), can be obtained from the

benefit-cost emission game with linear benefit function B(X) = bX and cost function of

the form C(xi) = cxγi /γ (where b, c > 0 and γ > 1). In this case, α = γ/(γ−1).39 Hence,

the free-rider incentives are more intense the closer the parameter γ is to 1. The case of

quadratic costs from Example 1 is obtained for γ = 2.

In this example we cannot compute the function ξ explicitly. However, we can evaluate

k as solution of the equation πs(k) = (1− δ)π0 + δv(k). After dividing by πs(k) and using

the assumption πn(k)/πs(k) = α, this equation becomes 1 = δ[k/N+(1−k/N)α]. Solving

the equation yields
k

N
=
α− 1/δ

α− 1
, (19)

when αδ ≥ 1, while k = 0 when αδ < 1. This generalizes the result (15).

Intuitively, if the ratio α = πn(k)/πs(k) is large, then it is very profitable to be a

non-signatory when an agreement is signed. Hence, the first of the two basic motives

mentioned earlier (which requires a large coalition in order for its members to sign a

long-term agreement) is strong, so that only large coalitions are stable. Recall that with

k∗ large, the probability to become a non-signatory in the next period in case of a delay,

37The results that follow remain approximately valid if the ratio πn(k)/πs(k) is only (roughly) constant
in the relevant range of values for k, and π0 is sufficiently small.

38It is easy to show that in the static case, only a small coalition is stable when α is large.
39A straightforward computation yields the per period payoffs πs(k) = (γ− 1)/γ · [(bk)γ/c]1/(γ−1) and

πn(k) = [(bk)γ/c]1/(γ−1).
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1− p(k∗) = (N − k∗)/N , is small. This undermines the free-rider incentive and explains

why a large coalition can indeed form in equilibrium.

Example 4: Concave benefits of abatement

Now we briefly consider a more complex example, where the benefits of abatement are

concave in the overall abatement X. More specifically, we consider quadratic benefit

function B(X) = bX − 1
2
dX2 and quadratic cost function C(xi) = 1

2
cx2i (where b, c > 0

and d ≥ 0).

Using the first-order condition for non-signatories and maximizing the coalition’s wel-

fare as a Stackelberg leader, we obtain the following abatement levels (see Supplementary

Appendix B.1 for details):

xn =
b− dkxs

c+ (N − k)d
and xs =

bck

c2 + d2(N − k)2 + cd(k2 + 2(N − k))
. (20)

Inserting these results back into the payoff functions, we can compute the countries’

welfare as a function of the coalition size. For simplicity, we do not provide the full

formulas here. It is straightforward to show that the equality πs(k0) = πn(k0) yields

xs = xn and thus

k0 =
c+ dN

c+ d
.

Moreover, the non-cooperative abatement level, xn(0) = b/(c+Nd), is directly obtained

from (20) by setting k = 0.

Observe that k0 = 1 for d = 0, i.e., in the case with linear benefits (see Example 2),

while k0 > 1 if d > 0. Intuitively, a small coalition strategically reduces the abatement

efforts of its members in order to induce non-signatories to raise their efforts, thereby

exploiting the first-mover advantage. This effect was absent in the examples with linear

benefits of abatement and explains why a larger coalition size (greater than 1) is required

to induce coalition members to internalize environmental externalities between them by

reducing their emissions (by more than the non-signatories).

We do not seek to provide a general characterization of equilibrium outcomes in this

example. Instead, we merely want to check if qualitatively similar results are obtained as

in our previous examples. In particular, we want to investigate if the function ξ fulfills

the basic properties that we assumed in Section 3. Due to the algebraic complexity of the

involved functions, in particular πs(k), πn(k), and ξ(k), the latter of which involves higher-

order polynomials (not presented here), we content ourselves with a simple numerical

inspection of these functions.

Figure 4 illustrates the shape of the payoff functions πs(k) and πn(k) in this example

for a specific set of parameter values. Varying these parameter values, the basic properties

of the payoff functions remain (not shown), while scales of course differ. We observe that
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Figure 4: Payoffs as function of k for Example 4 with concave benefits of abatement (for
N = 10, b = 1, c = 2, and d = 1)

in this example πs(k) > πn(k) for all k < k0 = 4, and it is easy to verify that these

functions fulfill Assumption 3(b). Hence, there is no stable coalition size below k0. Also

our Assumption 1 is obviously fulfilled. Only Assumption 3(a) is not fulfilled for large

values of k (the free-rider incentive πn(k)− πs(k + 1) is declining for large k), but this is

inconsequential because πn(k) is significantly larger than πs(k) in this range so that the

external stability condition remains fulfilled for all k ≥ k0. Also the function ξ fulfills our

assumed properties. In particular, we find that it has a simple concave shape for k ≥ k0

(not shown), so that ξ and ξ + 1 obviously have at most one fixed point above k0, and

at a fixed point, ξ crosses the 45◦-line from above. Now we conclude that our simple

characterization of equilibrium outcomes from Section 3 can be applied also to this more

complex example. In this example (for the parameter values underlying Figure 4), we

obtain k̃ ≈ 4.16, and thus the stable coalition size in the static model is kst = 5. In the

dynamic model we obtain for δ = 0.9: k ≈ 9.04 and k̄ = 11 (since ξ(10) ≈ 9.69 and

ξ(10) + 1 > 10), so that the only equilibrium coalition size for these parameter values is

k∗ = 10 (i.e., the grand coalition).

5 Short-term vs. long-term agreements

So far we have assumed that if the coalition in period t decides not to sign a long-

term agreement, then all countries choose their abatement efforts individually and non-

cooperatively in that period (yielding a payoff of π0), and new negotiations about a

long-term agreement start in the next period. However, even if no long-term agreement is

signed in period t, countries could still reach a short-term agreement in that period. In this

section, we allow for this possibility. We maintain our earlier assumption that countries’
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payoffs under a long-term agreement are derived from time-independent interaction with

per-period payoffs as given by (12).

There are several ways how negotiations about short-term agreements could be mod-

eled. These negotiations start if at least one coalition member (out of kt members) uses

its veto right to block the negotiations about a long-term agreement in period t. One

possibility is to assume that the coalition dissolves, and new negotiations about a short-

term agreement start within period t. Another approach is to assume that the coalition

remains intact, and the remaining coalition members decide whether or not to sign a

short-term agreement (instead of a long-term agreement).40 We find both approaches

somewhat extreme. The first approach may not be plausible because countries that are

already in a coalition may be perceived as more likely candidates for a short-term agree-

ment than outsiders.41 The second approach is extreme in the sense that countries are

locked-in inside the coalition, even if some of them would prefer to exit the negotiations

about a short-term agreement. This is indeed the case whenever kt > kst, because the

internal stability condition, (IS), is then violated. Furthermore, as Barrett (2005) points

out, “under the rules of international law, countries are free to participate in treaties

or not as they please”. Hence, it seems implausible to assume that a country that has

joined the coalition in period t can only sign a short-term agreement (once negotiations

about a long-term agreement have failed in that period), or use its veto right to block

any short-term agreement.

To address these problems, we assume that a country that has joined the coalition

in period t can withdraw from the negotiations if it wishes to do so. Hence, to model

short-term agreements, we add two additional stages to the negotiations within period t

that parallel our modeling of negotiations about the long-term agreement (see Figure 1).

First, if a long-term agreement is not signed by the (initial) kt coalition members, each

of them has the possibility to stay in the coalition that starts to negotiate about a short-

term agreement, or to exit the coalition. Second, the remaining coalition members then

decide whether to sign a short-term agreement that lasts only for one period (until the

end of period t), or not to sign any agreement at all in this period.42

As a first observation, note that for any kt > k0, a short-term agreement is signed

in period t (provided that this period is reached and that no long-term agreement is

signed) since πs(kt) > πs(k0) = πn(0). By our earlier assumptions, countries’ decisions

whether or not to sign a short-term agreement have no direct impact upon their payoffs

40We comment on this approach in more detail in Section 6.1, where we also compare our approach
with the one chosen by Battaglini and Harstad (2016).

41If new negotiations about a short-term agreement start in period t, all countries are equally likely
to become members of the short-term coalition, irrespective of the composition of the initial coalition.

42A short-term agreement is signed if none of the remaining coalition members uses its veto right.
Abandoning this stage would not change the results. Note, that exiting the (initial) coalition always
delivers welfare that is at least as large as staying inside and blocking a short-term agreement (since
outsiders benefit more from an agreement than insiders).
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in future periods. Thus, under the Markov restriction there is no impact upon countries’

continuation values either. Hence, if kt > k0, countries are better off by signing a short-

term agreement in period t, rather than to sign no agreement at all. If kt ≥ kst, the

negotiations about a short-term agreement and the resulting payoffs within period t, thus,

bring us back to the static game that (see Section 3). Hence, due to our assumption that

countries can withdraw from the negotiations about a short-term agreement, the coalition

size of any short-term agreement is equal to kst whenever kt ≥ kst. If k0 ≤ kt < kst, the

coalition size in a short-term agreement is kt, while no short-term agreement (or a short-

term agreement with kt members) is signed if kt < k0.
43

Let us now proceed with the equilibrium analysis of the full dynamic game. We first

ask whether equilibria that entail a long-term agreement signed by (at most) kst countries

can exist also when countries have the possibility to sign a short-term agreement. If

k0 ≤ kt ≤ kst, the coalition signs a long-term agreement in period t if44

Πs(kt) ≥ πs(kt) + δV (kt+1).

Since πs(kt) = (1− δ)Πs(kt), the condition simplifies to

Πs(kt) ≥ V (kt+1).

This replaces our earlier condition (6). However, for kt+1 = kt = k∗ and k0 < k∗ ≤ kst,

this condition is never satisfied, because V (k∗) is a convex combination of Πs(k
∗) and

Πn(k∗), and Πn(k∗) > Πs(k
∗) due to Assumption 1. Intuitively, if a coalition of size kst

(or smaller) forms in period t, and countries expect the formation of another coalition of

size kst in the next period (provided that no long-term agreement is signed today), then

the coalition members prefer to sign only a short-term agreement today. This way, they

enjoy the benefits of free-riding in future periods with a positive probability, while the

coalition size in the future is not smaller than it is today. Hence, an equilibrium where a

coalition of size kst signs a long-term agreement does not exist when countries have the

possibility to sign short-term agreements.45

On the other hand, the above intuition suggests that there might be an equilibrium,

where a coalition forming in each period fails to sign a long-term agreement, but signs

only a short-term agreement instead. Such an equilibrium yields the same joint welfare

43If kt < k0 and k0 > 1 (see Eample 4 in Section 4), then the kt coalition members sign a short-term
agreement.

44Note that since all kt ≤ kst satisfy the internal stability condition (IS), no coalition member has an
incentive to withdraw from the negotiations when kt ≤ kst.

45Note, that there is also no equilibrium where a coalition of size k∗ < k0 signs a long-term contract,
as (due to Assumption 3(b)) additional countries would have an incentive to join. This holds also when
the decision of an outsider to join may induce coalition members to sign only a short-term agreement,
as follows from Assumption 1.
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as a long-term contract signed by kst countries and from an ex ante perspective yields

the same expected welfare to each country.

Proposition 5. Under the possibility to sign short-term agreements, there is no equilib-

rium where at most kst countries sign a long-term agreement. There is an equilibrium

where a coalition of size kst forms in each period and signs only a short-term agreement,

if and only if

Πs(k
st + 1) ≤ πn(kst) + δV (kst). (21)

There is no other equilibrium where a coalition signs a short-term agreement in each

period.

Intuitively, if (21) is satisfied, then an equilibrium exists with kst countries joining

the coalition in each period to sign a short-term agreement, because there is no incentive

for an additional country to join, even if the new coalition of kst + 1 countries signs a

long-term agreement. However, the equilibrium fails to exist if (21) does not hold. In

this case, there is an incentive for an additional country, that is assigned to become a

non-member in period t, to join. Although this reduces the payoff of this country in

the current period (from πn(kst) to πs(k
st + 1)), the continuation value from the next

period onwards may be increased: The per-period payoff after the deviation (equal to

πs(k
st + 1)) is higher in those periods where (without the deviation) the country would

be assigned as a coalition member (yielding payoff πs(k
st)). Hence, there is an incentive

to join in order to lock the other kst coalition members into a long-term climate contract,

inducing them to raise their abatement efforts. If this incentive is sufficiently strong,

it outweighs the free-rider incentives of this country. An equilibrium with kst countries

signing a short-term agreement in each period then fails to exist.

Now consider equilibria with coalition sizes strictly larger than kst. Recall that, with-

out the possibility to sign short-term agreements, the stable coalition size in such an

equilibrium must be a fixed point of the function ξ̂. We show below that (with a small

modification) the characterization of these equilibria remains the same. Formally, for

kt > kst, the coalition in period t signs a long-term agreement if no country uses its veto

power in order to free-ride on kst other countries signing a short-term agreement:

Πs(kt) ≥ πn(kst) + δV (kt+1). (22)

This replaces our earlier condition (6) for coalition sizes greater than kst. Hence, we

can define the function ξ by condition (7) as before, if we replace π0 by πn(kst) = (1 −
δ)Πn(kst). With this modification, the result of Proposition 2 remains valid, so any

equilibrium coalition size larger than kst is a fixed point of the function ξ̂. Thus, we can

characterize the set of all equilibrium coalition sizes using the points k and k̄.
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Proposition 6. Under the possibility to sign short-term agreements, the set of all equilib-

rium coalition sizes that sign a long-term agreement are all integers from interval [k, k̄).

Moreover, k > kst + 1.

The proposition parallels Proposition 3 that provides a characterization of equilibrium

coalition sizes. However, here we only obtain case (a) where k > kst. In addition, it

holds that k > kst + 1, so the lowest possible equilibrium coalition size (for a long-term

agreement) is kst+2. Intuitively, there cannot be an equilibrium with coalition size kst+1,

because out of the kst + 1 countries, an individual coalition member would always prefer

to drop out of the coalition. It does not lose by this: Its own participation choice only

affects the duration of the agreement reached in period t, but not the remaining number

of (other) countries that sign the agreement (in this period and from the next period

onwards). The situation is fundamentally different with at least kst + 2 countries. If

one country assigned as coalition member stays outside or blocks a long-term agreement,

then at least one other country will also drop out of the coalition before the negotiations

about a short-term agreement start. This gives the first country an additional incentive

to stay in the coalition and to sign a long-term agreement. This explains why coalitions

with larger participation levels that sign a long-term agreement can occur in equilibrium

also in this version of the model.

Let us finally compare the equilibrium coalition sizes in the dynamic model with and

without the possibility to sign short-term agreements. As we have shown above, introduc-

ing short-term agreements corresponds to an increase in the parameter π0 (from πn(k0)

to πn(kst)), that captures the payoff in a period without a long-term agreement. Thus,

it follows directly from Proposition 4 that the possibility to sign short-term agreements

has a stabilizing effect upon long-term cooperation.46

6 Deterministic membership approach

So far we have assumed that the identity of the countries that become members of the

coalition in period t (for some given coalition size kt) is determined randomly. However,

there is an alternative approach that is used in the literature, and there seems to be no

consensus about which of the approaches is more suitable. There are good arguments

in favor of both approaches, and our model allows us to use either one of them. Under

the alternative approach, the countries have persistent identities. For any coalition size

kt, the identity of the coalition members is then pre-determined and commonly known

(see Battaglini and Harstad 2016, among others). From a theoretical perspective, these

46For instance, in the Example 2, Section 4, given the possibility to sign short-term agreements, we
obtain for the parameter values that are underlying Figure 2 (i.e., δ = 0.6 and N = 10): k ≈ 6.8 and
k̄ ≈ 8.9, so that the equilibrium coalition sizes are k∗ = 7 and k∗ = 8, whereas without short-term
agreements we had k ≈ 5.4 and k̄ ≈ 8.2, so that k∗ = 6 was also an equilibrium coalition size.
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identities may be simply selected randomly at the beginning of the game.47 From an

applied perspective, they may reflect countries’ (known) willingness to cooperate (or

reputation) in climate-related issues. As an example, a country like Germany may have

a reputation for being cooperative so that even if the equilibrium coalition size is small,

this country would be expected to become a member of the coalition. Conversely, a

country like India may have a reputation to be reluctant to accept any binding target

for greenhouse gas emissions, and only in a very large coalition other countries would

expect this country to join in. In line with such observations, some scholars favor the

assumption that there exists some natural ordering of countries, so that for any given

coalition size kt, it is always clear which countries will (in equilibrium) be part of the

coalition and which countries will be the outsiders. More specifically, if we denote the

countries as 1, 2, . . . , N , then for a coalition of size kt: countries 1, 2, . . . , kt will become

members, while countries kt + 1, . . . , N will not. In this section we investigate how our

previous results change under this alternative approach.

Formally, the case where countries’ roles as coalition members and outsiders are pre-

determined differs from the case with a random assignment of these roles only in the

specification of the probability to be re-assigned as a coalition member in the next period

in case of a delay, for a country that is assigned to become a coalition member today.

Under the deterministic membership approach, this probability is p(k∗) = 1 (instead

of p(k∗) = k∗/N) and it follows from (5) that V (k) = Πs(k). The condition (7) then

simplifies to

Πs(ξ(k)) = π0 + δΠs(k), (23)

where π0 is again treated as an independent parameter, bounded by Assumption 4 (as in

Section 3). Then k, which is a fixed point of the function ξ, satisfies

Πs(k) =
π0

1− δ
. (24)

In contrast to the random membership case, now we don’t need to impose the single-

crossing property in Assumption 5(a) on function ξ; it follows from Assumption 4 and the

monotonicity of Πs. However, we still impose the single-crossing property on function ξ+1

from Assumption 5(b). Then k̄ satisfies Πs(k̄−1)−δΠs(k̄) = π0 if Πs(N−1)−δΠs(N) ≤
π0, while k̄ = N otherwise.

Under these modifications, the analysis remains the same, and as we show in Ap-

pendix A.2, our general results from Section 3, in particular Lemma 1 and Propositions

1–4 remain valid. Moreover, due to Assumption 4, property (24) implies that k ≤ kst.

This implies that kst is always an equilibrium coalition size and only the cases (b) and

(c) in Proposition 3 apply.

47The difference to the random membership approach is, then, only that these identities remain un-
changed later on.
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Finally, note that equation (24) suggests that without the assumption of a random

assignment of countries’ roles as coalition members and outsiders, the stable coalition

size is generally small. It turns out, however, that this conclusion is incorrect. To see

this, recall that, for kst small, k is only the lower bound on the stable coalition size. The

upper bound, the fixed point of function ξ+1, may still be large. To illustrate this point,

let us review our Examples 1–3 from Section 4.

Example 1’. Consider first the basic linear-quadratic Example 1 from Section 4, where

non-signatories do not regulate their emissions (and thus π0 = 0). Inserting the payoff

function Πs(k) as given by (14) into (23), we find that ξ(k) =
√
δ k. The function ξ is

linear and it follows that k = 0 and k̄ = min
{

1/(1 −
√
δ), N

}
. Thus, the set of stable

coalition sizes (fixed points of ξ̂) is large when δ is close to 1 (recall that kst = 3 remains

the same).

Example 2’. It is easy to verify that this result also translates to the extended Exam-

ple 2, where all countries may regulate their emissions. For the payoffs given by (16), we

obtain ξ(k) = 1−
√
δ +
√
δ k. Again, the function ξ(k) is linear, and we have k = 1 and

k̄ = min
{

1+1/(1−
√
δ), N}. We then again obtain that large coalitions are stable when

δ is large. Figure 5 illustrates this property (for N = 10 and δ = 0.8). For those param-

eter values, we find that all integer values from 2 to 10 represent equilibrium coalition

sizes (recall that in the static model there are two equilibria: kst = 2 and kst = 3).
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Figure 5: ξ(k) and ξ̂(k), for δ = 0.8 and N = 10, deterministic membership case (example
with xn > 0)

Example 3’. Finally, consider the generalized Example 3, with linear benefits and cost

function C(xi) = cxγi /γ (where γ > 1 and α = γ/(γ − 1)). In that case, we obtain

k = 0 and k̄ = min{1/(1 − δ1/α), N
}

. Hence, larger coalition sizes can be supported
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in equilibrium when the free-rider incentive increases, which mirrors our results from

Section 4 (Example 3).

Despite these similarities in the results for the two cases (random and deterministic

membership), the underlying intuition is quite different. Recall that under random mem-

bership, large coalitions are stable (for δ sufficiently large) because with k∗ large, the

probability to become a non-signatory in the next period in case of a delay is small. This

undermines the free-rider incentive. On the contrary, under deterministic membership,

large coalitions are stable because of a self-fulfilling prophecy: When countries are opti-

mistic and expect the formation of a large coalition in the future in case negotiations fail

today, then the current coalition must be sufficiently large, too, in order to induce mem-

bers to sign a long-term agreement already today. This feedback effect also explains the

larger degree of multiplicity of equilibria under deterministic membership (see Figure 5),

as compared to the random membership case (see Figure 2).

6.1 Short-term agreements under deterministic membership

As we have argued in Section 5, a short-term agreement is always signed in a period

where the negotiations about a long-term agreement have failed. Given Assumption 4,

the number of countries signing a short-term agreement is then equal to kst if kt ≥ kst

countries have joined the coalition in period t, is equal to kt when k0 ≤ kt < kst, and no

short-term agreement (or an agreement with kt members) is signed when kt < k0. These

findings remain unaffected under the deterministic membership approach. To see this,

observe that for kt > kst, the coalition in period t signs a long-term agreement if

Πs(kt) ≥ πn(kst) + δΠs(kt+1).

This condition is analogous to the condition (22) when V (kt+1) = Πs(kt+1). Hence, again

when replacing π0 by πn(kst) as in Section 5, the definition of the function ξ, (23), and

the corresponding equilibrium conditions remain valid.

By analogous arguments as in Proposition 5 for the random membership case, we

again obtain that there is an equilibrium where a coalition of size kst signs a short-term

agreement in each period, if and only if

Πs(k
st + 1) ≤ πn(kst) + δΠs(k

st). (25)

However, in contrast to Proposition 5, under the deterministic membership approach,

there is also an equilibrium where kst countries sign a long-term agreement when (25)

holds. To see this, note that by the stationarity in the assignment of countries as signato-

ries and non-signatories under deterministic membership, the identity of the kst countries
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that would sign a short-term agreement in each period would stay the same. Hence, these

countries may as well sign a long-term agreement immediately.

Any equilibrium with k∗ > kst is (in this version of the model), thus, characterized by

the dynamic stability condition, (DS) with π0 = πn(kst). All that remains to be done in

order to characterize the effect of the possibility to sign short-term agreements on the set

of equilibria (for simple emission games) is, thus, to study the effect of an increase in π0

upon k and k̄. It is straightforward to see from (24) that k increases in π0. Now consider

the effect on the upper bound on the stable coalition size, k̄. Recall that k̄ now satisfies

Πs(k̄ − 1) − δΠs(k̄) = πn(kst). It follows from the single-crossing Assumption 5(b) that

Πs(k − 1) − δΠs(k) is increasing at k = k̄. Consequently, also k̄ is increasing in π0 and,

thus, introducing the possibility to sign short-term agreements increases the values of k

and k̄.

Hence, as in the case with random membership, also under deterministic membership

we find that the possibility to sign short-term agreements tends to have a stabilizing effect

upon long-term agreements. This is especially true for smaller values of δ. For instance,

in the Example 2 in Section 4, for δ = 0.5 we obtain k ≈ 4.7 and k̄ ≈ 6.7, yielding

equilibrium coalition sizes k∗ = 5 and k∗ = 6, with the possibility to sign short-term

agreements, while k = 1 and k̄ ≈ 4.4, yielding equilibrium coalition sizes k∗ = 3 and

k∗ = 4, without it (recall that kst = 3 in that example). For larger values of δ, the impact

on the set of equilibrium coalition sizes (in particular on k̄) is less pronounced (not shown

here).

Finally, since the model analyzed in this subsection is close to the setup used by

Battaglini and Harstad (2016), let us briefly discuss their relation. Battaglini and Harstad

(2016) also allow for short-term agreements, and use a deterministic membership ap-

proach. Apart from their focus on technology investments (that we rule out by assump-

tion), the crucial difference between our approach and their way of modeling short-term

agreements is that we allow countries that have joined a coalition to withdraw from the

negotiations about a short-term agreement when the coalition decides not to sign a long-

term agreement. As we have argued above, we believe that our approach is more in line

with the rules of international law. It is straight-forward to show that if countries cannot

withdraw from the negotiations (as assumed by Battaglini and Harstad 2016), then also

in our model, there is no equilibrium in which more than kst countries sign a long-term

agreement. As pointed out by Battaglini and Harstad (2016), this is due to countries’

incentives to free-ride on short-term agreements.

7 Conclusion

Allowing for the possibility that parties who are negotiating about a binding long-term

agreement (such as a climate treaty) can meet again in the future and re-start nego-
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tiations in case no agreement is reached today, captures an important aspect of many

real-world negotiations. The main insight from our analysis is that the sheer possibil-

ity of future negotiations can drastically change the outcome of the negotiations. As

we have demonstrated in the context of climate agreements, under mild conditions, a

large coalition that achieves substantial welfare gains forms immediately in equilibrium.

By contrast, it is well-known from the literature that in static models where countries

can negotiate only once, the stable coalition size is generally small precisely when the

potential welfare gains from cooperation are large.

Our results are driven by a threshold effect regarding the coalition size: Having the

possibility to re-start negotiations in the future, countries become more demanding in the

current period and are only willing to sign an agreement if the agreement achieves a lot,

i.e., if the coalition is sufficiently large (from their perspective). Otherwise, they prefer

to delay negotiations by one period, anticipating that a better outcome will be reached

in the next period. Outcomes based on this threshold effect involve different trade-offs

regarding countries’ participation decisions, as compared to a static framework where a

country’s incentive to join a coalition typically reflects the positive effect upon the other

signatories’ abatement decisions. In our model, a country joins (primarily) to prevent

inefficient delay. We have demonstrated that our main results are robust to different

extensions or modifications in the setup, such as random vs. non-random identities of

countries joining the coalition, and the possibility to sign short-term agreements.

To facilitate our formal analysis, we have abstracted from a variety of issues that play

an important role in real-world climate negotiations, and that may help to explain why

these negotiations repeatedly failed in the past. This includes countries’ heterogeneity,

different perceptions of the issue of climate change, stock pollution of greenhouse gases,

technological change, asymmetric information, to name just a few examples. Including

some of these issues in a dynamic analysis such as ours, may be an interesting starting

point for future research.
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A Appendix: Proofs

Proof of Lemma 1. The proof follows from the main text.

Proof of Propositions 1–3. The proofs follow directly from the main text.

Proof of Proposition 4. Recall that ξ is monotonically increasing (Lemma 2) and that k

is now a fixed point of ξ (due to the assumption k > k0). Moreover, by Assumption 5(a),

its slope at k is smaller than 1. Thus, it is sufficient to show that the value ξ(k) increases

in some neighborhood of k, when δ or π0 increases.

Let us now rewrite ξ(k) (as given in (7)) using the functions πs(k) = (1− δ)Πs(k) and

v(k) ≡ (1− δ)V (k) that correspond to per period payoffs and thus do not depend on δ:

πs(ξ(k)) = (1− δ)π0 + δv(k),

or equivalently, ξ(k) = π−1s
(
(1− δ)π0 + δv(k)

)
. (26)

If follows from Assumption 2 that the function πs is increasing. Thus, its inverse π−1s is

increasing as well. This immediately implies that ξ(k) increases when π0 increases (for

all k > k0).

Moreover, (26) implies that ξ(k) increases when δ increases for all k such that v(k) >

π0. In order to complete the proof, it remains to show that v(k) > π0. Recall that for

k > k0 we have V (k) > Πs(k), which can be rewritten as v(k) > πs(k). This indeed

implies that v(k) > πs(k) > π0.

Proof of Proposition 5. The proof of the first claim follows from the arguments in the

main text.

Now consider the case with a series of short term agreements among k∗ countries.

We first show that k∗ = kst. As argued in the main text in any short term agreement,

the coalition size is a most kst. Thus, k∗ ≤ kst. Consider k∗ < kst. Since k∗ violates

external stability (ES), non-signatories have incentives to join the coalition anticipating

that again only a short term agreement would be signed. Thus, kst is the only coalition

size for which the countries sign a series of short-term agreements in equilibrium.

Now let k∗ = kst. Since kst satisfies internal stability (IS), there is no profitable

deviation by an insider. The payoff from a deviation by an outsider depends on whether

the new coalition of size kst+1 signs a long-term agreement or only a short-term agreement

among kst countries. If (21) holds, a deviation by an outsider is not profitable, when

the new coalition of kst + 1 signs a long-term agreement. Moreover, a deviation by an

outsider is not profitable, if the new coalition only signs a short-term agreement among

kst countries. In such a case, the payoff of the deviating country (in the current period)

becomes πs(k
st) or πn(kst) depending on whether the country participates in the short-
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term agreement or not. However, none of these payoffs exceeds the original payoff πn(kst)

from simply staying out.

If, on the other hand, (21) holds with the opposite inequality, i.e., Πs(k
st + 1) >

πn(kst) + δV (kst), then after an outsider joins the coalition, the kst + 1 countries prefer

to sign a long-term agreement (as opposed to a short-term one with kst countries). To

see this, observe that the right-hand side is equal to the payoff of a country that would

not sign the short-term agreement. Since πn(kst) > πs(k
st), the payoff of a country that

would sign the short-term agreement is even smaller. At the same time, the inequality

Πs(k
st + 1) > πn(kst) + δV (kst) implies that a deviation by an outsider who joins the

coalition is profitable. Thus, signing only short-term agreements among kst countries is

not an equilibrium.

Proof of Proposition 6. Recall that for equilibrium coalition size k∗ > kst, the analysis

from Section 3, and in particular, the characterization from Proposition 3, remain valid.

We will argue that only case (a) applies, i.e., that k > kst, or equivalently kst < ξ(kst).

Recall that we now replace π0 by πn(kst) = (1 − δ)Πn(kst). The inequality kst < ξ(kst)

then becomes Πs(k
st) < (1− δ)Πn(kst) + δV (kst). Using (5) to substitute for V (kst) and

rearranging, this becomes 0 < [1− δp(kst)] [Πn(kst)− Πs(k
st)], which indeed holds.

Now it remains to show that k > kst + 1. For kt+1 = kt = k∗, condition (22) becomes

Πs(k
∗) ≥ πn(kst) + δV (k∗). After substituting for V (k∗), this (necessary) condition can

be (after rearranging) rewritten as:

πs(k
∗)− πn(kst) ≥ δ[1− p(k∗)] [Πn(k∗)− Πs(k

∗)]. (27)

Condition (27) cannot be fulfilled for k∗ = kst+1, since the left-hand side is negative due

to (ES), that holds for k∗ = kst, while the right-hand side is positive. Thus, kst + 1 <

ξ(kst + 1), which implies that indeed k > kst + 1.

A.1 Additional technical lemmas (full dynamic game)

Lemma 2. Function ξ is well defined and strictly increasing. Moreover, ξ(k) ∈ [k0, N)

for all k ∈ [k0, N ].

Proof of Lemma 2. First we show that the function ξ is well defined. Recall that it follows

from Assumptions 1–4 that

V (k0) = Πs(k0) ≤
π0

1− δ
< Πs(N) = V (N). (28)

For k ∈ [k0, N ] we then obtain

Πs(k0) ≤ π0 + δV (k0) ≤ π0 + δV (k) ≤ π0 + δV (N) < Πs(N). (29)
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The first and the last inequalities follow from (28), and the second and the third inequal-

ities follow from the monotonicity of V . Continuity and monotonicity of Πs then imply

that there is a unique k′ ∈ [k0, N) such that Πs(k
′) = π0 + δV (k). Then we set ξ(k) = k′.

Second, we show that ξ(k) is strictly increasing. Recall that by the definition of ξ(k)

we have ξ(k) = Π−1s (π0 + δV (k)). By assumption, Πs and V are strictly increasing.

Hence, also the inverse function Π−1s is increasing, which shows that ξ is increasing.

Finally, the property ξ(k) ∈ [k0, N) follows directly from (29) and the definition of

the function ξ.

Lemma 3. Function ξ̂ has a fixed point in the interval (k0, N ].

Proof of Lemma 3. Since the function ξ is increasing, it follows from the inequalities in

Lemma 2 that ξ maps the interval [k0, N ] into the interval [k0, N). Let η = bk0c+1 be the

smallest integer (strictly) larger than k0. Below we show that ξ̂(η) ≥ η and ξ̂(N) ≤ N .

Since the function ξ̂ is weakly increasing, it maps the interval [η,N ] into itself and we can

apply Tarski’s Fixed Point Theorem. This implies that ξ̂ has a fixed point in the interval

[η,N ].

Now it remains to show that ξ̂(η) ≥ η and ξ̂(N) ≤ N . It follows from the definition

of η that η > k0. Thus, ξ̂(η) ≥ ξ(η) > ξ(k0) ≥ k0, where the first inequality follows from

the definition of ξ̂, the second one from ξ being strictly increasing (Lemma 2), and the

third one from Lemma 2. Since ξ̂(η) is an integer and it is larger than k0, we obtain

ξ̂(η) ≥ η. Moreover, ξ(N) < N due to Lemma 2. Because N is an integer, ξ̂(N) ≤ N ,

which completes the proof.

Lemma 4. A sufficient condition for Assumption 5(a) to hold is that
Πn(k)− π0/(1− δ)
Πs(k)− π0/(1− δ)

is weakly decreasing for values of k such that Πs(k) > π0/(1− δ).

Proof of Lemma 4. Recall that V (k) = p(k)Πs(k) + [1 − p(k)]Πn(k), where p(k) = k/N

which is increasing in k. We discuss two cases.

First, let Πs(k) < π0/(1−δ). A straightforward computation yields that the inequality

ξ(k) > k or π0 + δV (k) > Πs(k) can be rewritten as

δp(k)

(
Πs(k)− π0

1− δ

)
+ δ[1− p(k)]

(
Πn(k)− π0

1− δ

)
> Πs(k)− π0

1− δ
,

p(k) + [1− p(k)]
Πn(k)− π0/(1− δ)
Πs(k)− π0/(1− δ)︸ ︷︷ ︸

ϕ(k)

<
1

δ
. (30)

Since Πn(k) > Πs(k) for k > k0, we have ϕ(k) < 1. Therefore, p(k) + [1 − p(k)]ϕ(k) <

1 < 1/δ which implies that (30) is indeed satisfied. This shows that ξ(k) > k when

Πs(k) < π0/(1− δ).
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Second, let Πs(k) > π0/(1−δ). By an analogous computation, the inequality ξ(k) < k

is now equivalent to (30). Since Πn(k) > Πs(k) for k > k0, we now have ϕ(k) > 1.

Moreover, by assumption ϕ′(k) ≤ 0, which implies that the left-hand side of (30) is

decreasing, since its derivative is p′(k)[1 − ϕ(k)] + [1 − p(k)]ϕ′(k) < 0. Thus, it can

attain the value 1/δ at most once, and if it does, we denote it k. Otherwise, we set

k = k0. In both cases we obtain that ξ(k) > k when k0 ≤ k < k, while ξ(k) < k when

k < k ≤ N .

A.2 Discussion of Propositions 1–4 for deterministic member-

ship (Section 6)

Recall that now V (k) = Πs(k) and that ξ(k) now satisfies Πs(ξ(k)) = π0 + δΠs(k).

Clearly, Lemma 1 still holds under these definitions. Also note that the value kst is

derived from the static game, and is thus independent on whether the identities are

random or deterministic.

Proposition 1 applies by the same arguments. As argued in the main text, kst is an

equilibrium coalition size, when kst countries are indeed willing to sign an agreement,

i.e., when k∗ = kst satisfies (8). This condition is equivalent to the condition kst ≥ ξ(kst)

from the proposition. Observe that now this condition simplifies to Πs(k
st) ≥ π0/(1− δ),

which is satisfied by Assumption 4.

Consider now Proposition 2. Any equilibrium coalition size k∗ needs to satisfy external

stability and thus k∗ ≥ kst. By the same argument as in Proposition 2, internal stability

requires that the countries delay negotiations if one country leaves the coalition. Thus,

condition (11) or equivalently, k∗ = ξ̂(k∗), with redefined V and ξ applies.

Proposition 3 is a straightforward consequence of Proposition 1 and 2, and thus applies

as well. Moreover, due to Assumption 4, we only obtain cases (b) and (c).

Finally, Proposition 4 follows from the property that Πs(k) = π0/(1−δ). Since, Πs(k)

is increasing for k > k0, we indeed obtain that k is increasing in δ and in π0 when k > k0.
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B Supplementary Appendix (for online publication)

B.1 Additional properties of simple emission games

In this section we provide some additional results for simple benefit-cost emission games

as introduced in Section 4. Recall that in the basic static climate cooperation game,

the coalition acts as a Stackelberg leader who anticipates the equilibrium abatement of

non-signatories, as given by (13). Let us denote x̂n(xs, k) the non-signatories’ equilib-

rium abatement level in the subgame (of the emissions game) following the signatories’

abatement level xs (when k countries have signed the agreement), as given by (13).

The coalition then chooses xs in order to maximize B(X) − C(xs) = B(kxs + (N −
k)x̂n(xs, k))− C(xs).

48 Furthermore, let us denote x∗s and x∗n the equilibrium abatement

levels of a signatory and a non-signatory, respectively, and let X∗ = kx∗s + (N − k)x∗n be

the equilibrium aggregate abatement level. We sometimes use the notation x∗s(k), x∗n(k),

and X∗(k) to highlight the dependence on the coalition size k.

Lemma 5. In equilibrium of the simple emission game the following properties hold:

(i) πn(k) Q πs(k) if and only if x∗n(k) R x∗s(k).

(ii) πn(0) = πn(k0).

(iii) π′s(k0) = 0.

B.2 Extension: Finite negotiations

Here we study a modified version of our full dynamic game in which the negotiations can

take place only for a finite number of periods. All other features of the model remain the

same. In particular, the time horizon where the payoffs are realized is still infinite, and

Πn(k) and Πs(k) represent the present values of payoffs over this infinite time horizon.

However, we abstract from the possibility of signing short-term agreements, and we only

consider the random membership case. The only difference to our model from Section 3 is

that if no treaty is signed by the end of period T (where T > 1), then no treaty is signed

whatsoever, and each country receives a stream of payoffs π0 per period from period

T + 1 onwards. This modification of the model allows us to investigate to what extent

our previous results depend on the assumption of an infinite time horizon. An infinite

time horizon is usually required to sustain tacit collusion in dynamic pricing games, where

collusion breaks down completely if the time horizon is finite. By contrast, we show in

the following that in our model, a high degree of cooperation typically emerges if the

number of periods in which countries can negotiate is finite but sufficiently large.

48We omit the constant factor k.
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In order to facilitate the comparison to the game with infinite negotiations, we consider

symmetric subgame perfect equilibria with no delays.49 We also impose Assumption 4.

This now implies that if period T is reached (without signing any agreement before),

then the countries are essentially in the same situation as in the static model, and in

equilibrium kst countries sign an agreement.

Let us now consider such an equilibrium and denote k∗t (where t = 1, 2, . . . , T ) the

number of countries that sign an agreement in period t (conditional on reaching that

period). The above argument shows that k∗T = kst. Intuitively, one could expect a

similar effect as for a finitely repeated prisoner’s dilemma, where repeating the static

equilibrium is the only subgame perfect outcome. However, this turns out not to be the

case here, when the counties have the opportunity to delay the negotiations.

For illustration, consider Example 2 from Section 4 with the parameter values as illus-

trated in Figure 2 (i.e., N = 10 and δ = 0.6). As we have argued there, the equilibrium

coalition size in the static model is 2 or 3 countries, while in the dynamic model we

have k = 5.4 and k̄ = 8.2 with equilibrium coalition sizes 6, 7, and 8. Thus, in the last

period T (if it has been reached), k∗T = 3 countries sign an agreement (assuming that

countries coordinate on the equilibrium with higher participation). Now, in period T − 1

the countries anticipate the equilibrium in period T and expect k∗T = 3 countries to sign

an agreement. Recall from Lemma 1 (that applies also to this modified model) that in

period T − 1, the number of countries that sign an agreement, denoted k∗T−1, is at least

ξ̂(k∗T ) = ξ̂(3) = 4. Much like in Proposition 2, the equilibrium coalition size in period

T − 1 must be just large enough so that k∗T−1 countries are willing to sign an agreement

in period T − 1, but k∗T−1 − 1 countries are not. Thus, k∗T−1 = ξ̂(k∗T ) = 4. Proceeding

backwards, we obtain by the same argument that k∗T−2 = ξ̂(4) = 5 countries sign an

agreement in period T − 2 and k∗T−3 = ξ̂(5) = 6 countries sign an agreement in period

T − 3. Now since ξ̂(6) = 6, the number of countries that would sign an agreement in

earlier stages would be again 6. The following proposition provides general statements

that are analogous to Proposition 3.

Proposition 7. In the game with finite negotiations (with T > 1), the following state-

ments hold:

(i) There is an equilibrium where a coalition of size kst signs an agreement in the first

period, if and only if kst ≥ k.

(ii) If kst < k and T is sufficiently large, then there is an equilibrium where a coalition

of size dke signs an agreement in the first period.

Hence, the outcome under a finite number of negotiation stages (T ) is characterized

by a ratcheting-up in the coalition size from later towards earlier periods (see Figure 6 for

49Equilibria with delays are characterized in Section B.3.
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Figure 6: Illustration of ratcheting-up of the coalition size under finite T , for δ = 0.6 and
N = 10, random membership case (Example 2, Section 4)

a graphical illustration). This ratcheting-up stops when the maximum coalition size is

reached, that coincides with the smallest stable coalition size (dke) under an infinite time

horizon for the negotiations (in the case dke > kst). Hence, the multiplicity of equilibria

that we observed in the infinite horizon case (see Figure 2) vanishes.50 Otherwise, the

results are unchanged.51

B.3 Extension: Non-Markov equilibria and delay

In this section we explore what other kinds of equilibria (in pure strategies) can emerge in

our dynamic coalition formation model when the Markov restriction, that was imposed

in most sections of this paper (except Section B.2 where a finite time horizon T was

assumed), is relaxed. We do not seek to provide a full characterization of all equilibria

that exist. Instead, we focus on a subset of equilibria that deliver interesting new insights.

Most importantly, we preserve the payoff structure from the previous sections. Thus, we

rule out collusive strategies, where countries use their emissions to punish deviations from

some collusive agreement. Such equilibria have been studied elsewhere (e.g., Barrett 1994;

Harstad, Lancia, and Russo 2019) and are not the focus of this paper. Our focus is on

binding long-term agreements, and the dynamics of reaching such an agreement given

50Here, we refer to the multiplicity of equilibrium coalition sizes that arises when the interval [k, k̄)
contains several integers (see Proposition 3). Because Proposition 7 does not provide a full characteriza-
tion of equilibrium outcomes for the model with finite negotiations, and the Markov restriction cannot
be imposed here, some multiplicity may remain, especially with regards to non-Markov equilibria (see
Section B.3 for further details).

51We have also analyzed finite negotiations under deterministic membership. Using similar arguments
as above, we can show that there is always an equilibrium where a coalition of size kst signs an agreement
in the first period under deterministic membership.
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the possibility to delay climate negotiations in one or several periods.

In particular, we maintain our earlier assumption that non-signatories choose their

abatement efforts non-cooperatively and myopically in each period, while signatories of a

long-term agreement choose their efforts so as to maximize their joint welfare. Further-

more, we do not allow for the possibility that countries can sign short-term agreements

in periods where no long-term agreement has been reached yet. Hence, as in Section 3

countries’ payoffs are fully captured by the functions Πs and Πn, by the size k of a coali-

tion that signs a long-term agreement and the identity of the members of that coalition,

as well as by the number of the period t in which the agreement is reached. We also main-

tain our assumption from Section 3 that the identity of coalition members (for a given

coalition size kt) is determined randomly in any period t (random membership case).

What is different when the Markov restriction is relaxed is that countries can con-

dition their actions on the full history of the (participation) game up to that period.

However, we preserve the assumption that at the signature stage the countries play a

Pareto dominant equilibrium (if such exists).52 In that respect, the countries may use

only their non-participation, but not the use of veto power (during the signature stage)

to punish deviations. It is well-known that strategies involving punishment (grim trig-

ger strategies) can be used to sustain collusive agreements in infinitely repeated pricing

games. We want to investigate if the threat of delay can be used in our setting to allow

countries to reach a more cooperative outcome in the beginning of the game.

Before we give an answer to this question, let us first demonstrate that delay can

actually occur along the equilibrium path in our setup. This is an interesting insight,

given that delay has occurred many times in actual climate negotiations. To highlight

this point, let us first consider the case where k0 = 0 and Πs(0) = π0/(1 − δ). Recall

that by Assumption 2, the payoff functions Πs and Πn are increasing above k0, which

implies Πs(1) > π0/(1− δ). Therefore, there cannot exist a trivial equilibrium where no

long-term agreement is signed in any period, so the existence of equilibria with delay is

clearly not based on this. Furthermore, there cannot exist an equilibrium where fewer

than kst countries sign an agreement in the first period of the game, even if countries

play non-Markov strategies that may involve delay in future periods (conditional upon

reaching those periods).53 Nevertheless, even under this simplifying assumption, subgame

perfect Nash equilibria (SPNE) can exist that exhibit delay along the equilibrium path.54

To see this, suppose the payoff functions Πs and Πn are such that the static model

exhibits a non-trivial amount of cooperation in equilibrium, that is: kst ≥ 2. Then by

52This rules out equilibria where the countries use the signature behavior for punishment, for instance
by joining the coalition, but not signing unless all other countries have joined. Technically, it implies
that Lemma 1 still applies.

53To see this, recall that for k < kst the external stability condition is violated, so that it would always
be profitable for another outsider to join the coalition in the first period.

54We focus on SPNE whenever the Markov restriction is relaxed.
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Proposition 2, there is always an equilibrium (in Markov strategies) where a coalition of

size k∗ ≥ kst signs a long-term agreement. Suppose, if period τ ≥ 2 is reached, countries

indeed play Markov strategies and coordinate on the stable coalition size k∗τ = k∗. Then if

the discount factor is not too small, there clearly exists an equilibrium in the full dynamic

model (without the Markov restriction) where no agreement is reached in the first τ − 1

periods, if all countries anticipate that an agreement will be reached by k∗τ countries in

period τ , yielding a payoff of

π0 + δπ0 + · · ·+ δτ−2π0 + δτ−1V (k∗τ ).

For this to be an equilibrium outcome, countries must adopt strategies that lead to a

sufficiently small coalition size (e.g., zero) in all periods t < τ , so that even if an additional

country would join the coalition in any of these periods, the coalition members still prefer

not to sign a long-term agreement (anticipating that a more favorable outcome will be

reached in period τ). Then obviously for an individual country that is assigned not to

join the coalition in any of these periods, it is not profitable to deviate.

For instance, in period τ − 1, the critical coalition size is ξ̂(k∗τ ), so that for any

kt < ξ̂(k∗τ ) − 1, an individual country has no incentive to deviate and join as this does

not lead to the signature of a long-term agreement in that period. This logic, of course,

extends readily towards earlier periods, so that if k∗τ and δ are sufficiently large, no

agreement is signed in any period t < τ even when τ is a large number, assuming that

countries adopt such delay strategies.55 Relaxing the assumption k0 = 0 only strengthens

this point, so for the rest of this section, we drop this simplifying assumption.

We are now ready to state the main result of this section. It reveals that relaxing the

Markov assumption does not support larger coalition sizes.56

Proposition 8. In any SPNE (in pure strategies), the equilibrium coalition size satisfies

k∗ ≤ max{kst, dk̄e − 1}.

Intuitively, why does a strategy that involves the threat to revert to a period (or a

larger number of periods) of delay not help to sustain a more cooperative outcome in

the first period of the game? The answer is, that if a large number of countries (k∗1 >

max{kst, dk̄e− 1}) joins the coalition in the first period on the equilibrium path to avoid

the punishment phase, then each of them realizes that after a deviation, the remaining

k∗1 − 1 countries would sign an agreement in period 1 as well. This renders the deviation

profitable, as internal stability is violated. Extending the length of the punishment phase

cannot help to avoid this problem, because this only reduces the continuation value so

55Note, however, that any country not assigned as coalition member in some period t < τ , weakly
prefers to join the coalition. Furthermore, given the possibility to block an agreement (unanimity rule),
a country can never end up being trapped in an unfavorable agreement.

56Note, that if k̄ > kst, then the inequality in Proposition 8 simplifies to k∗ < k̄.
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that the critical coalition size in the first period needed to sign a long-term agreement is

then even smaller. The largest stable coalition size in any period is obtained under the

most optimistic (rational) expectations about the stable coalition size in the following

period (in case the next period is reached). Therefore, any threat to punish by future

delay only makes countries more eager to sign an agreement today, which reduces the

stable coalition size. Such threats are, thus, ineffective in raising the stable coalition size

in our model.

B.4 Proofs for Appendix B

Proof of Lemma 5. (i) Recall that πn(k) = B(X∗(k))−C(x∗n(k)) and πs(k) = B(X∗(k))−
C(x∗s(k)). Then πn(k) − πs(k) = C(x∗s(k)) − C(x∗n(k)). The statement follows from the

fact that the cost function C is increasing.

(ii) It follows from (i), that in both cases k = 0 and k = k0 we have N countries that

all choose an identical abatement level: xn = x∗n(0), and xn = xs = x∗n(k0), respectively.

It remains to show that these two values are the same. In both cases, the abatement

level satisfies the first-order condition (13), that now becomes B′(Nxn) − C ′(xn) = 0.

By assumption B′′ ≤ 0 and C ′′ > 0, which implies that B′(Nxn) − C ′(xn) is strictly

decreasing in xn. Thus, there can be at most one value of xn that satisfies this condition.

Consequently, x∗n(0) = x∗n(k0), which, due to (i), yields πn(0) = πn(k0).

(iii) Recall that x̂n(xs, k) is implicitly defined by (13), i.e., B′(kxs+(N−k)x̂n(xs, k)) =

C ′(x̂n(xs, k)). Taking the derivative with respect to k, we obtain from the Implicit func-

tion theorem that (with some abuse of notation) for all xs:

B′′(X)

[
xs − xn + (N − k)

∂x̂n
∂k

(xs, k)

]
= C ′′(xn) · ∂x̂n

∂k
(xs, k). (31)

For k = k0 and xs = x∗s(k0) we have xn = x̂n(x∗s(k0), k0) = x∗n(k0) = x∗s(k0), due to (i),

and thus

[(N − k0)B′′(X∗)− C ′′(x∗n)]
∂x̂n
∂k

(x∗s, k0) = 0.

Since B′′ ≤ 0 and C ′′ > 0, the term in the square bracket is negative, and we obtain

∂x̂n
∂k

(x∗s(k0), k0) = 0. (32)

Now recall that πs(k) = maxxs B(kxs + (N −k)x̂n(xs, k))−C(xs). It follows from the
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Envelope theorem and from (31) that

π′s(k) =
∂

∂k
[B(kxs + (N − k)x̂n(xs, k))− C(xs)]

∣∣∣
xs=x∗s

= B′(X∗)

[
x∗s − x∗n + (N − k)

∂x̂n
∂k

(x∗s, k)

]
.

Since, for k = k0 we have x∗s = x∗n (by (i)), it follows from (32) that indeed π′s(k0) = 0.

Proof of Proposition 7. (i) Consider the case kst ≥ ξ(kst). As argued above the proposi-

tion, upon arriving in the final period with negotiations, t = T , the stable coalition size

is k∗T = kst. Much like in Proposition 1, in period T − 1 (if this period is reached), kst

countries are willing to sign an agreement. Thus, k∗T−1 = kst and the same arguments

can readily be applied also to all other periods t < T − 1. This completes the proof of

(i).

(ii) Before proceeding with the proof we state the following lemma. Its proof follows

below the proof of Proposition 7.

Lemma 6. Assume that kst < k. Consider the following sequence defined recursively:57

l0 = kst = dk̃e, lβ = ξ̂(lβ−1) for β = 1, 2, . . . . (33)

Then there is some τ ≥ 0 such that l0 < l1 < · · · < lτ−1 < lτ = lτ+1 = · · · = dke.

Now we show that k∗t = lT−t for t = 1, 2, . . . , T . The proof proceeds in the same way

as the argument preceding the proposition. As argued there, k∗T = dk̃e = l0. For any

t ≤ T − 1, if the countries in period t anticipate that k∗t+1 = lT−t−1 countries sign an

agreement in the next period, then according to Lemma 1, k∗t ≥ ξ̂(kt+1) = ξ̂(lT−t−1) =

lT−t. Thus, the countries prefer to sign the agreement in period t (when this period is

reached). In addition, since k∗t ≥ kst for all t, external stability is satisfied in all periods.

Now consider internal stability. Similarly as in the arguments preceding Proposition 1

and 2, we distinguish two cases: Either k∗t = ξ̂(k∗t+1) or k∗t > ξ̂(k∗t+1). We show that the

former case applies. Otherwise, if k∗t > ξ̂(k∗t+1), the coalition size k∗t needs to satisfy

both the external and internal stability conditions (ES) and (IS), and would thus be an

equilibrium coalition size of the static game (i.e., k∗t = l0). This is a contradiction, since

k∗t > ξ̂(k∗t+1) = ξ̂(lT−t−1) = lT−t ≥ l0 = dk̃e = kst. Thus, indeed the former case applies,

which yields k∗t = ξ̂(k∗t+1) = ξ̂(lT−t−1) = lT−t.

In order to complete the proof of (ii), it is sufficient to set T > τ + 1, where τ is

introduced in Lemma 6. Then k∗1 = lT−1 = lτ = dke.

Proof of Lemma 6. Before proceeding with the actual proof, recall that due to Assump-

tion 5, k0 < k < k implies k < ξ(k) < k.

57We use the subscript β for counting backwards in time (see below).
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First, we show that lβ−1 < lβ ≤ dke when lβ−1 < dke. Since lβ−1 is an integer, the

inequality lβ−1 < dke implies lβ−1 < k. Then it follows that lβ−1 < ξ(lβ−1) < k. Since

lβ = ξ̂(lβ−1) = dξ(lβ−1)e, we obtain lβ−1 < lβ ≤ dke.
Next, we show that lβ = lβ−1 when lβ−1 = dke. Since lβ−1 is a positive integer and

lβ−1 ∈ [k, k̄), it follows from the discussion preceding Proposition 3 that lβ−1 is a fixed

point of ξ̂. Thus, lβ = ξ̂(lβ−1) = lβ−1.

Summing up, since l0 = kst < dke, the sequence l0, l1, l2, . . . is bounded from above by

dke and is increasing before attaining this bound. Let us set τ such that lτ−1 < dke = lτ .

Then lβ = lτ = dke for β ≥ τ , which completes the proof.

Proof of Proposition 8. Proof by contradiction. Let kmax be the largest stable coalition

size in the full set of SPNE (in pure strategies), and suppose (to the contrary of the

statement in the proposition) that kmax > max{kst, dk̄e − 1}, which is equivalent to

kmax ≥ max{kst + 1, k̄}.
Now consider an equilibrium where a coalition of kt = kmax countries signs an agree-

ment at some stage t. We show that there there is a profitable deviation not to join

the coalition for some member. If the remaining kt − 1 coalition members do not sign

an agreement, then V (kmax) is the maximal payoff the deviating country can expect

in the next round. Thus, the payoff of each country after such a deviation is at most

π0 + δV (kmax). However, since kt = kmax ≥ k̄, we have Πs(kt − 1) ≥ π0 + δV (kmax) and

thus, the remaining countries would sign an agreement in period t. However, anticipat-

ing that the remaining countries sign an agreement, not joining the coalition is indeed a

profitable deviation, since kt = kmax > kst violates internal stability.
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