Albert algebras arising from central simple quartic Jordan algebras are reduced.

Holger P. Petersson
Fakultät für Mathematik und Informatik
FernUniversität in Hagen
D-58084 Hagen, Germany
Email: holger.petersson@FernUni-Hagen.de

1. Introduction. A method of constructing cubic Jordan algebras out of quartic ones, akin to the approach of Okubo [4, 5] and Faulkner [2] for finding symmetric compositions inside associative algebras of degree 3, has been devised by Allison-Faulkner [1]. Their key results (as far as the scope of the present note is concerned) read as follows. Throughout we let k be a field of characteristic not 2 or 3.

2. Theorem. (Allison-Faulkner [1, Theorem 5.4]) Let J be a separable Jordan algebra of degree 4 over k, write t for the (generic) trace of J and $J_0 := \{x \in J \mid t(x) = 0\}$ for the linear hyperplane of trace zero elements in J. Suppose we are given an element $e \in J_0$ satisfying $t(e^3) \neq 0$. Then there is a unique way of making J_0 into a separable Jordan algebra of degree 3 over k having unit element e and generic norm given by

$$N_0(x) = \frac{t(x^3)}{t(e^3)} \quad (x \in J_0).$$

This Jordan algebra will be denoted by $\text{Zer}(J, e)$. □

3. Corollary. (Allison-Faulkner [1, Corollary 5.5]) Let (A, τ) be a central simple associative algebra of degree 8 with symplectic involution over k and $e \in A$ a τ-symmetric element of trace zero satisfying $t(e^3) \neq 0$, where t stands for the generic trace of A. Then $\text{Zer}(A, \tau, e) := \text{Zer}(\text{H}(A, \tau), e)$ is an Albert algebra over k. □

In a recent preprint, working in a much more general context, S. Pumplün [7] has described it as unclear whether all Albert algebras over k can be obtained in the manner described by Corollary 3. Using standard techniques, it is, however, possible to derive the following result.

4. Theorem. Let (A, τ) be a central simple associative algebra of degree 8 with symplectic involution over k and $e \in A$ a τ-symmetric element of trace zero satisfying $t(e^3) \neq 0$, where t stands for the generic trace of A. Then the Albert algebra $\text{Zer}(A, \tau, e)$ is reduced.

Proof. We put $J := \text{Zer}(A, \tau, e)$ and make use of its cohomological mod-3-invariant belonging to $H^3(k, \mathbb{Z}/3\mathbb{Z})$, see Rost [8], Garibaldi-Merkurjev-Serre [3] or Petersson-Racine [6] for details. Accordingly, if J is a division algebra, so is $J \otimes_k l$, for any finite algebraic field extension l/k of degree prime to 3. Now the division algebra belonging to the Brauer class of A has degree 2^n, $0 \leq n \leq 3$. Hence A has a separable splitting field whose degree is a power of 2. By what has just been observed, we may therefore assume that (A, τ) is split, i.e., $A = \text{Mat}_8(k)$ and τ is the symplectic involution

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} d^t & -b^t \\ -c^t & a^t \end{pmatrix}$$

1
in terms of 2×2-blocks of 4×4-matrices. It follows that $H(A, \tau)$ consists of the matrices
\[
\begin{pmatrix}
a & b \\
c & a^t
\end{pmatrix}
(a \in \text{Mat}_4(k), b, c \in \text{Skew}_4(k)).
\]
Picking a non-zero nilpotent $a \in \text{Mat}_4(k)$ of index at most 3, we conclude that
\[x := \begin{pmatrix} a & 0 \\ 0 & a^t \end{pmatrix} \in H(A, \tau)\]
has trace zero and satisfies $x^3 = 0$, hence $N_J(x) = 0$. Thus J is not a division algebra. □

References

