
INFORMATIK
BERICHTE

375 – 12/2016

 Distributed Query Processing in Secondo

 Ralf Hartmut Güting and Thomas Behr

Fakultät für Mathematik und Informatik
D-58084 Hagen

SECONDOSECONDOSECONDO

Distributed Query Processing in SECONDO

Using the Distributed Algebra 2

Version 3
December 23, 2016

Ralf Hartmut Güting and Thomas Behr

Faculty for Mathematics and Computer Sience

Database Systems for New Applications

58084 Hagen, Germany

Abstract

SECONDO is an open source DBMS prototype with a focus on extensible architecture and on support
of spatial and spatio-temporal data, also known as moving objects or trajectories. Extensibility
allows one to add collections of data types and related operations in the form of algebra modules. An
algebra may provide any kind of data type from atomic types such as int or region to more complex
structures such as relations or indexes. For example, SECONDO provides algebras for nested relations
or raster data or indexes such as B-tree, R-tree, M-tree, X-tree, TB-tree. Many specialized algebras
exist e.g. for clustering (DBScan, OPTICS), handling OpenStreetMap data, not to speak of the man-
agement of trajectories.

One can formulate queries to the SECONDO kernel by writing algebraic expressions using all opera-
tions of the implemented (and activated) algebras. This is called the executable language. One can
also formulate queries in an SQL dialect, using the optimizer.

Starting with SECONDO 4.0, an algebra is included to support distributed query processing, using
many SECONDO system instances on one or on different computers, usually one instance per avail-
able core. The purpose of this document is to explain the setup of a distributed SECONDO system and
the use of this algebra, the Distributed2Algebra.

– III –
Table of Contents

1 Introduction . 1
2 Passphrase-less Connection . 3
3 Setting Up a Cluster . 4

3.1 Example 1: Mini-Cluster. 4
3.1.1 Setting Up the Monitors . 4
3.1.2 Starting and Stopping the Monitors . 5
3.1.3 Setting Up Workers . 6

3.2 Example 2: A Larger Cluster . 6
3.2.1 Prerequisites . 6
3.2.2 Secondo Installation . 7
3.2.3 Creating Database Directories . 8
3.2.4 Prepare a Cluster Description File . 8
3.2.5 Prepare a Workers RelationFile . 9
3.2.6 Adapt and Distribute File SecondoConfig.ini . 9

4 The Algebra . 10
4.1 Types. 11
4.2 Operations . 12

4.2.1 Distributing Data to the Workers . 13
4.2.2 Distributed Processing by the Workers . 13
4.2.3 Collecting Data From the Workers . 14

5 Getting Spatial Data to the Master . 15
6 Distributing Data to Workers . 16

6.1 Random Partitioning . 17
6.2 Hash Partitioning . 17
6.3 Range Partitioning . 17
6.4 Spatial Partitioning . 18
6.5 Replication . 20

7 Querying . 20
7.1 Selection . 21

7.1.1 By Scanning . 21
7.1.2 Creating a Standard Index . 21
7.1.3 Using a Standard Index . 21
7.1.4 Creating a Spatial Index . 22
7.1.5 Using a Spatial Index . 22

7.2 Join . 22
7.2.1 Equijoin . 22
7.2.2 Spatial Join . 23
7.2.3 General Join . 26
7.2.4 Index-Based Equijoin . 26
7.2.5 Index-Based Spatial Join . 27

7.3 Aggregation. 28
7.3.1 Counting . 28
7.3.2 Sum, Average . 28

7.4 Sorting. 29

– IV –
8 Observing Balance and Utilization of Workers . 31
9 Example: Constructing a Road Network Graph From OSM Data 34

9.1 Input Data and Their Structure . 34
9.2 Overview. 34
9.3 Local Implementation . 35

9.3.1 Data Import: Creating Six Relations . 35
9.3.2 Create Spatially Clustered NodesNew . 36
9.3.3 Create Ways . 36
9.3.4 Select Roads . 37
9.3.5 Construct Nodes . 37
9.3.6 Construct Edges . 38

9.4 Distributed Implementation . 40
9.4.1 Prerequisites . 40
9.4.2 Distributing OSM Data Fast . 41
9.4.3 Preparations . 41
9.4.4 Data Import: Creating Six Relations . 42
9.4.5 Create Spatially Clustered NodesNew . 44
9.4.6 Create Ways . 45
9.4.7 Select Roads . 45
9.4.8 Construct Nodes . 45
9.4.9 Construct Edges . 46
9.4.10Edges . 48

9.5 Experimental Comparison . 48

References . 49
A File ClusterRalfNewton. 50
B File WorkersNewton . 50
C Script importGermanyOsmPrepare.sh. 51

1 Introduction

SECONDO is an open source DBMS prototype with a focus on extensible architecture and on sup-
port of spatial and spatio-temporal data, also known as moving objects or trajectories. Extensibil-
ity allows one to add collections of data types and related operations in the form of algebra
modules. An algebra may provide any kind of data type from atomic types such as int or region to
more complex structures such as relations or indexes. For example, SECONDO provides algebras
for nested relations or raster data or indexes such as B-tree, R-tree, M-tree, X-tree, TB-tree. Many
specialized algebras exist e.g. for clustering (DBScan, OPTICS), handling OpenStreetMap data,
not to speak of the management of trajectories.

One can formulate queries to the SECONDO kernel by writing algebraic expressions using all oper-
ations of the implemented (and activated) algebras. This is called the executable language. One
can also formulate queries in an SQL dialect, using the optimizer.

Starting with SECONDO 4.0, an algebra is included to support distributed query processing, using
many SECONDO system instances on one or on different computers, usually one instance per avail-
able core. The purpose of this document is to explain the setup of a distributed SECONDO system
and the use of this algebra, the Distributed2Algebra (just called Distributed Algebra in the
sequel).

Distributed query processing uses one SECONDO instance called the master and a set of SECONDO

instances called the workers. One writes SECONDO executable queries at the master using opera-
tions of the Distributed Algebra; the implementation of such operations calls workers to execute
standard SECONDO executable queries. A worker is in fact not aware that it is working in a
distributed system.

The fundamental abstraction for distributed data management and query processing used is a
distributed array. It is an array with fields of any SECONDO type; the values of fields are stored as
SECONDO objects in different worker databases. The most important case is that each field (also
called slot in this document) contains a relation, which is a subrelation of a global relation
represented by the distributed array as a whole.

Operations are provided by the Distributed Algebra to apply a SECONDO function to field values.
Result is a distributed array with fields of the result type of the function. Functions are evaluated
by workers; all workers work in parallel; each worker may be in charge of several slots which it
processes sequentially.

Here is a simple example: Let R be a relation, so we can apply an operator count to get its
cardinality, writing

query R count

The count operator maps a type rel(tuple(Attrs)) into type int.

Then if D is a distributed array of relations, hence of type darray(rel(tuple(Attrs))), we can use a
dmap operator to apply a function to each field, writing

query D dmap["", . count]

– 2 –
Result is a distributed array of integers, hence of type darray(int). The values of the fields are still
located in the worker databases. The queries

query D dmap["", . count] getValue
query D dmap["", . count] getValue tie[. + ..]

move the distributed integer array to the master into a local array by operation getValue. The tie
operator applies an aggregate function to all fields of a local array where the parameter function
specifies how to combine two adjacent field values. (referred to by "." and "..", respectively).
Hence the last query computes the total cardinality of the global relation represented by D.

A crucial feature of the approach is that operations of the Distributed Algebra such as dmap are
completely generic and work for any SECONDO data type and operation. Everything that has been
implemented so far in SECONDO is available for large scale distributed query processing. Any
extension that is programmed is immediately available for distributed processing as well.

This document is intended as a hands-on tutorial to demonstrate the use and the capabilities of
distributed query processing in SECONDO. It is therefore structured as follows. Section 2 starts
with preliminaries on how to set up a passphrase-less connection on different computers to make
life easier for the following steps. Section 3 shows how to set up clusters of SECONDO instances to
serve as workers. Section 4 explains in more detail the concepts of the Distributed Algebra. Query
processing needs also shuffling of data between workers which is inspired by data transfer bet-
ween map and reduce steps in Hadoop/MapReduce. Section 5 sets up an example database on the
master, using spatial data from OpenStreetMap. Section 6 discusses various strategies for partitio-
ning data on the master and moving them into distributed arrays. This includes, for example,
random partitioning, hash partitioning, range partitioning, and spatial partitioning. Section 7
shows how distributed queries can be written, handling in a systematic manner selections and
joins with and without index support and aggregate computation. It also gives a procedure for
parallel sorting. Section 8 provides some tools to analyse how workers executed a query in
parallel; this allows one to graphically visualize balance between workers and their idle times.

Section 9 is meant to illustrate how many capabilities in SECONDO work together to solve a
somewhat complicated task that would be very hard to program in simpler frameworks such as
Hadoop, for example. The task is to construct from a given OpenStreetMap database a road net-
work suitable for tasks like shortest path computation or map matching of trajectories.

We provide the sizes of the data sets used and show for most examples the actual running times to
give an indication of effort required and efficiency. For parallel sorting and the example of Sec-
tion 9 the speedup is shown.

All examples should work on a SECONDO system of version 4.1 which is available on the web
site;1 almost all work also on SECONDO 4.0.

1. SECONDO web site: http://dna.fernuni-hagen.de/Secondo.html

– 3 –
2 Passphrase-less Connection

The first thing is to set up an ssh connection from the master to the workers so that one can start
SecondoMonitors on the computing nodes without the user having to enter a password.2 This is
done as follows.

(1) In the master's home directory, enter

ssh-keygen -t rsa

This generates a public key. The system asks for a password, just type return for an empty pass-
word. Also type return for the default location to store the public key.

(2) Configure ssh to know the worker computers. Into a file .ssh/config, we put the following:

Host *ralf1
HostName 132.176.69.160
User ralf
Host *ralf2
HostName 132.176.69.98
User ralf

This makes the two worker computers 160 and 98 (from now on we name them by the end of their
IP addresses) available with names ralf1 and ralf2 and also sets the user name and home directory
on these computers.

(3) Transmit the public key to the target computers.

ssh-copy-id -i .ssh/id_rsa.pub <user>@server

For example:

ssh-copy-id -i .ssh/id_rsa.pub ralf@132.176.69.98

If the master system does not have the command ssh-copy-id, one can use instead:

cat ~/.ssh/*.pub | ssh <user>@<server> 'umask 077; cat >>.ssh/
authorized_keys'

At this point the system on ralf2 asks once for a password. Subsequently it is possible to log in on
ralf2 by simply typing

ssh ralf2

One needs to log in once on each of the nodes because the system on the master must enter each
node into its list of known hosts.

2. This is just to make life easier; one could also start the monitors manually with entering passwords. The
Distributed2Algebra itself can be used without this.

– 4 –
3 Setting Up a Cluster

3.1 Example 1: Mini-Cluster

We use a mini-cluster consisting of two computers running Ubuntu 14.04. The two computers
provide the following resources:

• ralf1: 4 disks, 6 cores, 16 GB main memory
• ralf2: 4 disks, 8 cores, 32 GB

On ralf1, we use one disk exclusively for the master, the remaining three for workers. Regarding
cores and main memory we let the master overlap with workers. The main case of master and
workers working simultaneously is data distribution from the master to the workers and back. In
this case, one worker is not very active compared to the master (which is quite busy) so that the
overlapping core should not be a problem. Similarly there is not a lot of memory used in these
transfers. We therefore configure the system as follows:

• Master (ralf1): 1 disk, one core, 4 GB
• Workers:

– ralf1: 3 disks, 6 cores, 2000 MB per core (about 12 GB)
– ralf2: 4 disks, 8 cores, 3600 MB per core (about 28 GB)

In this example we set up one database per disk and one worker per core. This means that two
workers use the same database and it is necessary to run the worker systems with transaction
management. It is in fact faster to let each worker run on its own separate database; then transac-
tion management can be switched off. We will demonstrate this in the second example.

3.1.1 Setting Up the Monitors

Per worker disk we need to start one SecondoMonitor. We can start the monitors using a script
remoteMonitors from the secondo/bin directory. It takes the following parameters (see also
remoteMonitors.readme):

remoteMonitors <description file> <action>

Here the <description file> contains entries describing the monitors to be started, one line
per monitor. Such a line has the format

<Server> <Configuration file> [<bin> [<home> [<port> [<user>]]]]

Here <Server> is the IP address or the name of the node on which the monitor is to be started,
and the second parameter is the SecondoConfig.ini file version to be used. Further parameters
are optional:

• <bin> is the path to the secondo/bin directory from which SECONDO is to be started and
this is also the location of the configuration file (default is the user’s home directory sec-
ondo/bin),

• <home> is the path to the database directory,
• <port> is the port number,

– 5 –
• <user> the user name (by default, the name of the user running the remoteMonitors
command)

The <action> is one of start, check, or stop with the obvious meanings.

Here we provide a description file ClusterRalf7 with the following content:

132.176.69.160 SecondoConfig.ini.160 /home/ralf/secondo/bin /discA/sec-
ondo-databases 1471
132.176.69.160 SecondoConfig.ini.160 /home/ralf/secondo/bin /discB/sec-
ondo-databases 1472
132.176.69.160 SecondoConfig.ini.160 /home/ralf/secondo/bin /discC/sec-
ondo-databases 1473
132.176.69.98 SecondoConfig.ini.98 /home/ralf/secondo/bin /home/ralf/
distributed2/secondo-databases 1474
132.176.69.98 SecondoConfig.ini.98 /home/ralf/secondo/bin /disk2/secondo-
databases 1475
132.176.69.98 SecondoConfig.ini.98 /home/ralf/secondo/bin /disk3/secondo-
databases 1476
132.176.69.98 SecondoConfig.ini.98 /home/ralf/secondo/bin /disk4/secondo-
databases 1477

The SecondoConfig.ini files need to lie in the secondo/bin directory of the respective compu-
ters (160 and 98). They are obtained from the standard SecondoConfig.ini by modifying just
the global memory per server. Note that we do not need to change IP addresses, ports or database
directories as these are overridden by the ClusterRalf7 file. We have:

• 160: GlobalMemory=2000
• 98: GlobalMemory=3600

The secondo-databases directories on the respective disc locations need to be created before
using the remoteMonitors script.

3.1.2 Starting and Stopping the Monitors

We can now start the monitors:

remoteMonitors ClusterRalf7 start

As a result, we see:

ralf@ralf-ubuntu6:~/secondo/bin$ remoteMonitors ClusterRalf7 start
Try to start monitor on server 132.176.69.160
Monitor is running now at port 1471
Try to start monitor on server 132.176.69.160
Monitor is running now at port 1472
Try to start monitor on server 132.176.69.160
Monitor is running now at port 1473
Try to start monitor on server 132.176.69.98
Monitor is running now at port 1474
Try to start monitor on server 132.176.69.98
Monitor is running now at port 1475
Try to start monitor on server 132.176.69.98
Monitor is running now at port 1476
Try to start monitor on server 132.176.69.98
Monitor is running now at port 1477

Similar listings can be seen with the actions check and stop.

– 6 –
We can stop all monitors using the command

remoteMonitors ClusterRalf7 stop

3.1.3 Setting Up Workers

Workers are defined in a relation of a database to be used. We use one worker per core.

let Workers14 = [const rel(tuple([Host: string, Port: int, Config:
string])) value
(
 ("132.176.69.160" 1471 "SecondoConfig.ini")
 ("132.176.69.160" 1472 "SecondoConfig.ini")
 ("132.176.69.160" 1473 "SecondoConfig.ini")
 ("132.176.69.98" 1474 "SecondoConfig.ini")
 ("132.176.69.98" 1475 "SecondoConfig.ini")
 ("132.176.69.98" 1476 "SecondoConfig.ini")
 ("132.176.69.98" 1477 "SecondoConfig.ini")

("132.176.69.160" 1471 "SecondoConfig.ini")
 ("132.176.69.160" 1472 "SecondoConfig.ini")
 ("132.176.69.160" 1473 "SecondoConfig.ini")
 ("132.176.69.98" 1474 "SecondoConfig.ini")
 ("132.176.69.98" 1475 "SecondoConfig.ini")
 ("132.176.69.98" 1476 "SecondoConfig.ini")
 ("132.176.69.98" 1477 "SecondoConfig.ini")
)]

3.2 Example 2: A Larger Cluster

In this example, we use a cluster consisting of five computers, called newton1, ..., newton5, each
with the following resources:

• 8-core processor
• 32 GB memory
• 4 disks

We let the master run on newton1, with an extra database directory /home/<user>/secondo-
databases2.

Each computer has 8 cores, so we use 40 workers. In this example, we run each worker on its own
database directory. This means that no concurrency control is needed and transactions can be
switched off. However, we need 40 database directories, two on each disk. Each worker can get
3600 MB of memory.

In this section, we also show some techniques to handle larger clusters conveniently.

3.2.1 Prerequisites

The following has been prepared by the system administrator:

• all computers run Ubuntu 16.04
• the Secondo-SDK has been installed on all computers

– 7 –
• for user ralf, the following directories with write permission have been created on each
computer:

– /home/ralf
– /diskb/ralf
– /diskc/ralf
– /diskd/ralf

• a range of free ports is provided exclusively for user ralf.

3.2.2 SECONDO Installation

The new user ralf needs to do the following:

• Get pass-phrase-less access from the master to all involved worker computers.
• On each computer, install SECONDO in the user’s home directory (/home/ralf). Use the

option -onlyrc with the installation script, because the software for SECONDO has already
been installed on these computers.

Since all machines should run the same SECONDO version, it is a good idea to handle updates by
just updating the version on one machine, performing the make process there, and then copying
the compiled system to all other machines. To this end, we can extend the makefile (in directory
secondo) on, say, newton1, as follows:

• insert these lines before .PHONY: help

.PHONY: remoteServers
remoteServers:

scp bin/SecondoBDB 132.176.69.194:/home/ralf/secondo/bin/
scp bin/tmp/*.examples 132.176.69.194:/home/ralf/secondo/bin/tmp/
scp bin/SecondoBDB 132.176.69.195:/home/ralf/secondo/bin/
scp bin/tmp/*.examples 132.176.69.195:/home/ralf/secondo/bin/tmp/
scp bin/SecondoBDB 132.176.69.196:/home/ralf/secondo/bin/
scp bin/tmp/*.examples 132.176.69.196:/home/ralf/secondo/bin/tmp/
scp bin/SecondoBDB 132.176.69.197:/home/ralf/secondo/bin/
scp bin/tmp/*.examples 132.176.69.197:/home/ralf/secondo/bin/tmp/

• extend the target ALL_TARGETS by remoteServers

ALL_TARGETS = makedirs \
buildlibs \
buildAlgebras \
buildapps \
$(OPTIMIZER_SERVER) \
java2 \
tests \

 examples \
update-config \

 API \
remoteServers

From now on, the make process on newton1 will automatically synchronize all involved SEC-

ONDO servers.

– 8 –
3.2.3 Creating Database Directories

This can be done as follows. Create a file newton on some computer X containing all IP addresses
of newton1, ... newton5, one per line. Hence it has contents:

132.176.69.193
132.176.69.194
132.176.69.195
132.176.69.196
132.176.69.197

Make sure that computer X can login to newton1, ..., newton5 without pass-phrase. Then in a bash
enter commands:

for s in $(cat newton) ; do ssh ralf@$s mkdir /home/ralf/secondo-databases
; done
for s in $(cat newton) ; do ssh ralf@$s mkdir /diskb/ralf/secondo-data-
bases ; done
for s in $(cat newton) ; do ssh ralf@$s mkdir /diskc/ralf/secondo-data-
bases ; done
for s in $(cat newton) ; do ssh ralf@$s mkdir /diskd/ralf/secondo-data-
bases ; done
for s in $(cat newton) ; do ssh ralf@$s mkdir /home/ralf/secondo-databas-
esB ; done
for s in $(cat newton) ; do ssh ralf@$s mkdir /diskb/ralf/secondo-databas-
esB ; done
for s in $(cat newton) ; do ssh ralf@$s mkdir /diskc/ralf/secondo-databas-
esB ; done
for s in $(cat newton) ; do ssh ralf@$s mkdir /diskd/ralf/secondo-databas-
esB ; done

Each of the 8 commands must be in a single line.

3.2.4 Prepare a Cluster Description File

This file, called ClusterRalfNewton, is to be used by the remoteMonitors script. The format is:

<IP address> <config file> <bin directory> <db directory> <port>

For the newton cluster, it looks as follows:

132.176.69.193 SecondoConfig.ini /home/ralf/secondo/bin /home/ralf/sec-
ondo-databases 63414
132.176.69.193 SecondoConfig.ini /home/ralf/secondo/bin /diskb/ralf/sec-
ondo-databases 63415
132.176.69.193 SecondoConfig.ini /home/ralf/secondo/bin /diskc/ralf/sec-
ondo-databases 63416
132.176.69.193 SecondoConfig.ini /home/ralf/secondo/bin /diskd/ralf/sec-
ondo-databases 63417
132.176.69.194 SecondoConfig.ini /home/ralf/secondo/bin /home/ralf/sec-
ondo-databases 63414
132.176.69.194 SecondoConfig.ini /home/ralf/secondo/bin /diskb/ralf/sec-
ondo-databases 63415
...
132.176.69.197 SecondoConfig.ini /home/ralf/secondo/bin /diskd/ralf/sec-
ondo-databases 63417
132.176.69.193 SecondoConfig.ini /home/ralf/secondo/bin /home/ralf/sec-
ondo-databasesB 63410
132.176.69.193 SecondoConfig.ini /home/ralf/secondo/bin /diskb/ralf/sec-

– 9 –
ondo-databasesB 63411
132.176.69.193 SecondoConfig.ini /home/ralf/secondo/bin /diskc/ralf/sec-
ondo-databasesB 63412
132.176.69.193 SecondoConfig.ini /home/ralf/secondo/bin /diskd/ralf/sec-
ondo-databasesB 63413
132.176.69.194 SecondoConfig.ini /home/ralf/secondo/bin /home/ralf/sec-
ondo-databasesB 63410
...
132.176.69.197 SecondoConfig.ini /home/ralf/secondo/bin /diskc/ralf/sec-
ondo-databasesB 63412
132.176.69.197 SecondoConfig.ini /home/ralf/secondo/bin /diskd/ralf/sec-
ondo-databasesB 63413

Hence there are 40 monitors to be started, each on its own database. For clarity, the complete file
is shown in the appendix.

3.2.5 Prepare a Workers RelationFile

We describe workers in a file WorkersNewton in the secondo/bin directory with the format of a
saved relation.

(OBJECT WorkersNewton
 ()
 (rel
 (tuple
 (
 (Host string)
 (Port int)
 (Config string))))
 (
 ("132.176.69.193" 63414 "SecondoConfig.ini")
 ("132.176.69.193" 63415 "SecondoConfig.ini")
 ("132.176.69.193" 63416 "SecondoConfig.ini")
 ("132.176.69.193" 63417 "SecondoConfig.ini")

 ("132.176.69.194" 63414 "SecondoConfig.ini")
...

("132.176.69.197" 63412 "SecondoConfig.ini")
 ("132.176.69.197" 63413 "SecondoConfig.ini")

))

The relation defines 40 workers, one for each monitor. For clarity, the complete file is shown in
the appendix. In each new database on the master, the workers can be created simply by the
command:

restore WorkersNewton from WorkersNewton

3.2.6 Adapt and Distribute File SecondoConfig.ini

In SecondoConfig.ini we change the following entries:

Switch off the transaction and logging subsystem of Berkeley-DB
RTFlags += SMI:NoTransactions

– 10 –
Global memory available for all operators in MB
default is 512
GlobalMemory=3600

This means that workers do not use transactions and the memory available for each worker is
3600 MB. We then need to move the configuration files (e.g. from computer X) to all computers.

for s in $(cat newton) ; do scp SecondoConfig.ini ralf@$s:/home/ralf/sec-
ondo/bin ; done

To keep the configuration of the master independent of that of the workers, we may introduce a
copy of SecondoConfig.ini, say SecondoConfig.ini.M and change a line in the file .secon-
dorc (in the user’s home direcctory, defining variables for SECONDO) to

export SECONDO_CONFIG=$SECONDO_BUILD_DIR/bin/SecondoConfig.ini.M

This allows us to run the master on a cluster computer as well and start it in the standard way. For
example, the master may use more memory, run with transactions. It must use a database direc-
tory different from that of workers.

4 The Algebra

The Distributed2Algebra provides operations that allow one SECONDO system to control a set of
SECONDO servers running on the same or remote computers. It acts as a client to these servers.
One can start and stop the servers, provided SECONDO monitor processes are already running on
the involved computers. One can send commands and queries in parallel and receive results from
the servers.

The SECONDO system controlling the servers is called the master and the servers are called the
workers.

This algebra actually provides two levels for interaction with the servers. The lower level provi-
des operations

• to start, check and stop servers
• to send sets of commands in parallel and see the responses from all servers
• to execute queries on all servers
• to distribute objects and files

The upper level is implemented using operations of the lower level. It essentially provides an
abstraction called distributed arrays. A distributed array has slots of some type X which are
distributed over a given set of workers. Slots may be of any SECONDO type, including relations
and indexes, for example. Each worker may store one ore more slots.

Query processing is formulated by applying SECONDO queries in parallel3 to all slots of
distributed arrays which results in new distributed arrays.

Data can be distributed in various ways from the master into a distributed array. They can also be
collected from a distributed array to be available on the master.

3. To be precise, all workers work in parallel, but each worker processes its assigned slots sequentially.

– 11 –
In the following, we describe the upper level of the Distributed2Algebra in terms of its data types
and operations.

4.1 Types

The algebra provides two types of distributed arrays called

• darray(X) - distributed array - and
• dfarray(Y) - distributed file array.

Here X may be any SECONDO type4 and the repective values are stored in databases on the wor-
kers. In contrast, Y must be a relation type and the values are stored in binary files on the respec-
tive workers. In query processing, such binary files are transferred between workers, or between
master and workers. Figure 1 illustrates

Server 1
Server 2
Server 3

Server n

Server 4

1

2

3

4

n

n + 1

n + 2

 ...

Figure 1: A distributed array. Each slot is represented by a square with its slot number.

 both types of distributed arrays. Often slots are assigned

in a cyclic manner to servers as shown, but there exist operations creating a different assignment.
The implementation of a darray or dfarray stores explicitly how slots are mapped to servers. The
type information of a darray or dfarray consists of the set of workers and the type of slots, the
number of slots is part of the value.

A distributed array is often constructed by partitioning data on the master into partitions P1, ..., Pm
and then moving partitions Pi into slots Si. This is illustrated in

Server 1
Server 2
Server 3

Server n

Server 4

1

2

3

4

n

n + 1

n + 2

 ...

Figure 2: Creating a distributed array by partitioning data on the master.

Master n1 2 3 4 m

 Figure 2.

4. Except the distributed types themselves, so it is not possible to nest distributed arrays.

– 12 –
A third type offered is

• dfmatrix(Y) - distributed file matrix.

Slots Y of the matrix must be relation-valued, as for dfarray. This type supports redistributing data
which are partitioned in a certain way on workers already. It is illustrated in

Server 1
Server 2
Server 3

Server n

Server 4

Figure 3: A distributed file matrix.

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

m

m

m

m

m

 Figure 3.

The matrix arises when all servers partition their data in parallel. In the next step, each partition,
that is, each column of the matrix, is moved into one slot of a distributed file array as shown in

Server 1
Server 2
Server 3

Server n

Server 4

Figure 4: A distributed file matrix is collected into a distributed file array.

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

m

m

m

m

m

Server 1
Server 2
Server 3

Server n

Server 4

1

2

3

4

n

n + 1

n + 2

 ...

Figure 4.

4.2 Operations

The following classes of operations are available:

• Distributing Data to the Workers
• Distributed Processing by the Workers

– Applying a Function (SECONDO Query) to Each Field of a Distributed Array
– Applying a Function to Each Pair of Corresponding Fields of two Distributed Arrays

(Supporting Join)
– Redistributing Data on Workers

– 13 –
– Adaptive Processing of Partitioned Data
• Collecting Data from the Workers

4.2.1 Distributing Data to the Workers

The following operations come in a d-variant and a df-variant (prefix). The d-variant creates a
darray, the df-variant a dfarray.

Operations:

Operation Meaning

ddistribute2, dfdistribute2 Distributes a stream of tuples into a distributed array.
Parameters are an integer attribute, the number of slots
and a Workers relation in the format shown in Section
3.1.3. A tuple is inserted into the slot corresponding to
its attribute value modulo the number of slots. See
Figure 2.

ddistribute3, dfdistribute3 Distributes a stream of tuples into a distributed array.
Parameters are an integer i, a Boolean b, and the Wor-
kers. Tuples are distributed round robin into i slots, if b
is true. Otherwise slots are filled sequentially, each to
capacity i, using as many slots as are needed.

ddistribute4, dfdistribute4 Distributes a stream of tuples into a distributed array.
Here a function instead of an attribute decides where to
put the tuple.

share An object of the master database whose name is given as
a string argument is distributed to all worker databases.

4.2.2 Distributed Processing by the Workers

Operations:

Operation Meaning

dloop, dmap Evaluates a SECONDO query on each field of a
distributed array of type darray or dfarray. Operator
dloop returns a darray, dmap returns a dfarray if the
result is a tuple stream, otherwise a darray. In a parame-
ter query, one refers to the field argument by "."

dloop2, dmap2 Binary variants of the previous operations mainly for
processing joins. Always two fields with the same index
are arguments to the query. One refers to field arguments
by "." and "..", respectively.

dmap3, ..., dmap8 Variants of dmap for up to 8 argument arrays. One can
refer to fields by ".", "..", or by $1, ... $8.

– 14 –
4.2.3 Collecting Data From the Workers

Operations:

Operation Meaning

dsummarize Collect all tuples (or values) from a darray or dfarray
into a tuple stream (or value stream) on the master.

getValue Convert a distributed array into a local array. Recom-
mended only for atomic field values; may otherwise be
expensive.

tie Apply aggregation to a local array, e.g., to determine the
sum of field values. (An operation not of the
Distributed2Algebra but of the ArrayAlgebra in SEC-
ONDO).

dproduct Arguments are two darrays or dfarrays with relation
fields. Each field of the first argument is combined with
the union of all fields of the second argument. Can be
used to evaluate a Cartesian product or a generic join
with arbitrary condition. No specific partitioning is nee-
ded for a join. But the operation is expensive, as all
fields of the second argument are moved to the worker
storing the field of the first argument.

partition, partitionF Partitions the fields of a darray or dfarray by a function
(similar to ddistribute4 on the master). Result is a dfma-
trix. An integer parameter decides whether the matrix
will have the same number of slots as the argument array
or a different one. Variant partitionF allows one to
manipulate the input relation of a field e.g. by filtering
tuples or by adding attributes, before the distribution
function is applied. See Figure 3.

collect2 Collects the columns of a dfmatrix into a dfarray. See
Figure 4.

areduce Applies a function (SECONDO query) to all tuples of a
partition (column) of a dfmatrix. In contrast to all pre-
vious operations it is not predetermined which worker
will read the column and evaluate it. Instead, when the
number of slots s is larger than the number of workers m,
then each worker i gets assigned slot i, for i = 0, ..., m-1.
From then on, the next worker who finishes its job, will
process the next slot. This is very useful to compensate
for speed differences of machines or size differences in
assigned jobs.

areduce2 Binary variant of areduce, mainly for processing joins.

Operation Meaning

– 15 –
5 Getting Spatial Data to the Master

We use OpenStreetMap data about the German state of North-Rhine-Westphalia obtained in the
form of shapefiles from GeoFabrik. On http://download.geofabrik.de/ one can navigate a
bit selecting Europe, then Germany. Then from the table Sub Regions in the row for Nordrhein-
Westfalen, download

http://download.geofabrik.de/europe/germany/nordrhein-westfalen-latest-
free.shp.zip

You can also use this link to download directly, if it is still available. Unpack the zip file.

The database has twelve kinds of objects, for example, Roads, Buildings, Waterways.

In directory secondo/bin start a SECONDO system without transactions (for loading data) using
the command

SecondoPLTTYNT

At the prompt, enter

Secondo => @Scripts/nrwImportShapeNew.psec

The contents of the file nrwImportShapeNew.psec are shown here:

Importing NRW Data
close database

create database nrw

open database nrw

let DIR = '/home/ralf/Daten/nordrhein-westfalen-latest-free.shp/'

let Roads = dbimport2(DIR + 'gis.osm_roads_free_1.dbf') shpimport2(DIR +
'gis.osm_roads_free_1.shp') namedtransformstream[GeoData] obojoin fil-
ter[isdefined(bbox(.GeoData))] validateAttr trimAllUndef consume

This is repeated to load all relations. The script creates relations Roads, Waterways, etc. within a
new database nrw. It ensures that geometries are defined, attribute names are capitalized, and
empty strings are represented as undefined values. Recently, this database is fairly large, for
example, has 7.5 mio buildings. It takes 2-3 hours to run this script.

The query optimizer collects information about the existing database objects which can be dis-
played with the predicate showDatabase.

SecondoPLTTY => showDatabase

Relation Roads(Auxiliary objects: SelSample(8144) JoinSample(8144))
AttributeName Type Memory DiskCore DiskLOB
GeoData line 220.224 220.224 943.488
Tunnel string 64.0 7.0 0
Bridge string 64.0 7.0 0
Layer int 16.0 5.0 0
Maxspeed int 16.0 5.0 0
Oneway string 64.0 7.0 0
Ref string 64.0 6.336 0
Name text 77.9 77.9 0

– 16 –
Fclass string 64.0 14.434 0
Code int 16.0 5.0 0
Osm_id string 64.0 14.524 0

Indices:

Ordering: []

Cardinality: 1628963
Avg.TupleSize: 1312.906 = size-

Term(866.124,369.4179992675781,943.4880007324218)
(Tuple size in memory is 136 + sum of attribute sizes.)

...

The relations in our example database have the following cardinalities and spatial data types:

Relation Cardinality Geometry Relation Cardinality Geometry

Buildings 7464304 region

Landuse 548688 region

Natural 159468 point NaturalA 556 region

Places 18222 point PlacesA 948 region

Pofw 2693 point PofwA 9136 region

Points 284798 point PointsA 115471 region

Railways 47104 line

Roads 1628963 line

Traffic 190162 point TrafficA 65019 region

Transport 88401 point TransportA 233 region

Water 37825 region

Waterways 91302 line

Some classes of objects are represented in two relations with different spatial data types. Points
means points of interest, Pofw places of worship.

6 Distributing Data to Workers

The following ways of data distribution are of interest:

• random partitioning
• partitioning by standard attribute: hash partitioning
• partitioning by standard attribute: range partitioning
• partitioning by spatial attribute: spatial partitioning
• replication

– 17 –
6.1 Random Partitioning

After starting monitors and master we create the workers relation in the database (Section 3.1):

let Workers14 = ...

We distribute the Roads relation in a random way into distributed files on the mini-cluster:

let RoadsB1 = Roads feed dfdistribute3["RoadsB1", 50, TRUE, Workers14]

2:27 min

In this case, we distribute the Roads in round-robin fashion into a distributed file array with 50
slots.

6.2 Hash Partitioning

We distribute Roads by Osm_id into a distributed array.

let RoadsB2 = Roads feed ddistribute4["RoadsB2", hashvalue(.Osm_id,
999997), 50, Workers14]

2:38 min

6.3 Range Partitioning

We can efficiently partition a relation for an attribute A with a total order5 in such a way that each
slot receives all tuples within an interval of values and different slots have distinct value ranges.
This is done by taking a sample and determining on the sample the partition boundary values.

We demonstrate this by distributing the subset of Roads that have a name into ranges of the road
name. We first determine how many Roads have defined names.

query Roads feed filter[isdefined(.Name)] count

Result: 594494

Hence there are 594494 road tuples that have a name. Out of these we wish to take a sample of 50
* 100 = 5000 tuples. That is a fraction of 1/119 tuples.

let S = Roads feed filter[isdefined(.Name)] nth[119, FALSE] project[Name]
sortby[Name] consume

52.9 seconds, Result size: 4995

The 4995 tuples in the sample we wish to divide into about 50 partitions of size about 100. We
now determine the attribute values that lie on partition boundaries.

let Boundaries = S feedproject[Name] nth[100, TRUE]
addcounter[D, 1] project[Name, D] consume

5. In fact, each attribute type technically does provide a total order as it is needed for sorting and duplicate remo-
val.

– 18 –
1.37 seconds

We put the relation Boundaries into memory and create an AVL-tree index over it.

query Boundaries feed letmconsume["Boundaries"] mcreateAVLtree[Name]

0.03 seconds

We can now distribute Roads, using the main-memory-AVLtree Boundaries_Name to determine
the slot number for each tuple. Operator pwrap is used to to convert a string argument into a
pointer in main memory. Names smaller than the smallest entry receive slot number 0.

let RoadsB3 = Roads feed filter[isdefined(.Name)]
ddistribute4["RoadsB3", pwrap("Boundaries_Name") pwrap("Boundaries")

matchbelow2[.Name, D, 0], 50, Workers14]

2:10 min

A range-partitioned relation can easily be sorted on the partition attribute:

let RoadsB3S = RoadsB3 dmap["RoadsB3S", . feed sortby[Name]]

6.33 sec

6.4 Spatial Partitioning

Spatial partitioning is based on an attribute of a spatial data type such as point, line, or region. The
idea is to use a regular grid where cells are numbered, covering all spatial attribute values. For
each tuple, the bounding box of its spatial attribute is determined, that is, the smallest axis-parallel
rectangle enclosing the geometry. The bounding box b is placed into the grid and the cell numbers
of cells overlapping b are computed. For each cell number returned, one copy of the tuple is put
into a partition corresponding to this cell number (modulo the number of partitions). This is
illustrated in Figure 5.

Figure 5: Rectangles r, s, and t are mapped to cell numbers using grid G.

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

r

s t

G

– 19 –
The first step for constructing the grid is to determine a rectangle enclosing all geometries.6 For
the database NRW, this can be done by a query:

query
 Buildings feed projectextend[; Box: bbox(.GeoData)]
 Landuse feed projectextend[; Box: bbox(.GeoData)] concat
 Natural feed projectextend[; Box: bbox(.GeoData)] concat
 Places feed projectextend[; Box: bbox(.GeoData)] concat
 Points feed projectextend[; Box: bbox(.GeoData)] concat
 Railways feed projectextend[; Box: bbox(.GeoData)] concat
 Roads feed projectextend[; Box: bbox(.GeoData)] concat
 Waterways feed projectextend[; Box: bbox(.GeoData)] concat

transformstream collect_box[TRUE]

The result is:

[const rect value (5.83191 9.64789 50.1346 52.5661)]

Next we create a 20 x 20 grid covering this area. It is no problem if the grid is a bit larger than the
enclosing rectangle. Moreover it is not a problem if some objects lie outside the grid boundary.
They are still mapped to indices.

let grid = [const cellgrid2d value (5.8 50.1 0.2 0.2 20)]

Here the five parameters for the grid are the left bottom corner (5.8, 50.1), the cellwidth and
cellheight (each 0.2) and the number of cells in a row (20).

With an operator called cellnumber we can now assign to each spatial object in the area of the
grid the numbers of the grid cells which are covered by its bounding box. The cellnumber opera-
tor takes a rectangle and a grid definition and returns a stream of numbers of the cells covered by
the rectangle.

let RoadsB4 = Roads feed
 extendstream[Cell: cellnumber(bbox(.GeoData), grid)]

dfdistribute2["RoadsB4", Cell, 50, Workers14]

1:56 min

Here the extendstream operator produces as many copies of each argument tuple as numbers are
returned by cellnumber.

Spatial distribution obviously introduces duplicates of the original tuples. If later we want to
apply an operation exactly to the original tuples, excluding the duplicates, for example, counting
them, it is a good idea to designate one of the copies as the original one. Hence we add a Boolean
attribute which is true for the first or only copy and false for further copies.

Furthermore, for computing distance-based spatial joins, it is necessary to perform the spatial join
operation on bounding boxes which have been enlarged by the distance. In the distributed case we
may want to prepare for such joins by enlarging rectangles already in the distribution. Suppose we
want to support distance based joins for buildings within a distance of 500 meters. In geogra-
phical coordinates in NRW, a difference of 0.01 in x-direction corresponds to about 700 meters, in
y-direction 0.01 corresponds to about 1.1 km (although this varies with the y-coordinate). Hence
if we enlarge the bounding boxes of buildings by 0.01 in each direction we should be sure to over-

6. This can also be done in other ways, e.g., reading coordinates from a map.

– 20 –
lap with the bounding boxes of other objects within 500 meters distance. Hence we distribute the
Buildings relation as follows:

let BuildingsB4 = Buildings feed
extend[EnlargedBox: enlargeRect(bbox(.GeoData), 0.01, 0.01)]

 extendstream[Cell: cellnumber(.EnlargedBox, grid)]
extend[Original: .Cell = cellnumber(.EnlargedBox, grid)

transformstream extract[Elem]]
ddistribute2["BuildingsB4", Cell, 50, Workers14]

52:36 min

This way of distributing takes a lot of time as many computations have to be done on the master.
A faster way is to first distribute data quickly in a random way and then to create the spatial
distribution by repartitioning. However, as now the workers distribute data spatially, we first need
to make the grid available to them.

let BuildingsB1 = Buildings feed dfdistribute3["BuildingsB1", 50, TRUE,
Workers14]

24:11 min

query share("grid", TRUE, Workers14)

let BuildingsB4a = BuildingsB1 partitionF["",
 . feed extend[EnlargedBox: enlargeRect(bbox(.GeoData), 0.01, 0.01)]
 extendstream[Cell: cellnumber(.EnlargedBox, grid)]
 extend[Original: .Cell = cellnumber(.EnlargedBox, grid)
 transformstream extract[Elem]],
 ..Cell, 0]
 collect2["BuildingsB4a", 1238]

7:51 min

6.5 Replication

An object in the master database, atomic or relation, can be moved in a simple way into the wor-
ker databases by the share operation. Suppose we want to replicate the Roads relation.

query share("Roads", FALSE, Workers14)

21:55 min

The object name is supplied as a string parameter. The second, Boolean parameter decides
whether an existing object in the worker database should be replaced.

7 Querying

In the following queries, in SQL we distinguish distributed from local relations by a suffix "_d".
Hence Roads refers to the local relation on the master, Roads_d to the distributed version.

– 21 –
7.1 Selection

We consider selection by a standard attribute and by a spatial attribute, supported or not by an
index.

select count(*) from Roads_d where Name = "Universitätsstraße"
select count(*) from Buildings_d where Type = "school"
select * from Roads_d where GeoData intersects eichlinghofen
select * from Buildings_d where GeoData intersects eichlinghofen

Here eichlinghofen is an object of type region designating the area of a suburb of Dortmund,
Eichlinghofen, created as follows:

let eichlinghofen = [const region value (
 (
 (
 (7.419515247680575 51.47332155746125)
 (7.394967670776298 51.47332155746125)
 (7.394967670776298 51.48716614802665)
 (7.419515247680575 51.48716614802665))))]

7.1.1 By Scanning

Selection by standard attribute:

query BuildingsB1 dmap["", . feed filter[.Type = "school"] count]
getValue tie[. + ..]

9.05 seconds, result 6037

For the spatial selection, we need to distribute the object eichlinghofen, if it is not yet distributed.

query share("eichlinghofen", TRUE, Workers14)

query RoadsB1 dmap["", . feed filter[.GeoData intersects eichlinghofen]]
dsummarize consume

6.6 seconds, result size 697

7.1.2 Creating a Standard Index

We can create an index on RoadsB2 which is a darray (not a dfarray).

let RoadsB2_Name = RoadsB2 dloop["RoadsB2_Name", . createbtree[Name]]

9.06 seconds

Result is a distributed B-tree.

7.1.3 Using a Standard Index

query RoadsB2_Name RoadsB2
dloop2["", . .. exactmatch['Universitätsstraße'] count]

 getValue tie[. + ..]

– 22 –
2.8 seconds, result 98

7.1.4 Creating a Spatial Index

BuildingsB4 is a darray, hence suitable for adding an R-tree index. We construct the index by
bulkloading.

let BuildingsB4_GeoData = BuildingsB4 dloop["",
. feed addid extend[Box: scalerect(.EnlargedBox, 1000000.0, 1000000.0)]
sortby[Box] remove[Box] bulkloadrtree[EnlargedBox]]

2:16min

Spatial data are sorted into z-order. For this to be effective on geographical coordinates, we need
to scale up the bounding boxes before sorting. We use the enlarged boxes constructed for distribu-
tion to be able to use the index also for distance-based queries.

7.1.5 Using a Spatial Index

Note that one needs to check whether eichlinghofen is distributed before executing this query.

query BuildingsB4_GeoData BuildingsB4
 dmap2["", . .. windowintersects[eichlinghofen]
 filter[.Original]
 filter[.GeoData intersects eichlinghofen], 1238
]
 dsummarize consume

9.5 seconds, result size 2272

We avoid duplicates by restricting to the Original field being true.

7.2 Join

We can distinguish three kinds of joins:

• equijoin on a standard attribute
• spatial join
• arbitrary join

The first two may also be supported by distributed indices.

7.2.1 Equijoin

Find pairs of distinct objects of class Natural with the same name.

select * from [Natural_d as n1, Natural_d as n2]
where [n1:Name = n2:Name, n1:Osm_id < n2:Osm_id]

We have to distinguish the two cases:

1. A copy of Natural is available which is distributed by attribute Name.
2. This is not the case.

– 23 –
(1) Distributed by Join Attribute

Let NaturalB2 be Natural distributed by attribute Name as a darray. We reduce to names that are
defined.

let NaturalB2 = Natural feed filter[isdefined(.Name)]
 ddistribute4["NaturalB2", hashvalue(.Name, 999997), 50, Workers14]

16.5 seconds

query NaturalB2 dmap["",
 . feed {n1} . feed {n2} itHashJoin[Name_n1, Name_n2]
 filter[.Osm_id_n1 < .Osm_id_n2]]
 dsummarize consume

22.97 seconds, result size 3131

Because this is a self-join, we need only one distributed version of Natural and can use dmap
instead of dmap2.

(2) Arbitrary Distribution

Let NaturalB1 be a dfarray distributed not by attribute Name without duplicates.

let NaturalB1 = Natural feed
 dfdistribute3["NaturalB1", 50, TRUE, Workers14]

4.6 seconds

Hence we first need to redistribute.

query NaturalB1 partitionF["", . feed filter[isdefined(.Name)],
 hashvalue(..Name, 999997), 0]
 collect2["", 1238]
 dmap["",
 . feed {n1} . feed {n2} itHashJoin[Name_n1, Name_n2]
 filter[.Osm_id_n1 < .Osm_id_n2]]
 dsummarize consume

47.76 seconds, result size 3131

Because this is a self-join, we need to repartition only once and can use dmap instead of dmap2
for the join.

7.2.2 Spatial Join

select count(*) from [Roads_d as r, Waterways_d as w]
where r:GeoData intersects w:GeoData

We need to distinguish whether the two arguments are distributed spatially or not.

(1) Both arguments are distributed by spatial attributes

For the following query, the grid needs to be available on the workers. It was already distributed
in Section 6.4.

– 24 –
Let RoadsB4 and WaterwaysB4 be the two spatially distributed relations (as dfarrays).

let WaterwaysB4 = Waterways feed
 extendstream[Cell: cellnumber(bbox(.GeoData), grid)]
 dfdistribute2["WaterwaysB4", Cell, 50, Workers14]

6.4 seconds

query RoadsB4 WaterwaysB4 dmap2["",
 . feed {r} .. feed {w} itSpatialJoin[GeoData_r, GeoData_w]
 filter[.Cell_r = .Cell_w]
 filter[gridintersects(grid, bbox(.GeoData_r),
 bbox(.GeoData_w), .Cell_r)]
 filter[.GeoData_r intersects .GeoData_w] count, 1238]
 getValue tie[. + ..]

5:50 min, result 66054

Each partition covers a set of grid cells. If the bounding box br of a road intersects the bounding
box bw of a waterway, then there must exist one or more cells (and hence partitions) where they
both appear. Hence the spatial join executed on each partition will connect the two tuples.

However, this may happen more than once. The boxes may overlap several cells which then
appear in different partitions. To avoid duplicates in the result, the operator gridintersects allows
one to select only one of the results. It takes as arguments the grid definition, the two rectangles,
and a cell number. If the two rectangles intersect, it computes their intersection. The bottom left
point of the intersection can lie in only one cell c (cell boundaries belong to only one cell). If the
cell number argument d is equal to c then the operator returns true, otherwise false. This is
illustrated in Figure 5 where the bottom left point of the intersection of rectangles s and t lies in
cell 20. Hence the result is reported only once, for cell 20.

Two further tests are needed: (i) It is possible that the two rectangles overlap in different cells but
in the same partition. Therefore we check that the cell numbers are equal (.Cell_r = .Cell_w).
(ii) The spatial join operation generally is only a filter as it checks that bounding boxes overlap. It
is still necessary to evaluate the given predicate on the exact geometries (.GeoData_r inter-
sects .GeoData_w).

(2) Not distributed by spatial attributes

In this case, it is necessary to repartition those arguments that are not spatially partitioned. Let us
assume this is the case for both arguments, given as RoadsB1 and WaterwaysB1, both of type dar-
ray. Also, the grid is already distributed. After repartitioning, the query is the same as in the pre-
vious case.

let WaterwaysB1 = Waterways feed dfdistribute3["WaterwaysB1", 50, TRUE,
Workers14]

3.28 seconds

query
 RoadsB1 partitionF["",
 . feed extendstream[Cell: cellnumber(bbox(.GeoData), grid)],

..Cell, 0]
 WaterwaysB1 partitionF["",

– 25 –
 . feed extendstream[Cell: cellnumber(bbox(.GeoData), grid)],
..Cell, 0]

 areduce2["",
 . feed {r} .. feed {w} itSpatialJoin[GeoData_r, GeoData_w]
 filter[.Cell_r = .Cell_w]
 filter[gridintersects(grid, bbox(.GeoData_r),
 bbox(.GeoData_w), .Cell_r)]
 filter[.GeoData_r intersects .GeoData_w] count, 1238]
 getValue tie[. + ..]

5:34 min, result 66054

Expressions in the Select Clause

We consider a further variant of this join query which not only finds pairs of intersecting roads
and waterways, but also returns their intersection.

select [r:Osm_id, r:Name, w:Osm_id, w:Name,
intersection(r:GeoData, w:GeoData) as BridgePosition]

from [Roads_d as r, Waterways_d as w]
where r:GeoData intersects w:GeoData

There are two ways to handle this:

• the projection and derivation of new attributes is handled on the master
• it is done by the workers

In the first case, we extend the previous query as follows:

query RoadsB4 WaterwaysB4 dmap2["",
 . feed {r} .. feed {w} itSpatialJoin[GeoData_r, GeoData_w]
 filter[.Cell_r = .Cell_w]
 filter[gridintersects(grid, bbox(.GeoData_r),
 bbox(.GeoData_w), .Cell_r)]
 filter[.GeoData_r intersects .GeoData_w], 1238]
 dsummarize
 projectextend[Osm_id_r, Name_r, GeoData_r, Osm_id_w, Name_w, GeoData_w;
 BridgePosition: crossings(.GeoData_r, .GeoData_w)]
 consume

14:03 min

If the result is large, the computation of the intersections is actually the most expensive part.
Hence it highly desirable to let it be executed in parallel by the workers. This is done in the follo-
wing version of the query:

query RoadsB4 WaterwaysB4 dmap2["",
 . feed {r} .. feed {w} itSpatialJoin[GeoData_r, GeoData_w]
 filter[.Cell_r = .Cell_w]
 filter[gridintersects(grid, bbox(.GeoData_r),
 bbox(.GeoData_w), .Cell_r)]
 filter[.GeoData_r intersects .GeoData_w]
 projectextend[Osm_id_r, Name_r, Osm_id_w, Name_w; BridgePosition:
 crossings(.GeoData_r, .GeoData_w)], 1238
]
 dsummarize
 consume

– 26 –
6:02 min

7.2.3 General Join

A join with an arbitrary join condition can only be evaluated by checking all pairs of tuples in the
Cartesian product of the two relations.

select * from [Roads_d as r, Waterways_d as w]
where [r:Name contains w:Name, isdefined(r:Name),

r:Fclass = "pedestrian", w:Fclass = "river"]

This can be evaluated efficiently, if one of the two relations is distributed, the other replicated. Let
RoadsB1 be distributed (as a dfarray, without duplicates), Waterways replicated. The replicated
relation has the same name on all workers as on the master.

query share("Waterways", TRUE, Workers14)

1:14 min

query RoadsB1 dmap["", . feed filter[isdefined(.Name)]
 filter[.Fclass = "pedestrian"] {r}
 Waterways feed filter[.Fclass = "river"] {w}

symmjoin[.Name_r contains ..Name_w]]
dsummarize
consume

28.18 seconds, result size 2435

If both arguments are distributed only (none is replicated) one can still evaluate it using the dpro-
duct operator. Let us assume WaterwaysB1 is distributed as well.

query RoadsB1 WaterwaysB1 dproduct["", . feed
filter[isdefined(.Name)] filter[.Fclass = "pedestrian"] {r}

 .. feed filter[.Fclass = "river"] {w}
symmjoin[.Name_r contains ..Name_w], 1238]
dsummarize
consume

19.76 seconds, result size 2435

7.2.4 Index-Based Equijoin

We consider the following query: Find all pairs of distinct roads with the same name. We add a
further condition to let the query not be too expensive.

select * from [Roads_d as r1, Roads_d]
where [r1:Name = Name, r1:Osm_id < Osm_id, r1:Fclass = "pedestrian",

r2:Fclass = "pedestrian", isdefined(r1:Name)]

In Section 6.3, we have constructed a distributed array RoadsB3 for Roads, range partitioned on
Name, where roads with empty names are omitted. Like hash partitioning, range partitioning is
suitable for equijoin.

We now create an index on this partition:

let RoadsB3_Name = RoadsB3 dloop["RoadsB3_Name", . createbtree[Name]]

– 27 –
9.19 seconds

Then the query can be expressed as follows:

query RoadsB3 RoadsB3_Name RoadsB3 dmap3["", $1 feed
filter[.Fclass = "pedestrian"] {r1}
loopjoin[$2 $3 exactmatch[.Name_r1] filter[.Fclass = "pedestrian"]]
filter[.Osm_id_r1 < .Osm_id], 1238]
dsummarize

 consume

1:31min (cold), 19.11 seconds (warm), result size 33824

In a dmapX operator one can refer to argument i by $i; for more than two arguments this is
necessary (instead of the . and .. notation). Here it makes a big difference whether the query is
executed for the first time (cold) or the second time (warm), when B-tree pages are cached.

7.2.5 Index-Based Spatial Join

We consider the query: Find all pairs of roads and buildings such that the building is within 500
meters distance from the road. Again we add another condition to let the query be not too expen-
sive.

select count(*) from [Roads_d as r, Buildings_d as b]
where [distance(gk(r:GeoData), gk(b:GeoData)) < 500,

r:Fclass = "bridleway"]

We use the spatially partitioned relations RoadsB4 and BuildingsB4 constructed in Section 6.4.
Buildings have been distributed with an enlarged bounding box so that distances of 500 meters
are covered. We also have an R-tree index BuildingsB4_GeoData available as constructed in Sec-
tion 7.1.4. The grid needs to be distributed as well.

query RoadsB4 BuildingsB4_GeoData BuildingsB4 dmap3["",
 $1 feed filter[.Fclass = "bridleway"] {r}
 loopjoin[$2 $3 windowintersects[.GeoData_r] {b}]

filter[.Cell_r = .Cell_b]
filter[gridintersects(grid, bbox(.GeoData_r), .EnlargedBox_b,

.Cell_r)]
 filter[distance(gk(.GeoData_r), gk(.GeoData_b)) < 500] count, 1238]

getValue tie[. + ..]

10:54min, result 478646

Even though there are only 2737 roads of class bridleway, the query takes a long time. This is
because (1) lots of buildings are retrieved due to their enlarged bounding boxes of size about
1 km2, and (2) the exact evaluation of the distance requires conversion into Gauss-Krüger
coordinates and is expensive itself. The query without the final filter condition yields the follo-
wing results:

query RoadsB4 BuildingsB4_GeoData BuildingsB4 dmap3["",
 $1 feed filter[.Fclass = "bridleway"] {r}
 loopjoin[$2 $3 windowintersects[.GeoData_r] {b}]

filter[.Cell_r = .Cell_b]
filter[gridintersects(grid, bbox(.GeoData_r), .EnlargedBox_b,

.Cell_r)] count, 1238]
getValue tie[. + ..]

– 28 –
18.25 seconds, result 2474541

7.3 Aggregation

7.3.1 Counting

How many roads are there for each class?

select [Fclass, count(*) as Cnt]
from Roads_d
groupby Fclass

We use RoadsB1, distributed randomly, a dfarray.

query RoadsB1 dmap["", . feed sortby[Fclass]
 groupby[Fclass; Cnt: group count]]
 dsummarize sortby[Fclass] groupby[Fclass; Cnt: group feed sum[Cnt]]
 consume

14.71 seconds

7.3.2 Sum, Average

For each class of waterway, what is the average width? Some objects have huge or negative width
values which are omitted.

select [Fclass, avg(Width) as AWidth]
from Waterways
where between(Width, 0, 10000)
groupby[Fclass]

We use WaterwaysD1, distributed randomly into a dfarray.

query WaterwaysB1 dmap["", . feed filter[.Width between[0, 10000]]
 sortby[Fclass]
 groupby[Fclass; Cnt: group count, SWidth: group feed sum[Width]]
]
 dsummarize sortby[Fclass]
 groupby[Fclass; SumWidth: group feed sum[SWidth],
 SumCnt: group feed sum[Cnt]]
 extend[AvgWidth: .SumWidth / .SumCnt]
 project[Fclass, AvgWidth]
 consume

18.1 seconds

The groupby operator relies on a preceding sorting step. There is a more efficient implementation
of grouping with the groupby2 operator which groups by hashing. For this, the GroupbyAlgebra
needs to be activated. In this case, the query can be expressed as:

query WaterwaysB1 dmap["", . feed filter[.Width between[0, 10000]]
 groupby2[Fclass; Cnt: fun(t: TUPLE, agg:int) agg + 1::0,
 SWidth: fun(t2: TUPLE, agg2:int) agg2 + attr(t2, Width)::0]
]
 dsummarize sortby[Fclass]

– 29 –
 groupby[Fclass; AWidth: group feed sum[SWidth] / group feed sum[Cnt]]
 consume

24.2 seconds

The groupby2 operator requires for each aggregate to be computed a function, which combines a
previous aggregate with a new tuple, and a value to initialize the aggregate. These two are deno-
ted in the form <function>::<value>. This operator is more efficient than groupby on large
sets of tuples as it avoids the sorting.

7.4 Sorting

By parallel sorting we mean the following problem. Given a partitioned relation R = R0, ..., Rn-1 to
be sorted by attribute A, the result should be relation S partitioned into S0, ..., Sn-1. Here n can be
the number of servers (or of slots of a distributed array where the number of slots is larger than
that of servers). Let Ti denote the sequence of tuples of partition Si. Then the concatenation of all
sequences, T0  . . . Tn-1, is the relation R sorted by A.

The general strategy applied is the following [O08, TLX13].

1. By sampling, determine attribute values a0, ..., an such that the number of tuples of R with
attribute value in the interval [ak, ak+1] is roughly the same for all k = 0, ..., n-1.

2. Then redistribute R such that tuples with attribute value within [ak, ak+1] are sent to server
or slot k.

3. Let the server in charge of slot k sort its partition locally.

The first two steps correspond to range partitioning as described in Section 6.3. The only diffe-
rence is that we need to get the sample from the distributed array.

This algorithm uses the following steps to sort a distributed Relation R by attribute A. Steps 1
through 5 serve to provide the partition boundaries on each server. Steps 6 to 7 perform the actual
sorting. As an example, we consider sorting BuildingsB1 by Osm_id where BuildingsB1 is a
distributed file array with random distribution.

The following example queries require at least SECONDO version 4.1.

1. From each relation Ri, i = 0, ..., p, p the number of partitions, take a random sample of size
500 of the attribute values and send it to the master.

2. On the master, sort the union of samples. From the ordered tuple stream select every 500th
element. Number these elements with a counter D, starting from 1. These pairs (A, D) will
form the boundaries between partitions, where D is the partition number.

(Steps 1 - 2)

let Size = BuildingsB1 dmap["", . feed count] getValue tie[. + ..];
let NSlots = size(BuildingsB1);
let Fraction = (Size div NSlots) div 500;
query share("Fraction", TRUE, Workers14);

let Boundaries = BuildingsB1 dmap["", . feed nth[Fraction, FALSE]
 project[Osm_id]] dsummarize sort nth[500, TRUE] addcounter[D, 1]

– 30 –
consume

3. Share the boundary pairs with the workers.

query share("Boundaries", TRUE, Workers14)

4. On each worker, create a main memory relation called Boundaries and an AVLtree index on
its attribute Osm_id called Boundaries_Osm_id.

query BuildingsB1 dmap["", Boundaries feed letmconsume["Boundaries"]
 mcreateAVLtree[Osm_id]]

5. On the master, create such a relation and index as well (this is needed for type checking on
the master).

query Boundaries feed letmconsume["Boundaries"] mcreateAVLtree[Osm_id]

6. For each partition Ri, determine for each tuple with A-value ax the value dk of the tuple (ak,
dk) indexed in the AVL-tree on Boundaries whose ak value is the greatest one that is smaller
than ax; for a value ax < a1 return 0. Repartition R by D. Result is a dfmatrix.

let BuildingsSortedOsm_idA = BuildingsB1
 partition["", pwrap("Boundaries_Osm_id") pwrap("Boundaries")

matchbelow2[.Osm_id, D, 0], 0]

Here the operator pwrap returns for a given string, referring to a main memory object, a
pointer to that object. This is more efficient than using string arguments directly.

7. Sort the tuples of each column Rj by A.

let BuildingsSortedOsm_id = BuildingsSortedOsm_idA
 areduce["", . feed sortby[Osm_id], 1238]

Now the complete relation R is ordered by partition (slot) numbers 0, ..., p with the smallest slot
having the first and the largest slot the last tuples of the sorted order. Within each slot, Rj is orde-
red by A.

The running times for the steps are shown in Table 1. The last column reports on using the same
algorithm on the relation CityNodesB0 (sorting by NodeId) decribed in Section 9.4, with about
250 million tuples, from the database germany. This experiment was done on cluster newton (as
in Section 9.4). Scripts containing these commands can be found in secondo/bin/Scripts/Par-
allelSort.sec and ParallelSort2.sec, respectively.

Table 1: Running times for parallel sorting

Steps Action
Time [seconds]

BuildingsB1
Cardinality 7.464.304

Time [seconds]
CityNodesB0

Cardinality 246.682.839

1 - 5 Determining and
distributing boundaries

36.86 2.46

6 Repartitioning 29.38 54.92

7 Sorting partitions 129.18 98.02

Total: 195.24 155.39

– 31 –
A difference between the two examples is that BuildingsB1 is a dfarray and CityNodesB0 a dar-
ray. On a relation, counting and taking a sample is much faster than on a file. This is why the steps
1 through 5 on the second example are so much faster. In that case, the costly steps are only the
redistribution and the sorting of partitions.

8 Observing Balance and Utilization of Workers

A well-known general problem in distributed query processing is that a query is finished only
when the last worker finishes its job. Necessarily the other workers are idle just before that time.
It is desirable to keep the idle times of workers minimal. In other words, it would be optimal if all
workers finished at the same time.

Workers may use different amounts of time because their tasks may be not of quite the same size.
This is called skew in the distribution of data. If different types of machines are used, the problem
is aggravated because some workers now may need more time than others even for tasks of the
same size.

In our distributed algebra, operators areduce and areduce2 adapt to different amounts of time
needed per worker and job. They assign more tasks to fast workers than to slow ones.

In this section we describe some tools to record and visualize the distribution of tasks to workers
and their idle times.

To prepare such measurements, one needs to define a distributed array ControlWorkers containing
the worker numbers, that is, the numbers 0, ..., n-1 if there are n workers. We continue the
example of Section 7.4 on parallel sorting. There we have 14 workers.

let ControlWorkers = intstream(0, 14 - 1) transformstream
ddistribute3["ControlWorkers", 14, TRUE, Workers14]
dloop["", . feed extract[Elem]]

We then run a script (from secondo/bin/Scripts)

@%Scripts/DistCost.sec

which defines some SECONDO objects and functions in the database:

• LastCommand: a relation recording for each worker the number of the last command of this
session executed there;

• distCostReset: a function to update LastCommand;
• distCostSave: a function saving into a relation the running times of all commands of all

workers executed since the last command;
• distCostBoxes: a function constructing from the saved cost relation a relation with

rectangles, one for each command executed on each worker. The position of the x-interval
of the rectangle corresponds to the worker number (width is the same for all). The y-interval
corresponds to the amount of time spent on this command. Boxes are stacked vertically per
worker in the order of execution. Hence we get a diagram with subdivided vertical bars per
worker and at the top we can see the idle times.

– 32 –
• distCostUtil: a function computing from the saved cost relation a number (percentage)
called the utilization of workers. This is simply the sum of times spent by all workers rela-
tive to the total time if all workers had worked to the end of the query.

We measure the last two steps of the distributed sorting algorithm of Section 7.4.

update LastCommand := distCostReset(ControlWorkers)

let BuildingsSortedOsm_idA = BuildingsB1
 partition["", "Boundaries_Osm_id" "Boundaries" matchbelow[.Osm_id]
 extract[D], 0]

let Cost1 = distCostSave(ControlWorkers);
update LastCommand := distCostReset(ControlWorkers)

let BuildingsSortedOsm_id = BuildingsSortedOsm_idA
 areduce["", . feed sortby[Osm_id], 1238]

let Cost2 = distCostSave(ControlWorkers)

We can now open the database from a Javagui interface and issue the query:

query distCostBoxes(Cost1, 0.0, 6.0)

The second parameter is a filter to return only the boxes whose elapsed time is larger than this
threshold. Here we select all boxes. The third parameter allows one to adjust the width of a ver-
tical bar. The resulting display is shown in Figure 6.

Remember that Cost1 is the cost of the query that partitions BuildingsB1 by Boundaries. There
are 50 fields to be processed, distributed in a cyclic manner over workers. Hence each of the first
8 workers needs to distribute the data of 4 fields (= 32 fields), the last 6 can only distribute the
data of 3 fields each (= 18). This explains why the first 8 bars in Figure 6 are larger than the last 6.

The result of the same query for Cost2 is shown in Figure 7. Here we have used the Show only
viewer feature of the Javagui. In this query, the areduce operator performs two actions for each
field:

1. It collects the data for this partition from all servers (workers);
2. it sorts the set of tuples for this partition.

This is why we see for each worker an even number of larger boxes (there are also other
commands performed by the workers taking only short time). Here, too, some workers process 3
and some 4 fields (6 and 8 boxes, respectively), but which workers process more is distributed
dynamically.

We can also measure the worker utilization.

query distCostUtil(Cost1);
query distCostUtil(Cost2);

The results are 90 % and 84 %, respectively.

– 33 –
 ObjectObject CreationSettingsFileViewersMMDBHelpCommandOptimizerServerProgram

gosearch

Server : 0

CmdNr : 72

CmdStr : (let TMP_53

ElapsedTime : 0.432732

CpuTime : 0.04

N : 1

Below : 0.0

CostBox : CostBox

Server : 0

CmdNr : 73

CmdStr : query creat

ElapsedTime : 0.001847

CpuTime : 0.0

N : 2

Below : 0.432732

CostBox : CostBox

Server : 0

CmdNr : 74

CmdStr : query TMP_5

ElapsedTime : 0.135267

CpuTime : 0.01

N : 3

Below : 0.434579

CostBox : CostBox

query distCostBoxes(...

18.856913644295304 / 94.89285575no time

< >

onlinespeed

** query Cost1

** query Cost2

** query distCostBoxes(Cost1, 0.0, 6.0)

renamestoreloadsave

clearremovehideshow
Sec>open database nrwshp

open database nrwshp...successful

no result

Sec>query Cost1

query Cost1...successful

see result in object list

Sec>query Cost2

query Cost2...successful

see result in object list

Sec>query distCostBoxes(Cost1, 0.0, 6.0)

query distCostBoxes(Cost1, 0.0, 6.0)...successful

see result in object list

Sec>

Secondo-GUI (Hoese-Viewer)

Figure 6: Workers’ running time diagram derived from Cost1.
From left to right there are bars for workers 0, ..., 13

 ObjectObject CreationSettingsFileViewersMMDBHelpCommandOptimizerServerProgram

search

CmdNr

CmdStr

ElapsedTime

CpuTime

Server

CmdNr

CmdStr

ElapsedTime

CpuTime

Server

CmdNr

CmdStr

ElapsedTime

CpuTime

Server

CmdNr

CmdStr

ElapsedTime

CpuTime

Server

CmdNr

CmdStr

query C...

-6.336734693877551 / 94.17030459no time

< >

onlinespeed

Secondo-GUI (Hoese-Viewer)

Figure 7: Workers’ running time diagram for Cost2.

– 34 –
9 Example: Constructing a Road Network Graph From OSM Data

In this section we explain the process of constructing a road network as a directed graph from
OpenStreetMap data. There are two scripts in SECONDO providing a sequential/local and a paral-
lel/distributed implementation, both to be found in secondo/bin/Scripts.

• Sequential: script ORGfromOSM.sec.
• Parallel: script importGermanyOsmShort.sec

In the sequel, we first explain the necessary background, then the implementation on a single
machine, and finally a distributed implementation.

9.1 Input Data and Their Structure

Data can be downloaded from GeoFabrik at http://download.geofabrik.de/ in the format
.osm.bz2. Place a file such as germany-latest.osm.bz2 into a directory, e.g. Daten in your
home directory and unpack it with the command

bunzip2 germany-latest.osm.bz2

resulting in the file germany-latest.osm.

The input file is an XML file which contains as a nested structure three kinds of objects:

• nodes
• ways
• relations

A node defines a location in geographic space in terms of latitude and longitude. It also has a
unique node identifier. A node may have an associated list of node tags. A node tag is a (key,
value) pair.

A way describes a linear geometry, has its own way identifier, and is defined as a sequence of
node identifiers. A way may describe a road or the boundary of a park or building, for example.
Note that geographic locations are present only in nodes. Hence two roads meeting in a junction
would share a node with a unique location. Ways may have associated way tags (= (key, value)
pairs) as well.

A relation has its own identifier and is defined as a list of references to nodes, ways, or relations.
Hence a relation can describe a set of anything, even in a nested manner. Relations may also have
relation tags.

9.2 Overview

The construction proceeds in the following major steps which are shown and explained below:

1. Process the input file creating a relational representation, consisting of six relations for
nodes, node tags, ways, way tags, relations, and relation tags.

– 35 –
2. Create a copy of the node relation such that latitude and longitude are translated into point
attributes. Further, assign new numeric identifiers that are clustered spatially (similar num-
bers will lie in similar locations).

3. From the six relations, reconstruct Ways as a nested relation. Each way tuple contains a sub-
relation containing the sequence of nodes defining the geometry of the way. The geometry
is also contained as an attribute of type line. The way tuple further contains a subrelation for
any tags, i.e., (key, value) pairs.

4. Based on tag information, select Roads as a subset of Ways.
5. Construct the Nodes of the road network graph. Nodes are either junctions of two distinct

roads, or first or last locations of the way geometry (called terminal nodes here).
6. Construct the directed edges of the road network graph. Edges are pieces of roads between

two nodes, e.g. between two junction nodes, or between a junction node and a terminal
node. This is done in three steps:

a. Construct the directed edges in the direction the original way is defined over nodes. If
a road is a one-way road, then the allowed direction of traversing it corresponds to
this order of nodes.

b. Construct the directed edges in the opposite direction if the road is not a one-way.
c. Form the union of the two sets of edges constructed in (a) and (b).

9.3 Local Implementation

In this section we describe the implementation of this procedure on a single SECONDO system.

9.3.1 Data Import: Creating Six Relations

This is done by the following query:

query fullosmimport('/home/ralf/Daten/germany-latest.osm', "City")

The fullosmimport operator performs a single scan of the (possibly huge) input file creating six
relations simultaneously with schemas:

CityNodes(NodeId: longint, Lat: real, Lon: real)
CityNodeTags(NodeIdInTag: longint, NodeTagKey: text, NodeTagValue: text)
CityWays(WayId: longint, NodeCounter: int, NodeRef: longint)
CityWayTags(WayIdInTag: longint, WayTagKey: text, WayTagValue: text)
CityRelations(RelId: longint, RefCounter: int, MemberType: text,

MemberRef: longint, MemberRole: text)
CityRelationTags(RelIdInTag: longint, RelTagKey: text, RelTagValue: text)

Several tuples in CityNodeTags may refer to the same NodeId via NodeIdInTag. A way is split
into tuples such that each tuple contains one node (NodeRef) as well as the order number of this
node in the sequence (NodeCounter). Again, any number of CityWayTags may refer to the same
WayId. Similar strategies apply to CityRelations and their tags. For the construction of the road
network we only need CityNodes, CityWays, and CityWayTags.

– 36 –
9.3.2 Create Spatially Clustered NodesNew

The road network we construct later consists of Nodes and Edges. Nodes are given by node iden-
tifiers and edges are tuples with two attributes Source and Target, describing a directed edge from
node Source to node Target. We will store edges clustered by Source node identifier to enable effi-
cient graph traversal. Nodes of the graph are based on nodes of OpenStreetMap.

At the same time, an interesting query is to retrieve edges in a certain spatial area. If we use the
original node identifiers from OpenStreetMap for Nodes of the graph, then these numbers are
arbitrarily scattered over the entire geographical area. This means that Edges from a small area
are stored scattered over the entire set of edges. If we retrieve edges from a small area, we need
one page access per edge and retrieval is slow.

This is the reason why we assign new node identifiers which are clustered spatially. Hence nodes
whose numbers are similar are likely to be close in the geographical space. The following query
constructs the new node identifiers in attribute NodeIdNew which is added to node tuples.

let CityNodesNew = CityNodes feed
 extend[Easting: .Lon * 1000000, Northing: .Lat * 1000000]
 extend[Box: rectangle2(.Easting, .Easting, .Northing, .Northing)]
 sortby[Box]
 projectextend[NodeId; Pos: makepoint(.Lon, .Lat)]
 addcounter[NodeIdNew, 1]
 consume

The query first adds to each tuple of CityNodes attributes Easting and Northing which are scaled-
up from Lon and Lat, respectively. It then adds a bounding box Box for Easting and Northing (a
degenerated rectangle). The stream of tuples is then sorted by this Box attribute.

What does it mean to sort a stream of tuples by a rectangle attribute? Rectangles are mapped back
into points (e.g. the center) and point values are sorted into z-order (see e.g. [Or90]). With the
addcounter operator we add a numbering attribute to the ordered stream of tuples and use these
values as new node identifiers; these are clustered spatially.

Note that sorting coordinates into z-order only works on the integer part of the coordinates. This
is why scaling up the numbers initially is necessary.

9.3.3 Create Ways

In the next step we reconstruct the linear features, called Ways.

let Ways =
 CityNodesNew feed
 CityWays feed itHashJoin[NodeId, NodeRef] sortby[WayId, NodeCounter]

nest[WayId; NodeList]
 extend[Curve : .NodeList afeed projecttransformstream[Pos]

collect_line[TRUE]]
 CityWayTags feed nest[WayIdInTag; WayInfo] itHashJoin[WayId,

WayIdInTag]
 extend[Box: bbox(.Curve scale[1000000.0])]
 sortby[Box] remove[Box]
 consume

– 37 –
CityWays tuples contain references to nodes and they are now joined with the nodes containing
the geographic points. They are ordered by WayId and sequence number of the node. This means,
all tuples for a given way now appear consecutively in the stream of tuples and in the correct
order of nodes. They are now nest-ed by WayId which means that for a given WayId only one
tuple with the WayId attribute is kept at the top level and all the remaining attributes (the sequence
of nodes, in this case) go into a subrelation called NodeList. From the NodeList a line value is
computed as attribute Curve; the line is simply given by the sequence of node positions.

From the CityWayTags in a second step a nested relation is computed which has for each WayId a
subrelation for the tags. This nested relation is joined with the one resulting from the first step via
WayId.

Finally, the resulting tuples (one per Wayid) are sorted into z-order similarly to the previous sub-
section.

9.3.4 Select Roads

The next step is simple: from the Ways we select Roads by the property that a highway tag exists.

let Roads = Ways feed
filter[.WayInfo afeed filter[.WayTagKey = "highway"] count > 0]
consume

9.3.5 Construct Nodes

Remember that the nodes making up a way describe its complete geometry. In contrast, we now
want to determine a subset of the nodes as Nodes of the graph, namely junction nodes of two
roads, start nodes of a road, and end nodes of a road.

let Nodes =
 CityWays feed
 CityWays feed {h2}
 itHashJoin[NodeRef, NodeRef_h2]
 filter[.WayId # .WayId_h2]
 CityNodesNew feed
 itHashJoin[NodeRef, NodeId]
 Roads feed project[WayId] {r1} itHashJoin[WayId, WayId_r1]
 Roads feed project[WayId] {r2} itHashJoin[WayId_h2, WayId_r2]
 project[WayId, NodeCounter, NodeIdNew, Pos]
Roads feed
 projectextend[WayId; Node: .NodeList afeed filter[.NodeCounter = 0]

aconsume]
 unnest[Node]
 project[WayId, NodeCounter, NodeIdNew, Pos]
 concat
Roads feed
 extend[HighNodeNo: (.NodeList afeed count) - 1]
 projectextend[WayId; Node: fun(t: TUPLE)
 attr(t, NodeList) afeed filter[.NodeCounter = attr(t, HighNodeNo)]

aconsume]
 unnest[Node]
 project[WayId, NodeCounter, NodeIdNew, Pos]
 concat

– 38 –
 sortby[WayId, NodeCounter]
 rdup
 consume

This query consists of three parts, namely

1. CityWays feed ...
2. Roads feed ...
3. Roads feed ...

computing these three sets. The first part finds pairs of CityWays tuples with the same node iden-
tifier but different way identifiers. Such pairs are joined with the node (new version). They are
further joined with Roads on each involved way identifier to make sure that it is actually a junc-
tion of roads, not of arbitrary ways. The second part finds start nodes of roads and the third part
end nodes, respectively. All found Nodes are brought into the same format, sorted by WayId and
NodeCounter, and duplicates are eliminated.

Note that junction nodes are created twice, once for each involved Wayid. Hence for each Wayid
we now have a sequence start node, junction node 1, ..., junction node n, end node (where junc-
tion nodes may be missing or coincide with end nodes)

9.3.6 Construct Edges

The task is now to construct edges of the road network, that is, pieces of road between start/end
points and junctions. For a given way (WayId), we have on the one hand the sequence of nodes
(coming from CityNodes) and the sequence of Nodes derived in the previous step (see Figure 8).

Figure 8: A way/road (drawn fat), its nodes (small, black) and its
Nodes (large, red). Labels a, b, c, d represent node identifiers.

For the road r shown in Figure 8, we need to construct three directed edges in Up direction (the
direction of increasing node numbers), namely a-b, b-c, and c-d as well as the reverse edges in
Down direction, if this road does not happen to be a one-way.

Up Edges

let EdgesUp =
 Nodes feed nest[WayId; SectionNodes]
 projectextend[WayId; Sections: .SectionNodes afeed
 extend_last[Source: ..NodeIdNew::0, Target: .NodeIdNew::0,
 SourcePos: ..Pos::[const point value undef],

0
1

2 3 4

5

6
7 8

a
b

c
d

road r

– 39 –
 TargetPos: .Pos::[const point value undef],
 SourceNodeCounter: ..NodeCounter::0,
 TargetNodeCounter: .NodeCounter::0]
 filter[.Source # 0]
 project[Source, Target, SourcePos, TargetPos,
 SourceNodeCounter, TargetNodeCounter]
 aconsume]

The query processes the stream of Node tuples which is ordered by Wayid and NodeCounter from
the previous step. It is nested by WayId so that we have one tuple for the road with subrelation
SectionNodes. For the road r of Figure 8, the subrelation would have four tuples. In the projectex-
tend operator, the subrelation SectionNodes is processed. The extend_last operator allows one to
construct new attributes based on attributes of the current tuple (accessed by .<attr>) as well as
attributes of the preceding tuple (accessed by ..<attr>) within a stream of tuples. For example,
for the second tuple of the stream for road r, Source is set to a, Target to b, SourcePos to the posi-
tion (point) of a, TargetPos to the position of b, SourceNodeCounter to 0, and TargetNodeCounter
to 3. The first tuple is a special case, as there is no preceding tuple in the stream; in this case the
new attribute values are taken from the constant specified behind the :: notation. The first tuple is
later eliminated by the filter condition. Hence as a result, three tuples are constructed and stored in
a new subrelation Sections, each describing an edge.

 Roads feed {r}
 itHashJoin[WayId, WayId_r]
 projectextend[WayId; Sections: fun(t:TUPLE)
 attr(t, Sections) afeed
 extend[
 Curve: fun(u: TUPLE)
 attr(t, NodeList_r) afeed
 filter[.NodeCounter_r between[attr(u, SourceNodeCounter),
 attr(u, TargetNodeCounter)]]
 projecttransformstream[Pos_r]
 collect_sline[TRUE],
 RoadName: attr(t, WayInfo_r) afeed filter[.WayTagKey_r = "name"]

extract [WayTagValue_r],
 RoadType: attr(t, WayInfo_r) afeed filter[.WayTagKey_r = "highway"]

extract [WayTagValue_r]
]
 aconsume]
 unnest[Sections]
 consume

Continuing the query, the Roads are joined by WayId so that now we have a tuple with the com-
plete road information as well as the sequence of edges for this road. In the projectextend opera-
tor, the Sections subrelation is transformed: for each edge (input Section tuple), the geometric line
value for this piece of road is constructed in attribute Curve; this is done by scanning the node list
of the road between the SourceNodeCounter and the TargetNodeCounter, feeding node positions
into the collect_line operator. Moreover, the edge is extended by the name of the road and its
type. Finally, the stream of tuples, each with a subrelation Sections, is unnest-ed so that the output
are flat tuples that can be collected into a regular relation.

Down Edges

let EdgesDown =

– 40 –
 Nodes feed nest[WayId; SectionNodes]
 projectextend[WayId; Sections: .SectionNodes afeed

sortby[NodeCounter desc]
 extend_last[Source: ..NodeIdNew::0, Target: .NodeIdNew::0,
 SourcePos: ..Pos::[const point value undef],
 TargetPos: .Pos::[const point value undef],
 SourceNodeCounter: ..NodeCounter::0,
 TargetNodeCounter: .NodeCounter::0]
 filter[.Source # 0]
 project[Source, Target, SourcePos, TargetPos,
 SourceNodeCounter, TargetNodeCounter]
 aconsume]
 Roads feed
 filter[.WayInfo afeed filter[.WayTagKey = "oneway"]
 filter[(.WayTagValue = "yes")] count = 0] {r}
 itHashJoin[WayId, WayId_r]
 projectextend[WayId; Sections: fun(t:TUPLE)
 attr(t, Sections) afeed extend[Curve: fun(u: TUPLE)
 attr(t, NodeList_r) afeed sortby[NodeCounter_r desc]
 filter[.NodeCounter_r between[attr(u, TargetNodeCounter),
 attr(u, SourceNodeCounter)]]
 projecttransformstream[Pos_r]
 collect_sline[TRUE],
 RoadName: attr(t, WayInfo_r) afeed filter[.WayTagKey_r = "name"]

extract [WayTagValue_r],
 RoadType: attr(t, WayInfo_r) afeed filter[.WayTagKey_r = "highway"]

extract [WayTagValue_r]
]
 aconsume]
 unnest[Sections]
 consume

The construction of reverse (Down) edges is almost the same. The difference is that Nodes are
now processed in the opposite order (via sortby[NodeCounter desc]) and nodes as well. Fur-
thermore, Roads are checked to not contain a (key, value) pair (oneway, yes) in which case Down
edges must not be constructed.

Edges

let Edges = EdgesUp feed EdgesDown feed concat
 projectextend[Source, Target, SourcePos, TargetPos, SourceNodeCounter,

TargetNodeCounter, Curve, RoadName,
 RoadType; WayId: .WayId]
 consume

Finally, the set of Edges is constructed as the union of Up and Down edges, putting the WayId
attribute to the end of tuples, in order to have Source and Target as the first two attributes.

9.4 Distributed Implementation

9.4.1 Prerequisites

We assume that a set of computers with SECONDO installations is available. A saved relation file
with worker definitions is present as WorkersNewton in secondo/bin. The monitors controlling

– 41 –
these workers are defined in file ClusterRalfNewton in secondo/bin. This corresponds to the
setup of cluster newton in Section 3.2.

9.4.2 Distributing OSM Data Fast

Providing the OSM data file for local data import requires two steps:

• download to newton1
• unpacking on newton1

It is crucial not to lose much time by providing data for the distributed import. We therefore pro-
ceed as follows:

• download to newton1
• copy the compressed file in parallel from newton1 to the other machines (newton2, ...,

newton5)
• unpack in parallel on all machines newton1, ..., newton5.

Workers will later read portions of the complete input file, now available on all computers, inde-
pendently in parallel.

For the file germany-latest.osm, the file sizes are:

• compressed: germany-latest.osm.bz2: 4.4 GB
• decompressed: germany-latest.osm: 52.6 GB

The running times for the steps for this file are as follows:

Hence there is very little overhead for making the data available for parallel import. A shell script
importGermanyOsmPrepare.sh performing the parallel copying and unpacking is shown in
Appendix.

As a result, the data file to be processed has been distributed to all computers providing workers
and is available at the same path, say

/home/ralf/Daten/germany-latest.osm

9.4.3 Preparations

A bash is started and we navigate to secondo/bin. Monitors are started with the shell command:

remoteMonitors ClusterRalfNewton start

Table 2:

Local Implementation Distributed Implementation

download to newton1 06:35 min download to newton1 06:35 min

copy compressed to others 02:42 min

unpack on newton 1 20:54 min unpack on all 20:54 min

Total Time 27:29 min 30:11 min

– 42 –
The master SECONDO system is started:

SecondoTTYBDB

Any other SECONDO user interface, e.g. the Javagui or SecondoTTYCS may also be used for the
master. The following commands are entered at the master.

create database germanyosm

open database germanyosm

We create a new database and open it.

restore WorkersNewton from WorkersNewton

let Workers = WorkersNewton

let NWorkers = Workers count

let NSlots = 160

query share("NSlots", TRUE, Workers)

let File = '/home/ralf/Daten/germany-latest.osm'

query share("File", TRUE, Workers)

Workers are restored and a few constants defined and shared with workers (that is, objects NSlots
and File are defined in each worker database and can therefore be used in queries on workers).

Note that the numbers of workers and slots can be chosen independently although there should be
more slots than workers (otherwise some workers will be idle). In our example implementation
we use a cluster with 40 workers; hence each worker normally needs to process 4 slots sequen-
tially.

let ControlSlots = intstream(0, NSlots - 1) transformstream
 ddistribute3["ControlSlots", NSlots, TRUE, Workers]
 dloop["", . feed extract[Elem]]

A distributed array is defined whose fields contain the integers 0, ..., 159.

9.4.4 Data Import: Creating Six Relations

let Division = ControlSlots
 dloop["Division", divide_osm3(File, NSlots, .)]

Workers create in parallel portions of the input file. The divide_osm3 operator assumes that the
input file File is to be split into NSlots parts of about equal size and extracts the n-th part if n is its
third parameter. The part is stored with name File_n. The dloop operator lets workers process all
the slots of array ControlSlots in parallel and sequentially per worker, referring to the slot value
by “.” so that for each slot the corresponding file is made available. The divide_osm3 operator
returns a Boolean indicating success; hence Division is created as a distributed array of bool.

let Import = ControlSlots
 dloop["Import", fullosmimport(File + "_" + num2string(.), "City", .)]

– 43 –
For each slot, the corrresponding input file is processed by the fullosmimport operator. It con-
structs the six relations as seen before. Here it has a third parameter (the slot number) which is
used as a suffix for the created relation, e.g. CityNodes_27. Import is returned as a distributed
array of bool.

Remember that the big OSM-file has node and node tag definitions at the beginning, ways and
way tags in the middle, and relations and relation tags at the end. Therefore, for the first slots only
relations CityNodes and CityNodeTags will have entries; the others are empty. This will change
for later slots.

We now need to create distributed arrays on the master controlling the fields whose values (rela-
tions in this case) have already been constructed by the workers.

let CityNodes_type = [const rel(tuple([NodeId: longint, Lat real,
Lon: real])) value ()];

let CityNodeTags_type = [const rel(tuple([NodeIdInTag: longint,
NodeTagKey: text, NodeTagValue: text])) value ()];

let CityWays_type = [const rel(tuple([WayId: longint, NodeCounter: int,
NodeRef: longint])) value ()];

let CityWayTags_type = [const rel(tuple([WayIdInTag: longint,
WayTagKey: text, WayTagValue: text])) value ()];

let CityRelations_type = [const rel(tuple([RelId: longint,
RefCounter: int, MemberType: text, MemberRef: longint,
MemberRole: text])) value ()];

let CityRelationTags_type = [const rel(tuple([RelIdInTag: longint,
RelTagKey: text, RelTagValue: text])) value ()];

First, for each of the six relations empty templates are created whose types can be used in creating
the distributed arrays.

let CityNodesB0 = Workers feed
 createDArray["CityNodes", NSlots, CityNodes_type, TRUE]

let CityNodeTagsB0 = Workers feed
 createDArray["CityNodeTags", NSlots, CityNodeTags_type, TRUE]

let CityWaysB0 = Workers feed
 createDArray["CityWays", NSlots, CityWays_type, TRUE]

let CityWayTagsB0 = Workers feed
 createDArray["CityWayTags", NSlots, CityWayTags_type, TRUE]

let CityRelationsB0 = Workers feed
 createDArray["CityRelations", NSlots, CityRelations_type, TRUE]

let CityRelationTagsB0 = Workers feed
 createDArray["CityRelationTags", NSlots, CityRelationTags_type, TRUE]

Then, the createDArray operator processes each available worker and asks it which slots of the
distributed array to be constructed are available in the worker’s database.

In the following, we only need relations CityNodes, CityWays, and CityWayTags for the construc-
tion of the road network. Moreover, we will next join CityNodes with CityWays via attributes
NodeId and NodeRef and later CityWayTags with a previous result via attribute WayIdInTag. We
therefore now redistribute (shuffle) each of these distributed relations by the respective attributes
to prepare for the joins.

– 44 –
let CityNodesB1_NodeId = CityNodesB0 partitionF["", . feed,
 hashvalue(..NodeId, 999997), NSlots]
 collect2["CityNodesB1", 1238]

let CityWaysB1_NodeRef = CityWaysB0 partitionF["", . feed,
 hashvalue(..NodeRef, 999997), NSlots]
 collect2["CityWaysB1", 1238]

let CityWayTagsB1_WayIdInTag = CityWayTagsB0 partitionF["", . feed,
 hashvalue(..WayIdInTag, 999997), NSlots]
 collect2["CityWayTagsB1", 1238]

The partitionF operator, applied to a distributed array whose fields contain relations, lets workers
in parallel (and sequentially per worker) partition the relation of a field into NSlot relations. The
second argument of partitionF (here "") is a string to name resulting data on the workers; if
empty, naming is done automatically. The third parameter (here . feed) is a function yielding a
stream of tuples; it can be used to manipulate tuples of the relation before redistributing them (e.g.
filter them or add attributes). The fourth argument (here hashvalue(..NodeId, 999997)) is a
function for distribution where “..” refers to the tuples returned by the third argument function.
The last argument provides the number of slots over which to distribute data. The overall result of
partitionF is a distributed file matrix, here with NSlot rows and NSlot columns.

The collect2 operator aggregates all the files in a column of the matrix into a single file, for each
column. Result is a distributed file array whose fields contain relations.

The resulting distributed (file) arrays contain CityNodes partitioned by NodeId, CityWays by
NodeRef, and CityWayTags by WayIdInTag and they are named accordingly.

9.4.5 Create Spatially Clustered NodesNew

let NCityNodes = CityNodesB1_NodeId dloop["", . feed count] getValue
tie[. + ..]

let MaxNodesPerSlot = (NCityNodes div NSlots) * 3

query share("MaxNodesPerSlot", TRUE, Workers)

let CityNodesNewB1_NodeId =
 CityNodesB1_NodeId ControlSlots dmap2["CityNodesNewB1",
 . feed
 extend[Easting: .Lon * 1000000, Northing: .Lat * 1000000]
 extend[Box: rectangle2(.Easting, .Easting, .Northing, .Northing)]
 sortby[Box]
 projectextend[NodeId; Pos: makepoint(.Lon, .Lat)]
 addcounter[NodeIdNew, (.. * MaxNodesPerSlot) + 1] , 1238]

The relation CityNodesNew is constructed to contain node positions as points and new, spatially
clustered identifiers. Here this is done in parallel, for each field of CityNodesB1_NodeId and the
corresponding field number. The latter is taken from array ControlSlots. The dmap2 operator pro-
cesses in parallel pairs of fields of its two input arrays, namely the two fields with index 0, two
fields with index 1, and so forth. The parameter query refers to the two argument field values by
“.” and “..”, respectively. The second argument (the field number) is just needed in the
addcounter operation to make the sets of identifiers of distinct fields disjoint.

– 45 –
Note that within each field, node identifiers are spatially clustered, but the nodes of each field are
scattered over the entire geographic area. This is not a problem if range queries are applied to
fields in parallel. Even globally, the clustering should still be fairly good.

9.4.6 Create Ways

let WaysB1_WayId = CityNodesNewB1_NodeId CityWaysB1_NodeRef dmap2["",
 . feed
 .. feed itHashJoin[NodeId, NodeRef], 1238]
 partitionF["", . feed, hashvalue(..WayId, 999997), 0]
 collect2["WaysB1", 1238]

We join CityNodes with CityWays via NodeId and NodeRef and redistribute resulting join tuples
by WayId. This implies that all tuples of one Way arrive in exactly one partition.

let WaysB3_WayId = WaysB1_WayId CityWayTagsB1_WayIdInTag dmap2["",
 . feed sortby[WayId, NodeCounter] nest[WayId; NodeList]
 extend[Curve : .NodeList afeed projecttransformstream[Pos]
 collect_line[TRUE]]
 .. feed sortby[WayIdInTag] nest[WayIdInTag; WayInfo]
 itHashJoin[WayId, WayIdInTag]
 extend[Box: bbox(.Curve scale[1000000.0])]
 sortby[Box]
 remove[Box]
 consume, 1238]

The rest of the query to construct Ways can be performed partition-wise.

9.4.7 Select Roads

let RoadsB1_WayId = WaysB3_WayId
 dloop["RoadsB1_WayId", . feed
 filter[.WayInfo afeed filter[.WayTagKey = "highway"] count > 0]
 consume]

For each partition (field), we select roads.

9.4.8 Construct Nodes

let NodesB1 =
 CityWaysB1_NodeRef CityNodesNewB1_NodeId dmap2["",
 . feed
 . feed {h2}
 itHashJoin[NodeRef, NodeRef_h2]
 filter[.WayId # .WayId_h2]
 .. feed
 itHashJoin[NodeRef, NodeId]
 project[WayId, NodeCounter, NodeIdNew, Pos, WayId_h2], 1238
]
 partitionF["", . feed, hashvalue(..WayId, 999997), NSlots]
 collect2["", 1238]
 RoadsB1_WayId dmap2["", . feed .. feed project[WayId] {r1}
 itHashJoin[WayId, WayId_r1], 1238]
 partitionF["", . feed, hashvalue(..WayId_h2, 999997), NSlots]
 collect2["", 1238]
 RoadsB1_WayId dmap2["", . feed .. feed project[WayId] {r2}

– 46 –
 itHashJoin[WayId_h2, WayId_r2]
 project[WayId, NodeCounter, NodeIdNew, Pos], 1238]

The first query constructs junction nodes. CityWays and CityNodesNew can be joined field-wise
as they are already distributed on the join attributes NodeRef and NodeId, respectively. Note that
the resulting join tuples contain two way identifiers WayId and WayId_h2 because they represent
junctions of two ways. These tuples need to be shuffled by WayId to join with the Roads for the
first way; the resulting join tuples need to be reshuffled by WayId_h2 a second time to be joined
with the Roads for the second way.

let NodesB2 =
 RoadsB1_WayId dloop["", fun(r: DARRAYELEM) r feed
 projectextend[WayId; Node: .NodeList afeed filter[.NodeCounter = 0]
 aconsume]
 unnest[Node]
 project[WayId, NodeCounter, NodeIdNew, Pos]
 r feed
 extend[HighNodeNo: (.NodeList afeed count) - 1]
 projectextend[WayId; Node: fun(t: TUPLE)
 attr(t, NodeList) afeed filter[.NodeCounter = attr(t, HighNodeNo)]
 aconsume]
 unnest[Node]
 project[WayId, NodeCounter, NodeIdNew, Pos]
 concat consume
]

The second query computes start nodes and end nodes within partitions of Roads.

let NodesB3_WayId = NodesB1 NodesB2 dmap2["",
 . feed .. feed concat, 1238]
 partitionF["", . feed, hashvalue(..WayId, 999997), NSlots]
 collect2["", 1238]
 dmap["", . feed sortby[WayId, NodeCounter] rdup consume]

The third query forms on each partition the union of all nodes constructed and then repartitions
them all by WayId. The resulting partitions contain for each way all its Nodes, sorted by Wayid
and NodeCounter, as needed in the next step.

9.4.9 Construct Edges

Up Edges

let NodesB4_WayId = NodesB3_WayId dloop["",
 . feed nest[WayId; SectionNodes]
 projectextend[WayId; Sections: .SectionNodes afeed
 extend_last[Source: ..NodeIdNew::0, Target: .NodeIdNew::0,
 SourcePos: ..Pos::[const point value undef],
 TargetPos: .Pos::[const point value undef],
 SourceNodeCounter: ..NodeCounter::0,
 TargetNodeCounter: .NodeCounter::0]
 filter[.Source # 0]
 project[Source, Target, SourcePos, TargetPos,
 SourceNodeCounter, TargetNodeCounter]
 aconsume]
 consume]

– 47 –
This implements the first part of the query of Section , constructing Sections subrelations. The
Nodes relation is already partitioned by Wayid from the previous step; hence this query can be
computed partition-wise. Within each partition, tuples are already sorted by WayId and Node-
Counter; hence the sequential query can simply be copied.

let EdgesUpB1_WayId = NodesB4_WayId RoadsB1_WayId dloop2["",
 . feed .. feed {r}
 itHashJoin[WayId, WayId_r]
 projectextend[WayId; Sections: fun(t:TUPLE)
 attr(t, Sections) afeed
 extend[
 Curve: fun(u: TUPLE)
 attr(t, NodeList_r) afeed
 filter[.NodeCounter_r between[attr(u, SourceNodeCounter),
 attr(u, TargetNodeCounter)]]
 projecttransformstream[Pos_r]
 collect_sline[TRUE],
 RoadName: attr(t, WayInfo_r) afeed filter[.WayTagKey_r = "name"]
 extract[WayTagValue_r],
 RoadType: attr(t, WayInfo_r) afeed filter[.WayTagKey_r = "highway"]
 extract[WayTagValue_r]
]
 aconsume]
 unnest[Sections] consume]

Second part of the query of Section which includes a join with Roads. Partitioning is correct, so
the join can be applied directly.

Down Edges

let NodesB5_WayId = NodesB3_WayId dloop["",
 . feed nest[WayId; SectionNodes]
 projectextend[WayId; Sections: .SectionNodes afeed
 sortby[NodeCounter desc]
 extend_last[Source: ..NodeIdNew::0, Target: .NodeIdNew::0,
 SourcePos: ..Pos::[const point value undef],
 TargetPos: .Pos::[const point value undef],
 SourceNodeCounter: ..NodeCounter::0,
 TargetNodeCounter: .NodeCounter::0]
 filter[.Source # 0]
 project[Source, Target, SourcePos, TargetPos,
 SourceNodeCounter, TargetNodeCounter]
 aconsume]
 consume]

let EdgesDownB1_WayId = NodesB5_WayId RoadsB1_WayId dloop2["",
 . feed
 .. feed filter[.WayInfo afeed filter[.WayTagKey = "oneway"]
 filter[(.WayTagValue = "yes")] count = 0] {r}
 itHashJoin[WayId, WayId_r]
 projectextend[WayId; Sections: fun(t:TUPLE)
 attr(t, Sections) afeed extend[Curve: fun(u: TUPLE)
 attr(t, NodeList_r) afeed sortby[NodeCounter_r desc]
 filter[.NodeCounter_r between[attr(u, TargetNodeCounter),
 attr(u, SourceNodeCounter)]]
 projecttransformstream[Pos_r]
 collect_sline[TRUE],
 RoadName: attr(t, WayInfo_r) afeed filter[.WayTagKey_r = "name"]

– 48 –
 extract[WayTagValue_r],
 RoadType: attr(t, WayInfo_r) afeed filter[.WayTagKey_r = "highway"]
 extract[WayTagValue_r]
]
 aconsume]
 unnest[Sections]
 consume]

Similar to the previous subsection.

9.4.10 Edges

let EdgesB1_WayId = EdgesUpB1_WayId EdgesDownB1_WayId dloop2["",
 . feed .. feed concat
 projectextend[Source, Target, SourcePos, TargetPos, SourceNodeCounter,
 TargetNodeCounter, Curve, RoadName,
 RoadType; WayId: .WayId]
 consume]

The union of the two sets of edges is computed partition-wise.

9.5 Experimental Comparison

We compare the local and the distributed implementation for three data sets, namely the adminis-
trative region of Arnsberg, the state of North Rhine-Westfalia, and the whole country of Germany.
Sizes of data are shown in Table 3.

Table 3: File Sizes and Cardinalities of Relations

Arnsberg NRW Germany

Decompressed file size [GB] 2.77 12.93 52.61

CityNodes 13080110 59596159 246682839

CityWays 17247983 81996292 326748302

CityWayTags 6269695 30359606 110938532

Ways 2016456 10028723 39201644

Roads 371624 1621132 9481614

Nodes 1068932 4728257 27583243

Edges 1359481 6022426 35359838

– 49 –
The running times of the single node and the distributed implementation, the latter using cluster
newton with 40 workers, are shown in Table 4.

Table 4: Running times of single node and distributed implementation [seconds]

Transaction management was disabled in both versions. The single node implementation used
roughly all the available main memory to be as fast as possible. For larger problems, the speedup
gets larger because the single node version cannot process all data in memory any more.

References

[O08] Owen O’Malley, TeraByte Sort on Apache Hadoop. Technical Report, Yahoo, 2008.
[Or90] Jack A. Orenstein: A Comparison of Spatial Query Processing Techniques for Native and Parameter

Spaces. SIGMOD Conference 1990: 343-352.
[TLX13] Yufei Tao, Wenqing Lin, and Xiaokui Xiao. Minimal Mapreduce Algorithms. Proc. ACM SIGMOD

2013, 529-540.

Arnsberg NRW Germany

Single node implementation (28800 MB) 3914 37548 358659

Distributed implementation (40 workers) 339 1229 6343

Speedup 11.5 30.5 56.5

– 50 –
Appendix

A File ClusterRalfNewton

132.176.69.193 SecondoConfig.ini /home/ralf/secondo/bin /home/ralf/secondo-databases 63414
132.176.69.193 SecondoConfig.ini /home/ralf/secondo/bin /diskb/ralf/secondo-databases 63415
132.176.69.193 SecondoConfig.ini /home/ralf/secondo/bin /diskc/ralf/secondo-databases 63416
132.176.69.193 SecondoConfig.ini /home/ralf/secondo/bin /diskd/ralf/secondo-databases 63417
132.176.69.194 SecondoConfig.ini /home/ralf/secondo/bin /home/ralf/secondo-databases 63414
132.176.69.194 SecondoConfig.ini /home/ralf/secondo/bin /diskb/ralf/secondo-databases 63415
132.176.69.194 SecondoConfig.ini /home/ralf/secondo/bin /diskc/ralf/secondo-databases 63416
132.176.69.194 SecondoConfig.ini /home/ralf/secondo/bin /diskd/ralf/secondo-databases 63417
132.176.69.195 SecondoConfig.ini /home/ralf/secondo/bin /home/ralf/secondo-databases 63414
132.176.69.195 SecondoConfig.ini /home/ralf/secondo/bin /diskb/ralf/secondo-databases 63415
132.176.69.195 SecondoConfig.ini /home/ralf/secondo/bin /diskc/ralf/secondo-databases 63416
132.176.69.195 SecondoConfig.ini /home/ralf/secondo/bin /diskd/ralf/secondo-databases 63417
132.176.69.196 SecondoConfig.ini /home/ralf/secondo/bin /home/ralf/secondo-databases 63414
132.176.69.196 SecondoConfig.ini /home/ralf/secondo/bin /diskb/ralf/secondo-databases 63415
132.176.69.196 SecondoConfig.ini /home/ralf/secondo/bin /diskc/ralf/secondo-databases 63416
132.176.69.196 SecondoConfig.ini /home/ralf/secondo/bin /diskd/ralf/secondo-databases 63417
132.176.69.197 SecondoConfig.ini /home/ralf/secondo/bin /home/ralf/secondo-databases 63414
132.176.69.197 SecondoConfig.ini /home/ralf/secondo/bin /diskb/ralf/secondo-databases 63415
132.176.69.197 SecondoConfig.ini /home/ralf/secondo/bin /diskc/ralf/secondo-databases 63416
132.176.69.197 SecondoConfig.ini /home/ralf/secondo/bin /diskd/ralf/secondo-databases 63417
132.176.69.193 SecondoConfig.ini /home/ralf/secondo/bin /home/ralf/secondo-databasesB 63410
132.176.69.193 SecondoConfig.ini /home/ralf/secondo/bin /diskb/ralf/secondo-databasesB 63411
132.176.69.193 SecondoConfig.ini /home/ralf/secondo/bin /diskc/ralf/secondo-databasesB 63412
132.176.69.193 SecondoConfig.ini /home/ralf/secondo/bin /diskd/ralf/secondo-databasesB 63413
132.176.69.194 SecondoConfig.ini /home/ralf/secondo/bin /home/ralf/secondo-databasesB 63410
132.176.69.194 SecondoConfig.ini /home/ralf/secondo/bin /diskb/ralf/secondo-databasesB 63411
132.176.69.194 SecondoConfig.ini /home/ralf/secondo/bin /diskc/ralf/secondo-databasesB 63412
132.176.69.194 SecondoConfig.ini /home/ralf/secondo/bin /diskd/ralf/secondo-databasesB 63413
132.176.69.195 SecondoConfig.ini /home/ralf/secondo/bin /home/ralf/secondo-databasesB 63410
132.176.69.195 SecondoConfig.ini /home/ralf/secondo/bin /diskb/ralf/secondo-databasesB 63411
132.176.69.195 SecondoConfig.ini /home/ralf/secondo/bin /diskc/ralf/secondo-databasesB 63412
132.176.69.195 SecondoConfig.ini /home/ralf/secondo/bin /diskd/ralf/secondo-databasesB 63413
132.176.69.196 SecondoConfig.ini /home/ralf/secondo/bin /home/ralf/secondo-databasesB 63410
132.176.69.196 SecondoConfig.ini /home/ralf/secondo/bin /diskb/ralf/secondo-databasesB 63411
132.176.69.196 SecondoConfig.ini /home/ralf/secondo/bin /diskc/ralf/secondo-databasesB 63412
132.176.69.196 SecondoConfig.ini /home/ralf/secondo/bin /diskd/ralf/secondo-databasesB 63413
132.176.69.197 SecondoConfig.ini /home/ralf/secondo/bin /home/ralf/secondo-databasesB 63410
132.176.69.197 SecondoConfig.ini /home/ralf/secondo/bin /diskb/ralf/secondo-databasesB 63411
132.176.69.197 SecondoConfig.ini /home/ralf/secondo/bin /diskc/ralf/secondo-databasesB 63412
132.176.69.197 SecondoConfig.ini /home/ralf/secondo/bin /diskd/ralf/secondo-databasesB 63413

B File WorkersNewton

(OBJECT WorkersNewton
 ()
 (rel
 (tuple
 (
 (Host string)
 (Port int)
 (Config string))))
 (
 ("132.176.69.193" 63414 "SecondoConfig.ini")
 ("132.176.69.193" 63415 "SecondoConfig.ini")
 ("132.176.69.193" 63416 "SecondoConfig.ini")
 ("132.176.69.193" 63417 "SecondoConfig.ini")

 ("132.176.69.194" 63414 "SecondoConfig.ini")
 ("132.176.69.194" 63415 "SecondoConfig.ini")
 ("132.176.69.194" 63416 "SecondoConfig.ini")
 ("132.176.69.194" 63417 "SecondoConfig.ini")

– 51 –
 ("132.176.69.195" 63414 "SecondoConfig.ini")
 ("132.176.69.195" 63415 "SecondoConfig.ini")
 ("132.176.69.195" 63416 "SecondoConfig.ini")
 ("132.176.69.195" 63417 "SecondoConfig.ini")

 ("132.176.69.196" 63414 "SecondoConfig.ini")
 ("132.176.69.196" 63415 "SecondoConfig.ini")
 ("132.176.69.196" 63416 "SecondoConfig.ini")
 ("132.176.69.196" 63417 "SecondoConfig.ini")

 ("132.176.69.197" 63414 "SecondoConfig.ini")
 ("132.176.69.197" 63415 "SecondoConfig.ini")
 ("132.176.69.197" 63416 "SecondoConfig.ini")
 ("132.176.69.197" 63417 "SecondoConfig.ini")

 ("132.176.69.193" 63410 "SecondoConfig.ini")
 ("132.176.69.193" 63411 "SecondoConfig.ini")
 ("132.176.69.193" 63412 "SecondoConfig.ini")
 ("132.176.69.193" 63413 "SecondoConfig.ini")

 ("132.176.69.194" 63410 "SecondoConfig.ini")
 ("132.176.69.194" 63411 "SecondoConfig.ini")
 ("132.176.69.194" 63412 "SecondoConfig.ini")
 ("132.176.69.194" 63413 "SecondoConfig.ini")

 ("132.176.69.195" 63410 "SecondoConfig.ini")
 ("132.176.69.195" 63411 "SecondoConfig.ini")
 ("132.176.69.195" 63412 "SecondoConfig.ini")
 ("132.176.69.195" 63413 "SecondoConfig.ini")

 ("132.176.69.196" 63410 "SecondoConfig.ini")
 ("132.176.69.196" 63411 "SecondoConfig.ini")
 ("132.176.69.196" 63412 "SecondoConfig.ini")
 ("132.176.69.196" 63413 "SecondoConfig.ini")

 ("132.176.69.197" 63410 "SecondoConfig.ini")
 ("132.176.69.197" 63411 "SecondoConfig.ini")
 ("132.176.69.197" 63412 "SecondoConfig.ini")
 ("132.176.69.197" 63413 "SecondoConfig.ini")
))

C Script importGermanyOsmPrepare.sh

#!/bin/bash

datafile="germany-latest.osm.bz2"

date

scp ralf@newton1:/home/ralf/Daten/$datafile ralf@newton2:/home/ralf/Daten/ &
pid2=$!
scp ralf@newton1:/home/ralf/Daten/$datafile ralf@newton3:/home/ralf/Daten/ &
pid3=$!
scp ralf@newton1:/home/ralf/Daten/$datafile ralf@newton4:/home/ralf/Daten/ &
pid4=$!
scp ralf@newton1:/home/ralf/Daten/$datafile ralf@newton5:/home/ralf/Daten/ &
pid5=$!

echo "wait for copying ..."

wait $pid2 $pid3 $pid4 $pid5

echo "finished"

date

– 52 –
2:42 min

ssh ralf@newton1 bunzip2 /home/ralf/Daten/$datafile &
pid11=$!
ssh ralf@newton2 bunzip2 /home/ralf/Daten/$datafile &
pid12=$!
ssh ralf@newton3 bunzip2 /home/ralf/Daten/$datafile &
pid13=$!
ssh ralf@newton4 bunzip2 /home/ralf/Daten/$datafile &
pid14=$!
ssh ralf@newton5 bunzip2 /home/ralf/Daten/$datafile &
pid15=$!

echo "wait for unpacking ..."

wait $pid11 $pid12 $pid13 $pid14 $pid15

echo "finished"

date

20:54 min

Verzeichnis der zuletzt erschienenen Informatik-Berichte

[365] Paul, A., Rettinger, R., Weihrauch, K.:

CCA 2012 Ninth International Conference on Computability and
Complexity in Analysis (extended abstracts), 6/2012

[366] Lu, J., Güting, R.H.:

Simple and Efficient Coupling of a Hadoop With a Database Engine,
10/2012

[367] Hoyrup, M., Ko, K., Rettinger, R., Zhong, N.:

CCA 2013 Tenth International Conference on Computability and
Complexity in Analysis (extended abstracts), 7/2013

[368] Beierle, C., Kern-Isberner, G.:
 4th Workshop on Dynamics of Knowledge and Belief (DKB-2013),
 9/2013

[369] Güting, R.H., Valdés, F., Damiani, M.L.:
 Symbolic Trajectories, 12/2013

[370] Bortfeldt, A., Hahn, T., Männel, D., Mönch, L.:

 Metaheuristics for the Vehicle Routing Problem with Clustered
Backhauls and 3D Loading Constraints, 8/2014

[371] Güting, R. H., Nidzwetzki, J. K.:

DISTRIBUTED SECONDO: An extensible highly available and scalable
database management system, 5/2016

[372] M. Kulaš:

A practical view on substitutions, 7/2016

[373] Fabio Valdés, Ralf Hartmut Güting:

Index-supported Pattern Matching on Tuples of Time-dependent
Values, 7/2016

[374] Sebastian Reil, Andreas Bortfeldt, Lars Mönch;

Heuristics for Vehicle Routing Problems with Backhauls, Time
Windows, and 3D Loading Constraints, 10/2016

	Distributed Query Processing in Secondo.pdf
	1 Introduction
	2 Passphrase-less Connection
	3 Setting Up a Cluster
	3.1 Example 1: Mini-Cluster
	3.1.1 Setting Up the Monitors
	3.1.2 Starting and Stopping the Monitors
	3.1.3 Setting Up Workers

	3.2 Example 2: A Larger Cluster
	3.2.1 Prerequisites
	3.2.2 Secondo Installation
	3.2.3 Creating Database Directories
	3.2.4 Prepare a Cluster Description File
	3.2.5 Prepare a Workers RelationFile
	3.2.6 Adapt and Distribute File SecondoConfig.ini

	4 The Algebra
	4.1 Types
	4.2 Operations
	4.2.1 Distributing Data to the Workers
	4.2.2 Distributed Processing by the Workers
	4.2.3 Collecting Data From the Workers

	5 Getting Spatial Data to the Master
	6 Distributing Data to Workers
	6.1 Random Partitioning
	6.2 Hash Partitioning
	6.3 Range Partitioning
	6.4 Spatial Partitioning
	6.5 Replication

	7 Querying
	7.1 Selection
	7.1.1 By Scanning
	7.1.2 Creating a Standard Index
	7.1.3 Using a Standard Index
	7.1.4 Creating a Spatial Index
	7.1.5 Using a Spatial Index

	7.2 Join
	7.2.1 Equijoin
	7.2.2 Spatial Join
	7.2.3 General Join
	7.2.4 Index-Based Equijoin
	7.2.5 Index-Based Spatial Join

	7.3 Aggregation
	7.3.1 Counting
	7.3.2 Sum, Average

	7.4 Sorting

	8 Observing Balance and Utilization of Workers
	9 Example: Constructing a Road Network Graph From OSM Data
	9.1 Input Data and Their Structure
	9.2 Overview
	9.3 Local Implementation
	9.3.1 Data Import: Creating Six Relations
	9.3.2 Create Spatially Clustered NodesNew
	9.3.3 Create Ways
	9.3.4 Select Roads
	9.3.5 Construct Nodes
	9.3.6 Construct Edges

	9.4 Distributed Implementation
	9.4.1 Prerequisites
	9.4.2 Distributing OSM Data Fast
	9.4.3 Preparations
	9.4.4 Data Import: Creating Six Relations
	9.4.5 Create Spatially Clustered NodesNew
	9.4.6 Create Ways
	9.4.7 Select Roads
	9.4.8 Construct Nodes
	9.4.9 Construct Edges
	9.4.10 Edges

	9.5 Experimental Comparison

	A File ClusterRalfNewton
	B File WorkersNewton
	C Script importGermanyOsmPrepare.sh

