Infrastructures for Research on Multimodal
Moving Objects

Jianqgiu Xu, Ralf Hartmut Giiting

Database Systems for New Applications, Mathematics and Computer Science
FernUniversitat Hagen, Germany
{jianqgiu.xu,rhg}@fernuni-hagen.de

Abstract

Moving objects with multiple transportation modes (e.g., Car, Bus, Walk) can
be represented by the reference method where the location is mapped to infras-
tructure objects, e.g., roads, buses, pavements. A scalable dataset is required to
evaluate the performance of a database system managing these moving objects. To
produce multimodal moving objects, infrastructure objects are essentially needed.
Due to the major challenge of gaining real datasets, in this demonstration we pro-
pose a method to create these infrastructure objects for different environments
including pavement areas, bus network and indoor just from a given road network
and some floor plans. An indoor viewer is also implemented in a database sys-
tem for visualizing 3D indoor moving objects and trajectories. The work is to be
used for evaluating the performance of a database system managing generic moving
objects.

1 Introduction

This demonstration presents a method to create infra-structure objects (e.g., pave-
ments, bus routes), which are referenced by generic moving objects covering multiple
environments for location representation, as well as a 3D visualization viewer for indoor
objects and trajectories. Due to the difficulty of getting all these geographic objects,
we produce all outdoor data just from a road dataset (without further information)
[7] which is easy to attain and indoor data from public floor plans (e.g., [6, 5]), so
that our method is also available for other researchers creating their own data. The
infrastructure objects are in order to create generic moving objects for the research on
moving objects with multimodal transportation modes, e.g., benchmarking a moving
objects database system.

A moving objects database manages spatial objects continuously changing loca-
tions over time. Currently, the data models for representing moving objects work in
specific environments, e.g., free space [1], road network [2], indoor [3]. To represent
generic moving objects in all environments (e.g., Walk — Car — Indoor), the ref-
erence method can be used. The method is to consider the space where objects are
located as a surface populated by recognizable and geographic objects that are associ-
ated with spatial attributes. Then, the location of a moving object can be represented
by mapping it to those objects [9]. For a data model, one needs to do evaluation (e.g.,
Benchmark [8]) for the performance of DBMSs. [8] deals with one infrastructure where
one mode for moving objects is considered, Car. But we produce the dataset of generic

moving objects covering multiple environments where all these geographic objects are
necessarily required.

We partition the whole space into five infrastructures: Free Space, Road Network,
Region-based Outdoor, Bus Network ' and Indoor. Each infrastructure excluding Free
Space consists of a set of infrastructure objects, i.e., referenced objects. In Road Net-
work, roads and streets are infrastructure objects. The infrastructure Region-based
Outdoor is the environment for pedestrians where pavements and zebra crossings are
available areas. People can also use public transportation vehicles for their traveling,
thus moving buses are infrastructure objects in Bus Network. The Indoor infrastruc-
ture comprises buildings each of which contains a set of rooms, e.g., office rooms. As
Free Space has no infrastructure objects and there are already many available real road
datasets, we focus on the last three infrastructures. Region-based Outdoor and Bus
network are created based on Road Network because they have interaction relation-
ships with each other. The reason is that pavements are usually located on both or one
side of roads and bus routes are a subset of roads. We create polygons representing
pavements and zebra crossings for Region-based Outdoor. Bus Network includes bus
routes, bus stops and moving buses. For Indoor, the rooms of a building are created
based on public floor plans.

2 Pavements

This section introduces the procedure to generate the environment for people walking.
We create the pavements based on the real road dataset Berlin [7]. There are two kinds
of pavements where one are those located on both or one side of roads and the other
are zebra crossings allowing people to cross the street. Both kinds of pavements are
represented by polygons.

2.1 Pavements besides roads

R ={ry,ra,...,7s} is the set of roads and each road r; is represented by a polyline. In
the real world, a road has a width value w; and we extend the road from a polyline to
a polygon using r; and wy. The procedure is as follows:

1. 7; is translated to two new polylines by the distance w; where one is on the left
of 7; and the other is on the right of 7;, and we denote the left part by r! and the
right part by r};

2. We connect the two endpoints of r; and rf, and also the endpoints of r; and r].
Thus, two regions are formed, denoted by regﬁ and reg; where regﬁ is created by
r; and 7!, and reg! is created by r; and r7.

3. A third region is produced by forming the union of regﬁ and reg;, denoted by
reg;.

Figure 1 depicts the three steps for creating the polygon for r;. Afterward, we define
another width value wo = wy; + Aw where Aw is the width of a pavement. Repeating
the same three steps above, a larger region than reg; can be created represented by
reg_e;. The pavement area located on both sides of r; can be obtained by reg_e; minus

! A rail network has a similar behavior where the vehicle moves along a pre-defined route and has a
time schedule as well as a sequence of stops for passengers getting on and off.

reg; Teg;

reg;

(a) Step 1 (b) Step 2 (c) Step 3

Figure 1: Create a region for a road

reg;. For each road, we follow the same procedure to create the pavements. In the end,
we get a set of polygons for pavements, each of which corresponds to a road.

2.2 Zebra Crossings

This type of pavements are used by people to cross the street and they are usually
located near the intersection position of two roads. So, at each junction intersected by
r; and r; we create zebra crossings (represented by polygons) for each road. The zebra
crossings are Ad (e.g., 3) meters from the junction, and they cross r; and r; as well as
intersect the pavements located on both sides of the road.

2.3 Pedestrian Navigation

We perform the union on all polygons for the above two kinds of pavements and get a
relatively large polygon P with many holes inside. An efficient algorithm is developed
for shortest path searching inside P, which provides trip planning for a pedestrian.

3 Bus Network

The public bus transportation system consists of two components: static and dynamic.
The static part is comprised of bus routes and bus stops, and the dynamic part includes
time schedules and bus trips for each route.

3.1 Static

Bus routes: The whole bus routes can be considered as a subset of roads and
we create them based on the Berlin streets data. Each bus route has a start and an
end location on the road, and we select them as follows. The road network space is
considered as a grid consisting of cells represented by rectangles. Each cell has a value
representing the road density in that area, which is the number of roads intersecting
the rectangle. All cells are classified into two groups according to the road density.
Cells belonging to the high density group are the areas close to the city center or with
high residential density. Cells in the low density group are the areas far away from
the city center or suburbs. The start and end locations (on the roads) are randomly
selected from two cells where both cells belong to the low density group, or one is from
the high density group and the other is from the low density group. As cells from the
high density group are close to each other, the distance between each pair is too short
to create a bus route. We compute the shortest path connecting the two locations in
the road network and set it as the bus route. In the end, we do refinement on the bus

routes created above, which is to merge two bus routes if the length of their common
part is larger than a threshold value.

Bus stops: For each bus route, we create a sequence of bus stops and the distance
interval between two consequent stops is randomly selected from a predefined distance
set. Then, we merge several bus stops belonging to different bus routes if their routes
have common parts and the distance between each pair of them is smaller than a
threshold value, e.g., 50m.

In the real world, one bus route has two directions and for each direction there are
a sequence of bus stops. To be realistic, our bus routes and bus stops are also created
based on this behavior. Each bus stop is also mapped to a position in the pavement,
thereby leading to connections between Region-based Outdoor and Bus Network.

3.2 Dynamic

The moving buses are created by their bus routes and the speed value. The bus route
defines the path on which the bus should move. The speed value is set as follows. The
data from [7] also has the type value for each street (e.g., main streets, side streets)
which determines the maximum speed for cars moving on it. We use the maximum
speed for moving buses. Each bus moves from one stop to another along its route,
stops at the bus stop for 30 seconds waiting for passengers getting on and off, and then
moves forward.

Each bus route has a schedule for its bus trips and different bus routes may have
different time intervals for schedules. We set the schedule for each route by the traffic
flow of that route, which is obtained as follows. Using BerlinMOD [8], we create a
set of cars moving in the Berlin streets. And then, for each road we record its traffic
flow by aggregating the number of cars passing it during a time interval. We map the
bus route to its corresponding road and get the traffic flow of it. All bus routes have
daytime schedules, and the routes with higher traffic flow are also treated as night bus
routes.

4 Indoor

4.1 Create Buildings

For this infrastructure, we create buildings based on their floor plans. A floor plan is
a diagram to show in scale the relationships between rooms, spaces and other physical
features at one level of a structure. We have the floor plan of our university and there
are some public resources [5, 6]. A building consists of rooms, corridors, staircases,
elevators, etc. To be more general, we use the term groom (general room) for all of
them. A groom is represented by a set of elements each of which has two attributes:
a polygon and the height above ground level (the floor at level 0 of a building). For
example, the staircase between two floors (a groom) contains a set of objects where each
represents one footstep of the staircase. The elevator is represented by several grooms
each of which has only one element recording the 2D area for one floor accompanied
by the height above ground level. According to the floor plan, one level of the building
can be created and then we translate one floor vertically to generate more floors to
construct a building.

Each groom has one or more doors. An office room may have only one door but a
corridor has several doors via which people can go from one room to another. A door

builds the connection between two grooms, thus we represent a door by two elements
each of which has two attributes. The first attribute is the groom id and the second is
a line value recording the position in that groom.

2D areas for buildings: Currently, we use rectangles for the bounding boxes of
all building places which are obtained as follows. Let bbox be the bounding box of R,
and S be the overall polygon of the union of all road polygons (produced by the three
steps in Section 2.1). B = bbox \ (S U P) is a set of polygons which are possible areas
for buildings. For each polygon, we decompose it into a set of triangles and get the
maximum rectangle inside each triangle.

4.2 Indoor Navigation

Given all grooms and doors of a building, a graph can be built for indoor navigation
which supports shortest path searching from one location to another. For example,
“find the shortest path from my office room to conference room 1”. The start and end
locations are in two grooms of a building. We represent the location by the groom id
and the relative position inside that groom. A node of the graph denotes a door and an
edge corresponds to a groom. The weight of an edge is the length of the shortest path
connecting two doors in that groom. The distance value is calculated in obstructed
space where Euclidean distance does not apply, because there may be obstacles (e.g.,
walls) in the groom. Before searching on the graph, one initially has to connect the
start and end location to all doors in the groom.

4.3 Indoor Moving Objects

To simulate people’s movement in the building, we create indoor moving objects as
follows. First, a set of indoor locations is generated. Second, with the graph in Sec-
tion 4.2 the shortest path between two locations can be returned. Third, we define a
speed value for a person and implement the elevator as a public transportation vehicle
which has a regular and periodic movement. With the path, speed value and elevator,
indoor moving objects can be generated. For each indoor moving object, we can get
its trajectory in space which is represented by a 3D line.

5 Demonstration Overview

Pavements and bus network: In the user interface, one can observe all created
pavements, bus routes and bus stops. We can also in the demo create online pavements
for some smaller sample area. Animation of moving buses is also available. Figure 2
is the screenshot for infrastructures Region-based Outdoor and Bus Network. We will
also demonstrate pedestrian navigation.

Indoor viewer: We can visualize floor plans of a building, indoor locations, tra-
jectories as well as animation of indoor moving objects. Figure 3 shows the screenshot
of the indoor viewer and indoor objects. In the 3D viewer, we show the building of our
university where only the ground floor of a groom is visualized (no walls). With the
3D line, one can also visualize the indoor shortest path. In the demo, we create a set
of a few hundred indoor moving objects and show their trajectories as well as animate
their movement.

6 Conclusion

We develop a method to create infrastructure objects for representing generic moving
objects in different environments. Three kinds of infrastructure objects are generated,
pavement areas, bus network and buildings. Such infrastructures will be useful to
evaluate multimodal moving objects databases in the future. A user-friendly interface
is provided for visualizing indoor objects and the viewer can be used for research in a 3D
environment. The implementation is done in an extensible database system Secondo [4].
Currently, we have the navigation for pedestrians and people inside a building. Later,
we are going to provide the connection between Region-based Outdoor and Indoor as
well as the navigation through all available infrastructures.

Acknowledgment

The first author gratefully acknowledges the financial support by Chinese Scholarship
Committee.

References

[1] R.H. Giiting, and M. H. Béhlen and M. Erwig, and C.S. Jensen, and N.A. Lorentzos,
and M. Schneider, and M. Vazirgiannis. A foundation for representing and querying
moving objects, ACM TODS, 25(1), 1-42, 2000.

[2] R.H. Giiting, and V.T.de Almeida, and Z.M.Ding. Modeling and Querying Moving
Objects in Networks, 15(2), 165-190, VLDB Journal, 2006

[3] C.S.Jensen, and H.Lu. and B.Yang. Graph Model Based Indoor Tracking, MDM,
123-131, 2009.

[4] R.H.Giiting, and V.T.de Almedia, and D.Ansorge, and T.Behr, and Z.Ding, and
T.Hose, and F.Hoffmann, and M.Spiekermann. SECONDO:An Extensible DBMS
Platform for Research Prototyping and Teaching,1115-1116, ICDE Demo Paper,
2005.

[5] http://www.modulargenius.com/default.aspx
[6] http://www.bkrfloorplans.co.uk/bkr_services/cinemas.html
[7] http://www.bbbike.de/cgi-bin/bbbike.cgi

[8] C.Diintgen, and T.Behr, and R.H.Giiting. BerlinMOD:A Benchmark for Moving
Objects Databases, 18(6), 1335-1368, VLDB Journal, 2009.

[9] J.Xu, and R.H.Giiting. A Generic Data Model for Moving Objects, Manuscript in
preparation.

@
B

Pragram Server _Qptimizer Command

[i- - successtin show | hide remove [dlear

|eee resutt in opject 1ist - ;

|secoquery a11_bus_re1 feed Filter[.bus_day = "Monday"]| || e | load " Slors | fanms
ilter[.schedule_id = 1] tilter[.br_id onsune ;| |[¥* query T

|auery a11_bus_re1 feed filter[.bus_day = "Monday"] | auery bn_busroutes(bn1) extend [eo: b roendataC. bus_route)] extend[id: ref_id(.bus_route)] consune

|Fitter[. schedule_id = 1] filter[.br_id = 6] consune |+ auery bn_busstops(bnt) extend [geo: bsgeodata(.bus_stop, bil)] extend [id: ref_id(.bus_stop)] extend[stopid:getstopi

|;- . -successful "+ query all_bus_rel Teed filter[.bus_day = "Monday"] filter[.schedule id = 1] Filter[.br_id = 6] consune ;

|s=e result in object Tist [auery

|sec>auery subpavesi: [+ avery

sunreasfil
|see result dn object Tist
|sacquary subpaves2;

|auery subpavesz; ...successful
|see vesutt dn object Tist

Help Viewers File Settings Ohjert Creatian Ohjert

Jsecs

Elispeed 2 2010-12-06-06: 34:02..561
query subpaves I
T =
|ri i A
Jpavenent + veraure3
[EFREEE
o i
Joavenene ¢ peranc s
!
ora 13
i1
[paveter ¢ Deraue_s
: 13332
1
Default 3
: 1333
1
: perautes
13334
!
veraui_s
13335
1
Defaule 3
: 1333
i
|pavansne : detane_a
13337
Joavenene s permies ||
3
search] |a=

27085. 42265517043 / 12867.504844

/

Figure 2: Pavements and Bus Network

Program _Server Opumizer Command Help Viewers Settngs

o result

Sec>query fernuni;

qury Faround s . . unnaesfil

ceo rasult in chisct Tist

Socsquery trajectory(nol feed addeounter[d,1] Flter[.dd -
199] extract[IndoorTrip])

query trajectory(nol feed addcounter[id,1] Filter[.id = 193]
o L UL Trdour T pl) . success Tl

see result in object Tist

Secsquery nol feed addcounter[id, 1] Tilter[.id = 195]
consune;

query nol feed addcounter(id,1] filterl.id = 198)

consune; . . .successful

see result in ohiect Tist

Sec>

load
auery fernuni;

duery trajectory(uel Teed addcounter[id,1] Filter[.id - 108] extract [IndoarTrip])
Guery mol Teed addcounter[id,1] Filter[.id - 198] consune;

<

Figure 3:

Transtate

L¥iew

Close Window

ULU-1 U308 2 U6
Reser

Rotaon

Front View
TOP View | R View

Back View

Indoor Visualization

