Efficient k-Nearest Neighbor Search on
Moving Object Trajectories

Ralf Hartmut Guting, Thomas Behr, Jiangiu Xu

Database Systems for New Applications,Mathematics andgDten Science
University of Hagen, Germany
{rhg,thomas.behr,jiangiu.y@fernuni-hagen.de

January 28, 2010

Abstract

With the growing number of mobile applications, data analps large sets of historical mov-
ing objects trajectories becomes increasingly importlgarest neighbor search is a fundamental
problem in spatial and spatio-temporal databases. In #pgpwe consider the following problem:
Given a set of moving object trajectoriésand a query trajectoryg, find thek nearest neighbors
to mq within D for any instant of time within the life time of.g. We assuméD is indexed in a
3D-R-tree and employ a filter-and-refine strategy. The fétep traverses the index and creates a
stream of so-called units (linear pieces of a trajectoryq asiperset of the units required to build
the result of the query. The refinement step processes aredrdizeam of units and determines the
pieces of units forming the precise result.

To support the filter step, for each nagdef the index, in preprocessing a time dependent coverage
function C,(¢) is computed which is the number of trajectories represeintedpresent at time.
Within the filter step, sophisticated data structures aeel s keep track of the aggregated coverages
of the nodes seen so far in the index traversal to enable q@yurivloreover, the R-tree index is
built in a special way to obtain coverage functions that dfec@ve for pruning. As a result, one
obtains a highly efficienk-NN algorithm for moving data and query points that outperfsthe two
competing algorithms by a wide margin.

Implementations of the new algorithms and of the compegufiques are made available as
well. Algorithms can be used in a system context includingekample, visualization and animation
of results. Experiments of the paper can be easily checkedpaated, and new experiments be
performed.

1 Introduction

Moving objects databases have been the subject of interesiearch for more than a decade. They allow
one to model in a database the movements of entities and tpuasies about such movements. For some
applications only the time-dependent location is of irderm other cases also the time dependent extent
is relevant. Corresponding abstractions areaving pointor amoving region respectively. Examples
of moving points are cars, air planes, ships, mobile phoeesysr animals; examples of moving regions
are forest fires, the spread of epidemic diseases and so forth

Some of the interest in this field is due to the wide-spreaditisheap devices that capture positions,
e.g. by GPS, mobile phone tracking, or RFID technology. Niaya not only car navigation systems,
but also many mobile phones are equipped with GPS recefeersxample. Vast amounts of trajectory
data, i.e., the result of tracking moving points, are acdated daily and stored in database systems
[14, 41, 31].

There are two kinds of such databases. The first kind, sorestoalled aracking database, rep-
resents a set of currently moving objects. One is interestezbntinuously maintaining the current

positions and to be able to ask queries about the positiongthas the expected positions in the near
future. This approach was pioneered by the Wolfson group48B With this approach, a cab company
can find the nearest taxi to a passenger requesting traasport

The other kind of moving objects database represents dmsteries of movement [25, 17], e.g.
the entire set of trips of the vehicles of a logistics compenthe last day or even month or year. For
moving points such historical databases are also catigectory databases. The main interest is in
performing complex queries and analyses of such past mawsirfeor the logistics company this might
result in improvements for the future scheduling of dele®r For zoologists, the collected movement
information of animals (equipped with a radio transmiteah be used to analyse their behavior.

There has been a lot of interest in research to support swalgsas, for example in data mining
on large sets of trajectories [23], on discovering movenpaittierns such as flocks or convoys traveling
together [24, 31], on finding similar trajectories to a givame [20], to name but a few. Of course,
indexing and query processing techniques (see [35]) plap@amental role in supporting such analyses.

In this paper we consider the problem of computing contisuoearest neighbor relationships on a
historical trajectory database. Nearest neighbor quarshesides range queries, the most fundamental
query type in spatial databases. With the advent of movirjgotd databases, also time dependent
versions have been studied. One can distinguish four tyjpgsenies:

e static query vs. static data objects (i.e., the classicatast neighbor query)
e moving query vs. static data objects (e.g. maintain the fiogest hotels for a traveller)
e static query vs. moving data objects (e.g. observe thesti@sebulances to the site of an accident)

e moving query vs. moving data objects (e.g. which vehiclepampanied president Obama on his
trip through Berlin)

Furthermore, one can consider these query types in a tgckitabase which leads to the notion
of a continuous query, maintaining the result online whiétees are moving. This is most interesting
for consumer applications. But one can also consider thasees in the context of analysing historical
trajectories which is the case studied in this paper.

Note that the last of the four query types is the most diffiamil general one. It includes all other
cases, as a static object can be represented as a movingthhjestays in one place. We will handle this
case.

The precise problem considered is the following. We call da& type representing a complete
trajectorymoving pointor mpoint, for short [25, 17]. Leti(p, q) denote the Euclidean distance between
pointsp andq. Letmp(i) denote the position of moving pointp at instant.

Definition 1 [TCENN-query] Atrajectory-based continuous-nearest neighbor querg defined as fol-
lows: Given a querynpoint mq and a relationD with an attributemloc of type mpoint, return a subset
D' of D where each tuple has an additional attributkyc such that the three conditions hold:

1. For each tuple € D', there exists an instant of timiesuch thati(t.mloc(i), mq(i)) is among the
k smallest distances from the det(u.mloc(i), mq(i))|u € D}.

2. mloc is defined only at the times condition (1) holds.
3. mlod (i) = mloc(i) whenever it is defined.

O

In other words, the query selects a subset of tuples whosénmpwint belongs at some time to the
closest to the query point and it extends these by a restiici the moving point to the times when it
was one of the: closest.

This query type has been considered in the literature [1PwRA a further parameter, a query time
interval. However, our definition covers this case as welesone can easily compute the restriction of
the query trajectory to this time interval first.

An example of a TENN query is shown in Figure 1. To enable easy interpretatidhefigure, we
assume that all objects only change theiroordinate and thg-coordinate is fixed tgy.

0,0, 0

(8S¢/

e
0% &l

-

N

Figure 1: Example of a TRNN query

Besides the query objeetq, there are five moving data objedfs,,...,o05}. We setk = 2, that
means, we search for the two nearest neighbors. As showr ifigilire, the result changes with time.
For example, betweefy andt;, the result is the sdlo1, 02} and between, andt,, the result changes to
{02, 03}.

TCKENN gqueries on the one hand are natural from a systematic pbuitw as they are the dynamic
version of a fundamental problem in spatial databases. alsyhave many applications, especially
in discovering groups of entities traveling together withuery object. Some examples are mentioned
in [19, 21]. Further, an efficient solution to this problemgimi be used as a stepping stone for solving
data mining problems such as discovering flock or convoyepadt Traffic jams are another example of
groups of vehicles staying close to each other for extendedgs of time.

So far, there exist two approaches for handlingcING! queries [19, 21]. Both use R-tree like struc-
tures for indexing the data trajectories, i.e. in [19] a 3Br€e is used and in [21] a TB-tree [39] is
utilized. They are discussed in more detail in Section 2.

Our contributions are the following:

e We offer the first filter-and-refine solution, in the form ofawlifferent algorithms and query pro-
cessing operators, calléthearestfilter and knearest. The first traverses an index to produce an
ordered stream of candidate units (pieces of movement)séhend consumes such an ordered
stream. Both together offer a complete solution. Howekeearest can also be used indepen-
dently. This is important for queries that restrict canthdaearest neighbors by other conditions
so that the index cannot be used.

e We offer a solution that employs novel and highly sophiséidapruning strategies in the filter
step. A fundamental idea is to preprocess coverage furscimneach node of the index that
describe how many moving objects are present in the nodésesubr any instant of time. This is
supported by special techniques to build an R-tree and byiegifidata structures and algorithms
to keep track of pruning conditions.

e We provide a thorough experimental comparison which detnates that our algorithm is orders
of magnitude faster than the two competing algorithms figdadatabases and larger valueg of

e For the first time, such algorithms are made publicly avigélab a system context and so can be
used for real applications. TheeBoNDcsystem is freely available for download. A new plugin

technology exists that makes it easy for readers of thismpapadd a nearest neighbor module
(plugin) to an existing SconDadnstallation. All algorithms can then be used in the form oéry
processing operators; they can be applied to any data sdtarthavailable in the system or that
users provide; the results can easily be visualized andaadn

e We also provide scripts for test data generation and for xkelwdion of experiments. In this way
easy experimental repeatability is provided. Besidesatpg the experiments shown in the paper,
readers can change parameters, explore other data sddsjnbigixes in other ways, and hence
study the behaviour of these algorithms in any way desireth relatively little effort. Indeed,
we would like to promote such a methodology for experimergaearch and view this paper and
implementation as a demonstration of it.

The remainder of this paper is structured as follows. SeQisurveys related work, especially the
two algorithms solving the same problem as this paper. Ini@e8.1 we briefly describe the repre-
sentation of trajectories. Section 3.2 outlines the fidted-refine strategy. After that, the filter step is
described in detail in Section 4. First, we give an overviéthe basic idea and expose arising subprob-
lems. The next subsections show how these problems can\®sdlhen, the refine step is presented
in Section 5. The results of an experimental evaluation @ing our approach with both existing ap-
proaches are shown in Section 6. Section 7 explains how goeitims can be used in the context of
the SEconDasystem and how experiments can be repeated. Finally, 8e&&toncludes the paper and
gives directions for future work.

2 Related Work

There are several types bNN queries. The most simple case is that both the query paoohtfze data
points are static. The first algorithm for efficient nearesighbor search on an R-tree was proposed
by [42] using depth-first traversal and a branch-and-bowuthrtique. An incremental algorithm was
developed in [27]. Again, an R-tree is traversed. Here aripyigueue of visited nodes ordered by
distance to the query point is maintained. The incremeatddrtique is essential if the number of objects
needed is not known in advance, e.g. if candidates are totbeefil by further conditions. Because in
this case all involved objects are static, also the resalffised set of objects.

The first algorithm for CNN (Continuous Nearest Neighboreges was proposed in [44]. It handles
the case that only the query object is moving, while the d#éfeats remain static. Here the basic
idea is to issue a query at each sampled or observed positiam@ery point, trying to exploit some
coherency between the location of the previous and the muguery. This algorithm suffers from the
usual problems of sampling. If there are too few sample poihie result may be inaccurate. On the
other hand, many sampling points lead to an increase in ctatu time without any guarantee for a
correct result.

An improved algorithm was proposed by [47]. Here an alganigearches the R-tree only once to
find thek nearest neighbors for all positions along a line segmetihout the need of sampling points.

There exists a lot of work related to Continudublearest Neighbor queries [45, 29, 40, 37, 50, 49, 9,
28]. In all these approaches tracking databases are assurdélde task is online maintenance of nearest
neighbors for a moving query point, in some cases also forimgalata points. For each of these objects
only the current and near future position is known. Indexcttrires like the TPR-tree are used [40, 9]
which indexes current and near future positions; in somescasnple grid structures are employed to
support high update rates [49, 50]. In [9] also reverse taeighbor queries are addressed. lwerks et
al. [29] also support updates of motion vectors.

Note that all this work is fundamentally different from theoplem addressed in this paper because
only the current motion vector is known. In contrast, we anesidering historical trajectory databases.
In this case, the data set is not only a vector for each mouiject but a complete trajectory, and there

is no need to process pieces of a trajectory in a particutigrde.g. in temporal update order). Instead,
the set of trajectories can be organized and traversed iwapyhat is suitable.

A few works have considered the case of historical trajgctimtabases and we consider these next
in some detail.

In [22], Gao et al. propose two algorithms for a query poird for a query trajectory, respectively,
on a set of stored trajectories. In contrast to our algorittiva result is static, i.e. they return the ids
of the k trajectories which ever come closest to the query objedhduhe whole query time interval.
In contrast, our approach will report tikenearest neighbors at any instant for the lifetime of the yuer
object.

In [19] several types of NN-queries on historical data amdrasised. The types depend on whether
the query object is moving or not and whether the query itisetfontinuous or not. One of the types
corresponds to the TEINN query defined in Section 1. The authors represent trajest@as a set of
line segments in 3D space (2D + time). The segments are iddexen R-tree like structure (e.g. 3D
R-Tree, TB-tree or STR-tree). The algorithm is formulatedthe special case = 1 and then extended
to arbitrary values ok. The nodes of the tree are traversed in depth first mannerletfas reached,
the contained line segments are inserted into a structunedwmearest containing the distance curves
between the already inserted segments and the segmentsgctyom the query point. Entries whose
minimal distance to the query object is greater than the makilistance stored inearest are ignored.
Other segments are inserted extending existing entriggpiicable. For a non-leaf node, all children
are checked whether they can be pruned (minimal distan@gerl than the maximal distance stored
in nearest during the time interval covered by the node). For an antitig a buffer of k nearest
structures is used.

In this paper we traverse the tree in breadth first manneridBgshe tree, we determine in prepro-
cessing and store the time dependent number of data objestsrp in a node’s subtreeThis allows
pruning nodes using only information of nodes at the sane tehthe tree reducing the number of nodes
to be considered.

[21] extends the approach of [22] to continuous queriescéealso to the TENN problem. The
entries stored in a TB-tree are inserted into a sétlidts [... .. These lists contain distance functions
with links to the corresponding units. For each instant tis¢gadce value in list; is smaller or equal
to the distance value in ligf,;. Thus, for each instant the list contains the distance to the current
i-th neighbor or if no distance is stored for this instant. The maximum dis¢astored in a list; is
called Prunedist(i). Thereby all objects whose minimum distance is greater thaunedist(k) can be
pruned. The main algorithm traverses a TB-tree in best fiestmar. A priority queue sorted by minimum
distance contains non-processed nodes of the tree. The dueitialized with the root of the tree. If
the top element of the queue is a node, it is removed and itegmrtre inserted into the queue ignoring
those non overlapping the query time interval and those with Dist > Prunedist(k). Unit entries
are inserted into the set of lists. The process is finishechviime minimum distance of the top entry of
the queue is greater thdtruneDist(k) or the queue is exhausted. So, pruning is based on disjmiat t
intervals or information from the trajectory entries. A raatetailed description is given in Section 6.3.

In contrast, our approach allows pruning using also infdioneof nodes on higher levels of the tree.
Because the refinement step of our algorithm can be usedaselyait is possible to combine it with
other filter steps, for example if a query contains additidiftar conditions.

As already mentioned, we maintain for each node of the Ritidex used some derived information.
Some previous work has augmented R-trees and other seadbyrstoring such auxiliary information
in each node [32, 38, 34, 46]. For example, the aggregatedrk(aR-tree) [32, 38] stores numerical
measures associated with regions in its leaves, and adggmegi@ver such values for each subtree in
internal nodes (the root of the subtree). Aggregation fonstcan becount sum or max for example.

It supports efficient aggregate range queries, i.e., comgpthe aggregate over a query region.

IActually, we use a simplified version of this moving integer.

3 Preliminaries

3.1 Representation of Trajectories

Figure 2 shows the trajectories of two moving points in 3DcgpalVe use the sliced representation [17]
to represent the trajectory of a moving object. A trajectdry=< wuq,us,...,u, > iS a sequence of
so-calledunits Each unit consists of a time interval and a description ai@ar movement during this
time interval. The linear movement is defined by storing tosifons at the start time and the end time
of the unit. We denote a unit as= (p, p2,t1,t2), Wherepy, po € R? andty, to € instant. Within a
trajectory, time intervals of distinct units are disjoiithe sequence of units is ordered by time.

This is a well established definition of trajectory in theddture [26]. Another common representa-
tion is a temporally ordered sequence of triplgsz;, y;). Both representations can be easily converted
into the other one. The definition based on units emphasiesattrajectory is an approximation of a
continuous movement curve that can be evaluated at anyiraftéime. The second definition is often
interpreted to represent a sequence of observations.

How trajectories are derived from observations is a compswe that is beyond the scope of this
paper. A simple possibility is that a GPS receiver captuiastions every two seconds, which may
be typical for car navigation systems. But there may be atbegs involved such as map matching or
compression [33, 13], and the frequeny of transmitting tims may depend on update policies.

In the data model of [25, 17], a trajectory corresponds taa ty@emoving(point) or mpoint. There
is also a data type corresponding to a unit callgdint.

f/ﬂ

y

t

=

Figure 2: Two trajectories in space

A set of trajectories can be represented in a database in &ye.W he first is to use a relation with
an attribute of typenpoint. Hence each moving object is represented in a single tupisisting of the
trajectory together with other information about the objddis is called theeompact representation

Second, one can use a relation with an attribute of typ@nt. In this case, a moving object is
represented by a set of tuples, each containing one unitedfréifectory. The object is identified by a
common identifier. This is called thait representation

In the following we assume that the detof data trajectories is stored in unit representation, aed t
query trajectory is given as a value of theoint data type, i.e., a sequence of units.

3.2 Filter-and-Refine Strategy

We now describe our approach to evaluate a spatio-temparaakest neighbor query. We assume a set
of data moving points in unit representation, i.e., a retak with an attributemloc of typeupoint. This
relation is indexed by a spatio-temporal (3D) R-tféenloc containing one entry for each unit. Further
parameters are the query moving poing of type mpoint, and the numbek of nearest neighbors to be
found. We use the well-known filter-and-refine strategy \lith two steps:

Filter Traverse the R-tree indegk_mloc to determine a set of candidate units containing at leapbais
of the moving points ofz that may contribute to the nearest neighbors efig. Return these as a
stream of units ordered by unit start time.

Refine Process a stream of units ordered by start time to determ@precise set of units forming the
k nearest neighbors ohgq.

These two steps are explained in detail in the following texctisns.

Whereas the complete algorithm uses the two steps togétlsgpossible to use the refinement step
independently. For example, think of a scenario where aigahhas taken a hostage and is trying
to escape by car. The database contains information ablowhatles moving in the area. Suppose
vehicles in the database have an attribute “type” distsigng types of cars such dgrivate, truck,
police, ambulance A query “Find the closest 20 cars in the neighborhood of th&tdge car” should
be evaluated as expected, by filter-and-refine. Howevare simbulances and police cars are relatively
rare, a query such as “Determine the five closest police caosild be more efficiently determined by
retrieving police cars (using an index typg, sorting their units by start time and then applying the
refinement step directly.

4 The Filter Step: Searching for Candidate Units

4.1 Basic Idea: Pruning by Nodes with Large Coverage

Obviously the goal of the filter step must be to access as falesias possible in the traversal of the
index R_mloc.

We proceed as follows. Starting from the root, the index @avdrsed in a breadth-first manner.
Whenever a node is accessed, each of its entries (node aéxh&ewel or unit entry in a leaf) is added to
a queud) and to a data structuBover explained below. Thé€' over structure is used to decide whether
a node or unit entry can be pruned. The entrie€'imer and(@ are linked so that an entry found to be
prunable can be efficiently removed frath The question is by what criterion a node can be pruned.
Consider a nodéV that is accessed and the query trajectary. See the illustration in Figure 3.

o

g
L)

X

Figure 3: Nodes and query trajectornyy

Node N contains a set of unit entries representing trajectorie$adt, each segment of a trajectory
is represented as a small 3D box, but we have nevertheless thia trajectories directly. Furthermore,
nodeN looks like a leaf node. However, if it is an inner node of thér&e, we may still consider the set
of units or trajectories represented in the entire subweted in/N in the same way.

Suppose that at any instant of time within nalls time interval [V.t1, N.t;] at leastn trajectories
are present invV andn > k. Let M be a further node and/s time interval be included itVs time
interval. Furthermore let the minimal distance betweenxihprojection of M and the xy-projection of
myq (restricted to M.t1, M.ts]) be larger than the maximal distance between the xy-ptiojeof NV and
the xy-projection ofmgq (restricted to [V.t1, N.t2]). Then nodeM and its contents can be pruned as
they cannot contribute to thenearest neighbors @fg. This is illustrated in Figure 4.

More formally, for a nodeX let box(K) denote its spatiotemporal bounding box, i.e., the red¢éang
[K.xy, K.xo, K.y1, K.ys, K.t1, K.t5]. For a trajectoryu let box(u) denote its spatiotemporal bounding

M mindist(...)

maxdist(...)

C(N)=8

y
LVN
mq

X

Figure 4: Pruning criterion of Lemma &,=5

box and letu[t, t2] denote its restriction to the time interval [¢5]. For a 3D rectangld? = [x1, x2, y1,

Y2, t1, to] let B, denote its spatial projection:{, z2, y1, y2] and B, denote its temporal projectiom;|

to], respectively. For a nod&’, let C'x(t) denote the number of trajectories represented in the subtre
rooted atK present at instant Cx(t) is a function from time into integer values, called twverage
function Let C(K) = miny(x 4, K+, Ck (t) be called the (minimalfoverage numbeof K. For a
(hyper-) rectangle in ad-dimensional spacR? let points(r) denote all enclosed points B, i.e,

points(r) = {(x1,...,xq) | m.b1 <x1 <71ity1,...,rbg < xg < Ttg}

wherer.b; andr.t; denote the bottom and top coordinatesrah dimensioni, respectively. For two
rectangles: ands their minimal and maximal distances are defined as

mindist(r, s) = min{d(p, q)|p € points(r),q € points(s)}

mazxdist(r, s) = max{d(p,q)|p € points(r),q € points(s)}

whered(p, q) denotes the Euclidean distance between two pgir#edg. Then we can formulate the
pruning condition as follows.

Lemmal Let M and N be nodes of the R-treB_mloc, mq the query trajectory, and the number of
nearest neighbors desired. Then

C(N) >k

A boxy(M) C boxi(N)

A mindist(box gy (M), box, (mgqlbox,(M)]) >
mazdist (box 4y (N), boxy (mglbox:(N)])

= M-can be pruned

More generally, several nodes together may serve to pruothemnode)/ if for any instant of
time within M's time interval the sum of their coverages excekedsd they are all closer to the query
trajectory.

Lemma 2 Let S be a set of nodes of the R-tréemloc, S(t) = {s € S|t € box:(s)} the nodes of
present at time, and M ¢ S another node. Letug be the query trajectory, ankthe number of nearest
neighbors desired.

Vt € boxy(M) : 3 e Cs) 2 k
(Vs € S :mindist(boxzy (M), boxy, (mg[box(M)]) >
mazdist(box 4 (s), boxzy (mglboxs(s)]))
= M can be pruned.

A

To realize this pruning strategy, the following subprobdemeed to be solved:

o Efficiently determine the xy-projection bounding box of atriestion of the query trajectory to a
time interval.

e Determine coverage numbers for the nodes of the R-tree index
e Define the Cover data structure needed for pruning and peaiicefficient implementation.

These subproblems are addressed in the following subesctidter that, the complete filter algorithm
is described.

4.2 Determining the Spatial Bounding Box for a Partial QueryTrajectory

As mentioned in Section 3.1, the query trajectory is represkbasically as an array of units with distinct
time intervals, ordered by time. A simple approach to comphé bounding box for the restriction to
some time interval (called the restriction bounding boxpisearch the unit containing the start time of
the interval using a binary search. For the (sub-) unit thending box is computed. Then the sequence
of units is scanned until the end of the interval is reachdtk Onion of the bounding boxes of all visited
units yields the final result. Here the union of two rectasgsadefined as the smallest enclosing rectangle
of the two arguments. If the interval is long, a lot of unitssnbe processed. For example, if the time
interval covers the lifetime of the query trajectory, alitarhave to be visited.

Whether query or data trajectories are long or short dependie application. In the experiments
of Section 6 typical short trajectories have about 100 urlitajectories in the BerlinMOD benchmark
[16] where vehicles are observed over a period of one monttéde factor 1.0 of the benchmark) have
an average number of 26963 units. The longer query trajestare, the more important is an efficient
computation of restriction bounding boxes as this has todme dor each node of the R-tree accessed in
the search.

To enable efficient computation of a restriction bounding la@ compute at the beginning of the
filter step an alternative representation of the query dtajg, called aBB-tree (bounding box tree
Essentially it is a binary tree over the sequence of unit®trajectory such that the units are the leaves
of the tree. Each node has an associated time interval. FeafdHis is the unit time interval, for an
internal node it is the concatenation of the time intervdlthe two children. Furthermore, each ngde
has an associated rectangle which is the spatial projebtonding box of the set of units represented
in the subtree rooted in. An example of a BB-tree is shown in Figure 5.

(to te], Uiy 7
f() f4] 1 UT)UT;U’I’4 [f4 fb raLJT‘(,

([to, ta], 1 Ura) ([ta talrs Ura) (ftas to),75) ([E5st),)

/N /\

([to, t1],71) ([t1,t2],r2) ([to,ts],73) ([ts,ta],ra)

Figure 5: BB-tree

For computing the bounding box for a given time interval, welg the following algorithm to the
root of the tree:

We use the notations.t1, n.to, n.r, andn.u to access the start instant, the end instant, the rectangle,
and the unit, repectively. Furthermore, we usleftandn.right to get the sons of.

Algorithm 1: getbox(n,t1, to)

Input: n - node of a bbox-tree;

[t1, t2] - a time interval.

Output: the bounding box of the query trajectory, restrictedtto {-]
1 if t1 > n.ts V ts < n.t; then return an empty box;
2 if t1 < n.t; Aty > n.ty thenreturn n.r;
3 if nis aninner node¢hen
L return getbox(n.left)u getbox(n.right);

I

else
let u be a copy oh.u;
restrictuto [tq, t];
return bbox(u)

o N o O

The structure is closely related to a segment tree [15] tleatwil also use in Section 4.4. The
algorithmget.boxis quite similar to the algorithm for inserting an intervatad a segment tree. It is well
known that the time complexity i©®(log n) wheren is the number of leaves of the tree (units of the
query trajectory). The BB-tree can be built in linear time.

4.3 3D R-tree and Coverage Number
4.3.1 Coverage Numbers

If all units of the data trajectories are stored within a 30r&e, we can compute for each nodef
the tree its coverage functiafi,(t), a time dependent integer. Recall tiiaf(¢) is the number of units
present at instarttwithin the subtree rooted in. An example of the distribution of units within a node
and the resulting coverage curve are shown in Figure 6.

Unit N
ud

U
Uug
Uy
Uy
UG i

U

=N W s OO

(73] ———

to t1 ta t3 ts t5 to Ulg 1 Lo I3 f4 f5 L5 L

(a) units on time (b) coverage function
Figure 6: Coverage Function

In Section 4.1 we have seen that for pruning only one nurtljes), the minimal coverage number, is
used. This would be 1 in Figure 6. Now it is easy to see thatalbeundary effects only a small number
of units will be present at the beginning or end of a node’stinterval?> Hence if we use simply the

2To see this, consider the following simple experimenintervals of lengthk (k an integer) are placed randomly on integer
coordinates within an intervab of lengthn + k£ — 1. With a random distribution, one interval starts on eacthefdoordinates
0,...,n — 1 of B. If we consider the number of intervatéu) present at each coordinaigit first increases ag(u) = w+ 1 in
the rangg0, k£ — 1], then remains constant &tu) = k in the rangdk, n] (because on each coordinate, one interval starts and
one ends), and then decreases(@ag = k — (u — n) in the ranggn + 1,n + k — 1]. Hence we have the maximum valke
within a long middle part, but at the boundaries only a mirimaf 1.

10

minimum of the coverage function, no good pruning effect lsammchieved. On the other hand, within a
reduced time interval, e.g. from to t5, a large minimal coverage could be observed.

The idea is therefore to use instead of one coverage numies i them, by splitting a node’s
time interval into three parts, namely two small parts atltkeginning and end with small coverage
numbers, and a large part in the middle with a large coverageber. In Figure 6 we could use
([to, t1], 1), ([t1, 5], 5), ([t5. te]. 2).

We introduce an operator to compute from the coverage fumdtie three numbers, called that
operator (because the shape of the curve reminds of a hathnitally it takes an argumeatof type
moving integer ormint, describing the coverage function, and returngramt r with the following
properties:

o deftime(r) = deftime(c)
o Vt € deftime(r) : r(t) < c(t)
e 7 consists of three units at most

e the area under curveis the maximum of all possible areas fulfilling the first thomaditions

An application of thehat operator is shown in Figure 7.

N N

=N W s Ot
=N W s OOy

to b1 2 t3 ta &5 tg U to t1 2 t3 ta &5 fg L

(a) coverage curve (b) result ofhat
Figure 7: Application of théiat operator

Intuitively it is good for pruning if a large coverage numhsrobtained over a long time interval.
The goal is therefore to maximize the area of the “middle’t ohthe result which is the product of these
guantities. Using a stack, the simplification of the curve ba done in linear time with respect to the
number of units of the original moving integer. This is shawrlgorithm 2. Herec.t; andc.t, denote
the start and end of the definition time of moving ént

The idea of this algorithm is to process the units of the gisaverage curve in temporal order and
to maintain on a stack a sequence of units with monotonisadlseasing coverage values. When a unit
is encountered that reduces the current coverage, thewthetial candidates for middle units ending at
this point are examined by taking them from the stack. Thgelstrrectangle seen so far is maintained.
This is illustrated in Figure 8.

In Figure 8, when unit: is encountered, the last three stack entsigls andc with higher coverage
values than that of are popped from the stack, and for each of them the size ok#pective rectangle
is computed. Start time, end time, and coverage of the largetangle so far are kept.

4.3.2 Building the R-tree

This section describes how an R-tree over the data poin$ gait be built, which will support-NN
gueries in an efficient way. A node of the R-tree can be pruhed i

11

Algorithm 2: hat(c)
Input: ¢ - an mint (moving integer) describing a coverage function
Output: a reduced mint with only three units
1 let sbe a stack of pairs: ¢, n >, initially empty;
2 letintarea=0;
3 extendc by a pseudo unik[c.to, c.to + 1], 0]>;
[* ensures that all entries are popped from stack at the end */
4 for each unituin ado
if sis emptythen s.push(< u.ty,u.n >) else
if s.top().n < u.nthen s.push(< u.t;,u.n >) else

5

6

7 lend = w.l1;

8 while s.top().n > u.n do

9 < tstart, cn >= s.top(); s.pop();

10 if area == 0then

11 area = (tepd — tstart) X €N;

12 | < t1,te,n >=<tstart, tend, CNV >}
13 else

14 newarea = (tepg — tstart) X CN;
15 if newarea > areathen

16 area = newarea;

17 L < t1,te,n >=<tstart, bend, CNV >;
18 s.push(< tsiart, u.n >)

19 Now the middle unit is< t1, ¢, n >. Scan the units beforlg and aftert; to compute the minimal
coveragedirst andlast for the time intervalgc.t1, t1] and[ts, c.t2], respectively;
20 return the mint consisting of the three unitk:.t1, ¢1], first), ([t1,t2],n), and([te, c.t2], last);

e there are enough candidates available in other nodes, and

e the minimum distance of the node to the query point is highan the maximum distance of the
query point to each node in the current candidate set.

The first condition can be achieved with a small set of carididades if the coverage numbers are
high. The second condition requires a good spatial digtdbwof the nodes of the R-tree.

Experiments have shown that if we fill the R-tree either bydtamdard insertion algorithm or by a
bulkload [11, 12] using z-order [36], for example, only tipasal distribution of the nodes will be good.
But the coverage numbers will be very small and a large caeliset is required.

However, by using a customized bulkload algorithm for filithe R-tree, we can achieve some
control over the distribution of the R-tree nodes. The tmdkl works as follows: It receives a stream of
entries (bounding box and a tuple id) and puts them into aditife R-tree until either the leaf is full or
the distance between the new box and the current boundingfitve leaf exceeds a threshold. When
this happens, the leaf is inserted into a current node atdkehigher level and a new leaf is started. In
this way, the tree is built bottom-up.

This bulkload algorithm itself does not care about the omddéhe stream. So by changing the order,
the structure of the R-tree is affected. For example, if wetbe units by their starting time, temporally
overlapping units are inserted into the same node and therag® number is very high. But this order
ignores spatial properties and so the nodes will have mathyaage overlappings in the xy-space.

To get both, high coverage numbers and good spatial distsibuve do the following. We partition
the 3D space occupied by the units into cells, using a reguidr The spatial partition (or cell size) is

12

Cov.

—

»
t

Figure 8: Stack maintained in Algorithm 2

chosen in such a way that within a cell, at each instant of,timahe average aboptunits are present.
Then the temporal partition is chosen such that within agzeugh units are present to fill on the average
aboutr nodes of the R-tree. A stream of units to be indexed is extebglehree integer indices, y, ¢
representing a spatiotemporal cell containing the3uhience has the forra unit, tupleid, z,y,t >.
The stream is then sorted lexicographically by the fourtattes < ¢, x, y, unit > where the order
implied by the fourth attribute is unit start time. In thisyva subsequence of units belonging into one
cell is formed and these are ordered by start time. Such qubeees are packed by the bulkload into
aboutr nodes of the R-tree, resulting in nice hat shapes as desitgedtion 4.3.1.

In our experiments, we have choser= 15 andr = 6 with good results. Some motivation for such
a choice of values fop andr is the following. The goal of the design is to obtain withirckaell of
the partition a “vertical” stack of nodes of the R-tree. Thiso that units with similar time intervals
are usually within the same node, leading to good coveragesuA node of the R-tree can take in our
implementation about 60 unit entries. The average numbaenasing objects present in a cell at any
instant of time,p, should be clearly below 60 so that divisions between Riages introduced by the
bulkload occur on the temporal dimension onlyis an average, so it should not be too close to 60 to
keep the property also in places where objects get more dense

Regarding the number of noded a cell, observe that from the last unit (in temporal ordethin a
cell to the first unit of the next cell a “jump” occurs (a larghstance within the 3d space) which causes
the bulkload to terminate the current node even if it is ndit fQnly this last one of the: nodes can be
underfilled. Ifr is not too small, e.gr = 6, this unfilled space is compensated by the other1 full
nodes.

4.3.3 The Combined Data Structure

One may consider to extend the R-tree structure by fieldsah sade for the three pairs of time interval
and coverage number. The computation of coverage numbetgdsthen be integrated into R-tree
construction and update algorithms.

Whereas such a strategy is often used in the literature wherifie algorithms are proposed (e.g.
[38]), in our view it is not a good choice within a system cotel he R-tree is a fundamental structure
for spatial and spatio-temporal indexing and it should reotrimdified to support particular query types
whenever it can be avoided. In particular, adding fields thhewde will decrease the number of entries
per node and the fanout and hence increase running timeb &her types of queries.

Therefore in our implementation we use a standard R-treis. ilitlex is denotedR_mloc. Coverage
numbers are computed by traversiRgnloc and storing for each node three tuples in a relattmv.
Tuples have the fornfnid,) wherenid is the node identifier and an integer unit, a value of type
wint. Such a unit consists of a time interval and an integer andéhean nicely represent one of the
three coverage numbers. The relat©avis furthermore indexed by a B-tree index on node identifiers,
Cov.nid.

3containing one of its corner points, for example

13

4.3.4 Maintenance of R-tree and Coverage Numbers under Updes

The problem considered in this paper is efficient contindongarest neighbor search on historical tra-
jectory databases. For this purpose, a static construcfithe R-tree index and a one-time computation
of the coverage numbers is sufficient.

Nevertheless, a trajectory database might be used to kaskpdf currently moving vehicles, contin-
uously adding recent pieces of movement. An interestingtipreis therefore whether the data structure
used by our algorithm permits updates or always needs tocdoenguted from scratch.

Since the R-tree was built in a special way by bulkload to iobg@od coverage curves, using the
standard R-tree insertion is not feasible as it would dgstah properties. However, we can offer an
efficient bulk update technique for the combined data atrectonsisting oR mloc Cov, andCov nid.

The key observation is that on the one hand, online updaties ar temporal order, and on the other
hand, our bulkload technique builds the R-tree as a sequanenporal slices, as the major sorting
criterion for the bulkload is the temporal slice numbefThis means that entries are added to the root
node, and more generally the top levels of the tree, in teatmoder.

We can therefore proceed as follows. We denote the existingtsre asR; = R.mloc, C; = Coy,
and B; = Cow.nid.

1. We collect enough update units to fil temporal slicesy > 1.4

2. For these a separate R-ttReis built by bulkload using the procedure described in Sedis.2.
In our implementation, the new R-trég is constructed within the file of the storage manager also
used byR; which ensures that its node (= record) identifiers are disfiom those ofR; .

3. Cy is computed as the coverage number relatioRof
4. A B-tree indexB- on node identifiers is computed f6k. This index is used in step 7 below.

5. Ry isinserted intaR;. This is done in constant time as only an entry with a poirgehé root of
R, is added to one of the top level nodeskf. As both R-trees have been constructed within the
same storage manager file, they now form a uniform structure.

6. All entries ofCs are inserted int@';. This is possible because node identifiers are distinctsd@ he
insertions intoC; are also propagated into the indBx.

7. Letq be the node of?; to which the entry pointing to the root d?; was added. The coverage
numbers for a small set of nodé€s consisting ofy and its ancestors, if any, are recomputed and
corrected in relatior’;. Observe that all other coverage numbers of the previoes e and Ro
are not affected by the merge of the two trees and are therefwrect already. Also the indé
on (1 is not affected since node identifiers of the updated tupleshe same.

8. Structuredi,, Cy, and B, are discarded.

The resulting tree has almost the same shape as one builtlikdgdaliin a single step. Small dif-
ferences are: (i) there is one possibly underfilled node &mheulk update — the previous root node,
and (ii) the computation of coverage numbers in step 7 is naseth on looking up coverage numbers
of entries of the nodes i in Cy andC5, whereas in a single bulkload, the precise coverage fumtio
are used in the aggregation. These small differences ddfeot the query performance as shown in the
experiments in Section 6.4.5.

To support the bulk update technique we had to slightly nyottie R-tree code, adding methods
to create a new R-tree within the same storage manager fileatisest one, and to insert one tree into
another. However, these changes do not affect the efficiehogher queries as the node structure is
unchanged.

“A typical duration of a slice for a large data set is 5 minuses;, Section 6.

14

»
t

Figure 9: Representing node coverages, one node

d

55

Figure 10: Representing node coverages, many nodes

4.4 Keeping Track of Node Covers

In this section we describe the data structieer used to control the pruning of nodes or unit entries.
Suppose a nod® of the R-tree is accessed, its coverage numiset = 8, and its minimal and maximal
distance to the query trajectory, restricted l§{s time interval, arel; andds, respectively. Assume a
further nodeM is accessed whose minimal distancéjs This can be represented in a 2D diagram as
shown in Figure 9. The edge for the minimal distance of nds called the lower bound, denotéd—
and drawn thin, the edge for the maximal distance is callediiper bound, denoted+ and drawn fat.
As discussed before, if < 8, M can be pruned.

The idea is to maintain a data structdrever representing this diagram during the traversal of the
R-tree. Whenever a node is accessed, its lower bound is gsadjaery to check whether this node
can be pruned. If it cannot be pruned, its lower and upper d®ane entered int6'over, and its upper
bound is also used to prune other entries flGpver.

An upper or lower bound is represented as a tapte([t1, to], d, ¢, lower) wherelt, o] is the time
interval, d the distance¢ the coverage, and lower a boolean flag indicating whetherishihe lower
bound. We also denote the coverageds) = b.c.

Whereas Figure 9 represents the pruning criterion of Lemntlaelgeneral situation of Lemma 2 is
shown in Figure 10.

When nodeM is accessed, first a query with the rectangle below its lowend A/ — is executed
on C'over to retrieve the upper bounds intersected by it. The set oéuppundd/ found is scanned in
temporal order, keeping track of aggregated coverage niantoedetermine whethév/ can be pruned.
Let C.;, be the minimal aggregate coverage of bound#inlf k& < C,.;n, M can be pruned. 1M
cannot be pruned, it is inserted infver. If k < C(M) + Cpin, @ Second query with the rectangle
above the upper bountf/ + is executed, retrieving the lower bounds contained in it.nAbes to which
these lower bounds belong, are pruned.

From this analysis, we extract the following requirementsain efficient implementation of the data
structureCover.

1. It represents a set of horizontal line segments in twoedsional space.
2. It supports insertions and deletions of line segments.

3. It supports a query with a poiptto find all segments beloy.

®In this section, for simplicity we assume a node has a singterage number instead of the three coverages computed by
the hat operator. The modification to deal with three numbers isghitéorward.

15

—00 +00

>
9}
N
Q,

Figure 11: TheCoverstructure, a modified segment tree

4. It supports a query with a line segméno find all left or right end points of segments belbar
abovel (pruning lower bounds abowd+).

Two available main memory data structures that fulfill rettequirements are a segment tree [15] and
a standard binary search tree. The segment tree

e represents a set of intervals
e supports insertion and deletion of an interval
e supports a query with a coordingtg to find all intervals containing.
The binary search tree
e represents a set of coordinates (start and end instanta®fritervals, in this case).
e supports insertion and deletion of coordinates.
e supports range queries, i.e., queries with an interval tbdlhenclosed coordinates.

We might use these two data structures separately to impke@over, but instead we employ a slightly
modified version of the segment tree that merges both stegiato one. Such a structure is shown in
Figure 11.

The segment tree is a hierarchical partitioning of the angedsional space. Each node has an
associated node interval (drawn in Figure 11); for an irgknode this is equal to the concatenation of
the node intervals of its two children. A segment tree regmesa set of (data) intervals. An interval
is stored in a segment tree Ibyarkingall nodes whose node intervals it covers completely, in fuch
way that only the highest level nodes are marked (i.e., ifilobildren of a node could be marked then
instead the father is marked). Marking is done by enteringlantifier of (pointer to) the interval into
a node list. For example, in Figure 11 intenBis stored by marking two nodes. It is well-known that
an interval can only create up to two entries per level of tke,thence a balanced tree withleaves
storing n intervals requires QN + n log N) space. A coordinate query to find the enclosing intervals
follows a path from the root to the leaf containing the cooatie and reports the intervals in the node
lists encountered. This takesl@f N + t) time wheret is the number of answers. For example, in Figure
11 a query with coordinate follows the path t@ and reportA andB.

The segment tree is usually described as a semi-dynamatigteuwhere the hierarchical partitioning
is created in advance and then intervals are inserted dedglest by changing node lists. We use it here
as a fully dynamic structure by first modifying the structtweaccomodate new end points and then
marking nodes. When new end points are added, they are alsol $t further node listaode.startlist
andnode.endlis{besides the standard list for markimgde.lis}. In Figure 11 entries for end points are
shown as lower case letters. The thin lines in Figure 11 shevstructure after insertion of intervals

®We call a single value from a one-dimensional domain a coateli

16

y

sweep line t

Figure 12: Computing the lowestdistance curves

andB. The fat lines show the modification due to the subsequesttina of intervalC. The structure
now also supports range queries for end points, like a biseaych tree. If the tree is balanced, the time
required for a range query is O N + t) for t answers.

In our implementation we use an unbalanced tree which iseasy to implement. The unbalanced
structure does not offer worst case guarantees but behaitesagpll in practice, as will be shown in the
experiments.

The interface to th€overstructure is provided by the four methods:

e insertentry(ce) ceis a cover entry, defined below. Inserts it by its time intérva
¢ deleteentry(ce) Deletes entrgefrom the node lists (but does not shrink the structure).
e pointquery(n, t) na nodet an instant of time. Returns all entries whose time interealtainst.

e rangequery(n,ty, t2). nis a node, {;, to] - a time interval. Returns a list of pairs of the form
<which, ce> wherewhich € {bottom top}, cea cover entry (bottom indicates a start time, top an
end time). The list contains only entries whose start or @né ties within [, to], in temporal
order w.r.t their start or end time.

The algorithms for these operations can be found in AppeAdix

4.5 The Filter Algorithm

We are now able to describe the filter algorithm, calkeearestfilter precisely. It uses subalgorithms
nodeentry and unit_entry to create entries for th€'over structure. It further employs a methaat
sertand pruneof the Cover structure with its subalgorithmsincoverandprune above These algo-
rithms are shown on the next pages (Algorithms 3 through 8).

5 Refinement

The problem to be solved in the refinement step is to computedequence of units, arriving temporally
ordered by start time, a sequence of units (that may be egjaal input unit or a part of it) that together
form the k nearest neighbors over time. For each arriving unit, itetdependent distance function to
the query trajectory is computed. Depending on whether tiiteomerlaps one or more units of the query
trajectory, the distance function may consist of severatgs with different definition. It is well-known
(see e.g. [17]) that the distance between two moving poiits with the same time interval is in general
the square root of a quadratic polynomial.

The problem is to compute the intersections of a set of distanurves to determine the lowedst
curves, and to return the parts of units corresponding teetlpgeces. This is illustrated in Figure 12
where the units corresponding to the two lowest of threedcs curves are to be returned.

The intersections of the distance curves can be found effigiey slightly modifying the standard
plane sweep algorithm for finding intersections of line segta by Bentley and Ottmann [10]. The

17

Algorithm 3: knearestfilter(R, Rnloc, Cov, Cowid, mqg, B
Input: R - a relation with moving points in unit representation,,iveith an attributemlocof type
upoint; R.-mloc- a 3D R-tree index on attributalocof R; Cov- a relation containing
coverage numbers for each node of the R-Ramloc, Cov.nid - a B-tree index on thaid
attribute ofCovrepresenting the node identifier of the R-trewy- a query trajectory of
type mpoint k - the number of nearest neighbors to be found.
Output: an ordered set of candidate units, ordered by unit stag, taantaining all parts of thie
moving points ofR closest tang
1 let Q be a queue of nodes of the R-tree, initially empty; (To beipee® contains pairs of the
form <node, coverpte wherenodeis a node of the R-tree armbverptris a pointer into the
Cover data structure.
2 let Coverbe the Cover structure, initialized with node{;+oc);
3 let mgbbbe a BB-tree representingg
4 noder = R.mloc.roo();
5 Q.enqueué<r, null>);
6
7
8
9

while Q is not emptylo

<r, coverptr> = Q.dequeug;

if coverptr=£ null then Cover.deleteentry(coverpt;
for each entry c of do

10 if ris an inner nodehen ce=nodeentry(c, mgbb, Cov, Cawid);
11 elsece= unitentry(u, mgbb;
12 Cover.insertand_prungce, k, Q, g;

13 S= Cover.rangequeryCover.roof), -co,+o0);
14 Cand= (;

15 for each< which,s >€ S do

16 | if which = bottomthen Cand.appens);

17 return Cand

basic idea of that algorithm is to maintain the sequencenef segments (curves in our case) intersect-
ing the sweep line. Encountering the left end of a curve (withe sweep event structure ordered by
t-coordinates), it is inserted into the sweep status strectthecking the two neighboring curves for
possible intersections. Any intersections found are edt@érto the event queue of the sweep for further
processing. Encountering the right end of a curve, it is reddrom the sweep status structure, checking
the two curves above and below for intersection. Encourdeain intersection found previously, the two
intersecting curves are swapped, and the two new pairs vésurecoming neighbors are checked for
intersections. For the sweep status structure, a balaneeddn be used. Whereas computing the inter-
sections of two quadratic polynomials (which can be usegktly instead of the square roots) is slightly
more difficult than finding the intersection of two line segrts the basic strategy of the algorithm [10]
works equally well here.

Because units arrive in temporal order, one can scan inlpktia sequence of incoming units, the
priority queue of upcoming events, and the query trajectegy The time interval of an incoming unit
is either enclosed in the time interval of the current wnit of mq or extends beyond it. If it is enclosed,
an event for deleting this distance curve from the sweepskitucture at the end timet,, is created. If
the time interval extends beyond thatrat:, the distance curve is computed untik.t, and two events
for deleting the curve at timewu.t, and for handling the remaining part ofare created.

Since the focus of this paper is on the filter step, and theawfant step is relatively straightforward,
we omit further details here.

18

Algorithm 4: nodeentry(n, mgbb, Cov, Canid)

Input: n-anode of the R-treangbb- the query trajectory represented as a BB-tfeay- a
relation containing coverage numbers for nodes of the R-@ev.nid - a B-tree index on
node identifiers oCov.

Output: an entry for the Cover data structure, of the forji, to], mindist, maxdist, cn,nodeid,

tid, queueptr, refs.

[t1, t2] = box(n);

let box=mgbhgetBoXmaqgbb.roof), 1, t5);

mindist= mindis{box;, (n), boX);

maxdist= maxdis{box,, (n), boX);

cnh = getcove(n.id, Cov, Cownid);

return newentry <[t1, 2], mindist, maxdist, cn, n.jdL, null, § >;

> o~ WN P

Algorithm 5: unit.entry(n, mqgbb)

Input: u-aunit entry from a leaf of the R-tremgbb- the query trajectory represented as a
BB-tree.
Output: an entry for the Cover data structure, of the forji, to], mindist, maxdist, cn,nodeid,
tid, queueptr, refs.
1 [t1, t2] = box(n);
2 let box= mqgbhgetBoXmabb.roof), t1, t2);
3 mindist= mindis(box., (n), box);
4 maxdist= maxdis{box,, (n), box);
5 return newentry <[ty, t2], mindist, maxdist, AL, u.tid, null, § >;

6 Experimental Evaluation

In this section, we first describe the data sets used for aeriemental evaluation of our approach. We
then consider some properties of the proposed algorithmelyeselection of grid sizes, the time required
to compute coverage numbers in preprocessing, and thdiedfeess of the filter step. We explain the
implementation of the algorithms HCNN and HENN [19, 21]. The three algorithms are then compared
varying the size of the data set, the paramétemd the query time interval. An evaluation on very long
trajectories follows. Finally, an investigation of the bulpdate technique completes the experiments.
For the experiments a standard PC (AMD Athlon XP 2800+CPB fi@mory, 60GB disk) running
SUSE Linux (kernel version 2.6.18) is used. All algorithmerevimplemented within the extensible

database systemeSONDO[8].

Algorithm 6: insertand.prune(ce, k, Q, c)

Input: ce- a cover entry of the formc[t1, t2], mindist, maxdist, cn, nodeid, tid, queueptr,refk
- the number of nearest neighbors to be fou@d;a queue of nodes; - a node or unit
entry.
Output: none
1 int mc= mincove(ce);
2 if mc< kthen
3 insertentry(ce)
4 if ¢ is a nodethen ce.queueptr = Q.enqueue¢, ce>);
5 if mc + ce.cn> kthen pruneabove(ce, Q)

19

Algorithm 7 : mincover(ce)
Input: ce- a cover entry
Output: C,.;», the minimal aggregate coverage below the lower bouraof
let root = this.roo);
let S7 = point.queryroot, cet,);
intc=0;
for each sc S| do
L if s.maxdisk ce.mindisthen c=c + s.cn

a b~ WO N -

Cmin =C,

let Sy = range queryroot, cety, cets);

for each<which, s> € S, do

if s.maxdisk ce.mindisthen
if which = bottomthenc =c + s.cn
else

=
o © 0o N O

[
N R

c=c-s.cn;
if c < C,inthenC,,;,, =C;

=
w

14 return C,in;

6.1 Data Sets

In the performance study, we use three different data sets.obthem contains real data obtained from
the R-tree Portal [3]. Here, 276 trucks in the Athens metiitgpoarea are observed. We call this data
setTrucks It was also used in earlier experiments in [19, 21].

The second data set simulates underground trains in Bérlthe basic version it contains 562 trips
of trains, moving according to schedule on a certain day &etw6:00 am and 10:17 am. We will enlarge
this data set by a scale factet by makingn? copies of each trip, translating the geomeiriimes inx
andn times iny-direction. We call the original data s&tainsand derived data seTsainsn?.

The third data set — calle@ars— is a simulation of 2,000 cars moving on one day in Berlin.sThi
was obtained from the BerlinMOD Benchmark [1, 16].

From each data set, 10 query objects are selected. In Igteriments, the running time and number
of page accesses of a query is measured as the average ovariE3 qising these different objects.

Table 1 lists detailed information about the data sets.

6.2 Properties of Our Approach
6.2.1 Grid Sizes

Grid sizes for our approach are determined as describedciio§el.3.2. For the originalrainsdata set
this results in a 3 x 3 spatial grid (of which in fact only 3 x 2lseontain data) and a temporal partition
of size 5 minutes. Using the same cell size everywhere, thledwersionsrains n? in fact employ
grids of size(3n)2. A detailed calculation is given in Appendix C.

For the Cars data set by similar considerations a spatial grid of size 12 xs determined and a
temporal partition of 30 minutes.

The Trucksdata set is small in comparison. In this case we have not texthie impose a grid but
simply built the R-tree by bulkload on a temporally orderé@am of units. This is good enough. The
temporal ordering in any case creates good coverage curves.

20

Algorithm 8: prune.above(ce, Q)
Input: ce- a cover entry;
Q - a queue of nodes.
Output: none
let root = this.roo);
let S=rangequery(root, ce;, cets);
let ht be a hashtable, initially empty;
for each<which, s> € Sdo
if s.mindist> ce.maxdisthen
if which = bottomthen ht.insert(s)
else
if ht.lookup(s}then
deleteentry(s)
L if s.queuepte£ null then Q.dequeue(s.queueptr)

© 0o N o 0o B~ W DN PP

=
o

6.2.2 Computing the Coverage Number

This section investigates the time needed to compute therage numbers depending on the number of
nodes of the R-tree. For this experiment, we have used seatstbns of thelrains data set. Table 2
shows the numbers of nodes for the different data sets.

Because the computation of the coverage number requireg adaitions of moving integer values,
we can expect that this computation is expensive. Figurehdt@'s the times required to compute the
coverage numbers including thet simplification. Because this computation is required omigein
the preprocessing phase, the long running times are attepta

3500

3000

2500

2000

1500

1000

500

total running time (sec)

0

1 1 1 1 1 1 1
o v = 3] = Syl 3} = o) Q
C. C. C. Q. Q. Q. [e) C. (@)
[@] C. [@) [@) C. (@) (@] (@} (@}
> % % % % 2 2 B B
number of nodes in 3D R-tree

Figure 13: Time to Compute théoverage Numbers

6.2.3 Effectiveness of the Filter Step

In this section we measure how many candidate units aresctégtthe filter step. This number reflects
the pruning ability of the filtering algorithm which has gréafluence on the query efficiency because
the units passing the filter step must be processed in thentessive refinement step.

For the first experiment, we have varied the data size. As skEteawe have used scaled versions
of Trains The number of requested nearest neighbors was det=to5, the query time ta); = 1.
The query was performed with a query object available ina@adetstrain1l11l The result is shown in

21

Name | No. No. of X-Range average
of Units Y Range lifetime
Ob- of an
jects object
Trucks 276 111,922 [0, 44541.6]| 10 hours
[0, 53956.7]
Cars 2,000| 2,274,218| [-10836, 32842]| 24 hours
[-6686, 28054]
Trains 562 51,444 [-3560, 25965] 1 hour
[1252, 21018]
Trains9 5,058 | 462,996 [26440, 115965] 1 hour
[31252, 111018]
Trains25 | 14,050(1,286,100| [26440, 175965] 1 hour
[31252, 171018]
Trains64 | 35,968 | 3,292,416| [26440, 265965] 1 hour
[31252, 261018]
Trains100| 56,200 | 5,144,400| [26440, 325965] 1 hour
[31252, 321018]

Table 1: Statistics of Data Sets

data set | no. of units | no. of nodes

Trains 51,444 847

Trains9 462,996 7,701

Trains25 | 1,286,100 | 21,437

Trains64 | 3,292,416 | 54,986

Trains100| 5,144,400 | 85,895
Table 2: Numbers of R-tree Nodes

Figure 14(a). Also the number of units of the final result ig péthis figure. One can see that the filter
step returns roughly the same number of candidates for tallsizes.

Second, we have varied the numlaesf requested neighbors for the data Betins25 Here a query
objecttrain742 was used in all queries. Figure 14(b) depicts the behavibouoalgorithm. Wherk
increases, the number of candidates returned by the fijeridim increases proportional to the final
result.

6.3 Competitors’ Implementation

To be able to compare our solution with the two existing atgors, we have implemented both the
HCNN [19] algorithm and the HCANN [21] algorithm within the &§coNnDoframework. Because
HCTENN uses a TB-tree [39] for indexing the moving data, the T&:twas also implemented as an
index structure in conDO. HCNN applies the depth first-first method to traverse thexrstructure
where both a TB-tree and a 3D R-tree can be used. From theimgreal results in [19] we know that
the 3D R-tree has a better performance than the TB-treeddd@NN algorithm. Therefore we compare
our approach with this faster implementation. HENIN traverses the TB-tree in best first manner.

Both algorithms use a set of data structures, whose elemaemtso-callechearest_lists, to store
the result found so far when traversing the index. The sizhiefset corresponds tg the number of
neighbors searched.

Figure 15 depicts the structure of a singlexrest_list. The entries of the list are ordered by starting

22

8 T T T T T 8 120 T T T T T
— 14l — TCKNN —x—
x N// < final result —e—
~ ~ 100
n 12 F 4 »
))
3 1w0r TCKNN —— I eof
S final result —e— S
5 °f § of
o 4L o
ks B 4w}
o 4T @
Q Q
€ 2f g 7
]]
c 0 Il Il Il c O Il Il Il Il Il Il Il Il Il
0 1 2 3 4 5 0 5 10 15 20 25 30 35 40 45 50
moving data size (million)
(a) Parameter Datasize (b) Parametek (Trains25

Figure 14: The number of units returned by the filter step
D(t)

prunedist{ = k)

split point

list[4]

to tq to t3 ty

Figure 15: Nearest List Structure

time. An entry has the form =< tid, D, t1, ts, mind, maxd >, wheretid corresponds to an entry in
the leaf node of the index) is a function depending on timé&)(t) = a - t> + b - t + ¢, denoting the
moving distance between the entry and the query objectgltiimtime intervalt, t2], mind andmaxd

is the maximum or the minimum value of that function, respett. The time intervals of the entries
stored in a single list are pairwise quasi disjoint, meatnivag they can share only a common start or end
point.

When considering the set d@f lists list[1], ..., list[k], for each instant, list[i]. D(t) < list[i +
1].D(t), 1 < i < k, holds. The maximum value storedlint[:] is calledprunedist(i). If the union of the
time intervals of the entries iist[i] does not cover the complete query time interval themedist (i) =
oo holds. Thuprunedist(k) is the maximum distance of thiienearest neighbors found so far. All entries
whose minimum distance is greater thamnedist(k) can be pruned. When inserting a new entryve
start atlist[1]. If the time interval ok is already covered by another entry, we split the entrieséessary
and try to insert the entries having a greater distance ifumatto /ist[2]. So high values move up within
the set of lists untilist[k] is reached or their time interval is not any more covered.

Besides usingrunedist, HCNN applies a further pruning strategy to filter impossiblon-leaf
nodes. For each entry in non-leaf node, it checks the maxiligtance of already stored tuples in the
list restricted to the entry’s life time. If the minimum distce of an entry is larger than the maximum, it
can be pruned. Compared with the pruning strategy with omgjpbal maximum distance, it can prune
more nodes whose time interval is disjoint with that covdyegrunedist.

6.4 Evaluation Results

In this section we compare the performance of the three itthgas.

23

6.4.1 Varying Data Size

In the first experiment, we vary the data si¥ewhere all other parameters remain unchanged. Wg set
to five, so that each query object asks for its five neareshbeig. Regarding the query time interval,
the default is to use the entire life time of the query objeet, Q; = 1.

Originally we had built the 3D R-tree for HCNN by applying tregular R-tree insertion algorithm
to a stream of units ordered by start time. The authors hadriréd us that they had used this method to
build the R-tree in their experiments [18]. However, in ogp&riments we found that HCNN behaves
quite badly on large data sets with R-trees built in this wefe discovered that it has a much better
performance when the R-tree is built by bulkload on a tenlfyooadered stream of units.

To demonstrate this, in a few experiments we have built theeR-in both ways and compared
the results. We call the two versions HCNN-Standard and HEBUIN, respectively. On the small
Trucksdata set it is feasible to show the results in the same grajhistdone below in Section 6.4.3.
Unfortunately, in this first experiment varying the dataesithe execution times for HCNN-Standard
soon become extremely large. Therefore they have not bekrded in the graphs. In the following,
when results are labeled HCNN, always HCNN-Bulk is meant.

Figure 16 reports the effect of varying the number of movingsuon CPU and 1/O cost. Note that
Figure 16(a) and (b) are plotted using a log scale. The CPUdafaal algorithms increases whel
becomes larger, but the curve of AN always remains at a lower level than HENN and HCNN.
Algorithms TCG:NN and HCNN show a similar behaviour, but because we startater level, the cost
is smaller. HCENN is worse than HCNN for small data sets, but it becomes betten the data size
increases. This is due to its simple pruning strategy whekgetbe global maximum distance is applied
to filter impossible nodes whereas HCNN applies one moreipgusirategy which takes more time.

For the largest data set (5.154 million units), the CPU raspdime of our algorithm is 4.419 sec-
onds, while HCENN and HCNN require 13.453 seconds and 36.017 seconds cteshe

Also, the I/O cost of TE&NN is relatively small compared with the other two compestorhere are
two main reasons. First, HCNN and HENIN don’t optimize the index structure f&NN queries as we
have done. Second, the TB-tree structure only stores uhdssimgle object within a leaf node. If an
object covers large distances, the leaf nodes of the TBatilkbave a large spatial extent.

50 ‘ ‘ 1000 ‘
HCNN —&— TCKNN ——
HCTKNN —&— —~ 500 | HCNN
_ 20 | TCKNN —x— 8 HCTKNN
[S]
Q10 - S
A2 x
g X 100
4 A %)
= 50 b
F g | /i
o} 5] \ I \
a | IS Wi Ml | |
O o 1w} H 1A |
02 ‘ ‘ ‘ ‘ ‘) Ll wlll I I A
0 1 2 3 4 5 0.051 0.464 1.29 33 5.154
moving data size (million) moving data size (million)
(a) CPU Cost (b) /0 Cost

Figure 16: Performance versus data size

6.4.2 Performance versus

Here, we compare the running times of the algorithms if thalmerk of requested neighbors is changed.
We have set to one of{1, 5, 10, 20, 50. As data sets servErains25and Trucks Figures 17 and 18
show the CPU cost and the 1/0O access depending diote that all figures are drawn in a log scale. Our
algorithm and HCNN have similar curves but our algorithmiigags at a lower level. Ik increases, the
absolute gap between KSIN and the competitors enlarges. HENN is better than HCNN for small

24

values ofk, e.g.,k = 1, but whenk enlarges, its cost increases quickly so that it is worse H@NN,
because it only uses the global maximum distance to pruneenvBbme nodes can't be pruned, it is
necessary to traverse the entire list structure from thiivoto the top list. Ifk is large, more levels of
thenearest_list have to be visited.

1000

200

TCKNN m—
100 ~ 500 - HCNN
- 8 HCTKNN ==
[8) 50 S n
(9] —
é X 100
1A -
=R g Wi
> sf 3 |
o @ (i
@) O 1w0f I ,
1t // I f
0.5 Il L L L L L L L L 2 I\\ U
0 5 10 15 20 25 30 35 40 45 50 5 1i2
(a) CPU Cost (b) /O Cost
Figure 17: Performance versk¢Trains25
500 T T
TCKNN m—
—~ HCNN
_ S 200 JHCTKNN == _
9 S 100 il
= X 50t
= » 1
= g .
2 g 1 M A
(@] e} ‘ i ’
0.4 L L L L L L L L L 1 \\ '/ IIN| i il il
0 5 10 15 20 25 30 35 40 45 50 5 1|2 20 50
(a) CPU Cost (b) /0 Cost

Figure 18: Performance verskgTruck9

6.4.3 Query Time Range

In this experiment, we show the performance of the algomtimdependence on the duration of defini-
tion time of the query object. For varying the time interwak have cut out a randomly chosen connected
part of the original query object in which actually the numbé&units (and thus the definition time) is
varied. In the experiment ofrucks we have included both versions of HCNN, i.e., HCNN-Staddar
and HCNN-Bulk.

Figures 19 and 20 illustrate the experimental results. Fshamt query time interval, HCANN is
better than HCNN-Bulk and HCNN-Standard, and has no bigefice with our algorithm. This is
because the number of tuples stored in each list is smalkitithe interval is short so that the linear
traversal has no difference with binary search in the segtnem structure. The HCNN (Bulk and Stan-
dard) algorithm has one more pruning strategy which takes to check the minimum and maximum
distance. When the query time interval increases, the dalgarof our algorithm becomes obvious and
it almost stays at the same level whereas the other alg@ithke more time than our solution.

As the HCNN algorithm is faster if the index is built by bulkld instead of the standard way, in the
other experiments we have only compared with HCNN-Bulk.

25

15 300 ‘ ‘
10 200 [TCKNN m—
~ HCNN
- 5 8 100 [HCTKNN
o S
Q 50
‘g X
£ 1 a
= @ i
5 05 S 1wp § i
o IS \ A i
© o °r \ ol
oos b v 1 Pl |fH I |)
0 01 02 03 04 05 06 07 08 09 1 005 01 02 05 10
guery time range guery time range
(a) CPU Cost (b) /0 Cost

Figure 19: Performance versus query duratitrains25

60 T T T T 100 T T T
HCNN-Bulk —8— TCKNN —
HCTKNN —=— ~ 50 HCNN-Bulk
. or TCKNN ——] HCTKNN
8 10 | HCNN-Standard —e— =) HCNN-Standard ===
—
& 5 X 10}
g e |
£ 5 i
= § -
2 os & \ \ i
O @) 1t H ! |
0.04 I I I I I I I I I 0.2 I " |\ [il
0 01 02 03 04 9.5 06 0.7 08 09 1 0.05 0.1 (_J.2 0.5 1.0
query time range query time range
(a) CPU Cost (b) I/O Cost

Figure 20: Performance versus query duratibru¢k9

6.4.4 Evaluation on Long Trajectories

To examine the scalability of the algorithm, we do speciglezinents on data and query objects with
long trajectories. The longest trajectories can be fourttiérdata seCars thus we use this data set for
the experiments. We vary the number of units of the queryabhjsing one of the numbef4.00, 200,
500, 800, 100p andk is set to five.

Figure 21 reports the experimental result. Our algorithkeddess than 6 seconds CPU time for all
cases, while HCNN takes more time, increasing from 2.222rmcto 50.83 seconds, which is about
8 times more than TENN for a query object with 1000 units. H&NN is faster than HCNN for the
smallest number of units, but it becomes significantly moqgeasive and the CPU time increases in
an even larger slope, e.g., for 500 units, it costs 73.768rgkcalready. This is due to the trajectory
preservation property of a TB-tree and the linear struotfitee nearest list.

Also especially for leaf entries from the index, our BB-tstiicture is helpful because it can compute
a bounding box of the query object for a given time intervdbiarithmic instead of linear time needed
by the other algorithms. Note that during the traversal efitlilex, for each node/entry the algorithm has
to find the subtrajectory ahqoverlapping the time interval of the node/entry. This stap to be done
a lot of times, so whemqghas a long trajectory (more units), a linear interpolatiogtmod takes more
time. For the I/O cost, the value of FGIN is between 3 and 25«(10%), which is also much smaller than
HCTENN and HCNN.

6.4.5 Bulk Updates

Finally, we investigate the behaviour of the bulk updatdhéque described in Section 4.3.4. The first
experiment compares the running times of building the ditectsire in a single step or in a series of
updates, respectively. We use theins25data set. To perform a series of updates, in each step we

26

1000 T T
TCKNN —
—~ 500 | HCNN E==3 " 4
Q HCTKNN n N N1
o 8
% —
g X 100 - R
£ 2 st 1
= @
o> 3
o ©
O @) 10 F i
0.1 1 1 1 1 1 1 1 1 2 | TxdN A |
100 200 300 400 500_ 60_0 700 800 90(_) 1000 100 200 5_00 i 800 1000 .
number of units in query object number of units in query object
(a) CPU Cost (b) /0 Cost

Figure 21: Evaluation on long trajectorg#rs)

collect the units belonging to a group of six temporal layemresponding to a period of 30 minutes)
and update R-tree and coverage numbers for this set.

The results are shown in Figure 22. The curve labeled “BuidJpdate” shows the accumulated
cost after processing each group of layers. In total niné guoups are processed. One can see that the
overhead compared to building the data structures in assstgp is only about 20%.

The first and the last two groups of updates need less timetki®aathers. This is due to the fact
that at the start and end of the time period less trains arndr(as trains gradually begin and end their
service).

600 T T T

s00 | /‘/"’_f

400

300

200 Build Completely ——]|

Build By Update —*—
100

total running time (sec)

0 ! ! ! ! ! ! !
1 2 3 4 5 6 7 8 9

group of layers ordered by time

Figure 22: Time Cost for Building Structurdsains25

The second experiment compares the query performance dwdlaata structures representing the
complete sefrains25built either in a single step or in a series of updates. Thie heck whether the
structure built by updates perhaps has a degraded perfoem¥ve repeat the experiment “Performance
vs. k" of Section 6.4.2.

Figure 23 shows the results, using labelskNBI and TG:NNUpdate for the two structur€sObvi-
ously the results are quite similar and the bulk update &trads as good as the original one.

7 System Use and Experimental Repeatability

Together with this paper, we also publish the implementatiof the three algorithms compared. This is
possible using a feature recently available in tlreeSNDO environment, called aE2oNDO Plugin. It
allows authors of a paper to wrap their implementation into-@alled algebra module and to make data
structures and algorithms available as type constructmtsoperators of such an algebra. Extensions to
the query optimizer or the graphical user interface are siggported but are not needed in this paper.

"Although for TCkNN this is the same experiment as in Section 6.4.2, the nwsrarerslightly different. This is because
experiments in this section have been made several monénsiaevising the paper, with the current version @c®NDO.

27

1 TCKNN m— N

| TCkNNUpdate —&— | TCkNNUpdate

TCKNN —=—

CPU Time(sec)
1/0 access (x 1000)

i sl
| 6
ot]
05 b 2L IH
: Ll
1

0 ‘5 1‘0]‘.5 2‘0 2‘5 3‘0 1;5 4‘0 415 50 5 10 20 50
(a) CPU Cost (b) 10 Cost

Figure 23: Performance v&.for Bulk Update Trains25

Authors can create a plugin, which is a set of files togethén eismall XML file describing the exten-
sions, and publish it as a zip-file. Readers of the paper catalithe plugin into a standardeBoNDO
system obtained from theeEBoNDOweb site. More details can be found at [6].

Publishing also the implementations has several benefigariéhms can be used in a system context
and prove their usefulness in real applications. Expertmmaported in the paper can be checked by the
reader. Other experiments not provided by the authors candake, using other parameter settings or
other data sets. Details of the experiments not clear frendéscription can be examined.

Finally, the next proposal of an improved algorithm will fiad excellent environment for compari-
son as it is not any more necessary to reimplement the comgpsdiutions.

7.1 Using the Algorithms in a System

In this section we explain how the algorithm ZRN proposed in this paper as well as the two competing
algorithms HCNN [19] and HCANN [21] can be used within theE® ONDO system.

7.1.1 Preparations
As far as needed, perform the following steps:

e Set up an environment to compile and rueC®NDO.

Download a EcoNDoOsystem of version 2.9.1 or higher.

Download the NearestNeighbor Plugin from the web site asthlhit within SECONDO.

Build the system (make).

¢ Restore the datababerlintest that comes with the SCONDO system.

The required software and explanations can be found atHu8D0 web site [8] which includes the
plugin web site [6]. More detailed instructions to perfornese steps and a short introduction to using
SECONDOare also given in Appendix B.

7.1.2 Using knearest

As discussed in Section 6, the main test data we use are ddérora the relationrainsin the database
berlintest containing 562 undergrund trains moving according to daleeon the networkJBahn The
schema offrainsis

8Bulk updates are available only with version 2.9.2 and thisea plugin.

28

Trains(ld: int, Line: int, Up: bool, Trip: mpoint)

whereld is a unique identifier for this train (trip),ine is the line numberJp indicates which direction

the train is going, andrip contains the actual trajectory.

On the smallTrains relation it is feasible to run a T’NN query using just thé&nearest operator
which implements the refine step as described in Section 5us&'d¢he unit representation dfains a
relation calledJnitTrains It is present in the database, but could also be created tlstncommand:

let UnitTrains = Trains feed
projectextendstream[ld, Line, Up; UTrip: units(.Trip)] ¢ onsume

The projectextendstream operator creates a stream of units from T attribute of each input tuple
and outputs for each unit a copy of the original tuple retgtddo attributedd, Line, Up, and the new
unit attributeUTrip.

Start a ScoNnbposystem (kernel and Javagui) and open databadatest Then type at the prompt:

1. query UnitTrains count

RelationUnitTrainsis present and has 51544 tuples.

2. We create a version @fnitTrainswhere units are ordered by start time:
let UTOrdered = UnitTrains feed

extend[Mintime: minimum(deftime(.UTrip))]
sortby[Mintime asc] consume
Operatorextend adds derived attributes to tuples.

3. query UBahn
Display theUBahnnetwork as a background.

4. query Trains

This loads the entire set of trains into the user interfacedfgplay. It takes some time. Choose
display styleQueryMPoint

5. query train7

This loads a 8coONDO object of typempoint which we will use as a query object. Display as
QueryPoint

6. Find the five continuous nearest neighborgam?.
query UTOrdered feed knearest[UTrip, train7, 5] consume

Arguments to thénearest operator are the ordered stream of unit tuples, the name @aittfibute,
the query trajectory, and the number of neighbors. ChQaseryMPoint2for display style. In the
animation, one can observe that always the five closeststiggipear in blue (the result of this
query).

7. Find the five continuous nearest neighborgam7 belonging to line 5.
query UTOrdered feed filter[.Line = 5]
knearest[UTrip, train7, 5] consume

This illustrates that nearest neighbors fulfilling addiabconditions can be found.

7.1.3 Creating Test Data

We now show how the test data are generated. Here we redtgatian to the creation of data set
Trains25 This is done by running the script fizeatetrains25 from [4] which needs to be placed

in thesecondo/bin directory. The file is explained in Appendix C.
Close down any runninge2coNDO system. Open a new shell and type

SecondoTTYNT -i createtrains25
This creates appropriate versions of relations and indiexdhe three algorithms.

29

7.1.4 Using the Three Algorithms CTeNN, HCNN, and HCkANN

Each of the three main algorithms compared in the expersniantivailable as an operator. They
are calledknearestfilter and knearest, greeceknearest, and chinaknearest for CTEKNN, HCNN, and
HCTENN, respectively.

As a query object we ugeain742, which is the first train of line 7 within the field (4, 2) of thex%
pattern. The dataset considered now can be visualized hslatang the underlyingyBahnnetwork in
the same way (see Appendix C for an explanation).

1. Create UBahn25 and visualize it:

let UBahn25 = UBahn feed five feed {f1 } five feed {f2 } product product
projectextend[Name, Typ;
geoData: .geoData translate[30000.0 * .no_fl, 30000.0 * .no_f2],
FieldX: .no_f1,
FieldY: .no_f2]
consume;

query UBahn25

As discussed in Section 6, tAeains25dataset has about 1.3 million units. It is too large to load
it entirely into the viewer. To be able to interpret the ansafethe query, we visualize the trains
moving in field (4, 2) together with the query objetrhin742

2. Load trains from field (4, 2) and the query object.

query Trains25 feed filter[(.FieldX = 4) and (.FieldY = 2)] c onsume;
query train742

3. Find the 5 closest trains taain742 within data seflrains25 using TG:NN. We proceed in two
steps to display first the candidates found in the filter sisjmg operatoknearestfilter, and then
the complete solution.

query UnitTrains25 UTrip UnitTrains25
UnitTrains25Cover_Recld UnitTrains25Cover
knearestfilter[UTrip, train742, 5] consume;

query UnitTrains25_UTrip UnitTrains25

UnitTrains25Cover_Recld UnitTrains25Cover

knearestfilter[UTrip, train742, 5]

knearest[UTrip, train742, 5] consume;
The arguments thnearestfilterare the R-tree index and the indexed relation, then the éhticiex
on the relation with coverage numbers and this relationllyiiia the square brackets) the attribute
name, the query trajectory, an the number

4. Find the 5 closest trains tmain742 within data seflrains25 using HCNN.

query UTOrdered_RTreeBulk25 UTOrdered25
greeceknearest[UTrip, train742, 5] consume;

Arguments are the R-tree and the unit relation, cluster¢ddarsame way.

5. Find the 5 closest trains tmin742 within data seflrains25 using HG:NN.

query UnitTrains_UTrip_tbtree25 UnitTrains25C
chinaknearest[UTrip, train742, 5] consume;

Arguments are the TB-tree and the unit relation. Here umésoedered by train objects.

30

7.2 Repeating the Experiments

Experiments can be repeated using the scripts provided.a$4 preparation, extract all the files from
this zip-archive and place them into teecondo/bin directory. Files for data generation should be
called, for example:

SecondoTTYNT -i createtrains25
Files for performing experiments should be called
SecondoTTYBDB -i query-k-trains25

As an example, Appendix D shows the scidpiery-k-trains25 to run the experiment “perfor-
mance vsk” of Section 6.4.2. Note that the last queries examiae@&\Dporelations SEC2COMMANDS
and SEC2COUNTERS. These system relations capture infanmabout query execution; each com-
mand after starting aEX£ONDO system is humbered sequentially. Hence after the first cordniar
opening the database, the ten queries for each of the thgedthns are numbered 2 through 11, 12
through 21, and 22 through 31, respectively. The querieseggte over these executions to get average
CPU time and numbers of page accesses.

Results should roughly correspond to those displayed inrEid7. Of course, only trends should
agree; absolute numbers may differ due to the differenfgtats used.

8 Conclusions

In this paper we have studied continugueearest neighbor search on moving objects trajectoriesiwhe
both query and data objects are mobile. We have presentddraafild-refine approach. The main idea
in the filter step was to compute for each node of the indexirg tependent coverage function in
preprocessing and to store a suitable simplification offtiristion. Coverage numbers are then essential
for pruning during the index traversal. This is further soped by the use of efficient data structures
to compute spatial bounding boxes of partial query trapgescand to keep track of node coverages and
node distances during traversal. The refinement step camalssed independently to find continudus
nearest neighbors fulfilling further predicates. An expemtal comparison shows that the new algorithm
outperforms the two competing algorithms in most cases dgrsrof magnitude.

As a second aspect, we have advocated a methodology of mgueal research that makes data
structures and algorithms available in a system contextthatipublishes together with papers also
their implementation used in experiments. A platform hasnbgrovided that allows authors to publish
software in this way. As a benefit, readers can relativeliheapeat or extend the experiments presented
in the paper. Furthermore, in the long run, researchersfindl existing implementations to compare
to instead of always reimplementing competing techniques fscratch. We have used the research
contribution of this paper as an example to demonstratesthlis of publishing experimental research.

Open guestions for future work are whether the pruning tiectas of the filter step can be adapted to
other cases, for example other query types such as revaseshaeighbors, network-based movement,
or the presence of additional predicates.

Acknowledgements

The contribution of Angelika Braese who implemented preiemy versions of both the filter and the
refinement algorithm in her bachelor thesis, is gratefutlyrewledged. We also thank the anonymous
referees for their valuable suggestions for improvement.

31

References

[1] BerlinMOD. http:dna.fernuni-hagen.de/secondo/BaiOD.html.

[2] Nearest Neighbor Algebra Plugin.
http://dna.fernuni-hagen.de/Secondo.html/files/plathNIN. zip.

[3] R-tree Portal. http:www.rtreeportal.org.

[4] Scripts to execute the experiments of this paper.
http://dna.fernuni-hagen.de/papers/KNN/knn-expentyseript. zip.

[5] Secondo. A Database System for Moving Objects.
http://dna.fernuni-hagen.de/Secondo.html/Secondad-path.

[6] Secondo Plugins. http://dna.fernuni-hagen.de/Saodriml/startcontentplugins.html.
[7] Secondo User Manual. http://dna.fernuni-hagen.dmiBeo.html/files/SecondoManual.pdf.
[8] Secondo Web Site. http://dna.fernuni-hagen.de/Saadnml/.

[9] R. Benetis, C. S. Jensen, G. Karciauskas, and S. Salt®&esrest and reverse nearest neighbor
queries for moving objects/LDB J, 15(3):229-249, 2006.

[10] J. L. Bentley and T. Ottmann. Algorithms for reportingdecounting geometric intersection&EE
Trans. Computer28(9):643-647, 1979.

[11] S. Berchtold, C. Bohm, and H.P. Kriegel. Improving tingery performance of high-dimensional
index structures by bulk load operations.HBBT, pages 216—-230, 1998.

[12] J. Bercken, B. Seeger, and P. Widmayer. A generic apgpréa bulk loading multidimensional
index structures. IVLDB, pages 406—415, 1997.

[13] H. Cao, O. Wolfson, and G. Trajcevski. Spatio-tempatata reduction with deterministic error
bounds.VLDB J, 15(3):211-228, 2006.

[14] V. P. Chakka, A. Everspaugh, and J. M. Patel. Indexingddrajectory data sets with seti. GiDR,
2003.

[15] M. de Berg, O. Cheong, M. van Kreveld, and M. Overm&smputational Geometry: Algorithms
and Applications Springer, Heidelberg, 3rd edition, 2008.

[16] C. Duntgen, T. Behr, and R.H. Giting. Berlinmod: a @iemark for moving object databases.
VLDB J, 18(6):1335-1368, 2009.

[17] L. Forlizzi, R. H. Giting, E. Nardelli, and M. SchneideA data model and data structures for
moving objects databases. 3 GMOD, pages 319-330, 2000.

[18] E. Frentzos. Personal communication.

[19] E. Frentzos, K. Gratsias, N. Pelekis, and Y. Theodsrid\lgorithms for nearest neighbor search
on moving object trajectoriesseolnformatica 11(2):159-193, 2007.

[20] E. Frentzos, K. Gratsias, and Y. Theodoridis. Indegdabmost similar trajectory search. {EDE,
pages 816-825. IEEE, 2007.

[21] Y. Gao, C. Li, G. Chen, Q. Li, and C. Chen. Efficient alglons for historical continuouk nn
query processing over moving object trajectoriesARWeb/WAINMpages 188—-199, 2007.

32

[22] Y. J. Gao, C. Li, G. C. Chen, L. Chen, X. T. Jiang, and C.€Hefficient k-nearest neighbor search
algorithms for historical moving object trajectoriekurnal of Computer Science and Technology
22(2):232-244, 2007.

[23] F. Giannotti and D. Pedreschi, editokdobility, Data Mining and Privacy - Geographic Knowledge
Discovery Springer, 2008.

[24] J. Gudmundsson and M. J. van Kreveld. Computing londesdtion flocks in trajectory data. In
R.A. de By and S. Nittel, editor&IS, pages 35-42. ACM, 2006.

[25] R. H. Giting, M. H. Bohlen, M. Erwig, C. S. Jensen, N.l&rentzos, M. Schneider, and M. Vazir-
giannis. A foundation for representing and quering movibgecas. ACM TODS 25(1):1-42,
2000.

[26] R.H. Giting and M. SchneideMoving Objects Database$lorgan Kaufmann, 2005.

[27] G.R. Hjaltason and H. Samet. Distance browsing in spdtitabasesACM Trans. Database Syst.
24(2):265-318, 1999.

[28] Y. Huang, C. Chen, and C. Lee. Continous k-nearest heiglquery for moving objects with
uncertain velocityGeoinformatica2007.

[29] G. S. Iwerks, H. Samet, and K. P. Smith. Continuous k-estaneighbor queries for continuously
moving points with updates. MLDB, pages 512-523, 2003.

[30] C.S. Jensen, M. Schneider, B. Seeger, and V.J. Tseiésys. Advances in Spatial and Temporal
Databases, 7th International Symposium, SSTD 2001, Reddeach, CA, USA, July 12-15, 2001,
Proceedingsvolume 2121, 2001.

[31] H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, and H. T. Shemsc@very of convoys in trajectory
databases. INLDB, 2008.

[32] M. Jurgens and H.-J. Lenz. The ra*-tree: An improvecee with materialized data for supporting
range queries on olap-data. IMEXA Workshoppages 186-191, 1998.

[33] G. Kellaris, N. Pelekis, and Y. Theodoridis. Trajegt@ompression under network constraints. In
N. Mamoulis, T. Seidl, T.B. Pedersen, K. Torp, and I. Asseditors,SSTD pages 392-398, 2009.

[34] I. Lazaridis and S. Mehrotra. Progressive approxineggregate queries with a multi-resolution
tree structure. hSIGMOD Conferencgpages 401-412, 2001.

[35] M. F. Mokbel, T. M. Ghanem, and W. G. Aref. Spatio-temglosiccess method$EEE Data Eng.
Bull., 26(2):40—-49, 2003.

[36] G. M. Morton. A computer oriented geodetic data base am#w technique in file sequencing.
Technical report, IBM Ltd. Ottawa, 1966.

[37] K. Mouratidis, M. Hadjieleftheriou, and D. Papadiasr@eptual partitioning: An efficient method
for continuous nearest neighbor monitoring. SIGMOD, pages 634-645, 2005.

[38] D. Papadias, P. Kalnis, J. Zhang, and Y. Tao. Efficieapa@perations in spatial data warehouses.
In Jensen et al. [30], pages 443-459.

[39] D. Pfoser, C. S. Jensen, and Y. Theodoridis. Novel apgres in query processing for moving
object trajectories. INLDB, pages 395—-406, 2000.

33

[40] K. Raptopoulou, A. Papadopoulos, and Y. Manolopouleast nearest-neighbor query processing
in moving-object database&eolnformatica7(2):113-137, 2003.

[41] S. Rasetic, J. Sander, J. Elding, and M. A. Nascimentdrajectory splitting model for efficient
spatio-temporal indexing. IMLDB, 2005.

[42] N. Roussopoulos, S. Kelly, and F. Vincent. Nearest ety queries. I'8sIGMOD, 1995.

[43] A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Biod) and querying moving objects. In
W. A. Gray and PeAke Larson, editorsProceedings of the Thirteenth International Conference
on Data Engineering, April 7-11, 1997 Birmingham Upéages 422-432. IEEE Computer Saociety,
1997.

[44] Z. Song and N. Roussopoulos. K-nearest neighbor séarghoving query point. In Jensen et al.
[30], pages 79-96.

[45] Y. Tao and D. Papadias. Time-parameterized queriepaticstemporal databases. $iGMOD,
pages 334-345, 2002.

[46] Y. Tao and D. Papadias. Historical spatio-temporalraggtion. ACM Trans. Inf. Syst23(1):61—
102, 2005.

[47] Y. Tao, D. Papadias, and Q. Shen. Continuous neareaghin@i search. IWLDB, pages 287-298,
2002.

[48] O. Wolfson, B. Xu, S. Chamberlain, and L. Jiang. Movirgexts databases: Issues and solutions.
In SSDBM pages 111-122, 1998.

[49] X. Xiong, M. F. Mokbel, and W. G. Aref. Sea-cnn: Scalaple@cessing of continuous k-nearest
neighbor queries in spatio-temporal database$CDE, pages 643—-654, 2005.

[50] X. Yu, K. Q. Pu, and N. Koudas. Monitoring k-nearest fdigr queries over moving objects. In
ICDE, pages 631-642, 2005.

A Implementation of the Cover Structure
A node has the following structure:

type node=record

time interval[ty, t2];

pointer to noddeft, right;

list of coverentry list,

list of pairs<which coverentry> startlist, endlist
end record.

The listslist, startlist, andendlistare doubly linked lists with elements of the foripred sucg pointer
to coverentry>. Whenever aoverentryis added to such a list, actually a pointer to tower entryis
inserted and at the same time a pointer to this list elemeadded to the listefsin the coverentry. In
this way efficient deletion of cover entries is possible.

Update methods alesertentry, add.coordinate insertinterval, anddeleteentry. Query methods
arepoint.queryandrange.query.

34

Algorithm 9: insert.entry(ce)

Input: ce- a cover entry;

Output: none
1 let root = this.roo\);
2 add.coordinate(root, cey, true, ce)
3 add.coordinate(root, cey, false, ce)
4 insertinterval(root, cetq, cets, ce)

Algorithm 10: add.coordinate(n, t, start, ce)

Input: n- a node;
t - an instant of time;
start - a boolean indicating whether a left or right end is added;
ce- a cover entry.
Output: none
/ = modifies the segment tree to accomodate a possibly new
coordinate t and adds the entry as either a start or an end
entry.
1 if nis aleafthen
2 if nt; <t<nitythen
3 n.left= new node(rty, t);
4 n.right = new node(t, rip);
5 if startthen n.right.startlist.append{bottom, ce-);
6 else n.left.endlist.append(top, ce>);

else// nis an inner node

7
8 if t=n.left.ts then

if startthen n.right.startlist.append{bottom, ce-);
10 else n.left.endlist.append(top, ce>);
11 else
12 if t < n.leftt, then add.coordinate(n.left, t, start, ce)
13 else add.coordinate(n.right, t, start, ce)

14

Algorithm 11: insertinterval(n, ¢, t,ce)

Input: n - a node;
[t1, to] - @ time interval,
ce- a cover entry;
Output: none

1 if [n.t1, nits] C [t1, to] then n.list.append(ce)

2 if nis an inner nodehen

4

3 if ¢1 < n.leftt, then insertinterval(n.left,tq, t2, ce)
if to > n.rightt; theninsertinterval(n.right, ¢4, to, ce)

Algorithm 12: deleteentry(ce)

Input: ce- a cover entry
Output: none
1 for each sc ce.refsdo remove(s)

35

Algorithm 13: point.query(n, t)

Input: n- a node;
t - an instant of time.
Output: a set of entries whose time intervals contain
1 if n = null then return (;
2 else
3 if nit; <t<nuisthen
4 L return n.listu point.query(n.left, t}J point query(n.right, t)

5 else return(;

Algorithm 14: range.query(n,ty, t2)

Input: n - a node;
[t1, t2] - a time interval.
Output: a list of pairs of the formcwhich, ce> wherewhich € {bottom, tog, cea cover entry.
The list contains only entries whose start or end time lidghiwi[t, ¢2], in temporal
order w.r.t their start or end time.

1 if n=null then return §;

2 else

3 if Nty <ty then return §;

4 else

5 if to < n.t; then return 0;

6 else

7 S=0;

8 if t;1 <nity; <tythen S =concat(S, n.startlist)
9 if nis not a leafthen

10 L S = concat(S, concat(rangguery(n.leftty, t3), rangequery(n.right,t{, t2)));
11 if t1 < nity <tythenS = concat(S, n.endlist)
12 return S

36

B Installing and Using SEconDO With the Nearest Neighbor Plugin

In the sequel we describe how a&NDosystem and the Nearest Neighbor Plugin can be installed and
theberlintest database be restored. Then a short example session shovis hegv&CONDO.

B.1 Installing a SECONDO System

If you happen to have a runningeBoNDoOInstallation with a system of version 2.9.1 or higher, thiéps
can be skipped. Otherwise:

1. Gotothe EconDoOweb site at [8]. Go to th®ownloadspage, sectioBsecondo Installation Kits
Select the version for your platform (Mac-OS X, Linux, Wingg). Get the installation guide and
download the SDK. Follow the instructions to get an envirentrwhere you can compile and run

SECONDO.

2. Go to the Source Code section of fhewnloadspage and download version 2.9.1. Extract it and
replace the BcoNDoversion from the installation kit by this version.

B.2 Installing the Nearest Neighbor Plugin

From the $coNDoO Plugin web site [6] get the two filemstaller.jar andsecinstall . The
Nearest Neighbor plugin is a fiN.zip available at [2]. Follow the instructions in sectitmstalling
Pluginsat [6] to install it. Then recompile the system (i.e., cakike in directorysecondo).

B.3 Restoring a Database

We first restore the databakerlintestthat comes within the SconDo distribution:

1. Start a &CONDOSystem:

cd “secondo/bin
SecondoTTYNT

After some messages, a prompt should appear:
Secondo =>

2. Atthe prompt, enter
restore database berlintest from berlintest

close database
quit

B.4 Looking at Data

The relationTrainsin the databaskerlintestcontains 562 undergrund trains moving according to sched-
ule on the networkJBahn This relation is used in the experiments to create largardata set3rains
n?. The schema ofrainsis

Trains(Id: int, Line: int, Up: bool, Trip: mpoint)

whereTrip contains the actual trajectory.
We briefly look at these data within the system.

1. Start the 8conDokernel together with the graphical user interface. Operedl ahd type

cd “secondo/bin
SecondoMonitor -s
[SecondoMonitor.exe -s on a Windows platform]

37

Open a new shell:

cd “secondo/Javagui
sgui

2. Inthe command window (top left), type
open database berlintest;
query UBahn
A pop-up window appears asking for a display style fordeeDataattribute of theUBahnrela-
tion. Leave the default and click OK. ThéBahnnetwork appears in the viewer at the bottom.

3. In theFile menu, selectoad categoriesvhich makes some other display styles available. Choose
BerlinU.cat

4. In SECONDQ, it is possible to type query plans directly, without the o$@n optimizer. This is
what we do next. In the command window, type:
query Trains count

This confirms that relatioffrainsis present and has 562 tuples. Operatarnt is applied to the
Trainsrelation in postfix notation.

5. query Trains feed filter[.Trip present six30] consume

This selects trains whosEip attribute is defined at 6:3Gik30is a SECONDO object of type
instant in the database). Here tlfeed operator (applied in postfix notation fwains) creates a
stream of tuples. Thglter operator passes only tuples to its output stream fulfillimgedicate.
Consume collects a stream of tuples into a relation which is thenldigad at the user interface.

A pop-up window asks for the display style. Frafiew CategoryselectQueryMPoint Standard
attributes appear in the text window at the left side of thees¢oviewer (the viewer forms the
bottom of the entire window). When you select one of Thi@ attributes also geometries appear
in the graphics window on the right.

6. Animate the displayed trains using the buttons at the eéffpof the viewer. The double arrow
buttons allow one to double or halve the speed of the animatio

This may suffice as a brief introduction to usingc®NDO. To become a bit more acquainted with
the user interface and the querying and visualizing of ngpwabjects, we recommend to go through the
"Do it yourself demo” ([5], Section 2). More information almousing $CONDO can be found at the
Web site [8], in particular in the user manual [7].

C Creation of Test Data

This is a commented version of fitgeatetrains25

This script creates th@rains25 data set for each of the three algorithms KNIN, HCNN, and
HCTKENN. Starting point is the relatiofirains containing 562 undergrund trains moving according to
schedule on the netwotdBahn We now explain the commands in the script.

let five = ten feed filter[.no < 6] consume;

let Trains25 = Trains feed five feed {f1 } five feed {f2 }

product product
projectextend[ld, Line, Up;

Trip: .Trip translate[[const duration value (0 0)],

30000.0 = .no_f1, 30000.0 * .no_f2],

FieldX: .no_f1,

FieldY: .no_f2]
consume;

38

The first command creates a relatforecontaining the numbers 1 through 5. Itis used to make 25 sopie
of the Trains in the next command, using twaroduct operator calls to build the Cartesian product of
Trainsand two instances of relatidive. Note that operations are often applied in postfix notatibext
the projectextend operator performs a projection on each tuple, keepingoatesld, Line, andUp. It

als adds new attributes to the tuple whose values are cothfrota existing attributes. Attributérip is
derived from the originalrip attribute by translating the geometry in the y, t) space. The temporal
shift is 0, hence all copies of the trains move at the same &mtheir originals. However, spatially,
geometries are shifted by distange_f1 * 30000 in z-direction and by distanceo_f2 * 30000 iny-
direction. Hereno_f1 andno_f2 come from the two instances of tfigerelation. Hence 25 copies are
made of each train arranged in a 5 x 5 grid. The field indiceféngrid are also kept in the tuple as
FieldX andFieldY. The last operatiomonsume collects the stream of tuples into a relation.

let train742 = Trains25 feed

filter[(.Line = 7) and (.FieldX = 4) and (.FieldY = 2)]
extract[Trip];
let train123 = Trains25 feed
filter[(.Line = 1) and (.FieldX = 2) and (.FieldY = 3)] extrac t[Trip];

Next ten query trains are selected from the rigains25relation. Theeztract operation gets the value
of attributeTrip from the first tuple of its input stream. Henttain742is now an object of typenpoint,
i.e., a trajectory.

As explained in Section 4.3, we partition the 3D space intalkspatiotemporal cells such that each
cell contains on the average enough units to fill abonbdes of an R-tree. The origin@itains relation
fits spatially into a box of size 30000 x 20000, with lower lefirner at position (-3600, 1200). Copies
are moved by multiples of 30000 as shown above. We now impap@awith cells of size 10000 x
10000 spatially, and 5 minutes temporally. The calculal&ading to these sizes is the following. One
can observe that in the origin@tainsrelation at any instant of time on the average 90 trains aseut.
We aim to have aboyt = 15 objects present within each spatial cell, hence form a driélaells. This
defines the cell size of 10000 x 10000 for the origimedinsrelation. The relation has 51444 units. An
R-tree node can take about 60 entries in our implementatienge to fill about = 5 nodes, about 300
units should be in a spatiotemporal cell. Assuming unitsuenigormly distributed in space and time,
51444 / (6 * 300) = 28.58 means that the temporal extent shioeilsplit into roughly 30 parts. As the
temporal extent of the trains relation is about 2.5 hours, dbrration of each part should be about 5
minutes. The larger relatiofrains25will use the same temporal partitioning; the spatial gritlscef
size 10000 x 10000 are effectively translated in the sameagdkieTrains

let six00 = thelnstant(2003,11,20,6);
let minutes5 = [const duration value (0 300000)];

To introduce the temporal partition of the 3D space, we défiaenstant 6am and a duration of 5 minutes
(300000 ms).

let UnitTrains25 = Trains25 feed
projectextendstream[ld, Line, Up; UTrip: units(.Trip)]
addcounter[No, 1]

extend[
Temp: (minimum(deftime(.UTrip)) - six00) / minutes5,
CellX: real2int((minD(bbox2d(.UTrip), 1) + 3600.0) / 1000 0.0),
CellY: real2int((minD(bbox2d(.UTrip), 2) - 1200.0) / 1000 0.0)]

sortby[Temp asc, CellX asc, CellY asc, UTrip asc]
remove[Temp, CellX, CellY]
consume;

39

The projectextendstream operator creates a stream of units from Thip attribute of each input tuple
and outputs for each unit a copy of the original tuple restddo attributedd, Line, Up, and the new
unit attributeUTrip. Thenaddcounter adds an attributé&lo with a running number to the current tuple.
The extend operator computes integer indicéemp CellX, and CellY according to the 3D partition
explained above for a given unit, accessing its geometrg. r€hulting stream of tuples is sorted first by
the three indices of a spatiotemporal cell, and finaliBirip (which in effect is the start time of the
unit). After sorting, the indices needed for sorting candmeved again before storing the relation.

let UnitTrains25_UTrip = UnitTrains25 feed addid bulkload rtree[UTrip];

The R-tree is created by bulkload. The order in the undeaglyeiation is the same as that used in the
bulkload; hence a clustering effect is achieved.

let UnitTrains25Cover = coverage(UnitTrains25_UTrip) co nsume;

The coverage operator traverses the R-tree, computing the coverageidunand from it the three cov-
erage numbers resulting from thet operation (Section 4.3.1). They are entered into relatioit-
Trains25Cover

let UnitTrains25Cover_Recld = UnitTrains25Cover createb tree[Recld];

The relation with coverage numbers is indexed. This coraplelata generation for our algorithm
TCKNN. Next test data for HCNN are generated.

let UTOrdered25 = UnitTrains25 feed sortby[UTrip asc] cons ume;

let UTOrdered_RTreeBulk25 = UTOrdered25 feed addid
bulkloadrtree[UTrip];

The UnitTrains25are ordered by units and stored in this order. This is esdgnén order on the start
times of units. The index is then built by bulkload on the tenatly ordered stream of tuples. Again the
index is clustered like the relation. As discussed in Sediiahis version of HCNN is the most efficient
one.

let UnitTrains25C = Trains25 feed
projectextendstream[ld, Line, Up; UTrip: units(.Trip)]
addcounter[No, 1] consume

let UnitTrains_UTrip_tbtree25 = UnitTrains25C feed addid
bulkloadtbtree[ld, UTrip, TID];

Finally, for HCTENN the UnitTrains25relation must be in the order dfain objects. Then the TB-tree
index is built by bulkload.

D Queries onTrains 25, varying k
This is a shortened version of fitpiery-k-trains25

open database berlintest;

#for different number of neighbors requested, change the va lue of k
#Germany
query
UnitTrains25_UTrip UnitTrains25 UnitTrains25Cover_Rec Id UnitTrains25Cover
knearestfilter[UTrip, train742, 5] knearest[UTrip,trai n742, 5] count;
query

40

UnitTrains25_UTrip UnitTrains25 UnitTrains25Cover_Rec
knearestfilter[UTrip, train523, 5] knearest[UTrip,trai
... (10 queries in total)

Greece Bulk

query UTOrdered_RTreeBulk25 UTOrdered25 greeceknearest
count;

query UTOrdered_RTreeBulk25 UTOrdered25 greeceknearest
count;

... (10 queries in total)

#China

query UnitTrains_UTrip_tbtree25 UnitTrains25 chinaknea
count;

query UnitTrains_UTrip_tbtree25 UnitTrains25 chinaknea
count;

... (10 queries in total)

Results Germany

query SEC2COMMANDS feed filter[(.CmdNr >= 2) and (.CmdNr <=
avg[CpuTime];

query SEC2COUNTERS feed filter[.CtrStr = "SmiRecord::Rea
filter[(.CtrNr >= 2) and (.CtrNr <= 11)] avg[Value];

Results Greece Bulk

query SEC2COMMANDS feed filter[(.CmdNr >= 12) and (.CmdNr <
avg[CpuTime];

query SEC2COUNTERS feed filter[.CtrStr = "SmiRecord::Rea
filter[(.CtrNr >= 12) and (.CtrNr <= 21)] avg[Value];

Results China

query SEC2COMMANDS feed filter[(.CmdNr >= 22) and (.CmdNr <
avg[CpuTime];

query SEC2COUNTERS feed filter[.CtrStr = "SmiRecord::Rea
filter[(.CtrNr >= 32) and (.CtrNr <= 41)] avg[Value];

close database;

41

Id UnitTrains25Cover
n523, 5] count;

[UTrip,train742, 5]

[UTrip,train523, 5]

restfUTrip,train742,5]

rest[UTrip,train523,5]

11)]

d:Calls"]

= 21)]

d:Calls"]

= 31)]

d:Calls"]

