
Efficientk-Nearest Neighbor Search on
Moving Object Trajectories

Ralf Hartmut Güting, Thomas Behr, Jianqiu Xu

Database Systems for New Applications,Mathematics and Computer Science
University of Hagen, Germany

{rhg,thomas.behr,jianqiu.xu}@fernuni-hagen.de

January 28, 2010

Abstract

With the growing number of mobile applications, data analysis on large sets of historical mov-
ing objects trajectories becomes increasingly important.Nearest neighbor search is a fundamental
problem in spatial and spatio-temporal databases. In this paper we consider the following problem:
Given a set of moving object trajectoriesD and a query trajectorymq, find thek nearest neighbors
to mq within D for any instant of time within the life time ofmq. We assumeD is indexed in a
3D-R-tree and employ a filter-and-refine strategy. The filterstep traverses the index and creates a
stream of so-called units (linear pieces of a trajectory) asa superset of the units required to build
the result of the query. The refinement step processes an ordered stream of units and determines the
pieces of units forming the precise result.

To support the filter step, for each nodep of the index, in preprocessing a time dependent coverage
functionCp(t) is computed which is the number of trajectories representedin p present at timet.
Within the filter step, sophisticated data structures are used to keep track of the aggregated coverages
of the nodes seen so far in the index traversal to enable pruning. Moreover, the R-tree index is
built in a special way to obtain coverage functions that are effective for pruning. As a result, one
obtains a highly efficientk-NN algorithm for moving data and query points that outperforms the two
competing algorithms by a wide margin.

Implementations of the new algorithms and of the competing techniques are made available as
well. Algorithms can be used in a system context including, for example, visualization and animation
of results. Experiments of the paper can be easily checked orrepeated, and new experiments be
performed.

1 Introduction

Moving objects databases have been the subject of intensiveresearch for more than a decade. They allow
one to model in a database the movements of entities and to askqueries about such movements. For some
applications only the time-dependent location is of interest; in other cases also the time dependent extent
is relevant. Corresponding abstractions are amoving pointor amoving region, respectively. Examples
of moving points are cars, air planes, ships, mobile phone users, or animals; examples of moving regions
are forest fires, the spread of epidemic diseases and so forth.

Some of the interest in this field is due to the wide-spread useof cheap devices that capture positions,
e.g. by GPS, mobile phone tracking, or RFID technology. Nowadays not only car navigation systems,
but also many mobile phones are equipped with GPS receivers,for example. Vast amounts of trajectory
data, i.e., the result of tracking moving points, are accumulated daily and stored in database systems
[14, 41, 31].

There are two kinds of such databases. The first kind, sometimes called atracking database, rep-
resents a set of currently moving objects. One is interestedin continuously maintaining the current

1

positions and to be able to ask queries about the positions aswell as the expected positions in the near
future. This approach was pioneered by the Wolfson group [43, 48]. With this approach, a cab company
can find the nearest taxi to a passenger requesting transportation.

The other kind of moving objects database represents entirehistories of movement [25, 17], e.g.
the entire set of trips of the vehicles of a logistics companyin the last day or even month or year. For
moving points such historical databases are also calledtrajectory databases. The main interest is in
performing complex queries and analyses of such past movements. For the logistics company this might
result in improvements for the future scheduling of deliveries. For zoologists, the collected movement
information of animals (equipped with a radio transmitter)can be used to analyse their behavior.

There has been a lot of interest in research to support such analyses, for example in data mining
on large sets of trajectories [23], on discovering movementpatterns such as flocks or convoys traveling
together [24, 31], on finding similar trajectories to a givenone [20], to name but a few. Of course,
indexing and query processing techniques (see [35]) play a fundamental role in supporting such analyses.

In this paper we consider the problem of computing continuous nearest neighbor relationships on a
historical trajectory database. Nearest neighbor queriesare, besides range queries, the most fundamental
query type in spatial databases. With the advent of moving objects databases, also time dependent
versions have been studied. One can distinguish four types of queries:

• static query vs. static data objects (i.e., the classical nearest neighbor query)

• moving query vs. static data objects (e.g. maintain the five closest hotels for a traveller)

• static query vs. moving data objects (e.g. observe the closest ambulances to the site of an accident)

• moving query vs. moving data objects (e.g. which vehicles accompanied president Obama on his
trip through Berlin)

Furthermore, one can consider these query types in a tracking database which leads to the notion
of a continuous query, maintaining the result online while entities are moving. This is most interesting
for consumer applications. But one can also consider these queries in the context of analysing historical
trajectories which is the case studied in this paper.

Note that the last of the four query types is the most difficultand general one. It includes all other
cases, as a static object can be represented as a moving object that stays in one place. We will handle this
case.

The precise problem considered is the following. We call thedata type representing a complete
trajectorymoving pointor mpoint, for short [25, 17]. Letd(p, q) denote the Euclidean distance between
pointsp andq. Let mp(i) denote the position of moving pointmp at instanti.

Definition 1 [TCkNN-query] A trajectory-based continuousk-nearest neighbor queryis defined as fol-
lows: Given a querympoint mq and a relationD with an attributemloc of typempoint, return a subset
D′ of D where each tuple has an additional attributemloc′ such that the three conditions hold:

1. For each tuplet ∈ D′, there exists an instant of timei such thatd(t.mloc(i), mq(i)) is among the
k smallest distances from the set{d(u.mloc(i),mq(i))|u ∈ D}.

2. mloc′ is defined only at the times condition (1) holds.

3. mloc′(i) = mloc(i) whenever it is defined.

�

In other words, the query selects a subset of tuples whose moving point belongs at some time to thek
closest to the query point and it extends these by a restriction of the moving point to the times when it
was one of thek closest.

2

This query type has been considered in the literature [19, 22] with a further parameter, a query time
interval. However, our definition covers this case as well, since one can easily compute the restriction of
the query trajectory to this time interval first.

An example of a TCkNN query is shown in Figure 1. To enable easy interpretation of the figure, we
assume that all objects only change theirx-coordinate and they-coordinate is fixed toy0.

Figure 1: Example of a TCkNN query

Besides the query objectmq, there are five moving data objects{o1, . . . , o5}. We setk = 2, that
means, we search for the two nearest neighbors. As shown in the figure, the result changes with time.
For example, betweent0 andt1, the result is the set{o1, o2} and betweent1 andt2, the result changes to
{o2, o3}.

TCkNN queries on the one hand are natural from a systematic pointof view as they are the dynamic
version of a fundamental problem in spatial databases. Theyalso have many applications, especially
in discovering groups of entities traveling together with aquery object. Some examples are mentioned
in [19, 21]. Further, an efficient solution to this problem might be used as a stepping stone for solving
data mining problems such as discovering flock or convoy patterns. Traffic jams are another example of
groups of vehicles staying close to each other for extended periods of time.

So far, there exist two approaches for handling TCkNN queries [19, 21]. Both use R-tree like struc-
tures for indexing the data trajectories, i.e. in [19] a 3D-R-tree is used and in [21] a TB-tree [39] is
utilized. They are discussed in more detail in Section 2.

Our contributions are the following:

• We offer the first filter-and-refine solution, in the form of two different algorithms and query pro-
cessing operators, calledknearestfilter andknearest . The first traverses an index to produce an
ordered stream of candidate units (pieces of movement), thesecond consumes such an ordered
stream. Both together offer a complete solution. However,knearest can also be used indepen-
dently. This is important for queries that restrict candidate nearest neighbors by other conditions
so that the index cannot be used.

• We offer a solution that employs novel and highly sophisticated pruning strategies in the filter
step. A fundamental idea is to preprocess coverage functions for each node of the index that
describe how many moving objects are present in the nodes subtree for any instant of time. This is
supported by special techniques to build an R-tree and by efficient data structures and algorithms
to keep track of pruning conditions.

• We provide a thorough experimental comparison which demonstrates that our algorithm is orders
of magnitude faster than the two competing algorithms for larger databases and larger values ofk.

• For the first time, such algorithms are made publicly available in a system context and so can be
used for real applications. The SECONDOsystem is freely available for download. A new plugin

3

technology exists that makes it easy for readers of this paper to add a nearest neighbor module
(plugin) to an existing SECONDOinstallation. All algorithms can then be used in the form of query
processing operators; they can be applied to any data sets that are available in the system or that
users provide; the results can easily be visualized and animated.

• We also provide scripts for test data generation and for the execution of experiments. In this way
easy experimental repeatability is provided. Besides repeating the experiments shown in the paper,
readers can change parameters, explore other data sets, build indexes in other ways, and hence
study the behaviour of these algorithms in any way desired, with relatively little effort. Indeed,
we would like to promote such a methodology for experimentalresearch and view this paper and
implementation as a demonstration of it.

The remainder of this paper is structured as follows. Section 2 surveys related work, especially the
two algorithms solving the same problem as this paper. In Section 3.1 we briefly describe the repre-
sentation of trajectories. Section 3.2 outlines the filter-and-refine strategy. After that, the filter step is
described in detail in Section 4. First, we give an overview of the basic idea and expose arising subprob-
lems. The next subsections show how these problems can be solved. Then, the refine step is presented
in Section 5. The results of an experimental evaluation comparing our approach with both existing ap-
proaches are shown in Section 6. Section 7 explains how the algorithms can be used in the context of
the SECONDOsystem and how experiments can be repeated. Finally, Section 8 concludes the paper and
gives directions for future work.

2 Related Work

There are several types ofkNN queries. The most simple case is that both the query point and the data
points are static. The first algorithm for efficient nearest neighbor search on an R-tree was proposed
by [42] using depth-first traversal and a branch-and-bound technique. An incremental algorithm was
developed in [27]. Again, an R-tree is traversed. Here a priority queue of visited nodes ordered by
distance to the query point is maintained. The incremental technique is essential if the number of objects
needed is not known in advance, e.g. if candidates are to be filtered by further conditions. Because in
this case all involved objects are static, also the result isa fixed set of objects.

The first algorithm for CNN (Continuous Nearest Neighbor) queries was proposed in [44]. It handles
the case that only the query object is moving, while the data objects remain static. Here the basic
idea is to issue a query at each sampled or observed position of a query point, trying to exploit some
coherency between the location of the previous and the current query. This algorithm suffers from the
usual problems of sampling. If there are too few sample points, the result may be inaccurate. On the
other hand, many sampling points lead to an increase in computation time without any guarantee for a
correct result.

An improved algorithm was proposed by [47]. Here an algorithm searches the R-tree only once to
find thek nearest neighbors for all positions along a line segment, without the need of sampling points.

There exists a lot of work related to Continuousk Nearest Neighbor queries [45, 29, 40, 37, 50, 49, 9,
28]. In all these approaches tracking databases are assumedand the task is online maintenance of nearest
neighbors for a moving query point, in some cases also for moving data points. For each of these objects
only the current and near future position is known. Index structures like the TPR-tree are used [40, 9]
which indexes current and near future positions; in some cases simple grid structures are employed to
support high update rates [49, 50]. In [9] also reverse nearest neighbor queries are addressed. Iwerks et
al. [29] also support updates of motion vectors.

Note that all this work is fundamentally different from the problem addressed in this paper because
only the current motion vector is known. In contrast, we are considering historical trajectory databases.
In this case, the data set is not only a vector for each moving object, but a complete trajectory, and there

4

is no need to process pieces of a trajectory in a particular order (e.g. in temporal update order). Instead,
the set of trajectories can be organized and traversed in anyway that is suitable.

A few works have considered the case of historical trajectory databases and we consider these next
in some detail.

In [22], Gao et al. propose two algorithms for a query point and for a query trajectory, respectively,
on a set of stored trajectories. In contrast to our algorithm, the result is static, i.e. they return the ids
of thek trajectories which ever come closest to the query object during the whole query time interval.
In contrast, our approach will report thek nearest neighbors at any instant for the lifetime of the query
object.

In [19] several types of NN-queries on historical data are addressed. The types depend on whether
the query object is moving or not and whether the query itselfis continuous or not. One of the types
corresponds to the TCkNN query defined in Section 1. The authors represent trajectories as a set of
line segments in 3D space (2D + time). The segments are indexed by an R-tree like structure (e.g. 3D
R-Tree, TB-tree or STR-tree). The algorithm is formulated for the special casek = 1 and then extended
to arbitrary values ofk. The nodes of the tree are traversed in depth first manner. If aleaf is reached,
the contained line segments are inserted into a structure namednearest containing the distance curves
between the already inserted segments and the segments coming from the query point. Entries whose
minimal distance to the query object is greater than the maximal distance stored innearest are ignored.
Other segments are inserted extending existing entries if applicable. For a non-leaf node, all children
are checked whether they can be pruned (minimal distance is larger than the maximal distance stored
in nearest during the time interval covered by the node). For an arbitrary k, a buffer ofk nearest
structures is used.

In this paper we traverse the tree in breadth first manner. Besides the tree, we determine in prepro-
cessing and store the time dependent number of data objects present in a node’s subtree1. This allows
pruning nodes using only information of nodes at the same level of the tree reducing the number of nodes
to be considered.

[21] extends the approach of [22] to continuous queries, hence, also to the TCkNN problem. The
entries stored in a TB-tree are inserted into a set ofk lists l1 . . . lk. These lists contain distance functions
with links to the corresponding units. For each instant the distance value in listli is smaller or equal
to the distance value in listli+1. Thus, for each instant the listli contains the distance to the current
i-th neighbor or∞ if no distance is stored for this instant. The maximum distance stored in a listli is
calledPrunedist(i). Thereby all objects whose minimum distance is greater than Prunedist(k) can be
pruned. The main algorithm traverses a TB-tree in best first manner. A priority queue sorted by minimum
distance contains non-processed nodes of the tree. The queue is initialized with the root of the tree. If
the top element of the queue is a node, it is removed and its entries are inserted into the queue ignoring
those non overlapping the query time interval and those withminDist > Prunedist(k). Unit entries
are inserted into the set of lists. The process is finished when the minimum distance of the top entry of
the queue is greater thanPruneDist(k) or the queue is exhausted. So, pruning is based on disjoint time
intervals or information from the trajectory entries. A more detailed description is given in Section 6.3.

In contrast, our approach allows pruning using also information of nodes on higher levels of the tree.
Because the refinement step of our algorithm can be used separately, it is possible to combine it with
other filter steps, for example if a query contains additional filter conditions.

As already mentioned, we maintain for each node of the R-treeindex used some derived information.
Some previous work has augmented R-trees and other structures by storing such auxiliary information
in each node [32, 38, 34, 46]. For example, the aggregate R-tree (aR-tree) [32, 38] stores numerical
measures associated with regions in its leaves, and aggregations over such values for each subtree in
internal nodes (the root of the subtree). Aggregation functions can becount, sum, or max, for example.
It supports efficient aggregate range queries, i.e., computing the aggregate over a query region.

1Actually, we use a simplified version of this moving integer.

5

3 Preliminaries

3.1 Representation of Trajectories

Figure 2 shows the trajectories of two moving points in 3D space. We use the sliced representation [17]
to represent the trajectory of a moving object. A trajectoryT =< u1, u2, . . . , un > is a sequence of
so-calledunits. Each unit consists of a time interval and a description of a linear movement during this
time interval. The linear movement is defined by storing the positions at the start time and the end time
of the unit. We denote a unit asu = (p1, p2, t1, t2), wherep1, p2 ∈ R

2 andt1, t2 ∈ instant. Within a
trajectory, time intervals of distinct units are disjoint.The sequence of units is ordered by time.

This is a well established definition of trajectory in the literature [26]. Another common representa-
tion is a temporally ordered sequence of triples(ti, xi, yi). Both representations can be easily converted
into the other one. The definition based on units emphasizes that a trajectory is an approximation of a
continuous movement curve that can be evaluated at any instant of time. The second definition is often
interpreted to represent a sequence of observations.

How trajectories are derived from observations is a complexissue that is beyond the scope of this
paper. A simple possibility is that a GPS receiver captures positions every two seconds, which may
be typical for car navigation systems. But there may be othersteps involved such as map matching or
compression [33, 13], and the frequeny of transmitting positions may depend on update policies.

In the data model of [25, 17], a trajectory corresponds to a data typemoving(point), ormpoint. There
is also a data type corresponding to a unit calledupoint.

x

y

t

Figure 2: Two trajectories in space

A set of trajectories can be represented in a database in two ways. The first is to use a relation with
an attribute of typempoint. Hence each moving object is represented in a single tuple consisting of the
trajectory together with other information about the object. This is called thecompact representation.

Second, one can use a relation with an attribute of typeupoint. In this case, a moving object is
represented by a set of tuples, each containing one unit of the trajectory. The object is identified by a
common identifier. This is called theunit representation.

In the following we assume that the setD of data trajectories is stored in unit representation, and the
query trajectory is given as a value of thempoint data type, i.e., a sequence of units.

3.2 Filter-and-Refine Strategy

We now describe our approach to evaluate a spatio-temporal k-nearest neighbor query. We assume a set
of data moving points in unit representation, i.e., a relationR with an attributemloc of typeupoint. This
relation is indexed by a spatio-temporal (3D) R-treeR mloc containing one entry for each unit. Further
parameters are the query moving pointmq of typempoint, and the numberk of nearest neighbors to be
found. We use the well-known filter-and-refine strategy withthe two steps:

Filter Traverse the R-tree indexR mloc to determine a set of candidate units containing at least allparts
of the moving points ofR that may contribute to thek nearest neighbors ofmq. Return these as a
stream of units ordered by unit start time.

6

Refine Process a stream of units ordered by start time to determine the precise set of units forming the
k nearest neighbors ofmq.

These two steps are explained in detail in the following two sections.
Whereas the complete algorithm uses the two steps together,it is possible to use the refinement step

independently. For example, think of a scenario where a criminal has taken a hostage and is trying
to escape by car. The database contains information about all vehicles moving in the area. Suppose
vehicles in the database have an attribute “type” distinguishing types of cars such as{private, truck,
police, ambulance}. A query “Find the closest 20 cars in the neighborhood of the hostage car” should
be evaluated as expected, by filter-and-refine. However, since ambulances and police cars are relatively
rare, a query such as “Determine the five closest police cars”would be more efficiently determined by
retrieving police cars (using an index ontype), sorting their units by start time and then applying the
refinement step directly.

4 The Filter Step: Searching for Candidate Units

4.1 Basic Idea: Pruning by Nodes with Large Coverage

Obviously the goal of the filter step must be to access as few nodes as possible in the traversal of the
indexR mloc.

We proceed as follows. Starting from the root, the index is traversed in a breadth-first manner.
Whenever a node is accessed, each of its entries (node of the next level or unit entry in a leaf) is added to
a queueQ and to a data structureCover explained below. TheCover structure is used to decide whether
a node or unit entry can be pruned. The entries inCover andQ are linked so that an entry found to be
prunable can be efficiently removed fromQ. The question is by what criterion a node can be pruned.
Consider a nodeN that is accessed and the query trajectorymq. See the illustration in Figure 3.

Figure 3: Nodes and query trajectorymq

NodeN contains a set of unit entries representing trajectories. In fact, each segment of a trajectory
is represented as a small 3D box, but we have nevertheless drawn the trajectories directly. Furthermore,
nodeN looks like a leaf node. However, if it is an inner node of the R-tree, we may still consider the set
of units or trajectories represented in the entire subtree rooted inN in the same way.

Suppose that at any instant of time within nodeNs time interval [N .t1, N.t2] at leastn trajectories
are present inN andn ≥ k. Let M be a further node andMs time interval be included inNs time
interval. Furthermore let the minimal distance between thexy-projection ofM and the xy-projection of
mq (restricted to [M.t1, M.t2]) be larger than the maximal distance between the xy-projection of N and
the xy-projection ofmq (restricted to [N.t1, N.t2]). Then nodeM and its contents can be pruned as
they cannot contribute to thek nearest neighbors ofmq. This is illustrated in Figure 4.

More formally, for a nodeK let box (K) denote its spatiotemporal bounding box, i.e., the rectangle
[K.x1, K.x2, K.y1, K.y2, K.t1, K.t2]. For a trajectoryu let box (u) denote its spatiotemporal bounding

7

Figure 4: Pruning criterion of Lemma 1,k = 5

box and letu[t1, t2] denote its restriction to the time interval [t1, t2]. For a 3D rectangleB = [x1, x2, y1,
y2, t1, t2] let Bxy denote its spatial projection [x1, x2, y1, y2] andBt denote its temporal projection [t1,
t2], respectively. For a nodeK, let CK(t) denote the number of trajectories represented in the subtree
rooted atK present at instantt. CK(t) is a function from time into integer values, called thecoverage
function. Let C(K) = mint∈[K.t1,K.t2] CK(t) be called the (minimal)coverage numberof K. For a
(hyper-) rectangler in ad-dimensional spaceRd let points(r) denote all enclosed points ofR

d, i.e,

points(r) = {(x1, . . . , xd) | r.b1 ≤ x1 ≤ r.t1, . . . , r.bd ≤ xd ≤ r.td}

wherer.bi andr.ti denote the bottom and top coordinates ofr in dimensioni, respectively. For two
rectanglesr ands their minimal and maximal distances are defined as

mindist(r, s) = min{d(p, q)|p ∈ points(r), q ∈ points(s)}

maxdist (r, s) = max{d(p, q)|p ∈ points(r), q ∈ points(s)}

whered(p, q) denotes the Euclidean distance between two pointsp andq. Then we can formulate the
pruning condition as follows.

Lemma 1 Let M andN be nodes of the R-treeR mloc, mq the query trajectory, andk the number of
nearest neighbors desired. Then

C(N) ≥ k
∧ boxt(M) ⊆ boxt(N)
∧ mindist(boxxy(M), boxxy(mq[boxt(M)]) >

maxdist (boxxy(N), boxxy(mq[boxt(N)])
⇒ Mcan be pruned.

More generally, several nodes together may serve to prune another nodeM if for any instant of
time within Ms time interval the sum of their coverages exceedsk and they are all closer to the query
trajectory.

Lemma 2 Let S be a set of nodes of the R-treeR mloc, S(t) = {s ∈ S|t ∈ boxt(s)} the nodes ofS
present at timet, andM /∈ S another node. Letmq be the query trajectory, andk the number of nearest
neighbors desired.

∀t ∈ boxt(M) :
∑

s∈S(t) C(s) ≥ k

∧
(∀s ∈ S :mindist(boxxy(M), boxxy(mq[boxt(M)]) >

maxdist(boxxy(s), boxxy(mq[boxt(s)]))
⇒ M can be pruned.

8

To realize this pruning strategy, the following subproblems need to be solved:

• Efficiently determine the xy-projection bounding box of a restriction of the query trajectory to a
time interval.

• Determine coverage numbers for the nodes of the R-tree index.

• Define the Cover data structure needed for pruning and provide an efficient implementation.

These subproblems are addressed in the following subsections. After that, the complete filter algorithm
is described.

4.2 Determining the Spatial Bounding Box for a Partial QueryTrajectory

As mentioned in Section 3.1, the query trajectory is represented basically as an array of units with distinct
time intervals, ordered by time. A simple approach to compute the bounding box for the restriction to
some time interval (called the restriction bounding box) isto search the unit containing the start time of
the interval using a binary search. For the (sub-) unit the bounding box is computed. Then the sequence
of units is scanned until the end of the interval is reached. The union of the bounding boxes of all visited
units yields the final result. Here the union of two rectangles is defined as the smallest enclosing rectangle
of the two arguments. If the interval is long, a lot of units must be processed. For example, if the time
interval covers the lifetime of the query trajectory, all units have to be visited.

Whether query or data trajectories are long or short dependson the application. In the experiments
of Section 6 typical short trajectories have about 100 units. Trajectories in the BerlinMOD benchmark
[16] where vehicles are observed over a period of one month (at scale factor 1.0 of the benchmark) have
an average number of 26963 units. The longer query trajectories are, the more important is an efficient
computation of restriction bounding boxes as this has to be done for each node of the R-tree accessed in
the search.

To enable efficient computation of a restriction bounding box we compute at the beginning of the
filter step an alternative representation of the query trajectory, called aBB-tree (bounding box tree).
Essentially it is a binary tree over the sequence of units of the trajectory such that the units are the leaves
of the tree. Each node has an associated time interval. For a leaf this is the unit time interval, for an
internal node it is the concatenation of the time intervals of the two children. Furthermore, each nodep
has an associated rectangle which is the spatial projectionbounding box of the set of units represented
in the subtree rooted inp. An example of a BB-tree is shown in Figure 5.

([t0, t1], r1) ([t1, t2], r2) ([t2, t3], r3) ([t3, t4], r4)

([t0, t2], r1 ∪ r2) ([t2, t4], r3 ∪ r4) ([t4, t5], r5) ([t5, t6], r6)

([t0, t4], r1 ∪ r2 ∪ r3 ∪ r4) ([t4, t6], r5 ∪ r6)

([t0, t6],
⋃6

i=1 ri)

Figure 5: BB-tree

For computing the bounding box for a given time interval, we apply the following algorithm to the
root of the tree:

We use the notationsn.t1, n.t2, n.r, andn.u to access the start instant, the end instant, the rectangle,
and the unit, repectively. Furthermore, we usen.leftandn.right to get the sons ofn.

9

Algorithm 1 : get box(n,t1, t2)
Input : n - node of a bbox-tree;

[t1, t2] - a time interval.
Output : the bounding box of the query trajectory, restricted to [t1, t2]
if t1 > n.t2 ∨ t2 < n.t1 then return an empty box;1

if t1 ≤ n.t1 ∧ t2 ≥ n.t2 then return n.r ;2

if n is an inner nodethen3

return get box(n.left)∪ get box(n.right);4

else5

let u be a copy ofn.u;6

restrictu to [t1, t2];7

return bbox(u);8

The structure is closely related to a segment tree [15] that we will also use in Section 4.4. The
algorithmget box is quite similar to the algorithm for inserting an interval into a segment tree. It is well
known that the time complexity isO(log n) wheren is the number of leaves of the tree (units of the
query trajectory). The BB-tree can be built in linear time.

4.3 3D R-tree and Coverage Number

4.3.1 Coverage Numbers

If all units of the data trajectories are stored within a 3D R-tree, we can compute for each noden of
the tree its coverage functionCn(t), a time dependent integer. Recall thatCn(t) is the number of units
present at instantt within the subtree rooted inn. An example of the distribution of units within a node
and the resulting coverage curve are shown in Figure 6.

t

Unit

t0 t1 t2 t3 t4 t5 t6

u1

u2

u3

u4

u5

u6

u7

u8

(a) units on time

t

N

1
2
3
4
5
6

t0 t1 t2 t3 t4 t5 t6

(b) coverage function

Figure 6: Coverage Function

In Section 4.1 we have seen that for pruning only one numberC(n), the minimal coverage number, is
used. This would be 1 in Figure 6. Now it is easy to see that due to boundary effects only a small number
of units will be present at the beginning or end of a node’s time interval.2 Hence if we use simply the

2To see this, consider the following simple experiment:n intervals of lengthk (k an integer) are placed randomly on integer
coordinates within an intervalB of lengthn + k − 1. With a random distribution, one interval starts on each of the coordinates
0, ..., n − 1 of B. If we consider the number of intervalsc(u) present at each coordinateu, it first increases asc(u) = u + 1 in
the range[0, k − 1], then remains constant atc(u) = k in the range[k, n] (because on each coordinate, one interval starts and
one ends), and then decreases asc(u) = k − (u − n) in the range[n + 1, n + k − 1]. Hence we have the maximum valuek

within a long middle part, but at the boundaries only a minimum of 1.

10

minimum of the coverage function, no good pruning effect canbe achieved. On the other hand, within a
reduced time interval, e.g. fromt1 to t5, a large minimal coverage could be observed.

The idea is therefore to use instead of one coverage number three of them, by splitting a node’s
time interval into three parts, namely two small parts at thebeginning and end with small coverage
numbers, and a large part in the middle with a large coverage number. In Figure 6 we could use
([t0, t1], 1), ([t1, t5], 5), ([t5, t6], 2).

We introduce an operator to compute from the coverage function the three numbers, called thehat
operator (because the shape of the curve reminds of a hat). Technically it takes an argumentc of type
moving integer ormint, describing the coverage function, and returns anmint r with the following
properties:

• deftime(r) = deftime(c)

• ∀t ∈ deftime(r) : r(t) ≤ c(t)

• r consists of three units at most

• the area under curver is the maximum of all possible areas fulfilling the first threeconditions

An application of thehat operator is shown in Figure 7.

t

N

1
2
3
4
5
6

t0 t1 t2 t3 t4 t5 t6

(a) coverage curve

t

N

1
2
3
4
5
6

t0 t1 t2 t3 t4 t5 t6

(b) result ofhat

Figure 7: Application of thehat operator

Intuitively it is good for pruning if a large coverage numberis obtained over a long time interval.
The goal is therefore to maximize the area of the “middle” unit of the result which is the product of these
quantities. Using a stack, the simplification of the curve can be done in linear time with respect to the
number of units of the original moving integer. This is shownin Algorithm 2. Herec.t1 andc.t2 denote
the start and end of the definition time of moving intc.

The idea of this algorithm is to process the units of the givencoverage curve in temporal order and
to maintain on a stack a sequence of units with monotonicallyincreasing coverage values. When a unit
is encountered that reduces the current coverage, then the potential candidates for middle units ending at
this point are examined by taking them from the stack. The largest rectangle seen so far is maintained.
This is illustrated in Figure 8.

In Figure 8, when unitu is encountered, the last three stack entriesa, b, andc with higher coverage
values than that ofu are popped from the stack, and for each of them the size of the respective rectangle
is computed. Start time, end time, and coverage of the largest rectangle so far are kept.

4.3.2 Building the R-tree

This section describes how an R-tree over the data point units can be built, which will supportk-NN
queries in an efficient way. A node of the R-tree can be pruned if

11

Algorithm 2 : hat(c)
Input : c - an mint (moving integer) describing a coverage function
Output : a reduced mint with only three units
let sbe a stack of pairs< t, n >, initially empty;1

let int area= 0;2

extendc by a pseudo unit<[c.t2, c.t2 + 1], 0]>;3

/ * ensures that all entries are popped from stack at the end * /
for each unit u in cdo4

if s is emptythen s.push(< u.t1, u.n >) else5

if s.top().n < u.n then s.push(< u.t1, u.n >) else6

tend = u.t1;7

while s.top().n > u.n do8

< tstart, cn >= s.top(); s.pop();9

if area == 0 then10

area = (tend − tstart) × cn;11

< t1, t2, n >=< tstart, tend, cn >;12

else13

newarea = (tend − tstart) × cn;14

if newarea > area then15

area = newarea;16

< t1, t2, n >=< tstart, tend, cn >;17

s.push(< tstart, u.n >)18

Now the middle unit is< t1, t2, n >. Scan the units beforet1 and aftert2 to compute the minimal19

coveragesfirst andlast for the time intervals[c.t1, t1] and[t2, c.t2], respectively;
return the mint consisting of the three units([c.t1, t1], f irst), ([t1, t2], n), and([t2, c.t2], last);20

• there are enough candidates available in other nodes, and

• the minimum distance of the node to the query point is higher than the maximum distance of the
query point to each node in the current candidate set.

The first condition can be achieved with a small set of candidate nodes if the coverage numbers are
high. The second condition requires a good spatial distribution of the nodes of the R-tree.

Experiments have shown that if we fill the R-tree either by thestandard insertion algorithm or by a
bulkload [11, 12] using z-order [36], for example, only the spatial distribution of the nodes will be good.
But the coverage numbers will be very small and a large candidate set is required.

However, by using a customized bulkload algorithm for filling the R-tree, we can achieve some
control over the distribution of the R-tree nodes. The bulkload works as follows: It receives a stream of
entries (bounding box and a tuple id) and puts them into a leafof the R-tree until either the leaf is full or
the distance between the new box and the current bounding boxof the leaf exceeds a threshold. When
this happens, the leaf is inserted into a current node at the next higher level and a new leaf is started. In
this way, the tree is built bottom-up.

This bulkload algorithm itself does not care about the orderof the stream. So by changing the order,
the structure of the R-tree is affected. For example, if we sort the units by their starting time, temporally
overlapping units are inserted into the same node and the coverage number is very high. But this order
ignores spatial properties and so the nodes will have many and large overlappings in the xy-space.

To get both, high coverage numbers and good spatial distribution, we do the following. We partition
the 3D space occupied by the units into cells, using a regulargrid. The spatial partition (or cell size) is

12

a

b

c
u

t

Cov.

Figure 8: Stack maintained in Algorithm 2

chosen in such a way that within a cell, at each instant of time, on the average aboutp units are present.
Then the temporal partition is chosen such that within a cellenough units are present to fill on the average
aboutr nodes of the R-tree. A stream of units to be indexed is extended by three integer indicesx, y, t
representing a spatiotemporal cell containing the unit3, hence has the form< unit, tupleid, x, y, t >.
The stream is then sorted lexicographically by the four attributes< t, x, y, unit > where the order
implied by the fourth attribute is unit start time. In this way, a subsequence of units belonging into one
cell is formed and these are ordered by start time. Such subsequences are packed by the bulkload into
aboutr nodes of the R-tree, resulting in nice hat shapes as desired in Section 4.3.1.

In our experiments, we have chosenp = 15 andr = 6 with good results. Some motivation for such
a choice of values forp andr is the following. The goal of the design is to obtain within each cell of
the partition a “vertical” stack of nodes of the R-tree. Thisis so that units with similar time intervals
are usually within the same node, leading to good coverage curves. A node of the R-tree can take in our
implementation about 60 unit entries. The average number ofmoving objects present in a cell at any
instant of time,p, should be clearly below 60 so that divisions between R-treenodes introduced by the
bulkload occur on the temporal dimension only.p is an average, so it should not be too close to 60 to
keep the property also in places where objects get more dense.

Regarding the number of nodesr in a cell, observe that from the last unit (in temporal order)within a
cell to the first unit of the next cell a “jump” occurs (a largerdistance within the 3d space) which causes
the bulkload to terminate the current node even if it is not full. Only this last one of ther nodes can be
underfilled. Ifr is not too small, e.g.r = 6, this unfilled space is compensated by the otherr − 1 full
nodes.

4.3.3 The Combined Data Structure

One may consider to extend the R-tree structure by fields in each node for the three pairs of time interval
and coverage number. The computation of coverage numbers should then be integrated into R-tree
construction and update algorithms.

Whereas such a strategy is often used in the literature when specific algorithms are proposed (e.g.
[38]), in our view it is not a good choice within a system context. The R-tree is a fundamental structure
for spatial and spatio-temporal indexing and it should not be modified to support particular query types
whenever it can be avoided. In particular, adding fields to each node will decrease the number of entries
per node and the fanout and hence increase running times for all other types of queries.

Therefore in our implementation we use a standard R-tree. This index is denotedR mloc. Coverage
numbers are computed by traversingR mloc and storing for each node three tuples in a relationCov.
Tuples have the form(nid, u) wherenid is the node identifier andu an integer unit, a value of type
uint. Such a unit consists of a time interval and an integer and hence can nicely represent one of the
three coverage numbers. The relationCov is furthermore indexed by a B-tree index on node identifiers,
Cov nid.

3containing one of its corner points, for example

13

4.3.4 Maintenance of R-tree and Coverage Numbers under Updates

The problem considered in this paper is efficient continuousk nearest neighbor search on historical tra-
jectory databases. For this purpose, a static constructionof the R-tree index and a one-time computation
of the coverage numbers is sufficient.

Nevertheless, a trajectory database might be used to keep track of currently moving vehicles, contin-
uously adding recent pieces of movement. An interesting question is therefore whether the data structure
used by our algorithm permits updates or always needs to be recomputed from scratch.

Since the R-tree was built in a special way by bulkload to obtain good coverage curves, using the
standard R-tree insertion is not feasible as it would destroy such properties. However, we can offer an
efficient bulk update technique for the combined data structure consisting ofR mloc, Cov, andCov nid.

The key observation is that on the one hand, online updates arrive in temporal order, and on the other
hand, our bulkload technique builds the R-tree as a sequenceof temporal slices, as the major sorting
criterion for the bulkload is the temporal slice numbert. This means that entries are added to the root
node, and more generally the top levels of the tree, in temporal order.

We can therefore proceed as follows. We denote the existing structure asR1 = R mloc, C1 = Cov,
andB1 = Cov nid.

1. We collect enough update units to fillm temporal slices,m ≥ 1.4

2. For these a separate R-treeR2 is built by bulkload using the procedure described in Section 4.3.2.
In our implementation, the new R-treeR2 is constructed within the file of the storage manager also
used byR1 which ensures that its node (= record) identifiers are distinct from those ofR1.

3. C2 is computed as the coverage number relation ofR2.

4. A B-tree indexB2 on node identifiers is computed forC2. This index is used in step 7 below.

5. R2 is inserted intoR1. This is done in constant time as only an entry with a pointer to the root of
R2 is added to one of the top level nodes ofR1. As both R-trees have been constructed within the
same storage manager file, they now form a uniform structure.

6. All entries ofC2 are inserted intoC1. This is possible because node identifiers are distinct. These
insertions intoC1 are also propagated into the indexB1.

7. Let q be the node ofR1 to which the entry pointing to the root ofR2 was added. The coverage
numbers for a small set of nodesQ, consisting ofq and its ancestors, if any, are recomputed and
corrected in relationC1. Observe that all other coverage numbers of the previous treesR1 andR2

are not affected by the merge of the two trees and are therefore correct already. Also the indexB1

onC1 is not affected since node identifiers of the updated tuples are the same.

8. StructuresR2, C2, andB2 are discarded.

The resulting tree has almost the same shape as one built by bulkload in a single step. Small dif-
ferences are: (i) there is one possibly underfilled node for each bulk update – the previous root node,
and (ii) the computation of coverage numbers in step 7 is now based on looking up coverage numbers
of entries of the nodes inQ in C1 andC2, whereas in a single bulkload, the precise coverage functions
are used in the aggregation. These small differences do not affect the query performance as shown in the
experiments in Section 6.4.5.

To support the bulk update technique we had to slightly modify the R-tree code, adding methods
to create a new R-tree within the same storage manager file as another one, and to insert one tree into
another. However, these changes do not affect the efficiencyof other queries as the node structure is
unchanged.

4A typical duration of a slice for a large data set is 5 minutes,see Section 6.

14

Figure 9: Representing node coverages, one node

Figure 10: Representing node coverages, many nodes

4.4 Keeping Track of Node Covers

In this section we describe the data structureCover used to control the pruning of nodes or unit entries.
Suppose a nodeN of the R-tree is accessed, its coverage number5 is n = 8, and its minimal and maximal
distance to the query trajectory, restricted byN ′s time interval, ared1 andd2, respectively. Assume a
further nodeM is accessed whose minimal distance isd3. This can be represented in a 2D diagram as
shown in Figure 9. The edge for the minimal distance of nodeN is called the lower bound, denotedN−
and drawn thin, the edge for the maximal distance is called the upper bound, denotedN+ and drawn fat.
As discussed before, ifk ≤ 8, M can be pruned.

The idea is to maintain a data structureCover representing this diagram during the traversal of the
R-tree. Whenever a node is accessed, its lower bound is used as a query to check whether this node
can be pruned. If it cannot be pruned, its lower and upper bounds are entered intoCover, and its upper
bound is also used to prune other entries fromCover.

An upper or lower bound is represented as a tupleb = ([t1, t2], d, c, lower) where[t1, t2] is the time
interval, d the distance,c the coverage, and lower a boolean flag indicating whether this is the lower
bound. We also denote the coverage asC(b) = b.c.

Whereas Figure 9 represents the pruning criterion of Lemma 1, the general situation of Lemma 2 is
shown in Figure 10.

When nodeM is accessed, first a query with the rectangle below its lower boundM− is executed
on Cover to retrieve the upper bounds intersected by it. The set of upper boundsU found is scanned in
temporal order, keeping track of aggregated coverage numbers, to determine whetherM can be pruned.
Let Cmin be the minimal aggregate coverage of bounds inU . If k ≤ Cmin, M can be pruned. IfM
cannot be pruned, it is inserted intoCover. If k ≤ C(M) + Cmin, a second query with the rectangle
above the upper boundM+ is executed, retrieving the lower bounds contained in it. All nodes to which
these lower bounds belong, are pruned.

From this analysis, we extract the following requirements for an efficient implementation of the data
structureCover:

1. It represents a set of horizontal line segments in two-dimensional space.

2. It supports insertions and deletions of line segments.

3. It supports a query with a pointp to find all segments belowp.

5In this section, for simplicity we assume a node has a single coverage number instead of the three coverages computed by
thehat operator. The modification to deal with three numbers is straightforward.

15

a

a

A

B

C

A

b bB B

c

c

C

C

C

p

Figure 11: TheCoverstructure, a modified segment tree

4. It supports a query with a line segmentl to find all left or right end points of segments belowl or
abovel (pruning lower bounds aboveM+).

Two available main memory data structures that fulfill related requirements are a segment tree [15] and
a standard binary search tree. The segment tree

• represents a set of intervals

• supports insertion and deletion of an interval

• supports a query with a coordinate6 p to find all intervals containingp.

The binary search tree

• represents a set of coordinates (start and end instants of time intervals, in this case).

• supports insertion and deletion of coordinates.

• supports range queries, i.e., queries with an interval to find all enclosed coordinates.

We might use these two data structures separately to implement Cover, but instead we employ a slightly
modified version of the segment tree that merges both structures into one. Such a structure is shown in
Figure 11.

The segment tree is a hierarchical partitioning of the one-dimensional space. Each node has an
associated node interval (drawn in Figure 11); for an internal node this is equal to the concatenation of
the node intervals of its two children. A segment tree represents a set of (data) intervals. An interval
is stored in a segment tree bymarkingall nodes whose node intervals it covers completely, in sucha
way that only the highest level nodes are marked (i.e., if both children of a node could be marked then
instead the father is marked). Marking is done by entering anidentifier of (pointer to) the interval into
a node list. For example, in Figure 11 intervalB is stored by marking two nodes. It is well-known that
an interval can only create up to two entries per level of the tree, hence a balanced tree withN leaves
storingn intervals requires O(N + n log N) space. A coordinate query to find the enclosing intervals
follows a path from the root to the leaf containing the coordinate and reports the intervals in the node
lists encountered. This takes O(log N + t) time wheret is the number of answers. For example, in Figure
11 a query with coordinatep follows the path top and reportsA andB.

The segment tree is usually described as a semi-dynamic structure where the hierarchical partitioning
is created in advance and then intervals are inserted or deleted just by changing node lists. We use it here
as a fully dynamic structure by first modifying the structureto accomodate new end points and then
marking nodes. When new end points are added, they are also stored in further node listsnode.startlist
andnode.endlist(besides the standard list for marking,node.list). In Figure 11 entries for end points are
shown as lower case letters. The thin lines in Figure 11 show the structure after insertion of intervalsA

6We call a single value from a one-dimensional domain a coordinate.

16

t

d

sweep line

Figure 12: Computing the lowestk distance curves

andB. The fat lines show the modification due to the subsequent insertion of intervalC. The structure
now also supports range queries for end points, like a binarysearch tree. If the tree is balanced, the time
required for a range query is O(log N + t) for t answers.

In our implementation we use an unbalanced tree which is veryeasy to implement. The unbalanced
structure does not offer worst case guarantees but behaves quite well in practice, as will be shown in the
experiments.

The interface to theCoverstructure is provided by the four methods:

• insert entry(ce). ce is a cover entry, defined below. Inserts it by its time interval.

• deleteentry(ce). Deletes entrycefrom the node lists (but does not shrink the structure).

• point query(n, t), n a node,t an instant of time. Returns all entries whose time interval containst.

• range query(n,t1, t2). n is a node, [t1, t2] - a time interval. Returns a list of pairs of the form
<which, ce> wherewhich∈ {bottom, top}, cea cover entry (bottom indicates a start time, top an
end time). The list contains only entries whose start or end time lies within [t1, t2], in temporal
order w.r.t their start or end time.

The algorithms for these operations can be found in AppendixA.

4.5 The Filter Algorithm

We are now able to describe the filter algorithm, calledknearestfilter, precisely. It uses subalgorithms
nodeentry and unit entry to create entries for theCover structure. It further employs a methodin-
sert and pruneof the Cover structure with its subalgorithmsmincoverandprune above. These algo-
rithms are shown on the next pages (Algorithms 3 through 8).

5 Refinement

The problem to be solved in the refinement step is to compute for a sequence of units, arriving temporally
ordered by start time, a sequence of units (that may be equal to an input unit or a part of it) that together
form thek nearest neighbors over time. For each arriving unit, its time dependent distance function to
the query trajectory is computed. Depending on whether the unit overlaps one or more units of the query
trajectory, the distance function may consist of several pieces with different definition. It is well-known
(see e.g. [17]) that the distance between two moving point units with the same time interval is in general
the square root of a quadratic polynomial.

The problem is to compute the intersections of a set of distance curves to determine the lowestk
curves, and to return the parts of units corresponding to these pieces. This is illustrated in Figure 12
where the units corresponding to the two lowest of three distance curves are to be returned.

The intersections of the distance curves can be found efficiently by slightly modifying the standard
plane sweep algorithm for finding intersections of line segments by Bentley and Ottmann [10]. The

17

Algorithm 3 : knearestfilter(R, Rmloc, Cov, Covnid, mq, k)
Input : R - a relation with moving points in unit representation, i.e., with an attributemlocof type

upoint ; R mloc- a 3D R-tree index on attributemlocof R; Cov- a relation containing
coverage numbers for each node of the R-treeR mloc; Cov nid - a B-tree index on thenid
attribute ofCovrepresenting the node identifier of the R-tree;mq- a query trajectory of
typempoint; k - the number of nearest neighbors to be found.

Output : an ordered set of candidate units, ordered by unit start time, containing all parts of thek
moving points ofRclosest tomq;

let Q be a queue of nodes of the R-tree, initially empty; (To be precise,Q contains pairs of the1

form <node, coverptr> wherenodeis a node of the R-tree andcoverptr is a pointer into the
Cover data structure.
let Coverbe the Cover structure, initialized with node(-∞,+∞);2

let mqbbbe a BB-tree representingmq;3

noder = R mloc.root();4

Q.enqueue(<r, null>);5

while Q is not emptydo6

<r, coverptr> = Q.dequeue();7

if coverptr 6= null then Cover.deleteentry(coverptr);8

for each entry c of rdo9

if r is an inner nodethen ce=nodeentry(c, mqbb, Cov, Covnid);10

elsece= unit entry(u, mqbb);11

Cover.insertand prune(ce, k, Q, c);12

S= Cover.rangequery(Cover.root(), -∞,+∞);13

Cand= ∅;14

for each< which, s >∈ S do15

if which = bottomthen Cand.append(s);16

return Cand;17

basic idea of that algorithm is to maintain the sequence of line segments (curves in our case) intersect-
ing the sweep line. Encountering the left end of a curve (within the sweep event structure ordered by
t-coordinates), it is inserted into the sweep status structure, checking the two neighboring curves for
possible intersections. Any intersections found are entered into the event queue of the sweep for further
processing. Encountering the right end of a curve, it is removed from the sweep status structure, checking
the two curves above and below for intersection. Encountering an intersection found previously, the two
intersecting curves are swapped, and the two new pairs of curves becoming neighbors are checked for
intersections. For the sweep status structure, a balanced tree can be used. Whereas computing the inter-
sections of two quadratic polynomials (which can be used directly instead of the square roots) is slightly
more difficult than finding the intersection of two line segments, the basic strategy of the algorithm [10]
works equally well here.

Because units arrive in temporal order, one can scan in parallel the sequence of incoming units, the
priority queue of upcoming events, and the query trajectorymq. The time interval of an incoming unitu
is either enclosed in the time interval of the current unitmu of mq or extends beyond it. If it is enclosed,
an event for deleting this distance curve from the sweep status structure at the end timeu.t2 is created. If
the time interval extends beyond that ofmu, the distance curve is computed untilmu.t2 and two events
for deleting the curve at timemu.t2 and for handling the remaining part ofu are created.

Since the focus of this paper is on the filter step, and the refinement step is relatively straightforward,
we omit further details here.

18

Algorithm 4 : nodeentry(n, mqbb, Cov, Covnid)
Input : n - a node of the R-tree;mqbb- the query trajectory represented as a BB-tree;Cov- a

relation containing coverage numbers for nodes of the R-tree; Cov nid - a B-tree index on
node identifiers ofCov.

Output : an entry for the Cover data structure, of the form<[t1, t2], mindist, maxdist, cn,nodeid,
tid, queueptr, refs>.

[t1, t2] = boxt(n);1

let box= mqbb.getBox(mqbb.root(), t1, t2);2

mindist= mindist(boxxy (n), box);3

maxdist= maxdist(boxxy (n), box);4

cn = getcover(n.id, Cov, Covnid);5

return newentry<[t1, t2], mindist, maxdist, cn, n.id, ⊥, null, ∅ >;6

Algorithm 5 : unit entry(n, mqbb)
Input : u - a unit entry from a leaf of the R-tree;mqbb- the query trajectory represented as a

BB-tree.
Output : an entry for the Cover data structure, of the form<[t1, t2], mindist, maxdist, cn,nodeid,

tid, queueptr, refs>.
[t1, t2] = boxt(n);1

let box= mqbb.getBox(mqbb.root(), t1, t2);2

mindist= mindist(boxxy (n), box);3

maxdist= maxdist(boxxy (n), box);4

return newentry<[t1, t2], mindist, maxdist, 1,⊥, u.tid, null, ∅ >;5

6 Experimental Evaluation

In this section, we first describe the data sets used for an experimental evaluation of our approach. We
then consider some properties of the proposed algorithm, namely selection of grid sizes, the time required
to compute coverage numbers in preprocessing, and the effectiveness of the filter step. We explain the
implementation of the algorithms HCNN and HCTkNN [19, 21]. The three algorithms are then compared
varying the size of the data set, the parameterk, and the query time interval. An evaluation on very long
trajectories follows. Finally, an investigation of the bulk update technique completes the experiments.

For the experiments a standard PC (AMD Athlon XP 2800+CPU, 1GB memory, 60GB disk) running
SUSE Linux (kernel version 2.6.18) is used. All algorithms were implemented within the extensible
database system SECONDO [8].

Algorithm 6 : insert and prune(ce, k, Q, c)
Input : ce- a cover entry of the form<[t1, t2], mindist, maxdist, cn, nodeid, tid, queueptr,refs>; k

- the number of nearest neighbors to be found;Q - a queue of nodes;c - a node or unit
entry.

Output : none
int mc= mincover(ce);1

if mc< k then2

insert entry(ce);3

if c is a nodethen ce.queueptr = Q.enqueue(<c, ce>);4

if mc + ce.cn≥ k then prune above(ce, Q);5

19

Algorithm 7 : mincover(ce)
Input : ce- a cover entry
Output : Cmin, the minimal aggregate coverage below the lower bound ofce.
let root = this.root();1

let S1 = point query(root, ce.t1);2

int c = 0;3

for each s∈ S1 do4

if s.maxdist< ce.mindistthen c = c + s.cn;5

Cmin = c;6

let S2 = range query(root, ce.t1, ce.t2);7

for each<which, s> ∈ S2 do8

if s.maxdist< ce.mindistthen9

if which = bottomthen c = c + s.cn;10

else11

c = c - s.cn;12

if c < Cmin then Cmin = c;13

return Cmin;14

6.1 Data Sets

In the performance study, we use three different data sets. One of them contains real data obtained from
the R-tree Portal [3]. Here, 276 trucks in the Athens metropolitan area are observed. We call this data
setTrucks. It was also used in earlier experiments in [19, 21].

The second data set simulates underground trains in Berlin.In the basic version it contains 562 trips
of trains, moving according to schedule on a certain day between 6:00 am and 10:17 am. We will enlarge
this data set by a scale factorn2 by makingn2 copies of each trip, translating the geometryn times inx
andn times iny-direction. We call the original data setTrainsand derived data setsTrainsn2.

The third data set – calledCars – is a simulation of 2,000 cars moving on one day in Berlin. This
was obtained from the BerlinMOD Benchmark [1, 16].

From each data set, 10 query objects are selected. In later experiments, the running time and number
of page accesses of a query is measured as the average over 10 queries using these different objects.

Table 1 lists detailed information about the data sets.

6.2 Properties of Our Approach

6.2.1 Grid Sizes

Grid sizes for our approach are determined as described in Section 4.3.2. For the originalTrainsdata set
this results in a 3 x 3 spatial grid (of which in fact only 3 x 2 cells contain data) and a temporal partition
of size 5 minutes. Using the same cell size everywhere, the scaled versionsTrains n2 in fact employ
grids of size(3n)2. A detailed calculation is given in Appendix C.

For theCars data set by similar considerations a spatial grid of size 12 x12 is determined and a
temporal partition of 30 minutes.

TheTrucksdata set is small in comparison. In this case we have not bothered to impose a grid but
simply built the R-tree by bulkload on a temporally ordered stream of units. This is good enough. The
temporal ordering in any case creates good coverage curves.

20

Algorithm 8 : prune above(ce, Q)
Input : ce- a cover entry;

Q - a queue of nodes.
Output : none
let root = this.root();1

let S= range query(root, ce.t1, ce.t2);2

let ht be a hashtable, initially empty;3

for each<which, s> ∈ Sdo4

if s.mindist> ce.maxdistthen5

if which = bottomthen ht.insert(s);6

else7

if ht.lookup(s)then8

deleteentry(s);9

if s.queueptr6= null then Q.dequeue(s.queueptr);10

6.2.2 Computing the Coverage Number

This section investigates the time needed to compute the coverage numbers depending on the number of
nodes of the R-tree. For this experiment, we have used scaledversions of theTrains data set. Table 2
shows the numbers of nodes for the different data sets.

Because the computation of the coverage number requires many additions of moving integer values,
we can expect that this computation is expensive. Figure 13 shows the times required to compute the
coverage numbers including thehat simplification. Because this computation is required only once in
the preprocessing phase, the long running times are acceptable.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

to
ta

l r
u

n
n

in
g

 t
im

e
 (

se
c)

number of nodes in 3D R-tree

Figure 13: Time to Compute theCoverage Numbers

6.2.3 Effectiveness of the Filter Step

In this section we measure how many candidate units are created by the filter step. This number reflects
the pruning ability of the filtering algorithm which has great influence on the query efficiency because
the units passing the filter step must be processed in the costintensive refinement step.

For the first experiment, we have varied the data size. As datasets we have used scaled versions
of Trains. The number of requested nearest neighbors was set tok = 5, the query time toQt = 1.
The query was performed with a query object available in all data sets,train111. The result is shown in

21

Name No.
of
Ob-
jects

No. of
Units

X-Range
Y Range

average
lifetime
of an
object

Trucks 276 111,922 [0, 44541.6] 10 hours
[0, 53956.7]

Cars 2,000 2,274,218 [-10836, 32842] 24 hours
[-6686, 28054]

Trains 562 51,444 [-3560, 25965] 1 hour
[1252, 21018]

Trains9 5,058 462,996 [26440, 115965] 1 hour
[31252, 111018]

Trains25 14,050 1,286,100 [26440, 175965] 1 hour
[31252, 171018]

Trains64 35,968 3,292,416 [26440, 265965] 1 hour
[31252, 261018]

Trains100 56,200 5,144,400 [26440, 325965] 1 hour
[31252, 321018]

Table 1: Statistics of Data Sets

data set no. of units no. of nodes
Trains 51,444 847
Trains9 462,996 7,701
Trains25 1,286,100 21,437
Trains64 3,292,416 54,986
Trains100 5,144,400 85,895

Table 2: Numbers of R-tree Nodes

Figure 14(a). Also the number of units of the final result is part of this figure. One can see that the filter
step returns roughly the same number of candidates for all data sizes.

Second, we have varied the numberk of requested neighbors for the data setTrains25. Here a query
object train742 was used in all queries. Figure 14(b) depicts the behaviour of our algorithm. Whenk
increases, the number of candidates returned by the filter algorithm increases proportional to the final
result.

6.3 Competitors’ Implementation

To be able to compare our solution with the two existing algorithms, we have implemented both the
HCNN [19] algorithm and the HCTkNN [21] algorithm within the SECONDO-framework. Because
HCTkNN uses a TB-tree [39] for indexing the moving data, the TB-tree was also implemented as an
index structure in SECONDO. HCNN applies the depth first-first method to traverse the index structure
where both a TB-tree and a 3D R-tree can be used. From the experimental results in [19] we know that
the 3D R-tree has a better performance than the TB-tree for the HCNN algorithm. Therefore we compare
our approach with this faster implementation. HCTkNN traverses the TB-tree in best first manner.

Both algorithms use a set of data structures, whose elementsare so-callednearest lists, to store
the result found so far when traversing the index. The size ofthis set corresponds tok, the number of
neighbors searched.

Figure 15 depicts the structure of a singlenearest list. The entries of the list are ordered by starting

22

 0

 2

 4

 6

 8

 10

 12

 14

 0 1 2 3 4 5

n
u

m
b

e
r

o
f

ca
n

d
id

a
te

s
(x

 1
0

0
)

moving data size (million)

TCkNN
final result

(a) Parameter Datasize

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30 35 40 45 50

n
u

m
b

e
r

o
f

ca
n

d
id

a
te

s
(x

 1
0

0
)

k

TCkNN
final result

(b) Parameterk (Trains25)

Figure 14: The number of units returned by the filter step

t

D(t)

t1t0 t2 t4t3

list[i]

D1 D2

D3 bc

bc

split point

prunedist (i = k)

Figure 15: Nearest List Structure

time. An entry has the forme =< tid,D, t1, t2,mind,maxd >, wheretid corresponds to an entry in
the leaf node of the index,D is a function depending on time,D(t) = a · t2 + b · t + c, denoting the
moving distance between the entry and the query object during the time interval[t1, t2], mind andmaxd
is the maximum or the minimum value of that function, respectively. The time intervals of the entries
stored in a single list are pairwise quasi disjoint, meaningthat they can share only a common start or end
point.

When considering the set ofk lists list [1], . . . , list [k], for each instantt, list [i].D(t) ≤ list [i +
1].D(t), 1 ≤ i < k, holds. The maximum value stored inlist [i] is calledprunedist(i). If the union of the
time intervals of the entries inlist [i] does not cover the complete query time interval thenprunedist (i) =
∞ holds. Thusprunedist(k) is the maximum distance of thek nearest neighbors found so far. All entries
whose minimum distance is greater thanprunedist (k) can be pruned. When inserting a new entrye, we
start atlist [1]. If the time interval ofe is already covered by another entry, we split the entries if necessary
and try to insert the entries having a greater distance function into list [2]. So high values move up within
the set of lists untillist [k] is reached or their time interval is not any more covered.

Besides usingprunedist, HCNN applies a further pruning strategy to filter impossible non-leaf
nodes. For each entry in non-leaf node, it checks the maximumdistance of already stored tuples in the
list restricted to the entry’s life time. If the minimum distance of an entry is larger than the maximum, it
can be pruned. Compared with the pruning strategy with only aglobal maximum distance, it can prune
more nodes whose time interval is disjoint with that coveredby prunedist.

6.4 Evaluation Results

In this section we compare the performance of the three algorithms.

23

6.4.1 Varying Data Size

In the first experiment, we vary the data sizeN where all other parameters remain unchanged. We setk
to five, so that each query object asks for its five nearest neighbors. Regarding the query time interval,
the default is to use the entire life time of the query object,i.e.,Qt = 1.

Originally we had built the 3D R-tree for HCNN by applying theregular R-tree insertion algorithm
to a stream of units ordered by start time. The authors had informed us that they had used this method to
build the R-tree in their experiments [18]. However, in our experiments we found that HCNN behaves
quite badly on large data sets with R-trees built in this way.We discovered that it has a much better
performance when the R-tree is built by bulkload on a temporally ordered stream of units.

To demonstrate this, in a few experiments we have built the R-tree in both ways and compared
the results. We call the two versions HCNN-Standard and HCNN-Bulk, respectively. On the small
Trucksdata set it is feasible to show the results in the same graph; this is done below in Section 6.4.3.
Unfortunately, in this first experiment varying the data size, the execution times for HCNN-Standard
soon become extremely large. Therefore they have not been included in the graphs. In the following,
when results are labeled HCNN, always HCNN-Bulk is meant.

Figure 16 reports the effect of varying the number of moving units on CPU and I/O cost. Note that
Figure 16(a) and (b) are plotted using a log scale. The CPU cost of all algorithms increases whenN
becomes larger, but the curve of TCkNN always remains at a lower level than HCTkNN and HCNN.
Algorithms TCkNN and HCNN show a similar behaviour, but because we start at alower level, the cost
is smaller. HCTkNN is worse than HCNN for small data sets, but it becomes better when the data size
increases. This is due to its simple pruning strategy where only the global maximum distance is applied
to filter impossible nodes whereas HCNN applies one more pruning strategy which takes more time.

For the largest data set (5.154 million units), the CPU response time of our algorithm is 4.419 sec-
onds, while HCTkNN and HCNN require 13.453 seconds and 36.017 seconds, respectively.

Also, the I/O cost of TCkNN is relatively small compared with the other two competitors. There are
two main reasons. First, HCNN and HCTkNN don’t optimize the index structure forkNN queries as we
have done. Second, the TB-tree structure only stores units of a single object within a leaf node. If an
object covers large distances, the leaf nodes of the TB-treewill have a large spatial extent.

 0.2

 1

 4

 10

 20

 50

 0 1 2 3 4 5

C
P

U
 T

im
e

(s
e

c)

moving data size (million)

HCNN
HCTkNN

TCkNN

(a) CPU Cost

 2

 10

 50

 100

 500

 1000

0.051 0.464 1.29 3.3 5.154

I/
O

 a
cc

e
ss

 (
x

1
0

0
0

)

moving data size (million)

TCkNN
HCNN

HCTkNN

(b) I/O Cost

Figure 16: Performance versus data size

6.4.2 Performance versusk

Here, we compare the running times of the algorithms if the numberk of requested neighbors is changed.
We have setk to one of{1, 5, 10, 20, 50}. As data sets serveTrains25andTrucks. Figures 17 and 18
show the CPU cost and the I/O access depending onk. Note that all figures are drawn in a log scale. Our
algorithm and HCNN have similar curves but our algorithm is always at a lower level. Ifk increases, the
absolute gap between TCkNN and the competitors enlarges. HCTkNN is better than HCNN for small

24

values ofk, e.g.,k = 1, but whenk enlarges, its cost increases quickly so that it is worse thanHCNN,
because it only uses the global maximum distance to prune. When some nodes can’t be pruned, it is
necessary to traverse the entire list structure from the bottom to the top list. Ifk is large, more levels of
thenearest list have to be visited.

 0.5

 1

 5

 10

 50

 100

 200

 0 5 10 15 20 25 30 35 40 45 50

C
P

U
 T

im
e

(s
e

c)

k

HCNN
HCTkNN

TCkNN

(a) CPU Cost

 2

 10

 50

 100

 500

 1000

1 5 10 20 50

I/
O

 a
cc

e
ss

 (
x

1
0

0
0

)

k

TCkNN
HCNN

HCTkNN

(b) I/O Cost

Figure 17: Performance versusk (Trains25)

 0.4

 1

 5

 10

 50

 100

 200

 0 5 10 15 20 25 30 35 40 45 50

C
P

U
 T

im
e

(s
e

c)

k

HCNN
HCTkNN

TCkNN

(a) CPU Cost

 1

 10

 50

 100

 200

 500

1 5 10 20 50

I/
O

 a
cc

e
ss

 (
x

1
0

0
0

)

k

TCkNN
HCNN

HCTkNN

(b) I/O Cost

Figure 18: Performance versusk (Trucks)

6.4.3 Query Time Range

In this experiment, we show the performance of the algorithms in dependence on the duration of defini-
tion time of the query object. For varying the time interval,we have cut out a randomly chosen connected
part of the original query object in which actually the number of units (and thus the definition time) is
varied. In the experiment onTrucks, we have included both versions of HCNN, i.e., HCNN-Standard
and HCNN-Bulk.

Figures 19 and 20 illustrate the experimental results. For ashort query time interval, HCTkNN is
better than HCNN-Bulk and HCNN-Standard, and has no big difference with our algorithm. This is
because the number of tuples stored in each list is small if the time interval is short so that the linear
traversal has no difference with binary search in the segment tree structure. The HCNN (Bulk and Stan-
dard) algorithm has one more pruning strategy which takes time to check the minimum and maximum
distance. When the query time interval increases, the advantage of our algorithm becomes obvious and
it almost stays at the same level whereas the other algorithms take more time than our solution.

As the HCNN algorithm is faster if the index is built by bulkload instead of the standard way, in the
other experiments we have only compared with HCNN-Bulk.

25

 0.05

 0.5

 1

 5

 10
 15

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
P

U
 T

im
e

(s
e

c)

query time range

HCNN
HCTkNN

TCkNN

(a) CPU Cost

 1

 5

 10

 50

 100

 200
 300

0.05 0.1 0.2 0.5 1.0

I/
O

 a
cc

e
ss

 (
x

1
0

0
0

)

query time range

TCkNN
HCNN

HCTkNN

(b) I/O Cost

Figure 19: Performance versus query duration (Trains25)

 0.04

 0.5

 1

 5

 10

 20

 60

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
P

U
 T

im
e

(s
e

c)

query time range

HCNN-Bulk
HCTkNN

TCkNN
HCNN-Standard

(a) CPU Cost

 0.2

 1

 5

 10

 50

 100

0.05 0.1 0.2 0.5 1.0

I/
O

 a
cc

e
ss

 (
x

1
0

0
0

)

query time range

TCkNN
HCNN-Bulk

HCTkNN
HCNN-Standard

(b) I/O Cost

Figure 20: Performance versus query duration (Trucks)

6.4.4 Evaluation on Long Trajectories

To examine the scalability of the algorithm, we do special experiments on data and query objects with
long trajectories. The longest trajectories can be found inthe data setCars, thus we use this data set for
the experiments. We vary the number of units of the query object using one of the numbers{100, 200,
500, 800, 1000} andk is set to five.

Figure 21 reports the experimental result. Our algorithm takes less than 6 seconds CPU time for all
cases, while HCNN takes more time, increasing from 2.222 seconds to 50.83 seconds, which is about
8 times more than TCkNN for a query object with 1000 units. HCTkNN is faster than HCNN for the
smallest number of units, but it becomes significantly more expensive and the CPU time increases in
an even larger slope, e.g., for 500 units, it costs 73.768 seconds already. This is due to the trajectory
preservation property of a TB-tree and the linear structureof thenearest list.

Also especially for leaf entries from the index, our BB-treestructure is helpful because it can compute
a bounding box of the query object for a given time interval inlogarithmic instead of linear time needed
by the other algorithms. Note that during the traversal of the index, for each node/entry the algorithm has
to find the subtrajectory ofmqoverlapping the time interval of the node/entry. This step has to be done
a lot of times, so whenmqhas a long trajectory (more units), a linear interpolation method takes more
time. For the I/O cost, the value of TCkNN is between 3 and 25 (×103), which is also much smaller than
HCTkNN and HCNN.

6.4.5 Bulk Updates

Finally, we investigate the behaviour of the bulk update technique described in Section 4.3.4. The first
experiment compares the running times of building the data structure in a single step or in a series of
updates, respectively. We use theTrains25data set. To perform a series of updates, in each step we

26

 0.1

 1

 5

 10

 50

 100

 100 200 300 400 500 600 700 800 900 1000

C
P

U
 T

im
e

(s
e

c)

number of units in query object

HCNN
HCTkNN

TCkNN

(a) CPU Cost

 2

 10

 50

 100

 500

 1000

100 200 500 800 1000

I/
O

 a
cc

e
ss

 (
x

1
0

0
0

)

number of units in query object

TCkNN
HCNN

HCTkNN

(b) I/O Cost

Figure 21: Evaluation on long trajectory (Cars)

collect the units belonging to a group of six temporal layers(corresponding to a period of 30 minutes)
and update R-tree and coverage numbers for this set.

The results are shown in Figure 22. The curve labeled “Build by Update” shows the accumulated
cost after processing each group of layers. In total nine such groups are processed. One can see that the
overhead compared to building the data structures in a single step is only about 20%.

The first and the last two groups of updates need less time thanthe others. This is due to the fact
that at the start and end of the time period less trains are around (as trains gradually begin and end their
service).

 0

 100

 200

 300

 400

 500

 600

 1 2 3 4 5 6 7 8 9

to
ta

l r
u

n
n

in
g

 t
im

e
 (

se
c)

group of layers ordered by time

Build Completely
Build By Update

Figure 22: Time Cost for Building Structures(Trains25)

The second experiment compares the query performance on thetwo data structures representing the
complete setTrains25built either in a single step or in a series of updates. This isto check whether the
structure built by updates perhaps has a degraded performance. We repeat the experiment “Performance
vs. k” of Section 6.4.2.

Figure 23 shows the results, using labels TCkNN and TCkNNUpdate for the two structures.7 Obvi-
ously the results are quite similar and the bulk update structure is as good as the original one.

7 System Use and Experimental Repeatability

Together with this paper, we also publish the implementations of the three algorithms compared. This is
possible using a feature recently available in the SECONDO environment, called a SECONDO Plugin. It
allows authors of a paper to wrap their implementation into aso-called algebra module and to make data
structures and algorithms available as type constructors and operators of such an algebra. Extensions to
the query optimizer or the graphical user interface are alsosupported but are not needed in this paper.

7Although for TCkNN this is the same experiment as in Section 6.4.2, the numbers are slightly different. This is because
experiments in this section have been made several months later in revising the paper, with the current version of SECONDO.

27

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25 30 35 40 45 50

C
P

U
 T

im
e

(s
e

c)

k

TCkNNUpdate
TCkNN

(a) CPU Cost

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 5 10 20 50

I/
O

 a
cc

e
ss

 (
x

1
0

0
0

)

k

TCkNN
TCkNNUpdate

(b) IO Cost

Figure 23: Performance vs.k for Bulk Update (Trains25)

Authors can create a plugin, which is a set of files together with a small XML file describing the exten-
sions, and publish it as a zip-file. Readers of the paper can install the plugin into a standard SECONDO

system obtained from the SECONDOweb site. More details can be found at [6].
Publishing also the implementations has several benefits. Algorithms can be used in a system context

and prove their usefulness in real applications. Experiments reported in the paper can be checked by the
reader. Other experiments not provided by the authors can bemade, using other parameter settings or
other data sets. Details of the experiments not clear from the description can be examined.

Finally, the next proposal of an improved algorithm will findan excellent environment for compari-
son as it is not any more necessary to reimplement the competing solutions.

7.1 Using the Algorithms in a System

In this section we explain how the algorithm TCkNN proposed in this paper as well as the two competing
algorithms HCNN [19] and HCTkNN [21] can be used within the SECONDOsystem.

7.1.1 Preparations

As far as needed, perform the following steps:

• Set up an environment to compile and run SECONDO.

• Download a SECONDOsystem of version 2.9.1 or higher.8

• Download the NearestNeighbor Plugin from the web site and install it within SECONDO.

• Build the system (make).

• Restore the databaseberlintest that comes with the SECONDOsystem.

The required software and explanations can be found at the SECONDO web site [8] which includes the
plugin web site [6]. More detailed instructions to perform these steps and a short introduction to using
SECONDOare also given in Appendix B.

7.1.2 Using knearest

As discussed in Section 6, the main test data we use are derived from the relationTrains in the database
berlintest, containing 562 undergrund trains moving according to schedule on the networkUBahn. The
schema ofTrains is

8Bulk updates are available only with version 2.9.2 and the revised plugin.

28

Trains(Id: int, Line: int, Up: bool, Trip: mpoint)

whereId is a unique identifier for this train (trip),Line is the line number,Up indicates which direction
the train is going, andTrip contains the actual trajectory.

On the smallTrains relation it is feasible to run a TCkNN query using just theknearest operator
which implements the refine step as described in Section 5. Weuse the unit representation ofTrains, a
relation calledUnitTrains. It is present in the database, but could also be created using the command:

let UnitTrains = Trains feed
projectextendstream[Id, Line, Up; UTrip: units(.Trip)] c onsume

Theprojectextendstream operator creates a stream of units from theTrip attribute of each input tuple
and outputs for each unit a copy of the original tuple restricted to attributesId, Line, Up, and the new
unit attributeUTrip.

Start a SECONDOsystem (kernel and Javagui) and open databaseberlintest. Then type at the prompt:

1. query UnitTrains count

RelationUnitTrains is present and has 51544 tuples.

2. We create a version ofUnitTrainswhere units are ordered by start time:
let UTOrdered = UnitTrains feed

extend[Mintime: minimum(deftime(.UTrip))]
sortby[Mintime asc] consume

Operatorextend adds derived attributes to tuples.

3. query UBahn

Display theUBahnnetwork as a background.

4. query Trains

This loads the entire set of trains into the user interface for display. It takes some time. Choose
display styleQueryMPoint.

5. query train7

This loads a SECONDO object of typempoint which we will use as a query object. Display as
QueryPoint.

6. Find the five continuous nearest neighbors totrain7.
query UTOrdered feed knearest[UTrip, train7, 5] consume
Arguments to theknearest operator are the ordered stream of unit tuples, the name of the attribute,
the query trajectory, and the number of neighbors. ChooseQueryMPoint2for display style. In the
animation, one can observe that always the five closest trains appear in blue (the result of this
query).

7. Find the five continuous nearest neighbors totrain7 belonging to line 5.
query UTOrdered feed filter[.Line = 5]

knearest[UTrip, train7, 5] consume

This illustrates that nearest neighbors fulfilling additional conditions can be found.

7.1.3 Creating Test Data

We now show how the test data are generated. Here we restrict attention to the creation of data set
Trains25. This is done by running the script filecreatetrains25 from [4] which needs to be placed
in thesecondo/bin directory. The file is explained in Appendix C.

Close down any running SECONDOsystem. Open a new shell and type

SecondoTTYNT -i createtrains25

This creates appropriate versions of relations and indexesfor the three algorithms.

29

7.1.4 Using the Three Algorithms CTkNN, HCNN, and HCkNN

Each of the three main algorithms compared in the experiments is available as an operator. They
are calledknearestfilter and knearest , greeceknearest , andchinaknearest for CTkNN, HCNN, and
HCTkNN, respectively.

As a query object we usetrain742, which is the first train of line 7 within the field (4, 2) of the 5x 5
pattern. The dataset considered now can be visualized by translating the underlyingUBahnnetwork in
the same way (see Appendix C for an explanation).

1. Create UBahn25 and visualize it:
let UBahn25 = UBahn feed five feed {f1 } five feed {f2 } product product

projectextend[Name, Typ;
geoData: .geoData translate[30000.0 * .no_f1, 30000.0 * .no_f2],
FieldX: .no_f1,
FieldY: .no_f2]

consume;

query UBahn25

As discussed in Section 6, theTrains25dataset has about 1.3 million units. It is too large to load
it entirely into the viewer. To be able to interpret the answer of the query, we visualize the trains
moving in field (4, 2) together with the query object,train742.

2. Load trains from field (4, 2) and the query object.
query Trains25 feed filter[(.FieldX = 4) and (.FieldY = 2)] c onsume;
query train742

3. Find the 5 closest trains totrain742 within data setTrains25, using TCkNN. We proceed in two
steps to display first the candidates found in the filter step,using operatorknearestfilter , and then
the complete solution.
query UnitTrains25_UTrip UnitTrains25

UnitTrains25Cover_RecId UnitTrains25Cover
knearestfilter[UTrip, train742, 5] consume;

query UnitTrains25_UTrip UnitTrains25
UnitTrains25Cover_RecId UnitTrains25Cover
knearestfilter[UTrip, train742, 5]
knearest[UTrip, train742, 5] consume;

The arguments toknearestfilterare the R-tree index and the indexed relation, then the B-tree index
on the relation with coverage numbers and this relation, finally (in the square brackets) the attribute
name, the query trajectory, an the numberk.

4. Find the 5 closest trains totrain742within data setTrains25, using HCNN.
query UTOrdered_RTreeBulk25 UTOrdered25

greeceknearest[UTrip, train742, 5] consume;

Arguments are the R-tree and the unit relation, clustered inthe same way.

5. Find the 5 closest trains totrain742within data setTrains25, using HCkNN.
query UnitTrains_UTrip_tbtree25 UnitTrains25C

chinaknearest[UTrip, train742, 5] consume;

Arguments are the TB-tree and the unit relation. Here units are ordered by train objects.

30

7.2 Repeating the Experiments

Experiments can be repeated using the scripts provided at [4]. As a preparation, extract all the files from
this zip-archive and place them into thesecondo/bin directory. Files for data generation should be
called, for example:

SecondoTTYNT -i createtrains25

Files for performing experiments should be called

SecondoTTYBDB -i query-k-trains25

As an example, Appendix D shows the scriptquery-k-trains25 to run the experiment “perfor-
mance vs.k” of Section 6.4.2. Note that the last queries examine SECONDOrelations SEC2COMMANDS
and SEC2COUNTERS. These system relations capture information about query execution; each com-
mand after starting a SECONDO system is numbered sequentially. Hence after the first command for
opening the database, the ten queries for each of the three algorithms are numbered 2 through 11, 12
through 21, and 22 through 31, respectively. The queries aggregate over these executions to get average
CPU time and numbers of page accesses.

Results should roughly correspond to those displayed in Figure 17. Of course, only trends should
agree; absolute numbers may differ due to the different platforms used.

8 Conclusions

In this paper we have studied continuousk nearest neighbor search on moving objects trajectories when
both query and data objects are mobile. We have presented a filter-and-refine approach. The main idea
in the filter step was to compute for each node of the index its time dependent coverage function in
preprocessing and to store a suitable simplification of thisfunction. Coverage numbers are then essential
for pruning during the index traversal. This is further supported by the use of efficient data structures
to compute spatial bounding boxes of partial query trajectories and to keep track of node coverages and
node distances during traversal. The refinement step can also be used independently to find continuousk
nearest neighbors fulfilling further predicates. An experimental comparison shows that the new algorithm
outperforms the two competing algorithms in most cases by orders of magnitude.

As a second aspect, we have advocated a methodology of experimental research that makes data
structures and algorithms available in a system context andthat publishes together with papers also
their implementation used in experiments. A platform has been provided that allows authors to publish
software in this way. As a benefit, readers can relatively easily repeat or extend the experiments presented
in the paper. Furthermore, in the long run, researchers willfind existing implementations to compare
to instead of always reimplementing competing techniques from scratch. We have used the research
contribution of this paper as an example to demonstrate thisstyle of publishing experimental research.

Open questions for future work are whether the pruning techniques of the filter step can be adapted to
other cases, for example other query types such as reverse nearest neighbors, network-based movement,
or the presence of additional predicates.

Acknowledgements

The contribution of Angelika Braese who implemented preliminary versions of both the filter and the
refinement algorithm in her bachelor thesis, is gratefully acknowledged. We also thank the anonymous
referees for their valuable suggestions for improvement.

31

References

[1] BerlinMOD. http:dna.fernuni-hagen.de/secondo/BerlinMOD.html.

[2] Nearest Neighbor Algebra Plugin.
http://dna.fernuni-hagen.de/Secondo.html/files/plugins/NN.zip.

[3] R-tree Portal. http:www.rtreeportal.org.

[4] Scripts to execute the experiments of this paper.
http://dna.fernuni-hagen.de/papers/KNN/knn-experiment-script.zip.

[5] Secondo. A Database System for Moving Objects.
http://dna.fernuni-hagen.de/Secondo.html/Secondo-mod.pdf.

[6] Secondo Plugins. http://dna.fernuni-hagen.de/Secondo.html/startcontentplugins.html.

[7] Secondo User Manual. http://dna.fernuni-hagen.de/Secondo.html/files/SecondoManual.pdf.

[8] Secondo Web Site. http://dna.fernuni-hagen.de/Secondo.html/.

[9] R. Benetis, C. S. Jensen, G. Karciauskas, and S. Saltenis. Nearest and reverse nearest neighbor
queries for moving objects.VLDB J., 15(3):229–249, 2006.

[10] J. L. Bentley and T. Ottmann. Algorithms for reporting and counting geometric intersections.IEEE
Trans. Computers, 28(9):643–647, 1979.

[11] S. Berchtold, C. Böhm, and H.P. Kriegel. Improving thequery performance of high-dimensional
index structures by bulk load operations. InEDBT, pages 216–230, 1998.

[12] J. Bercken, B. Seeger, and P. Widmayer. A generic approach to bulk loading multidimensional
index structures. InVLDB, pages 406–415, 1997.

[13] H. Cao, O. Wolfson, and G. Trajcevski. Spatio-temporaldata reduction with deterministic error
bounds.VLDB J., 15(3):211–228, 2006.

[14] V. P. Chakka, A. Everspaugh, and J. M. Patel. Indexing large trajectory data sets with seti. InCIDR,
2003.

[15] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars.Computational Geometry: Algorithms
and Applications. Springer, Heidelberg, 3rd edition, 2008.

[16] C. Düntgen, T. Behr, and R.H. Güting. Berlinmod: a benchmark for moving object databases.
VLDB J., 18(6):1335–1368, 2009.

[17] L. Forlizzi, R. H. Güting, E. Nardelli, and M. Schneider. A data model and data structures for
moving objects databases. InSIGMOD, pages 319–330, 2000.

[18] E. Frentzos. Personal communication.

[19] E. Frentzos, K. Gratsias, N. Pelekis, and Y. Theodoridis. Algorithms for nearest neighbor search
on moving object trajectories.GeoInformatica, 11(2):159–193, 2007.

[20] E. Frentzos, K. Gratsias, and Y. Theodoridis. Index-based most similar trajectory search. InICDE,
pages 816–825. IEEE, 2007.

[21] Y. Gao, C. Li, G. Chen, Q. Li, and C. Chen. Efficient algorithms for historical continuousk nn
query processing over moving object trajectories. InAPWeb/WAIM, pages 188–199, 2007.

32

[22] Y. J. Gao, C. Li, G. C. Chen, L. Chen, X. T. Jiang, and C. Chen. Efficient k-nearest neighbor search
algorithms for historical moving object trajectories.Journal of Computer Science and Technology,
22(2):232–244, 2007.

[23] F. Giannotti and D. Pedreschi, editors.Mobility, Data Mining and Privacy - Geographic Knowledge
Discovery. Springer, 2008.

[24] J. Gudmundsson and M. J. van Kreveld. Computing longestduration flocks in trajectory data. In
R.A. de By and S. Nittel, editors,GIS, pages 35–42. ACM, 2006.

[25] R. H. Güting, M. H. Böhlen, M. Erwig, C. S. Jensen, N. A.Lorentzos, M. Schneider, and M. Vazir-
giannis. A foundation for representing and quering moving objects. ACM TODS, 25(1):1–42,
2000.

[26] R.H. Güting and M. Schneider.Moving Objects Databases. Morgan Kaufmann, 2005.

[27] G. R. Hjaltason and H. Samet. Distance browsing in spatial databases.ACM Trans. Database Syst.,
24(2):265–318, 1999.

[28] Y. Huang, C. Chen, and C. Lee. Continous k-nearest neighbor query for moving objects with
uncertain velocity.Geoinformatica, 2007.

[29] G. S. Iwerks, H. Samet, and K. P. Smith. Continuous k-nearest neighbor queries for continuously
moving points with updates. InVLDB, pages 512–523, 2003.

[30] C.S. Jensen, M. Schneider, B. Seeger, and V.J. Tsotras,editors.Advances in Spatial and Temporal
Databases, 7th International Symposium, SSTD 2001, Redondo Beach, CA, USA, July 12-15, 2001,
Proceedings, volume 2121, 2001.

[31] H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, and H. T. Shen. Discovery of convoys in trajectory
databases. InVLDB, 2008.

[32] M. Jürgens and H.-J. Lenz. The ra*-tree: An improved r-tree with materialized data for supporting
range queries on olap-data. InDEXA Workshop, pages 186–191, 1998.

[33] G. Kellaris, N. Pelekis, and Y. Theodoridis. Trajectory compression under network constraints. In
N. Mamoulis, T. Seidl, T.B. Pedersen, K. Torp, and I. Assent,editors,SSTD, pages 392–398, 2009.

[34] I. Lazaridis and S. Mehrotra. Progressive approximateaggregate queries with a multi-resolution
tree structure. InSIGMOD Conference, pages 401–412, 2001.

[35] M. F. Mokbel, T. M. Ghanem, and W. G. Aref. Spatio-temporal access methods.IEEE Data Eng.
Bull., 26(2):40–49, 2003.

[36] G. M. Morton. A computer oriented geodetic data base anda new technique in file sequencing.
Technical report, IBM Ltd. Ottawa, 1966.

[37] K. Mouratidis, M. Hadjieleftheriou, and D. Papadias. Conceptual partitioning: An efficient method
for continuous nearest neighbor monitoring. InSIGMOD, pages 634–645, 2005.

[38] D. Papadias, P. Kalnis, J. Zhang, and Y. Tao. Efficient olap operations in spatial data warehouses.
In Jensen et al. [30], pages 443–459.

[39] D. Pfoser, C. S. Jensen, and Y. Theodoridis. Novel approaches in query processing for moving
object trajectories. InVLDB, pages 395–406, 2000.

33

[40] K. Raptopoulou, A. Papadopoulos, and Y. Manolopoulos.Fast nearest-neighbor query processing
in moving-object databases.GeoInformatica, 7(2):113–137, 2003.

[41] S. Rasetic, J. Sander, J. Elding, and M. A. Nascimento. Atrajectory splitting model for efficient
spatio-temporal indexing. InVLDB, 2005.

[42] N. Roussopoulos, S. Kelly, and F. Vincent. Nearest neighbor queries. InSIGMOD, 1995.

[43] A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modeling and querying moving objects. In
W. A. Gray and Per-̊Ake Larson, editors,Proceedings of the Thirteenth International Conference
on Data Engineering, April 7-11, 1997 Birmingham U.K, pages 422–432. IEEE Computer Society,
1997.

[44] Z. Song and N. Roussopoulos. K-nearest neighbor searchfor moving query point. In Jensen et al.
[30], pages 79–96.

[45] Y. Tao and D. Papadias. Time-parameterized queries in spatio-temporal databases. InSIGMOD,
pages 334–345, 2002.

[46] Y. Tao and D. Papadias. Historical spatio-temporal aggregation.ACM Trans. Inf. Syst., 23(1):61–
102, 2005.

[47] Y. Tao, D. Papadias, and Q. Shen. Continuous nearest neighbor search. InVLDB, pages 287–298,
2002.

[48] O. Wolfson, B. Xu, S. Chamberlain, and L. Jiang. Moving objects databases: Issues and solutions.
In SSDBM, pages 111–122, 1998.

[49] X. Xiong, M. F. Mokbel, and W. G. Aref. Sea-cnn: Scalableprocessing of continuous k-nearest
neighbor queries in spatio-temporal databases. InICDE, pages 643–654, 2005.

[50] X. Yu, K. Q. Pu, and N. Koudas. Monitoring k-nearest neighbor queries over moving objects. In
ICDE, pages 631–642, 2005.

A Implementation of the Cover Structure

A node has the following structure:

type node= record
time interval[t1, t2];
pointer to nodeleft, right;
list of cover entry list;
list of pairs<which, cover entry> startlist, endlist

end record.

The listslist, startlist, andendlistare doubly linked lists with elements of the form<pred, succ, pointer
to coverentry>. Whenever acover entry is added to such a list, actually a pointer to thecover entry is
inserted and at the same time a pointer to this list element isadded to the listrefs in thecover entry. In
this way efficient deletion of cover entries is possible.

Update methods areinsert entry, add coordinate, insert interval, anddeleteentry. Query methods
arepoint queryandrange query.

34

Algorithm 9 : insert entry(ce)
Input : ce- a cover entry;
Output : none
let root = this.root();1

add coordinate(root, ce.t1, true, ce);2

add coordinate(root, ce.t2, false, ce);3

insert interval(root, ce.t1, ce.t2, ce);4

Algorithm 10 : add coordinate(n, t, start, ce)
Input : n - a node;

t - an instant of time;
start - a boolean indicating whether a left or right end is added;
ce- a cover entry.

Output : none
/ * modifies the segment tree to accomodate a possibly new

coordinate t and adds the entry as either a start or an end
entry. * /

if n is a leaf then1

if n.t1 < t < n.t2 then2

n.left= new node(n.t1, t);3

n.right = new node(t, n.t2);4

if start then n.right.startlist.append(<bottom, ce>);5

else n.left.endlist.append(<top, ce>);6

else// n is an inner node7

if t = n.left.t2 then8

if start then n.right.startlist.append(<bottom, ce>);9

else n.left.endlist.append(<top, ce>);10

else11

if t < n.left.t2 then add coordinate(n.left, t, start, ce);12

else add coordinate(n.right, t, start, ce);13

14

Algorithm 11 : insert interval(n,t1, t2,ce)
Input : n - a node;

[t1, t2] - a time interval;
ce- a cover entry;

Output : none
if [n.t1, n.t2] ⊆ [t1, t2] then n.list.append(ce);1

if n is an inner nodethen2

if t1 < n.left.t2 then insert interval(n.left,t1, t2, ce);3

if t2 > n.right.t1 then insert interval(n.right,t1, t2, ce);4

Algorithm 12 : deleteentry(ce)
Input : ce- a cover entry
Output : none
for each s∈ ce.refsdo remove(s);1

35

Algorithm 13 : point query(n, t)
Input : n - a node;

t - an instant of time.
Output : a set of entries whose time intervals containt.
if n = null then return ∅;1

else2

if n.t1 ≤ t ≤ n.t2 then3

return n.list∪ point query(n.left, t)∪ point query(n.right, t);4

else return∅;5

Algorithm 14 : range query(n,t1, t2)
Input : n - a node;

[t1, t2] - a time interval.
Output : a list of pairs of the form<which, ce> wherewhich∈ {bottom, top}, cea cover entry.

The list contains only entries whose start or end time lies within [t1, t2], in temporal
order w.r.t their start or end time.

if n = null then return ∅;1

else2

if n.t2 < t1 then return ∅;3

else4

if t2 < n.t1 then return ∅;5

else6

S= ∅;7

if t1 ≤ n.t1 ≤ t2 then S = concat(S, n.startlist);8

if n is not a leafthen9

S = concat(S, concat(rangequery(n.left,t1, t2), rangequery(n.right,t1, t2)));10

if t1 ≤ n.t2 ≤ t2 then S = concat(S, n.endlist);11

return S;12

36

B Installing and Using SECONDO With the Nearest Neighbor Plugin

In the sequel we describe how a SECONDOsystem and the Nearest Neighbor Plugin can be installed and
theberlintest database be restored. Then a short example session shows howto use SECONDO.

B.1 Installing a SECONDO System

If you happen to have a running SECONDO installation with a system of version 2.9.1 or higher, this step
can be skipped. Otherwise:

1. Go to the SECONDOweb site at [8]. Go to theDownloadspage, sectionSecondo Installation Kits.
Select the version for your platform (Mac-OS X, Linux, Windows). Get the installation guide and
download the SDK. Follow the instructions to get an environment where you can compile and run
SECONDO.

2. Go to the Source Code section of theDownloadspage and download version 2.9.1. Extract it and
replace the SECONDOversion from the installation kit by this version.

B.2 Installing the Nearest Neighbor Plugin

From the SECONDO Plugin web site [6] get the two filesInstaller.jar andsecinstall . The
Nearest Neighbor plugin is a fileNN.zip available at [2]. Follow the instructions in sectionInstalling
Pluginsat [6] to install it. Then recompile the system (i.e., callmake in directorysecondo).

B.3 Restoring a Database

We first restore the databaseberlintestthat comes within the SECONDOdistribution:

1. Start a SECONDOsystem:

cd ˜secondo/bin
SecondoTTYNT

After some messages, a prompt should appear:

Secondo =>

2. At the prompt, enter
restore database berlintest from berlintest
close database
quit

B.4 Looking at Data

The relationTrains in the databaseberlintestcontains 562 undergrund trains moving according to sched-
ule on the networkUBahn. This relation is used in the experiments to create larger test data setsTrains
n2. The schema ofTrains is

Trains(Id: int, Line: int, Up: bool, Trip: mpoint)

whereTrip contains the actual trajectory.
We briefly look at these data within the system.

1. Start the SECONDOkernel together with the graphical user interface. Open a shell and type

cd ˜secondo/bin
SecondoMonitor -s
[SecondoMonitor.exe -s on a Windows platform]

37

Open a new shell:
cd ˜secondo/Javagui
sgui

2. In the command window (top left), type
open database berlintest;
query UBahn

A pop-up window appears asking for a display style for thegeoDataattribute of theUBahnrela-
tion. Leave the default and click OK. TheUBahnnetwork appears in the viewer at the bottom.

3. In theFile menu, selectLoad categorieswhich makes some other display styles available. Choose
BerlinU.cat.

4. In SECONDO, it is possible to type query plans directly, without the useof an optimizer. This is
what we do next. In the command window, type:
query Trains count

This confirms that relationTrains is present and has 562 tuples. Operatorcount is applied to the
Trainsrelation in postfix notation.

5. query Trains feed filter[.Trip present six30] consume

This selects trains whoseTrip attribute is defined at 6:30 (six30 is a SECONDO object of type
instant in the database). Here thefeed operator (applied in postfix notation toTrains) creates a
stream of tuples. Thefilter operator passes only tuples to its output stream fulfilling apredicate.
Consume collects a stream of tuples into a relation which is then displayed at the user interface.

A pop-up window asks for the display style. FromView CategoryselectQueryMPoint. Standard
attributes appear in the text window at the left side of the Hoese viewer (the viewer forms the
bottom of the entire window). When you select one of theTrip attributes, also geometries appear
in the graphics window on the right.

6. Animate the displayed trains using the buttons at the top left of the viewer. The double arrow
buttons allow one to double or halve the speed of the animation.

This may suffice as a brief introduction to using SECONDO. To become a bit more acquainted with
the user interface and the querying and visualizing of moving objects, we recommend to go through the
”Do it yourself demo” ([5], Section 2). More information about using SECONDO can be found at the
Web site [8], in particular in the user manual [7].

C Creation of Test Data

This is a commented version of filecreatetrains25 .
This script creates theTrains25 data set for each of the three algorithms TCkNN, HCNN, and

HCTkNN. Starting point is the relationTrains containing 562 undergrund trains moving according to
schedule on the networkUBahn. We now explain the commands in the script.

let five = ten feed filter[.no < 6] consume;

let Trains25 = Trains feed five feed {f1 } five feed {f2 }
product product
projectextend[Id, Line, Up;

Trip: .Trip translate[[const duration value (0 0)],
30000.0 * .no_f1, 30000.0 * .no_f2],

FieldX: .no_f1,
FieldY: .no_f2]

consume;

38

The first command creates a relationfivecontaining the numbers 1 through 5. It is used to make 25 copies
of the Trains in the next command, using twoproduct operator calls to build the Cartesian product of
Trainsand two instances of relationfive. Note that operations are often applied in postfix notation.Next
theprojectextend operator performs a projection on each tuple, keeping attributesId, Line, andUp. It
als adds new attributes to the tuple whose values are computed from existing attributes. AttributeTrip is
derived from the originalTrip attribute by translating the geometry in the(x, y, t) space. The temporal
shift is 0, hence all copies of the trains move at the same timeas their originals. However, spatially,
geometries are shifted by distanceno f1 * 30000 inx-direction and by distanceno f2 * 30000 iny-
direction. Hereno f1 andno f2 come from the two instances of thefive relation. Hence 25 copies are
made of each train arranged in a 5 x 5 grid. The field indices in the grid are also kept in the tuple as
FieldX andFieldY. The last operationconsume collects the stream of tuples into a relation.

let train742 = Trains25 feed
filter[(.Line = 7) and (.FieldX = 4) and (.FieldY = 2)]
extract[Trip];

let train123 = Trains25 feed
filter[(.Line = 1) and (.FieldX = 2) and (.FieldY = 3)] extrac t[Trip];

...

Next ten query trains are selected from the newTrains25relation. Theextract operation gets the value
of attributeTrip from the first tuple of its input stream. Hencetrain742 is now an object of typempoint,
i.e., a trajectory.

As explained in Section 4.3, we partition the 3D space into small spatiotemporal cells such that each
cell contains on the average enough units to fill aboutr nodes of an R-tree. The originalTrains relation
fits spatially into a box of size 30000 x 20000, with lower leftcorner at position (-3600, 1200). Copies
are moved by multiples of 30000 as shown above. We now impose agrid with cells of size 10000 x
10000 spatially, and 5 minutes temporally. The calculationleading to these sizes is the following. One
can observe that in the originalTrainsrelation at any instant of time on the average 90 trains are present.
We aim to have aboutp = 15 objects present within each spatial cell, hence form a grid of 6 cells. This
defines the cell size of 10000 x 10000 for the originalTrains relation. The relation has 51444 units. An
R-tree node can take about 60 entries in our implementation;hence to fill aboutr = 5 nodes, about 300
units should be in a spatiotemporal cell. Assuming units areuniformly distributed in space and time,
51444 / (6 * 300) = 28.58 means that the temporal extent shouldbe split into roughly 30 parts. As the
temporal extent of the trains relation is about 2.5 hours, the duration of each part should be about 5
minutes. The larger relationTrains25will use the same temporal partitioning; the spatial grid cells of
size 10000 x 10000 are effectively translated in the same wayas theTrains.

let six00 = theInstant(2003,11,20,6);
let minutes5 = [const duration value (0 300000)];

To introduce the temporal partition of the 3D space, we definethe instant 6am and a duration of 5 minutes
(300000 ms).

let UnitTrains25 = Trains25 feed
projectextendstream[Id, Line, Up; UTrip: units(.Trip)]
addcounter[No, 1]
extend[

Temp: (minimum(deftime(.UTrip)) - six00) / minutes5,
CellX: real2int((minD(bbox2d(.UTrip), 1) + 3600.0) / 1000 0.0),
CellY: real2int((minD(bbox2d(.UTrip), 2) - 1200.0) / 1000 0.0)]

sortby[Temp asc, CellX asc, CellY asc, UTrip asc]
remove[Temp, CellX, CellY]
consume;

39

Theprojectextendstream operator creates a stream of units from theTrip attribute of each input tuple
and outputs for each unit a copy of the original tuple restricted to attributesId, Line, Up, and the new
unit attributeUTrip. Thenaddcounter adds an attributeNo with a running number to the current tuple.
The extend operator computes integer indicesTemp, CellX, andCellY according to the 3D partition
explained above for a given unit, accessing its geometry. The resulting stream of tuples is sorted first by
the three indices of a spatiotemporal cell, and finally byUTrip (which in effect is the start time of the
unit). After sorting, the indices needed for sorting can be removed again before storing the relation.

let UnitTrains25_UTrip = UnitTrains25 feed addid bulkload rtree[UTrip];

The R-tree is created by bulkload. The order in the underlying relation is the same as that used in the
bulkload; hence a clustering effect is achieved.

let UnitTrains25Cover = coverage(UnitTrains25_UTrip) co nsume;

Thecoverage operator traverses the R-tree, computing the coverage function and from it the three cov-
erage numbers resulting from thehat operation (Section 4.3.1). They are entered into relationUnit-
Trains25Cover.

let UnitTrains25Cover_RecId = UnitTrains25Cover createb tree[RecId];

The relation with coverage numbers is indexed. This completes data generation for our algorithm
TCkNN. Next test data for HCNN are generated.

let UTOrdered25 = UnitTrains25 feed sortby[UTrip asc] cons ume;

let UTOrdered_RTreeBulk25 = UTOrdered25 feed addid
bulkloadrtree[UTrip];

TheUnitTrains25are ordered by units and stored in this order. This is essentially an order on the start
times of units. The index is then built by bulkload on the temporally ordered stream of tuples. Again the
index is clustered like the relation. As discussed in Section 6, this version of HCNN is the most efficient
one.

let UnitTrains25C = Trains25 feed
projectextendstream[Id, Line, Up; UTrip: units(.Trip)]
addcounter[No, 1] consume

let UnitTrains_UTrip_tbtree25 = UnitTrains25C feed addid
bulkloadtbtree[Id, UTrip, TID];

Finally, for HCTkNN theUnitTrains25relation must be in the order ofTrain objects. Then the TB-tree
index is built by bulkload.

D Queries onTrains 25, varying k

This is a shortened version of filequery-k-trains25 .

open database berlintest;
#for different number of neighbors requested, change the va lue of k

#Germany
query

UnitTrains25_UTrip UnitTrains25 UnitTrains25Cover_Rec Id UnitTrains25Cover
knearestfilter[UTrip, train742, 5] knearest[UTrip,trai n742, 5] count;

query

40

UnitTrains25_UTrip UnitTrains25 UnitTrains25Cover_Rec Id UnitTrains25Cover
knearestfilter[UTrip, train523, 5] knearest[UTrip,trai n523, 5] count;

... (10 queries in total)

Greece Bulk
query UTOrdered_RTreeBulk25 UTOrdered25 greeceknearest [UTrip,train742, 5]

count;
query UTOrdered_RTreeBulk25 UTOrdered25 greeceknearest [UTrip,train523, 5]

count;
... (10 queries in total)

#China
query UnitTrains_UTrip_tbtree25 UnitTrains25 chinaknea rest[UTrip,train742,5]

count;
query UnitTrains_UTrip_tbtree25 UnitTrains25 chinaknea rest[UTrip,train523,5]

count;
... (10 queries in total)

Results Germany
query SEC2COMMANDS feed filter[(.CmdNr >= 2) and (.CmdNr <= 11)]

avg[CpuTime];
query SEC2COUNTERS feed filter[.CtrStr = "SmiRecord::Rea d:Calls"]

filter[(.CtrNr >= 2) and (.CtrNr <= 11)] avg[Value];

Results Greece Bulk
query SEC2COMMANDS feed filter[(.CmdNr >= 12) and (.CmdNr < = 21)]

avg[CpuTime];
query SEC2COUNTERS feed filter[.CtrStr = "SmiRecord::Rea d:Calls"]

filter[(.CtrNr >= 12) and (.CtrNr <= 21)] avg[Value];

Results China
query SEC2COMMANDS feed filter[(.CmdNr >= 22) and (.CmdNr < = 31)]

avg[CpuTime];
query SEC2COUNTERS feed filter[.CtrStr = "SmiRecord::Rea d:Calls"]

filter[(.CtrNr >= 32) and (.CtrNr <= 41)] avg[Value];

close database;

41

