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Abstract. In this paper, we propose an improved plumb-line algorithm, the Partial-Scan Plumb-Line
(PSPL) algorithm, to solve the point-in-region problem. In the PSPL algorithm, every edge of the region
(or polygon) is represented as two half segments, and all half segments of the region are sorted according
to their dominating points. This is a standard representation for regions in spatial databases, providing
efficient support for many plane-sweep algorithms. To support PSPL additionally a “coverage number” is
associated with each half segment. In this way, the algorithm can employ a binary search to quickly find
the half segment whose dominating point is closest to the given point, and then access only the neighbour-
ing half segments to evaluate the query, leading to dramatic performance improvements, especially for
large regions.
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1 Introduction

The plumb-line algorithm is a simple but efficient solution to the “point-in-region” problem [8, 9].
Given a point p and a region r, the plumb-line algorithm draws a vertical half line from p upward,
and then counts the number of intersections between the half line and the edges of the region. If the
number is an odd number, then p is inside r, and otherwise it is outside. All edges of the region are
considered as half open (left closed and right open, or vice versa) to avoid incorrect results when the
half line goes through a vertex of the region. In addition, the algorithm needs to deal with some spe-
cial cases, for instance, the situation when p is on the border of r. The idea of the plumb-line algo-
rithm is illustrated in Figure 1. 

The complexity of the original plumb-line algorithm is O(N), where N is the number of edges of the
region. In most cases, this is a very good performance already. Sometimes, however, this perfor-

1. This research was partially supported by the Deutsche Forschungsgemeinschaft (DFG) research project “Data-
bases for Moving Objects”, Gu 293/8-1.

Fig. 1. Plumb-line algorithm
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mance is still not good enough, especially when the region is a large and complicated one. For
instance, in the experimental data set (see Section 3), the region for the United States has more
than 13,300 edges.

One possible solution to this problem is to design a special data structure just for this operator to
speed up the computation. However, we consider an environment where the region representation
is used in a spatial DBMS to support many different operations (e.g., computing the intersection
between a line (curve) and a region, finding the common boundary between two regions, etc.).
Then, a special purpose data structure just to support the point-in-region computation does not
make sense. We have found, however, that by a very simple and small extension to the standard
data structure for regions we can indeed dramatically speed up the point-in-region computation
without incurring significant overhead for constructing regions or the storage requirements. 

Regarding solutions to the point-in-region (or point-in-polygon) problem in the literature, one has
to distinguish between techniques using a given polygon without preprocessing, and methods that
provide a specialized data structure. A survey of practical methods for the first case is given in
[5]. Besides slight variations of the plumb-line algorithm (called crossings test there), one can
also compute triangles connecting some vertex with all edges of the polygon and check which tri-
angles contain the query point, or sum the angles from the query point to all vertices of the poly-
gon, for example. Some of these techniques perform a little better than others, as shown in [5].
Reference [6] studies improvements of the plumb-line or ray-crossing algorithm, and of algo-
rithms based on angle summation, generally by cleverly rearranging the pieces of code for each
test to speed up execution. However, all such techniques need to process each edge of the polygon
in some way and therefore remain with the basic O(n) time complexity.

When specialized data structures can be used, the problem has a theoretically optimal solution,
since it can be treated as locating a point in a planar subdivision. This can be done in O(log n)
time and O(n) space, e.g. by Kirkpatrick’s triangulation refinement method [7]. Other optimal
solutions exist.

Since the theoretical methods are complex and do not necessarily perform well in practice, simple
data structures for speeding up the point-in-polygon test have also been developed, such as the bin
test or the grid cell test method (both described in [5]). The bin test method decomposes the
bounding box of the polygon into k vertical stripes whose bottom and top edges are adjusted to
touch the polygon (these are the bins). Then one stores for each bin the edges overlapping it.
Given a query point, one finds the appropriate bin in constant time, and applies the plumb-line
algorithm to its edges. The grid cell test divides the bounding box of the polygon into a regular
k × k grid. Each grid cell is classified as either inside, outside, or indeterminate. For the latter cat-
egory, again a list of overlapping segments is stored. Given a query point p that falls into an inde-
terminate cell, one applies ray-crossing from p to one corner of the cell whose state (inside or
outside) was computed in preprocessing. These methods have been experimentally studied in [5]
using parameters k = 20 or k = 100. They are much faster than the O(n) time methods mentioned
above, working on the average in practically constant time. However, this is at the expense of
large space requirements, since beyond the space for bins or grid cells an edge (or pointer to it)
needs to be stored with each bin or cell it overlaps. 

In comparison, our method does use a specialized data structure, but one that is only a very small
and simple extension to the standard data structure for regions used in query processing. The
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additional space requirements (one number per line segment) and construction time (one scan of
an array of segments, see Algorithm 1) are negligible. The latter is important as regions are also
constructed as intermediate results in query processing. However, the benefits are great: whereas
the worst-case running time is still O(n) for certain “pathological” regions (see Section 3), for
regions with short boundary segments the running time is close to O(log n).

Hence, none of the linear methods mentioned above is able to compete with our method, and the
other techniques using specialized data structures are obviously inapplicable in our context. 

2 Partial-Scan Plumb-Line Algorithm

2.1 Preliminaries

In our research with the spatial algebra in the Secondo system [1, 2], we have adopted the data
structures described in the ROSE algebra [4, 3]. For a given region, we map every edge of the
region to two half segments, and all these half segments are sorted and then stored in an array. A
half segment is just a segment for which either the left or the right end point is considered as sig-
nificant. An ordered list of half segments is the right input for a plane-sweep algorithm processing
the region, and it also supports various algorithms based on parallel scan of two regions or other
spatial values [3].

Definition 1 (Half Segment). Let S = {(p, q) | p, q ∈ X × Y, p < q} denote the set of line segments
in the X × Y plane, where p and q are the left and right end point respectively.1 The set of half seg-
ments is defined as follows:

H = {(s, d) | s ∈ S, d ∈ {left, right}}

A half segment h = (s, d) consists of a segment s and a flag d emphasizing one end point of the
segment, which is called the dominating point of h. If d = left, then the left (smaller) end point of
s is the dominating point of h, and h is called “left half segment”. Otherwise, the right end point of
s is the dominating point and h is called “right half segment”. Therefore, every edge of the region,
which is a segment in the X × Y plane, denoted by s, can be mapped to two half segments: (s, left)
and (s, right), which we also denote as sl and sr, respectively. 

A region is represented essentially as an ordered list (array) of half segments. The order used is
the one suitable to support plane-sweep algorithms, basically lexicographic order on dominating
points. Ties are resolved by further checks on being left or right end point and on slope [3].

2.2 The Algorithm

To improve the plumbline algorithm, the question is whether one can use the given data structure
without looking at all edges. The idea is to implement the plumbline algorithm as follows:

1. The left end point is the smaller one in a lexicographical order of points.
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1. Perform a binary search on the array of half segments for the x-position of query point p.
2. Then scan the array from the found position into one direction (say to the left). For every

left half segment (ignore the right half segments) check whether it is above p and increment
a counter, if so. Stop the scan when all segments overlapping p’s x-coordinate have been
encountered. Return true if the counter is odd.

Usually one can expect that edges covering the x-position of p can be found in a rather small
neighbourhood of p.x. The problem is to discover when to stop the scan, as it is not clear whether
there are still edges coming up covering p.x. The additional idea needed is illustrated in Figure 2.

Consider first Figure 2(a). Scanning from the position of p to the left, one encounters sr (the right
end, or half segment, of s), then tr, then ul. At this point, the scan could stop, as all segments lying
either above or below p have been encountered. Unfortunately this is not known. If it were known
that there is only one such segment, the scan could safely stop here.

So the idea is to put exactly that information into the data structure as shown in Figure 2(b). For
each vertical stripe of the plane between two x-coordinates we record the number of segments
crossing this stripe. This number can easily be computed in a single scan through the array of half
segments, as shown in Algorithm 1. It associates the coverage number of a stripe between two
half segments with the half segment with left end point left of the stripe.

The PSPL algorithm then after the binary search initializes a counter to the coverage number of
the stripe containing p. Scanning to the left, the counter is decremented whenever a segment over-
lapping p’s x-position is found. Hence the scan can stop when the counter is zero. The complete

Fig. 2. (a) configuration of segments for plumbline search (b) extended by coverage numbers

Algorithm 1. Coverage number associating algorithm

INPUT : SHSA=<h1,h2,...hn> (Sorted Half Segment Array)

OUTPUT: SHSA with Coverage Number Associated

CoverageNo = 0;
FOR i=1 TO n DO

IF (hi has left dominating point) THEN 

CoverageNo = CoverageNo + 1;
ELSE

CoverageNo = CoverageNo - 1;
ENDIF;
hi.coverageno = CoverageNo;

ENDFOR;
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algorithm is presented as Algorithm 2. We need to consider the special case that several adjacent
half segments may have the same x coordinate value as that of p (we call these half segments the
“sibling” half segments of p, denoted by sibling(p)). Suppose sibling(p) = <hj, hj+1, ..., hk>, and
the result of the binary search is i ∈ [j-1, k+1]. In this case, the algorithm needs to check all the
sibling half segments first, and then gets the coverage number from hj-1.

3 Performance Analysis

The complexity of the PSPL algorithm is composed of two parts, the cost of the binary search,
and the cost of the further scan. The first part is relatively fixed, which is O(log N), where N is the
number of edges of the region. However, the second part can vary a lot according to different data
sets. For a certain region, if the length of the edges is evenly distributed, then the overhead of the
further scan can be very small. Otherwise, the algorithm may need to go a long way to find all the

Algorithm 2. Partial-scan plumb-line algorithm

INPUT : p, r = SHSA = <h1, h2, ..., hn>;

OUTPUT: IsInside;

i = BinarySearch(p, r);
IF (p = dp(hi))∨ (p = dp(hi+1)) THEN return true; ENDIF;
intersection = 0;

IF (siblings(p) ≠ NULL)∧(siblings(p) = <hj, ..., hk>) THEN
FOR h in siblings(p) DO

IF (h has left dominating point) THEN
IF (h contains p) THEN return true; ENDIF; //p is on-border of r
IF (h intersects with halfline(p)) THEN 

intersection = intersection + 1; 
ENDIF;

ENDIF;
ENDFOR;
i = j - 1;

ENDIF;

candidatenum = hi.coverageno;

candidatefound = 0;
WHILE (i > 0) AND (candidatefound < candidatenum) DO

IF (hi has left dominating point) THEN

IF (hi contains p) THEN return true; ENDIF;

IF (hi intersects with halfline(p)) THEN 

intersection = intersection+1; 
ENDIF;
IF (p.x is between dp(hi).x and sp(hi).x) THEN 

candidatefound = candidatefound + 1; 
ENDIF;

ENDIF;
i = i - 1;

ENDWHILE;

IF (intersection is odd) THEN return true;
ELSE return false;
ENDIF;
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candidate half segments. In the worst case, the algorithm may need to scan the whole half seg-
ment array.

In order to compare the performance of the PSPL algorithm with that of the original plumb-line
algorithm, we have conducted a series of experiments based on the world map data set [10, 11].
Table 1 presents some statistics on the data set. 

In the experiments, we compare each city with each country and invoke the PSPL algorithm after
a preceding MBR test, that is, whenever the point is within the MBR of the region. For each such
call, we record the number of accessed half segments. This number is then compared with the
number of edges of the region, which is supposed to be the number of accesses for the original
plumb-line algorithm. Figure 3 shows the statistics of the experimental results, explained in more
detail in Table 2. 

As stated earlier, the cost of the PSPL algorithm consists of the cost of the binary search and the
cost of the further scan. In Table 2, we list the detailed information concerning these two parts.
For this purpose, we classify countries into groups by their numbers of edges. The three largest
countries are listed separately.

From the above experimental results we can see that the PSPL algorithm can greatly reduce the
cost involved in solving the point-in-region problem. On average, the cost is only 5% or less of
the original cost. Since the binary search can be finished in O(log N) time, the PSPL algorithm is
relatively more efficient when the number of edges of the region increases. 

By a closer look at the experimental results, however, we find that for some regions such as the
USA and Canada, the overhead of the PSPL algorithm is higher than we have expected, while for

number of points (cities) 1232

number of regions (countries) 239

average number of edges (for regions) 317.23

maximum number of edges (for regions) 13,318

minimum edge numbers (for regions) 4

Table 1. Statistics of the experimental data set
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the region of Russia, which is also very big and complicated, the cost is quite small. Figure 4
shows the histograms of the cost of the further scan concerning the regions of USA and Russia.

The reason for this result is that in the regions of USA and Canada, the length of the edges is not
evenly distributed. In the data set, there is a long edge between the regions of USA and Canada
(see Figure 5), and as a result, the algorithm needs to go for a long distance to reach the half seg-
ment corresponding to the long edge, as illustrated in Figure 5. 

One solution to this problem is to employ a trivial “break-up” technique. That is, whenever an
edge is longer than a predefined threshold ξ, it will be “broken up” into two or more shorter edges
so that in the system, no edges are longer than ξ. 

Number of Edges
(= Number of Half Segments / 2)

Average 
Number of 

Edges

Average 
Accesses of 

PSPL

Accesses in Further Scan Average 
Accesses in 

Binary SearchMin Max Average

0-500 217.56 21.48 1 136 13.06 8.42

500-2000 625.56 18.41 1 319 8.28 10.13

2000-4800 2968.5 40.4 1 208 28.1 12.3

4820 (Russia) 4820 16.73 1 89 3.73 13

9744 (Canada) 9744 647.19 4 3076 633.19 14

13318 (USA) 13318 398.87 1 4632 383.87 15

Table 2. Detailed cost of the PSPL Algorithm

Fig. 4. Histogram of the cost involved in the further scan
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4 Conclusion

The plumb-line algorithm is a basic algorithm to solve the point-in-region problem. However, the
original algorithm needs to access all the edges of the region, which can be a considerable over-
head in some circumstances, especially when the region is a big and complicated one. In this
paper, we have proposed an improved plumb-line algorithm, the Partial-Scan Plumb-Line (PSPL)
algorithm. For regions with short edges it reduces the running time from O(n) to about O(log n)
on the average, and so greatly speeds up query processing.
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