| mplementation of the ROSE Algebra:
Efficient Algorithmsfor Realm-Based Spatial Data Types

Ralf Hartmut Gting Thomas de Ridder Markus Schneider
Praktische Informatik 1V Praktische Informatik 111 Praktische Informatik 1V
Fernuniversitat Hagen Fernuniversitéat Hagen Fernuniversitét Hagen
D-58084 Hagen D-58084 Hagen D-58084 Hagen
GERMANY GERMANY GERMANY
gueting@fernuni-hagen.de thomas.deridder @fernuni- markus.schneider @fernuni-

hagen.de hagen.de

Abstract: The ROSE algebra, defined earlier, isa system of spatial datatypes for usein spatial data-
base systems. It offers data types to represent points, lines, and regions in the plane together with a
comprehensive set of operations; semantics of types and operations have been formally defined. Val-
ues of these data types have a quite general structure, e.g. an object of type regions may consist of
severa polygons with holes. All ROSE objects are realm-based which means al points and vertices
of objectslie on an integer grid and no two distinct line segments of any two objectsintersect in their
interior. In this paper we describe the implementation of the ROSE algebra, providing data structures
for the types and new realm-based geometric algorithmsfor the operations. The main techniques used
are (paralel) traversal of objects, plane-sweep, and graph algorithms. All algorithms are analyzed
with respect to their worst case time and space requirements. Due to the realm properties, these algo-
rithms are relatively ssimple, efficient, and numerically completely robust. All data structures and al-
gorithms have indeed been implemented in the ROSE system; the Modula-2 source code is freely
available from the authors for study or use.

Keywords. Spatial data types, algebra, realm, finite resolution, numerical robustness, efficient algo-
rithms, plane sweep, ROSE.

This work was supported by the DFG (Deutsche Forschungsgemeinschaft) under grant Gu 293/1-2.

1 Introduction

We consider aspatial database systemto be afull-fledged database system with additional capabilities
for representing, querying, and manipul ating geometric data (for asurvey see[Gii94]). Such asystem
provides the underlying database technology needed to support applications such as geographic in-
formation systems and others. Spatial datatypeslike point, line, and region provide afundamental ab-
straction for modeling the structure of geometric entities, their relationships, properties, and opera-
tions. Their definition and implementation is probably the most fundamental issue in the devel opment
of spatial database systems.

There have been quite afew proposals for systems of spatial datatypes and operations, or spatial al-
gebras; they have been embedded into query languages, implemented in prototype systems, and some
of them have been defined formally. For a discussion and references see [GUS93b, Gui94]. This paper
continues the development of one such proposal, the ROSE algebra [GlS93b], which has a number
of interesting features: (i) it offers (values of) datatypes of avery general structure, (ii) hasacomplete
formal definition of the semantics of types and operations, (iii) has a discrete geometric basis (so-
called realms, see below) which allows for a correct and robust implementation in terms of integer
arithmetics, (iv) treats consistency between distinct geometric objects with common parts, and (v) has
ageneral object model interface which allowsit to cooperate with different kinds of database systems.

The development of the ROSE algebra so far consists of three steps: (1) the concept of a realm
[GUS934] as a discrete geometric basis, (2) the formal definition of the ROSE algebra itself offering
realm-based spatial datatypes and operations [GUS93b], and (3) the ROSE system as an implementa-
tion of the ROSE algebra, which realizesitstypes and operations by providing efficient data structures
and algorithms defined over a discrete grid. Thisthird step is the subject of this paper. Let us briefly
review the first two steps.

A realm conceptually describes the complete underlying geometry of aparticular application spacein
two dimensions. Formally, arealm is afinite set of points and line segments over a discrete grid (see
Figure 1(a)) such that (i) each point and each end point of aline segment isagrid point, (ii) each end
point of arealm segment is also apoint of the realm, (iii) no realm point lies within arealm segment
(which means on it without being an end point), and (iv) no two realm segments intersect except at
their end points. The idea is now to construct the geometries of spatial objects by composing them
from realm primitives (see Figure 1(b)). The realm concept solves numerical robustness and topolog-
ical correctness problems, enforces geometric consistency of related spatial objects, and enables one
to formally define spatial datatypes or algebras on top of it that enjoy nice closure properties not only
in theory but also in an implementation.

Dl

(a) Example of aream (b) Ream objects over therealmin (a)
Figure 1

The ROSE algebra [GUS93b] offersthree datatypes called points, lines, and regions whose values are
realm-based, i.e. composed from elements of a realm, together with a comprehensive set of opera-
tions. Figure 2 illustrates these data types.

apoints value alinesvaue aregions value

Figure 2: Examples of spatial values

The structure of spatial objects is defined in terms of the notions of an R-point, an R-block and an
R-face. For agivenrealm R, an R-point isapoint of R. An R-block is a connected set of line segments
of R. An R-faceis essentially a polygon with holes that can be defined over realm segments. Then a
value of type pointsis aset of R-points, avalue of type linesis a set of digoint R-blocks, and avalue
of typeregionsis aset of edge-digoint R-faces (where edge-disjoint means that two faces may have
acommon vertex, but no common edge).

Therearefour classes of spatial operations. (1) spatial predicates expressing topological relationships
(e.g. inside, intersects, meets), (2) operations returning atomic spatial data type values (e.g. inter-
section, plus, minus, contour), (3) spatial operators returning numbers (e.g. dist, perimeter, area),
and (4) spatial operations on sets of database objects (e.g. sum, closest, fusion). The signature of the
first three groups of operations of the ROSE algebra can be found in the Appendix, for the meaning
of operations see [GUS93b]. The operations of the fourth group have not yet been implemented be-
cause they require the implementation of the object model interface (described in [GUS93b]) whichis
not yet available.

Thetopic of this paper isthe implementation of the ROSE algebra. To be precise, we must distinguish
between a descriptive and an executable algebra [GU89, BeG92]. A descriptive algebra offers types
and operations at a conceptual level which can be used to formulate queries; its semantics are given
by defining a*“ carrier” set of objects for each sort of the algebra and afunction for each operator. An
executable algebra describes the actual representations and query processing algorithms present in a
system; hence in such an algebra there is a data structure associated with each sort (or type) and an
algorithm, or a procedure realizing it, with each operator. In a database system, it is the task of the
optimizer to translate an expression of the descriptive algebrainto an equivalent, efficiently evaluable
expression of the executable algebra. The ROSE algebra, as defined in [GUS93b], is a descriptive a-
gebra. Hencein this paper wefirst describe a corresponding executable algebra - essentially polymor-
phic descriptive operators are decomposed into several executable operators - and then data structures
and algorithms to implement it. The main new aspects of this design and paper are the following:

* Wedescribe at avery high level, yet precisely, robust and efficient algorithms dealing with
the complex geometric entities availablein the ROSE agebra. They can be grouped into par-
allel traversal, plane sweep, and graph algorithms. For each paradigm, we show afew “pro-
totype” operators and their algorithms and discuss which other operators can be realized
similarly and which modifications are necessary. Many algorithms require only linear time,
the remaining ones O(n log n) time where n is abound on the size of the operand objects.

» All spatial objects processed by the operations are realm-based, i.e., they are defined over a
discrete basis and in particular no two segments intersect within their interiors and no point
lies within a segment. These properties can be exploited for designing efficient geometric a-
gorithms. For example, many operations can now be realized through a simple parallel tra-
versal for which otherwise more complex and expensive plane sweep algorithms would be
needed. When plane sweep isneeded, it issimpler because no i ntersection points of segments
can be discovered during the sweep (e.g., a static sweep event structure can be used).

* Incontrast to traditional papers on agorithms, the focus is not on finding the most efficient
algorithm for one single problem (operation), but rather on considering a spatial algebra as
awhole, and on reconciling the various requirements posed by different algorithmswithin a
single data structure for each type. We are not aware that implementations of complete spa-
tial algebras have been described before in asimilar manner.

» Theimplementation is designed for use in a spatial database system. In particular, represen-
tations for spatial data types do not use pointer data structures in main memory, but are all
embedded into compact storage areas which can be efficiently transferred between a main
memory buffer and disk. Data structures are al'so designed to alow for realm updates.

» The ROSE system has actually been implemented and is running; the complete source code
Is available from the authors for study or use [Ri95]. The implementation was done in Mod-
ula-2 for UNIX systems. We feel it isimportant to make such well-designed “modules’ for
spatial DBM S systems available to the research community.

The importance of a finite-precision / finite-resolution computational geometry, as described in this
paper, defined on a uniform, discrete grid such that points, end points of line segments, vertices of
polygons etc. have integer coordinates instead of arbitrary floating-point coordinates, has been em-
phasized by Greeneand Yao [GrY 86] aswell as Yao [Ya92]. Finite-precision geometry has so far only
been studied by a few researchers (overviews can be found in [KeK81, Ov88b, Ov88c]). Problems
considered are, for example, the nearest neighbour searching problem [KaM85], range searching on
agrid[Ov88a, Ov88h], the point |ocation problem [M185], the computation of rectangle intersections
and maximal elements by divide-and-conquer [KaO88b], computing the convex hull of aset of points,
reporting all intersections of aset of arbitrarily oriented line segments, and the cal cul ation of rectangle
intersections and maximal elements by using the plane-sweep technique [KaO88a, Ov88b]. To our
knowledge, geometric algorithms over a discrete domain for more complex structures like those of
the ROSE algebra have not been described in the literature.

The paper is structured as follows: In Section 2 an executable algebra is designed for the given de-
scriptive ROSE algebra. In Section 3 we give a high-level specification of data structures for the rep-
resentation of ROSE objectswhich provides abasisfor the subsequent description of algorithms. Sec-
tion 4 introduces real m-based geometric algorithmsfor the implementation of ROSE operations. Sec-
tion 5 shows the actual data structures used and discusses some important implementation concepts.

2 Descriptive and Executable ROSE Algebra

In this section we develop an executable algebra for the given descriptive ROSE algebra. Essentially
this means that we have to decompose each polymorphic descriptive operator into corresponding ex-
ecutable operators for the possible combinations of datatypes. Both algebras use second-order signa-
ture [GU93] as the underlying formalism. Second-order signature allows one to define atype system
together with an algebra over that type system. In particular, it is possible to describe polymorphic

operations by quantification over kinds. For the purpose of this paper it sufficesto view kinds just as
type sets; the two relevant sets are EXT = {lines, regions} and GEO = { paints, lines, regions}. Here
are afew examples of spatial predicates of the ROSE algebra:

V geoin GEO. V ext;, ext, in EXT. V areain regions¥edisoint,

geo X geo —bool =, # digoint
geoxregions —bool inside

exty x ext, — bool intersects

area x area — bool adjacent, encloses

Here geo isatype variable ranging over the three typesin kind GEO so that the first three operations
can compare two values of equal type and the inside operation can compare a points, alines, or are-
gions value with aregions value. The inter sects operation can be applied to two values of the same
or different typewithin kind EX T. The notation regions® €& dis0int j5 an attempt to capture the structure
of partitions of the plane (into digoint regions) in the type system. It ensures that the two operands
given to the adjacent or encloses operator are two regions taken from the same partition of the plane,
hencethey are either disjoint or equal; for details see [GUS93b]. For the executable algebrathisis not
relevant and we can introduce executable operators with functionality regions x regions — boal.

In the executable algebra, we generally need different algorithms for the different data types. For ex-
ample, it is obvious that an agorithm which examines the disjointness of two points objects will be
different from an algorithm which determines whether two regions objects overlap. Hence the de-
scriptive operator digoint is mapped to the three executable operators:

points x points — bool pp_digoint
lines x lines — bool ll_digoint
regionsx regions — booal rr_digoint

The Appendix lists the signature of the ROSE algebra and shows its transl ation into executabl e oper-
ators. For example, the first line of the ROSE signature shown above is represented as follows:

Descriptive Operator Executable Operator PT|PS| G TC
geo x geo — bool = | pp_equal, ll_equal, rr_equal X O(n)
| pp_unequal, ll_unequal, rr_unequal | X O(n)
digoint | pp_digoint, Il_digoint X O(n)
rr_digoint X O(nlogn)

The last four columns of this table describe the algorithmic technique used to implement this (group
of) executable operators (PT = parald traversal, PS = plane sweep, G = graph algorithm) and the
worst case time complexity. The algorithms are discussed below. There is a gap in the table because
we have not yet studied efficient algorithms for distance problems (operator dist of the third group).

3 Specification of Data Structuresfor the Types

Algorithmsfor the executable ROSE operators need to access, and sometimes to build, the data struc-
tures representing values of the three types points, lines, and regions. Rather than describing these
data structures directly in terms of arrays, records, etc., we first introduce a higher level description

which offers suitable access and construction operations to be used in the algorithms. Basically, we
define a little abstract data type for each of the three data structures. In a second step, one can then
design and implement the data structure itself.

The specification of an abstract data type consists of a many-sorted signature together with a set of
laws, or equations, defining the behaviour of operations. To be precise, we use a dightly different
specification method sometimes called “ denotational specification” (e.g. [K183]). It simply meansthat
we assign semanticsto the sorts and operations of the many-sorted signature directly by defining car-
rier setsfor the sorts and functions for the operations on these carrier sets, i.e., we define alittle alge-
brafor each of the three data structures representing points, lines, or regions values, respectively. In
other words, we give a concrete mathematical model for the data type instead of a set of laws. In fact,
the whole ROSE algebraitself has been defined by the same method.

For most executable operatorsit turns out to be sufficient to regard a spatial object as an ordered se-
guence of elements where it is possible to access these elements consecutively and to insert anew el-
ement into the sequence. Hence thisis our basic strategy for modeling the three data structures.

Before we can introduce the algebra points, afew notations are needed. Realms and realm-based spa-
tial objects are defined over afinite discrete space N x NwithN={0, ... m—-1} c N. Py={(X, y) |
xe N,y e N} denotes the set of all N-points. Furthermore, an (X, y)-lexicographic order is assumed
on PN which is defined aspq < P2 &= X < Xo Vv (Xl =XoAY1 < y2)

algebra points

sorts poaints, Py, bool

ops new : — points
select_first . points — points
select_next . points — points
end_of pt . points — bool
get_pt . points — Py
insert . pointsx Py — points

sets points = {(pos, <Py, ..., P >) | P0S=0; n=0; for1<i<n,p,e Py; for L<i<n, pj <pjz1}

functions Let P = (i, <py, ..., P >) € paintsand p € Py.

new() = (0,9
(L,<pg 0 Pp>) ifn21
select_first(P) =
0, 9) otherwise
(I+1,<pq, ..., Ppp>) ifl<i<n
select_next(P) =
O, <pqg, s Pr>) otherwise
end_of pt(P) = (i=0)
p; if1<i<n
get_pt(P) = _ .
undefined otherwise
_ (J, <P1, s Pn>) if3je{L ..nb:p=p
insert(P, p) =1 (L <p,py - Pr>) ifp<p
(n+1,<py, ... P P>) ifp>p

. ! ~ Mn
(+1,<py s P P Pj+1s o Pn>) i 3je{l, .. .n-1} g <p<pjsq
end points.

The sorts and ops parts describe the syntax of the algebra, i.e., the signature. The sets and functions
parts give the semantics in terms of carrier set and function definitions. The agebra points contains
the sorts points (to be defined), Py, and bool. The carrier set of the sort pointsis defined as the set of
all ordered sequences < py, ..., P, > of N N-points together with a pointer indicating a position within
the sequence. The symbol ¢ denotes the empty sequence. Functions manipulate such values, for ex-
ample, select_first positions the pointer pos on the smallest element of the point sequence, and get_pt
yields the point at the current position.

A crucial ideafor the representation of the relatively complex lines and regions values, which is the
basis for most of our algorithms, is to regard them as ordered sequences of halfsegments. Let Sy =
{(p,q) | pe Pn, qe Py} denote the set of N-segments. The equality of two N-segments s; = (p4, 07)
and s, = (pp, Op) isdefined ass; = s, < (Py = P2 A Ay = Gp) Vv (P1 = G2 A P2 = 0y). W. |. 0. g. we nor-
malize Sy by theassumptionthat V se S : s=(p, g) = p < qwhich enables usto speak of aleft and
aright end point of asegment. Let further Hy = {(s, d) | se S, d € {left, right}} be the set of half-
segments. A halfsegment h = (s, d) consists of an N-segment s and a flag d emphasizing one of the N-
segment’s end points which is called the dominating point of h. If d = left then the left (smaller) end
point of sisthe dominating point of h, and h is called left halfsegment. Otherwise, the right end point
of sisthedominating point of h, and hiscalled right halfsegment. Hence, each N-segment sis mapped
to two halfsegments (s, left) and (s, right). Let dp be the function which yields the dominating point
of a halfsegment.

For two distinct halfsegments h; and h, with acommon end point p, let o be the enclosed angle such
that O < o0 < 180° (an overlapping of h; and h, is excluded by the realm properties). Let a predicate
rot be defined as follows: rot(hy, hy) istrueiff h; can be rotated around p through o to overlap h, in
counter-clockwise direction. We can now define a complete order on halfsegments which is basically
the (X, y)-lexicographic order by dominating points. For two halfsegments h; = (s;, dq) and h, =

(s, do) it is:
hy < hy & dp(hy) < dp(hy) v (dp(hy) = dp(hy) A ((dy = right A dy = left) v (dg = dy A rot(hy, hy))))

We now define the algebra regions (the algebra lines is amost the same, see below). The carrier set
of the sort regionsis defined asthe set of ordered sequences< hy,, h,, > of halfsegmentswhere each
halfsegment h; has an attached set of attributes a; whose elements are values of some new sort attr.
Attribute sets are used in algorithms to attach auxiliary information to segments.

algebra regions
sorts regions, Hy, attr, bool

ops new : — regions
select first . regions — regions
select_next . regions — regions
end of hs . regions — bool
get_hs . regions — Hy
get_attr . regions — attr
update_attr . regionsx attr — regions

insert . regionsx Hy — regions

sets regions = {(pos, < hy, ..., hy >, <ay, ..., a,>) |
(1) pos=0,n=>0
(QVie {1, ..,n}:heHya cattr

B Vie{l, .., n1}:h<hyy }
functions Let R, =<hy, ..., =<ay, .., a,> R=(, R, Ry € regions, and h € Hy.
new() 0,9, 90)
(LR Ry ifnx1

select first(R)
0,0, 9) otherwise

(i+LR,Ry) ifl<i<n
select_next(R)

O, R, R) otherwise

end of hs(R)

i
o
get_hs(R) {
|
|

jII

if1<i<n

undefined otherwise
if1<i<n

get_attr(R)

undefined otherwise

(, Ry, <aq, ..., 8.0, & 831, -, 83 >) If1<i<n

update attr(R, a)

undefined otherwise
(J, Ry, Ry) if3je {1 ..n:h=h
(1,<h,hy, ..., hy> <D, &, ..., a,>) if h<h;
insert(R, h) =1(n+1<hy .., h, h><aq,..,a,8> ifh> h
(+1,<hg ., hyh by, e hy > <ay, ... &, G, a1 >)
|fEIje {1, ..., n-1}: h <h<h
end regions.

Note that the algebra regions just offers manipulation of halfsegment sequences; it does not ensure
that a sequence indeed represents a correct regions value as defined in the ROSE algebra. The algo-
rithms using this structure are responsible for constructing only sequences that indeed represent re-
gions values. The algebra lines (not presented here) is identical to the algebra regions except for all
the parts related to attributes which are not needed.

Simple implementations for each of the three data types (algebras) would represent a sequence of n
points or halfsegmentsin alinked list or sequentialy in an array; the latter representation would also
be compatible with the compact storage area’ requirement needed for efficient database | oading/stor-
ing. Inthiscase, all operations except for insert need O(1) time; insert requires O(n) timefor arbitrary
positions and O(1) time for appending an element at the end of the sequence. Such a representation
would in fact be quite good for all “parallel traversal” algorithms of the ROSE algebra, because result
objects are always constructed in the lexicographic point or halfsegment order and can therefore be
built in linear time.

The actual implementation in the ROSE system uses for all three structures an AVL-tree embedded
into an array (the array serving as a storage pool for nodes); the elements, i.e. points or halfsegments,
are additionally linked in sequence order. With this representation, all operations except insert need
O(1) timeand insert O(log n) time. The requirement to support insertionin O(log n) time actually does
not come from the ROSE al gebra but from the connection with realms; realm updates due to insertion
of points or segments into the realm must be propagated to ROSE objects residing in a database
[GUS934]. This means that the data structures should support replacement of a segment in alines or

regions object by achain of segments, i.e., the segment must be deleted and the replacement segments
be inserted into the structure. Unfortunately, a consequence of thisis that the parallel traversa algo-
rithms cannot construct the result objects in linear time any more, but need O(k log k) for this where
kisthe size of the result object. Thisis acase of conflicting requirements, as mentioned in the intro-
duction. On the other hand, deriving the internal structure of alines or regions object (e.g. faces and
holes) which is needed to complete the construction (see Section 5) requires O(k log k) time anyway.

4 Algorithmsfor the Executable Algebra

This section introduces realm-based geometric algorithms whose characteristic features are numeri-
cal robustness, topological correctness, closure properties, and efficiency. Realm-based algorithms
are more efficient than their Euclidean counterparts. The design of these algorithms is based on tra-
versal technigques, on the plane-sweep paradigm, and on graph theory. Realm-based geometry deals
with spatial objects that are defined over the same discrete domain and assumes that no two segments
intersect within their interiors and that no point lies within a segment.

Executable operators are grouped by the applied algorithmic technique. For each group we show and
explain some example algorithms.

4.1 Algorithmswith Simpleor Parallel Object Traversal

A number of operators of the executable ROSE algebra can berealized by asimple or parallel travers-
al (scan) through the point or halfsegment sequence of one or two objects. To simplify the description
of algorithms, for each possible combination of two spatial data types two operations are introduced
which allow for aparallel traversal through two ordered sequences of elements (halfsegments, points).

As an example, we consider the two operations for two regions objects. The operation
rr_select_first(Ry, Ry, object, status) selects the first halfsegment of each of the regions objects R; and
R, (compare to the function select_first of algebraregions) and positions alogical pointer on both of
them. The parameter object with possible values{ none, first, second, both} indicateswhich of thetwo
object representations contains the smaller halfsegment. If the value of object isnone, no halfsegment
is selected, since Ry and R, are empty. If it is first (second), the smaller halfsegment belongs to R;
(Ry). If itisboth, thefirst halfsegments of R; and R, are identical. The parameter status with possible
values{end_of none, end of first, end_of second, end of both} describesthe state of both halfseg-
ment sequences. If the value of status is end_of none, both objects still have halfsegments. If it is
end_of_first (end_of_second), Ry (Ry) is empty. If it isend_of_both, both object representations are
empty.

The operation rr_select_next(R;, Ry, object, status) searches for the next smaller halfsegment of Ry
and R,; parameters have the same meaning as for rr_select_first. Obviously, this is realized by
select_next operations of the two objects.

Both operations together allow one to scan in linear time two object representations like one ordered
sequence. Analogous operations can be defined for two lines objects (Il _select_first, Il_select_next)
and alines and aregions object (Ir_select first, Ir_select_next). For the comparison of halfsegments
with points, the dominating points of the halfsegments are used so that points and lines objects

(pl_select first, pl_select_next) aswell as points and regions objects (pr_select_first, pr_select_next)
can be treated in asimilar way.

In the sequel we discuss algorithms for the operations (see algorithms below):

points x regions — bool pr_on_border_of
points x points — points pp_plus
lines x lines — bool Il_intersects

Operator pr_on_border _of determines whether all points of a points object lie on the faces’ bound-
aries of aregions object. Hence the algorithm checks whether for each point p of a points object P
(denoted as p € P(P)) ahalfsegment h of aregions object R (denoted h € H(R)) exists whose domi-
nating point is equal to p. The while-loop of the algorithm is executed as long as no point is found
which isin P but not a dominating point of a halfsegment of R and as long as none of the object se-
guences is exceeded. For the predicate to be true, termination of the while-loop must not have oc-
curred because a point was found which is not on the boundary of R (object # first). Thisimplies that
termination is due to reaching the end of one or both sequences, and the predicate is true if thiswas
not the regions sequence alone (status # end_of _second).

Operator pp_plusformsthe union of two points objects. The algorithm just scans the point sequences
of the two objects and merges them into a new points object.

algorithm pr_on_border_of
input: A points object P and aregions object R
output:true, if V pe P(P) 3 he H(R) : p=dp(h)
false, otherwise

begin

pr_select first(P, R, object, status);

while (object # first) and (status = end_of none) do

pr_select_next(P, R, object, status);

end-while;

return (object = first) and (status = end_of _second)
end pr_on_border_of.

algorithm pp_plus
input: Two paints objects P, and P,
output: A points object Ppg,, containing all points
begin
Phew := new();
pp_select_first(P4, P,, object, status);
while status = end_of_both do
if object = first then p := get_pt(P,)
elseif object = second then p := get_pt(P,)
elseif object = both then p := get_pt(P,)
end-if;
Prew := insert(Ppapw P);
pp_select_next(P,, P,, object, status);
end-while;
return Ppayy
end pp_plus.

algorithm Il_inter sects
input: Two lines objects L, and L,
output:true, if no common segment exists, but a com-
mon point which is not a meeting point
false, otherwise
begin
II_select_first(L,, Lo, object, status);
if object = first then act_dp := dp(get_hs(L,))
elseif object = second then act_dp := dp(get_hs(L,))
end-if;
act_obj := object; found := false; count := 0;
while (status=end_of none) and (object = both) do
II_select_next(L,, L,, object, status);
if (status= end_of_both) and (object # both) and
not found then
if object = first then
new_dp := dp(get_hs(L4))
elseif object = second then
new_dp := dp(get_hs(Ly))
end-if;
if new_dp = act_dp then (* new point *)
act_dp := new_dp; count :=0;
act_obj := object;
elseif object # act_obj then (* object switch*)
count ;= count + 1; act_obj := object;
found :=found or (count > 2);
end-if;
end-if;
end-while;
return found and (object # both);
end Il_intersects.

— 10 —

Operator |I_inter sects examines whether two lines objects L, and L, intersect. According to the def-
inition of the ROSE algebrait yields true if both objects have no common (half)segments but at |east
one common point which is not ameeting point but an intersection point. Point p isameeting point if
the angularly sorted list of halfsegments of L, and L, with the same dominating point p can be subdi-
vided into two sublists so that one list contains only halfsegments of L, and the other list only half-
segments of L,. Theideaisnow to walk around p, scanning the segments, and to count the number of
“object changes’ in this ordered list of halfsegments of L; and L,. Point p is a meeting point if this
number is less than or equal to two; otherwise an intersection point has been found. The while-loop
of the algorithm terminates if either the end of one of the objects has been reached or acommon half-
segment has been found. In the latter case the result value is false (object # both), in the first case the
decision is based on whether at |east one intersection point has been found or not (found). The algo-
rithms for the other operators are similar. The complete list of operators that can be treated by (paral-
lel) traversal isindicated by column PT in the Appendix. For all predicates and for operations return-
ing numbers (e.g. |_length) realized by PT agorithms, the worst case time complexity is O(n), where
n is the total number of points or halfsegments in the one or two operands. For operations returning
new spatial objects the time bound is O(n + k log k) where k is the number of points or halfsegments
in the result object; O(n) time is needed for scanning the operands and O(k log k) for constructing the
result. Since k = O(n), thisis always bounded by O(n log n).

4.2 AlgorithmsUsing the Plane-Sweep Paradigm

Plane-sweep [PrS85, Me84] is a popular technique of computational geometry for solving geometric
set problems which transforms a two-dimensional problem into a sequence of one-dimensional prob-
lemswhich are easier than the original two-dimensional one. A vertical sweep line sweeping the plane
from left to right stops at special points called event points, which are generaly stored in a queue
called event point schedule. The event point schedule must allow one to insert new event points dis-
covered during processing; these are normally the initially unknown intersections of line segments.
The state of the intersection of the sweep line with the geometric structure being swept at the current
sweep line position isrecorded in vertical order in adata structure called sweep line status. Whenever
the sweep line reaches an event point, the sweep line statusis updated. Event points which are passed
by the sweep line are removed from the event point schedule. Note that in general an efficient fully
dynamic data structure is needed to represent the event point schedule and that in many plane-sweep
algorithms an initial sorting step is needed to produce the sequence of event pointsin x-order (or xy-
lexicographic order).

In the specia case of realm-based geometry where no two segments intersect within their interiors,
the event point schedule is static (because new event points cannot exist) and given by the ordered
sequence of points or halfsegments of the operand objects. No further explicit event point structureis
needed. Also, noinitial sorting is necessary since the plane-sweep order of points and segmentsis our
base representation of objects anyway.

If aleft (right) halfsegment of aregions object is reached during a plane-sweep, its segment compo-
nent is stored into (removed from) the segment sequence of the sweep line status sorted by the order
relation above. A segment s lies above a segment t if the intersection of their x-intervalsis not empty
and if for each x of the intersection interval the y-coordinate of sis greater than the one of t (except
possibly for acommon end point where the y-coordinates are equal). Points and halfsegments of lines
objects are used to query the sweep line status.

— 11 -

The sweep line status can be described as an algebra (a formal description is omitted here) with an
ordered sequence of segmentsasacarrier set where each segment has an attached set of attributesand
a pointer indicates the position within the sequence. The operation new_sweep produces and initial-
izes the sweep line status. The operation add_|eft (del_right) inserts (removes) the segment compo-
nent of aleft (right) halfsegment into (from) the ordered segment set of the sweep line status. The op-
erations pred_of sand pred_of p yield the position of the greatest segment that is smaller than aref-
erence segment and point, respectively. The operations current_exists and pred_exists allow one to
check whether a current segment and the predecessor of the current segment, resp., existsin the sweep
line status. The operation set_attr sets the attribute set for the current segment, and the operations
get_attr and get_pred_attr yield the attribute set of the current and the preceding segment, respective-
ly. For the sweep line status an efficient internal dynamic structure like the AVL tree can be employed
(andisused in the ROSE system) which realizes each of the operationsadd_left, del_right, pred_of s,
and pred_of pinworst case time O(log n) and the other operations in constant time.

In the sequel for all algorithms we assume that all those halfsegments of aregions object R have an
associated attribute InsideAbove where the area of R lies above or left of its segment. This segment
classification can be computed by a plane-sweep algorithm (not shown here) which views all seg-
ments intersecting the current sweep line from bottom to top. It is obvious that the lowest segment
obtains the attribute InsideAbove, the following does not, the third again obtains it, etc. Whether the
attribute InsideAbove is associated with a segment depends on the assignment of the attribute to the
immediate preceding segment in the sweep line status. This segment classification is called at the end
of the construction of a regions object and the attribute stored with each halfsegment. It requires
O(n log n) time for an object with n halfsegments.

Thefirst class of plane-sweep agorithms considers the relationships between a points or lines object
and aregions object. The algorithm scheme is to insert only the segments of the regions object into
the sweep line status and to use the elements of the points and lines object, resp., as query elements.
The operations of this class have the following signature:

points x regions — bool pr_inside

lines x regions — bool Ir_inside, Ir_intersects, Ir_meets
regions x lines — bool rl_intersects, rl_meets

regions x lines — lines rl_inter section

As examples, we show the algorithms for pr_inside and rl_inter section (see algorithms on the next
page). The algorithms for the other operations are similar. The algorithm pr_inside checks whether
all points of a points object P lie within the areas of aregions object R. A point of P may coincide
with an endpoint of a segment of R. Both objects are traversed in parallel during a plane-sweep. The
segment components of the left halfsegments of R together with the associated attribute InsideAbove
areinserted into the sweep line status, the segment components of the right halfsegments are removed.
If apoint p of P does not coincide with a dominating point of a halfsegment of R, the existence of a
segment in the sweep line status immediately below p is checked. If no segment isfound, then p def-
initely lies outside of R. Otherwise, it must be checked if the attribute InsideAbove has been assigned
to the segment. If thisisthe case, then p liesinside of R, otherwise outside. The while-loop of the al-
gorithm is executed at most I+mtimes (I the number of points of P, mthe number of halfsegments of
R). The loop terminates when all points of P have been examined or when a point has been found
which doesnot liein R. Theinsertion of aleft halfsegment into and the removal of aright halfsegment
from the sweep line status needs O(log m) time. A point which coincides with the dominating point
of a halfsegment can be ignored, since it lies definitely within R. For al other points the preceding

algorithm pr_inside

input: A points object P and aregions object R

output:true, if al pointsof P liein the areaof R
false, otherwise

begin begin

algorithm rl_intersection

input: A lines object L and aregions object R

output: A new lines object L, containing all halfseg-
ments of L whose segment componentsliein R

S:= new_sweep();
inside :=true;
pr_select first(P, R, object, status);
while (status = end_of_first) and inside do
if (object = both) or (object = second) then
h:=get_hs(R); (* Leth=(s,d).*)
attr := get_attr(R);
if d=left then
S:= add_I€ft(S 9);
if InsideAbove e attr then
S:=set_attr(S {InsideAbove});
end-if
else
S:=del_right(S s);
end-if
else
S:=pred_of_p(S get_pt(P));
if current_exists(S)
then inside := (InsideAbove € get_attr(9))
elseinside := false

Lnew := new(); S:= new_sweep();
Ir_select first(L, R, object, status);
while status = end_of _none do
if object = second then
h:=get_hs(R); (* Leth=(s,d).*)
attr := get_attr(R);
if d=left then
S:=add left(S, 9);
if InsideAbove € attr then
S:=set_attr(S, {InsideAbove});
end-if
else S:=dd_right(S s);
end-if
elseif object = both then
h:=get_hs(L); Ly := insert(Lpap N);
else
h:=get_hs(L); (* Leth=(s,d).*)
S:=pred_of (S 9);
if current_exists(S) and
(InsideAbove e get_attr(S) then

end-if Lpew = insert(Lpaps N);
end-if; end-if;
pr_select_next(P, R, object, status); end-if;
end-while; Ir_select_next(L, R, object, status);
return inside; end-while;
end pr_inside. return Lpass

end rl_inter section.

segment in the sweep line status has to be searched which also needs O(log m) time. Altogether, the
worst case time complexity of pr_insideis O((I + m) log m).

Thealgorithm for rl_inter section producesin asimilar way anew lines object which containsall seg-
ments lying within R. It is crucial for the correctness of this algorithm that we can be sure that a com-
plete (half)segment lieswithin R, if its dominating point lies within an area of R. Thisis because the
boundary of R cannot intersect the interior of the segment due to the realm properties. This algorithm
requires O((I + m) log m+ k log k) where k is the size of the result object and | and m the size of the
lines and regions operand, respectively.

For all other operations of this class, the time complexity is O((I + m) log m) if mis the size of the
regions operand and | the size of the other operand. Of course, for n =1 + m, O(nlog n) isasimpler
upper bound for all operations.

The second class of plane-sweep algorithms considers the rel ationships between two regions objects.

regions x regions — boal rr_digoint, rr_inside, rr_area_digoint,
rr_edge digoint, rr_edge inside, rr_vertex_inside,
rr_intersects, rr_meets, rr_adjacent, rr_encloses

rr_intersection, rr_plus, rr_minus

regions x regions — regions

— 13 -

Note that here the immediate application of the technique introduced above isimpeded by the fact that
regions objects may have holes. Hence, for the algorithms of this class we introduce the concepts of
overlap numbers and segment classification. A point of the realm grid obtains the overlap number k
if itiscovered by (or part of) k regions objects. For example, for two intersecting simple polygonsthe
area outside of both polygons gets overlap number 0, the intersecting areas get overlap number 2, and
the other areas get overlap number 1. Since a segment of a regions object separates space into two
parts, an inner and an exterior one, each segment is associated with a pair (nv/n) of overlap numbers,
alower (or right) one mand an upper (or left) one n. The lower (upper) overlap number indicates the
number of overlapping regions objects below (above) the segment. In this way, we obtain a segment
classification of afixed set of regions objects and speak of (m/n)-segments. For two regions objects
(weonly consider binary operators here) m, n < 2 holds; of the nine possible combinations only seven
describe valid segment classes. Thisis because a (0/0)-segment contradicts the definition of aregions
object, since then at least one of both regions objects would have two holes or an outer cycle and a
hole with acommon border. Similarly, (2/2)-segments cannot exist, since then at least one of the two
regions objectswould have a segment which is common to two outer cycles of the object. Hence, pos-
sible (m/n)-segments are (0/1)-, (0/2)-, (1/0)-, (1/1)-, (1/2)-, (2/0)-, and (2/1)-segments. Examples of
(m/n)-segments are given in Figure 3.

Figure 3: Segment classification

As an example for the plane-sweep agorithms of the second class we show the algorithm for
rr_inside (see algorithm below) which tests whether aregions object R; is completely contained in a
regions object R,. This means that al segments of R; must lie within the area of R, but no segment
(and hence no hole) of R, may lie within R;. If we consider the objects R; and R, as halfsegment se-
guences together with the segment classes, the predicate rr_inside istrueif (1) all halfsegments that
are only element of R; have segment class (1/2) or (2/1), since only these segments lie within Ry, (2)
all halfsegments that are only element of R, have segment class (0/1) or (1/0), since these definitely
do not lie within Ry, and (3) all common halfsegments have segment class (0/2) or (2/0), since the ar-
eas of both objects lie on the same side of the halfsegment. In the case of a (1/1)-segment the areas
would lie side by side so that R; could not be contained by R,. In the algorithm, whenever a segment
isinserted into the sweep line status, first the pair (my/ny) of overlap numbers of the predecessor is
determined (it is set to (*/0) if no predecessor exists). Then the overlap numbers (myng) for this seg-
ment are computed. Obviously ms=n, must hold; nsisasoinitialized to n, and then corrected. If R
has| and R, m halfsegments, the while-loop is executed at most n = | + mtimes, since each time anew
halfsegment isvisited. The most expensive operationswithin theloop are theinsertion and the remov-
al of asegment into and from the sweep line status. Since at most n elements can be contained in the
sweep line status, the worst case time complexity of the algorithm is O(n log n) which is also valid
for all other operations of this class.

The other operations mostly require slight modifications of the algorithm above. The algorithm for
rr_edge inside forbids common segments, the algorithm for rr_vertex_inside even common points,

algorithm rr_inside if ((object = first) or (object = both)) and
input: Two regions objects R; and R, (InsideAbove € get_attr(Ry))
output:true, if Ry lieswithin R, thenng:=ng+1
false, otherwise elseng:=ng-1
begin end-if;
S:= new_sweep(); if ((object = second) or (object = both)) and
inside :=true; (InsideAbove € get_attr(Ry))
rr_select_first(Ry, Ry, object, status); thenng:=ng+1
while (status# end_of_first) and inside do elseng:=ng—-1
if (object =first) or (object = both) end-if;
then h:=get_hs(Ry); (* Leth=(s, d).*) S:=set_attr(§ (mgng);
elseh:=get_hs(Ry); (* Leth=(s, d).*) if object = first then
end-if; inside := ((mgng) € {(1/2), (2/1)})
if d=right then else if object = second then
S:=dd_right(S 9); inside := ((mgng) ¢ {(1/2), (2/1)})
else else
S:=add_left(S s); inside := ((mgng) € {(0/2), (2/0)})
if not pred_exists(S) end-if;
then mp/np =*/0 end-if;
ese mp/”p = get_pred_attr(9 rr_select_next(Ry, Ry, object, status);
end-if; end-while;
mg 1= Np; return inside;
Ng:=Np; end rr_inside.

aproblem which to treat is alittle bit more complicated. The operation rr_area_digoint yields true
if both objects have no common areas and only allows (0/1)-, (1/0)-, and (1/1)-segments. The opera-
tion rr_edge digoint additionally forbids common segments (no (1/1)-segments) and rr_digoint
even common points which needs a little bit more effort. The operation rr_adjacent which checks
the neighbourhood of two regions objectsis equal to rr_area_digoint but additionally requires the
existence of at least one (1/1)-segment. The operation rr_meets which checks whether two regions
objects meet inapointisequal torr_edge digoint but additionally requires the existence of at |east
one common point. The operation rr_intersectsis true if two regions objects have a common area
which means that there exist some segments of segment class (0/2), (1/2), (2/0), or (2/1). The follow-
ing three operations produce a new regions object. The intersection of two regions objects (operation
rr_intersection) impliesthe search for all segmentswith segment classification (0/2), (1/2), (2/0), and
(2/1). For the union of two regions objects (operation rr_union) al (0/1)-, (1/0)-, (0/2)-, and (2/0)-
segments are collected. The computation of the difference of two regions objects R; and R, (operation
rr_minus) requires all (0/1)- and (1/0)-segments of Ry, al (1/2)- and (2/1)-segments of R,, and all
common (1/1)-segments. The operation rr_encloses yields true for two regions objects R; and Ry, if
each face and hence each segment of R, is contained in ahole of R,. Note that this condition does not
mean that R; and R, are area-digoint, since it is possible that another face of R; lieswithin R,. Here
amethod is used which gives the overlap numbers a different interpretation: We do not consider the
overlapping of object areas but the overlapping of the single cycle areas of an object. In thisway, the
exterior of R gets the number O, the area of aface of R; the number 1, and a hole the number 2. If a
hole of R; contains another face of the same object, this face gets the number 3 and a hole of thisface
the number 4, etc. If we compute such a segment classification for Ry, then R; encloses R if all seg-
ments of R, lie on alevel with even overlap number (greater than 0).

4.3 Graph Algorithms

A realm can beinterpreted as a spatially embedded planar graph [GUS93a). Hence, alinesor aregions
object defined over such arealm can also be regarded as a planar graph G = (V, E) where the vertex
set Visthe set of all end points of the segments and the edge set E is the set of all segments of the
object. Note that such an embedded planar graph represents not only the usual incidence relationships
between nodes and edges, but also the neighbourhood relationship among segments incident to the
same node. This graph-theoretic view offers two primitive operations, illustrated in Figure 4, that are
crucial for the algorithmsdiscussed in this section: For agiven halfsegment, (i) find itstwo neighbours
incident to the same node w.r.t. the counter-clockwise order, and (ii) find the “partner halfsegment”
representing the same segment (which is equivalent to following an edge of the graph).

. —

&

Figure 4: Relationshipsin a graph

Basically, the data structure needed to support these two primitives in O(1) time is an adjacency list
for each node containing the outgoing edges in counter-clockwise order. As it happens, the halfseg-
ment sequence representing alines or regions object is already close to the desired structure because
it contains all halfsegments with the same dominating point as a compact subsequence in counter-
clockwise order (thisfact has already been used in algorithm I1_inter sects). What is needed addition-
aly isapointer from each halfsegment to the partner halfsegment. For convenience, we also doubly
link the halfsegments around a node. Figure 5 shows alines object and its graph representation in two
arrays Edge and Node.

Array Edge Array Node
index| h |pred|succ|link|node index| index|on_stack
1 |h|1]1]|5 1 1 | false
Pg 2 |h,| 3|34 2 2 | false
3 |hh| 2216 2 3 | false
S5 4 |hS| 4] 42 3 4 false
5 |hi| 8|61 4 5 false
6 |hf | 5|73 4 6 false
7 |n| 68109 4 7 | false
8 |hl | 7|5 |10 4 8 | false
r
9 |hy |9 |9 |7 5
10 | h{ | 10|10 8 6
Figure 5: Graph Representation of 1 | n 11| 1112 7
alines object
12 |hi|12]|12|11 8

— 16 —

Thisis essentially the temporary representation of alines or regions object used in the ROSE system
as a basis for graph algorithms. In array Edge, field h contains the halfsegment. The fields pred and
succ contain the indexes of the preceding and succeeding halfsegments in the counter-clockwise or-
der; link is the index of the partner halfsegment. The field node_index points into the second array
Node.

The data structure definition and an algorithm for creating this temporary representation are shown at
the bottom of this page. In algorithm init_edge and_node_array, the while-loop is executed once
for each halfsegment. All operationswithin the loop need constant time except for linking aright with
its corresponding left halfsegment which requires O(log n) time where n is the number of halfseg-
ments of the lines or regions object. Hence the whol e algorithm hastime complexity O(nlog n). After
initialization of the arrays, for an index of an element we can find its predecessor, successor, opposite
halfsegment, and node information in constant time.

This graph-theoretic view is used to realize the executable operators|_interior, r_contour, |_count,
and r_count which have the following signature:

lines — regions | interior
regions — lines r_contour
lines — int | _count
regions — int r_count

Herel _interior determines aregions object formed from the areas enclosed by segments of a lines
object, r_contour returnsalines object formed from the segments of only the outer cycles of the faces
of aregions object (holes are omitted). The other two operations return the number of components

const MaxComp=...; (* New or first point reached. *)
type EdgeRec= record topy :=topy + 1;
h - Hn Node]topy/].on_stack := false;
pred, succ : cardinal; Edge[topg].node_index := topy;
link, node_index : cardinal; Edge[topg].succ := topg;
end; Edge[topg].pred := topg;
NodeRec = record ese
on_stack . boolean; (* The same dominating point. *)
end; Edge[topg].node_index := topy
var Edge = array [1..MaxComp] of EdgeRec; (* Produce doubly-linked ring. *)
Node = array [1..NoOfPoints] of NodeRec; Edge[topg].pred := topg — 1,

Edge[topg] .succ := Edge[topg — 1].succ;
Edge[topg — 1].succ := top;

algorithm init_edge and_node_array Edge{ Edge{topg].succ].pred := topg;

input: A lines abject L (or aregions object R)

end-if;
gutput.The two arrays Edge and Node if d = right then
e?m =0 < Compute index i of the corresponding left
tgsv _ Oi halfsegment of the array Edge in the range 1 to
E-=0

topg by using binary search. >
Edgeltopg].link :=1i;
Edgefi].link := topg;

old_dp := (m, m); (* outside of the realm *)
L := select first(L);
whilenot end_of hs(L) do

topg :=topg + 1; i

g =topg + 1; old dp :=act_dp;
h:=get_hs(L); (* Leth=(s, d). *) L:= sF:elect ngxt?L)'
Edgeftopg] h = h; end-while,

act_dp :=dp(h);

et Edge, Node;
if (act_dp = old_dp) or (topy = 0) then return =dge, Node

end init_edge and_node array.

- 17 -

which is the number of blocks (connected components) for alines object and the number of faces for
aregions object. As an example, we show the algorithm for r_contour.

The main problem is the assignment of the segments to the correct outer and hole cycles which ac-
cording to the face definition is unique [GlUS93a]. According to that definition, the regions object in
Figure 6(a) consists of two faces rather than of a single face with a hole.

(@

(b)

Figure 6: Traversal of Cycles

An important observation is that for the first halfsegment of any cycle (with respect to the order of
halfsegments) we can decide whether it belongsto an outer cycle or ahole. It isaleft halfsegment and
belongs to an outer cycle iff the attribute InsideAbove has been set, otherwise to a hole.

We adopt the following strategy: If for agiven left halfsegment it is known that it belongs to an outer
cycle, then wetraverse the graph forming aminimal cycle containing that segment. Thisworks asfol-
lows: For the given halfsegment, get the partner halfsegment (i.e. follow the edge). From the partner,
go around that node to the predecessor in the counter-clockwise order. Follow that edge, etc. As soon
as the node of theinitial segment is reached again, a complete cycle has been found and its segments
can be marked as outer segments.

This strategy works fine for the regions object in Figure 6(a) where it correctly determines the left
face. However, in Figure 6(b) the cycle would include the hole segments. Therefore the strategy is
refined asfollows: If the first segment belongs to an outer cycle, then try to form aminimal cycletra-
versing the graph as described above. Put each encountered halfsegment on a stack and mark its node
asbeing on_stack. As soon as anode is encountered which is on the stack already, two cases are pos-
sible:

» Case l. Thisisthe node of theinitial segment. Then a complete outer cycle has been found.
Remove al segments from the stack, marking them as outer segments, and also from the
graph. Repeat the procedure for the remaining segments.

» Case2. Thisisnot theinitial node. Then ahole cycle has been found. Remove segmentsfrom
the stack until the current node isfound there, marking them as hole segments. Remove these
segments also from the graph. Then continue building the outer cycle. - Before removing
segments from the stack one must store the next segment of the outer cyclein order to avoid
continuing with some other face that may liein the hole, as shown in Figure 6(b).

If the first segment belongsto a hole, then try to form amaximal cycle by going always to the succes-
sor around a node. Apart from that, proceed in the same way as for outer cycles. However, if here a
nodeisencountered which isnot theinitial one, then acycle belonging to another hole has been found
sharing a vertex with the hole cycle of theinitial segment.

On the next page we present two algorithms. Algorithm cycle classification classifies the segments
of aregions object as outer or hole segments, following the strategy just discussed. Here the type
EdgeRec is extended by the fields visited and inside_above. The first field isinitialized by the value

algorithm cycle classification
input: A regions object R

output: A modified regions object R whose halfseg-
ments obtain the attribute HoleSegment if they

belong to a hole and Outer Segment otherwise.
begin
init_edge and_node_array(R);
top :=0;
for i := 1to < number of segmentsin Edge > do
if not Edge[i].visited then
if Edge[i].inside_above then (* Outer cycle. *)
Node[Edge]i].node_index].on_stack :=true;
push(i); Edgeli].visited := true;
first_node_index := Edge]i].node_index;
| := Edgd[i].link;
push(l); Edgell].visited := true;
repeat
j := Edge[l].node_index;
if not Nodef[j].on_stack then
Node[j].on_stack := true;

EdgelK]. >;
Node[Edge[k].node_index].on_stack
= false;
if Edge[K].node _index = then
count :=count + 1
end-if
until (j = Edge[k].node_index) and
(count = 2);
push(rem); Edge[rem].visited := true;
| := Edge[rem].link;
push(l); Edgell].visited := true;
end-if
until top = 0;
else (* Holecycle. *)
< Proceed analogously. >
end-if
end-if
end-for;

end cycle classification.

j := Edg€{l].pred;
push(j); Edge[j].visited :=true; algorithm r_contour
| := Edge[j].link; input: A regions object R

push(l); Edge|l].visited := true;
elseif j =first_node_index then
whiletop > 0 do (* Outer cycle. *) begin

output: A lines object L containing the halfsegments of
all outer cycles of R.

j = pop();
< Remove Edge[j] from the graph. >;
< Set attribute Outer Segment for

L := new();
cycle_classification(R);
R:=select_first(R);

Edgdj]. >; whilenot end_of_hs(R) do
Node[Edge]j].node_index].on_stack attr := get_attr(R);
=false if OuterSegment € attr then
end-while h:=get_hs(R);
else (* Holecycle. *) L :=insert(L, h);
rem := Edge[l].pred; count :=0; end-if;
repeat R :=sdect_next(R);
k := pop(); end-while;
< Remove Edge]j] from the graph.>; returnL;

< Set attribute HoleSegment for end r_contour.

false; thelatter field istrueif ahalfsegment of the regions object hasthe attribute InsideAbove. A vari-
able top always contains the index of the top stack element; it isimplicitly changed by the stack op-
erations push and pop. “Remove Edge[j] from the graph” means remove the edge from the cycle of
segments around its node. This algorithm requires O(n log n) time for aregions object with n halfseg-
ments due to the included preprocessing step for computing the Edge and Node arrays; apart from that
it needs only O(n) time.

The second algorithm r_contour then computes the contour of aregions object by using the first al-
gorithm. After cycle_classification has been done, thisistrivial and needs only O(n) additional time.
The total time for r_contour, as presented, is O(n log n).

The algorithm for |_interior first follows a similar strategy as cycle_classification to extract only
complete cycles from alines object. It then uses plane sweep to remove any cycles enclosed by other
cycles. This algorithm needs O(n log n) time. Computing the componentsin alines object (I_count)

— 19 -

can be done by asimple depth-first traversal [AhHUB83]. Determining the number of components (fac-
es) inaregions object isalso aby-product of cycle classification. The last two agorithmsrequire O(n)
time once the graph representation has been constructed.

4.4 Special Algorithms

The diameter operator of the ROSE algebra determines the maximal extent of an object, that is, the
maximal distance between any two vertices. The implementation of the corresponding three execut-
able operators p_diameter, |_diameter, and r_diameter uses specia algorithms different from the
three techniques mentioned before. The computation of all distances between any two points of an
object istoo time-consuming. To reduce the number of elements, we determine the convex hull of the
object, since the diameter of the convex hull isequal to the diameter of the whole object [PrS85]. An
algorithm which calculates the convex hull of the point set of a simple polygon in linear time can be
found in [Me84]. An algorithm which computes the diameter of a convex polygon in linear timeis
shown in [PrS85]. The combination of these two algorithmsis used in the ROSE system to realize the
three diameter operationsin O(n) time for an object with n points or halfsegments.

5 Implementation

In this section we discuss in more detail the actual representation of ROSE objects and some differ-
ences between the conceptual view of algorithms, as presented above, and the actual proceduresin
the system. On the next page, the representation of aregions object is shown (for points and lines ob-
jectsitissimilar). A regions object isgiven as (a pointer to) arecord whose last component isan array
elem; one can dynamically allocate storage to represent regions objects of any desired size. The array
serves as a storage pool for three different kinds of nodes representing halfsegments, faces, or holes,
respectively. Halfsegments are organized in an AVL-tree to allow for updates in O(log n) time; addi-
tional pointers connect all halfsegments within the object, within aface, and within a cycle (outer cy-
cle or hole cycle) into linked lists ordered in halfsegment order. Additionally all faces, and for each
face its holes, are linked. Hence the complete structure of a regions object is explicitly represented
and access operations are offered (in the module hiding this representation) to perform all kinds of
scansin linear time. Furthermore, bounding boxes are stored for the object, each face, and each hole.
The record contains general information about the object such as the root segment of the AVL-tree,
fields for perimeter, diameter and area; the attr field tells which of these values have already been
computed for this particular object.

In Section 4.3, we have described the graph algorithms from a conceptual point of view. What really
happens is that the graph structure is analyzed at the time of closing an object, that is, after all seg-
ments have been inserted. More precisely, the construction of aregions object consists of the follow-
ing steps:

» Allocate storage, insert n halfsegmentsinto the AV L-tree.

To close the object:
» Perform an inorder traversal of the tree to link all halfsegments of the object; compute the
bounding box.
» Use plane sweep to compute InsideAbove attributes (sketched in Section 4.2).
» Use agorithm cycle _classification (including init_edge and _node array) to attach a

FROM Primitives IMPORT
(* type *) BBOX, HALFSEGMENT, POINT, SEGMENT;

TYPE
OBJATTRIBS = (Closed, Perimeter, Diameter, Area) ;
ATTRIBSET = SET OF OBJATTRIBS;
COMPATTRIBS = (InsideUp, HoleSegment) ;
COMPSET = SET OF COMPATTRIBS;
FIELDTYPE = (HalfsegField, FaceField, HoleField);
SELECTTYPE = (RegionsSelected, FaceSelected, CycleSelected) ;
REGIONSELEM = RECORD
CASE kind : FIELDTYPE OF
HalfsegField:
h : HALFSEGMENT; (* Key-element. *)
attrib : COMPSET; (* Element status.¥*)
left : CARDINAL; (* AVL-tree. *)
right : CARDINAL;
height : CARDINAL;
next_in_regions : CARDINAL; (* In order lists.*)
next in face : CARDINAL;
next in cycle : CARDINAL;
| FaceField:
face_bbox : BBOX; (* Face bounding box. *)
first in face : CARDINAL; (* First halfsegment. *)
last_in face : CARDINAL; (* (Help pointer.) ¥*)
last_in cycle : CARDINAL; (* (Help pointer.) *)
first hole : CARDINAL; (* First hole in face. ¥*)
last_hole : CARDINAL; (* (Help pointer.) ¥*)
next face : CARDINAL; (* Face list. *)
| ELSE
hole_bbox : BBOX; (* Hole bounding. *)
first _in hole : CARDINAL; (* First Halfsegment. *)
last_in hole : CARDINAL; (* (Help pointer.) *)
next hole : CARDINAL; (* Hole list. *)
END;
END;
REGIONS = POINTER TO RECORD
attr : ATTRIBSET; (* The object’s status. *)
perimeter : REAL; (* Length of Segments. *)
diameter : REAL; (* Diameter. ¥*)
area : REAL; (* Area of object. ¥*)
bbox : BBOX; (* Bounding box. *)
count : CARDINAL; (* Number of faces. *)
holes : CARDINAL; (* Number of holes. *)
free : CARDINAL; (* Number of free fields. *)
first idx : CARDINAL; (* Idx of smallest halfseg. ¥*)
face idx : CARDINAL; (* Idx of first face. *)
root_idx : CARDINAL; (* Idx of root of AVL-tree. *)
act_idx : CARDINAL; (* Idx of selected halfseg. ¥*)
act_face : CARDINAL; (* Idx of selected face. *)
sel_kind : SELECTTYPE; (* Kind of traversal. *)
max_idx : CARDINAL; (* Idx of largest half-field. *)
act_hole : CARDINAL; (* Idx of selected hole. *)
elem : ARRAY [1..MaxInRegions] OF REGIONSELEM
END;

unique cycle number to each segment.

» Useasecond plane sweep (avariant of the previous one) to determine for each hole segment
the cycle number of the outer cycle of its surrounding face.

» Inafina scan of thecompletelist of segments, link all segmentswithin facesand cycles(this
Is possible since each segment has now an associated cycle number and face number) and
compute the remaining information such as bounding boxes, links of faces and holes, etc.

Clearly the whol e construction takes no more than O(n log n) time and O(n) space. An anal ogous strat-
egy isused for the more simplelines and points objects. Because all thisinformation is now explicitly
available in the data structures, the algorithms and running times for some operations change: all
no_of _components algorithms perform a simple lookup in O(1) time. The algorithm for r_contour
simply scans the list of faces and for each face the list of segments of its outer cycle which requires
only O(k log k) time (where k is the size of the result object). For operators computing diameter,
length, area and perimeter, only thefirst call takes O(n) time; the value is then stored with the object

— 21 -

so that subsequent calls are lookups in O(1) time. Further differences between the algorithms de-
scribed above and the actual procedures result from:

» Useof filter techniques. Most operations first compare bounding boxes of objects, somein a
second step also component bounding boxes, in order to avoid running the more expensive
algorithms on the actual halfsegments, whenever possible. Such strategies are well-known
(e.g. [OrM88, Gu94]).

» Estimating the size of the result is necessary in all operations constructing new objectsto al-
locate the appropriate amount of storage for them.

For further details, we recommend the study of [Ri95].

6 Conclusions

We have described the implementation of alarge part of a spatial algebra for database systems - that
is, the almost complete implementation of the first three groups of operators of the ROSE algebra
(only the dist operator is missing) which deal with “atomic” objects (whereas the fourth group ma-
nipulates set of database objects). Use of high-level primitives has made it possible to describe arel-
atively large number of algorithmsin compact, precise notation. We are not aware of any similar work
- treating a whole algebra by giving precise algorithms including analysis of their complexity.

The fact that ROSE objects are realm-based has led to relatively simple, efficient, and numerically
robust algorithms. All manipulations of objects are discrete (entirely based on integer arithmetics);
real numbers occur only to describe properties such as length or area of objects. A crucia concept is
the use of ordered halfsegment sequences as a base representation of objects. Manipulation of such
sequences in paralel traversal or plane sweep implements most operations efficiently. On the other
hand, we have a so shown how the structure of objects (faces, holes, etc.) can be determined by graph
algorithms and be represented in the data structures.

The ROSE systemisavailablefor study or use, currently intheform of astand-alone Modula-2 library
[Ri95]. Itisin principle suitable for use in database systems since all objects have compact represen-
tations. However, for aseriousintegration it is necessary to solve the problem of managing very large
ROSE objects in away that is compatible with the DBMS object and storage management. We are
currently working on the definition and implementation of a general “algebrainterface” between an
external implementation of a system of data types and a database system. The ROSE algebra will be
made available under such an interface and integrated into the Gral system [GU89, BeG92]. In this
approach, it is only necessary to replace the array components “at the end” of object representations
by identifiers of so-called “ database arrays’ which behave exactly like ordinary arrays but have their
own page sequences and buffer management and interact properly with DBM S transaction manage-
ment. Thisis a straightforward, technical modification of the ROSE algebra; algorithms remain un-
changed.

Another aspect of integration into adatabase system isthe connection to the underlying realms, in par-
ticular the propagation of updates from the realm to ROSE objectsin adatabase [GUS93a]. Our realm
implementation isamost completed. All these integration aspectswill be described in aforthcoming

paper.

Appendix

The structure of thistableis explained in Section 2. In column “time complexity” (TC), n denotes the
total size of the operand(s), mthe size of the regions operand (only used if thereisjust one), and k the
size of the result object.

Descriptive Operator Executable Operator TC
geo x geo — bool = | pp_equal, ll_equal, rr_equal O(n)
| pp_unequal, Il_unequal, O(n)
rr_unequal
digoint | pp_digoint, Il_digoint O(n)
rr_digoint O(nlog n)
geo x regions — bool inside | pr_inside, Ir_inside O(nlog m)
rr_inside O(nlogn)
regions x regions — bool area digoint | rr_area digoint O(nlogn)
edge digoint | rr_edge digoint O(nlogn)
edge inside | rr_edge inside O(nlogn)
vertex_inside | rr_vertex_inside O(nlogn)
ext, x ext, — bool intersects | Il_intersects O(n)
Ir_intersects, rl_intersects O(nlog m)
rr_intersects O(nlog n)
meets | |I_meets O(n)
[r_meets, rl_meets O(nlog m)
rr_meets O(nlog n)
border_in_common | Il_border_in_common, O(n)
Ir_border_in_common,
rl_border_in_common,
rr_border_in_common
area x area — bool adjacent | rr_adjacent O(nlogn)
encloses | rr_encloses O(nlog n)
points x ext — bool on_border_of | pl_on_border_of, O(n)
pr_on_border_of
points x points — points intersection | pp_intersection O(n+klogk)
lines x lines — points intersection | Il_intersection O(n+klogk)
regions x regions — regions intersection | rr_intersection O(nlogn)
regions x lines — lines intersection | rl_intersection O(nlogm+
klogk)
0eo X geo — geo plus | pp_plus, Il_plus O(n+klogKk)
rr_plus O(nlog n)

Descriptive Operator Executable Operator PT | PS| G TC
geo X geo — geo minus | pp_minus, II_minus X O(n + klog k)
rr_minus X O(nlog n)
ext, x exty — lines common_border | II_common_border, X O(n +klogk)
Ir_common_border,
rl_common_border,
rr_common_border
ext — points vertices | |_vertices, r_vertices X O(n+klogk)
regions — lines contour | r_contour x | O(nlogn)/
O(k log k)
lines — regions interior | |_interior X O(nlogn)
geo — int no_of_components | p_no_of_components X O(n) / O(1)
|_no_of_components, x| O(nlogn)/
r_no_of components o)
geo; X geo, — real dist | pp_dist, pl_dist, pr_dist, Ip_dist,
[I_dist, Ir_dist, rp_dist, rl_dist,
rr_dist
geo — real diameter | p_diameter, |_diameter, special algo- O(n) / O(1)
r_diameter rithm
lines — real length | |_length X O(n) / O(1)
regions — real area | r_area X O(n) / O(1)
perimeter | r_perimeter X O(n) / O(1)
References
[AhHU83] Aho, A.V., J.E. Hopcroft, and J.D. Ullman, Data Structures and Algorithms. Addison-Wesley, Reading,
Massachusetts, 1983.
[BeG92] Becker, L., and R.H. Giting, Rule-Based Optimization and Query Processing in an Extensible
Geometric Database System. ACM Transactions on Database Systems 17 (1992), 247-303.
[GrY 86] Greene, D., and F. Yao, Finite-Resolution Computational Geometry. Proc. 27th IEEE Symp. on
Foundations of Computer Science, 1986, 143-152.
[GU89] Giuting, R.H., Gral: An Extensible Relational Database System for Geometric Applications. Proc. of the
15th Intl. Conf. on Very Large Databases (Amsterdam, The Netherlands), 1989, 33-44.
[GU93] Guting, R.H., Second-Order Signature: A Tool for Specifying Data Models, Query Processing, and
Optimization. Proc. ACM SIGMOD Conf. (Washington, USA), 1993, 277-286.
[GU94] Guting, R.H., An Introduction to Spatial Database Systems. VLDB Journal 3, 4 (1994) (Special I1ssueon
Spatial Database Systems), 357-399.
[GUS934] Guting, R.H., and M. Schneider, Realms: A Foundation for Spatial Data Types in Database Systems.
Proc. of the 3rd Intl. Symposium on Large Spatial Databases (Singapore), 1993, 14-35.
[GUS93Db] Giting, R.H., and M. Schneider, Realm-Based Spatial Data Types : The ROSE Algebra. Fernuniversitat
Hagen, Informatik-Report 141, 1993. To appear in the VLDB Journal.
[Kam85] Karlsson, R.G., and J.I. Munro, Proximity on a Grid. Proc. of the 2nd Symp. on Theoretical Aspects of

[Ka088d]

Computer Science, Springer-Verlag, LNCS 182, 1985, 187-196.
Karlsson, R.G., and M.H. Overmars, Scanline Algorithms on a Grid. BIT 28 (1988), 227-241.

[Ka088h]
[KeK81]

[KI83]
[MeB4]

[Miigs]
[OrM8s]
[Ov8ga]
[Ov8sh]
[Ovesc]
[Prs85]

[Ri95]

[Ya92]

- 24 -

Karlsson, R.G., and M.H. Overmars, Normalized Divide-and-Conquer: A Scaling Techniquefor Solving
Multi-Dimensional Problems. Information Processing Letters 26 (1988), 307-312.

Keil, JM., and D.G. Kirkpatrick, Computational Geometry on Integer Grids. Proc. of the 19th Annual
Allerton Conference on Communication, Control, and Computing, 1981, 41-50.
Klaeren, H.A., Algebraische Spezifikation. Springer Verlag, Berlin, 1983.

Mehlhorn, K., Data Structures and Algorithms 3: Multidimensional Searching and Computational
Geometry. Springer Verlag, 1984.

Miller, H., Rastered Point L ocation. Proc. Workshop on Graphtheoretic Conceptsin Computer Science,
Trauner Verlag, 1985, 281-293.

Orenstein, J., and F. Manola, PROBE Spatial Data Modeling and Query Processing in an Image
Database Application. IEEE Trans. on Software Engineering 14 (1988), 611-629.

Overmars, M.H., Efficient Data Structures for Range Searching on a Grid. Journal of Algorithms 9
(1988), 254-275.

Overmars, M.H., New Algorithms for Computer Graphics. Advances in Computer Graphics,
Eurographics Seminars, Springer Verlag, 1988, 3-19.

Overmars, M.H., Computational Geometry on a Grid: An Overview. Theoretical Foundations for
Computer Graphics and CAD, Springer Verlag, 1988, 167-184.

Preparata F.P,, and M.l. Shamos, Computational Geometry. Springer Verlag, 1985.

de Ridder, T., The ROSE System. Modula-2 Program System (Source Code). Fernuniversitdt Hagen,
Praktische Informatik 1V, Software Report 1, 1995. Available as a LaTeX file for printing and/or as a
compressed collection of ASCII files.

Yao F.F., Computational Geometry. Algorithms and Complexity. Handbook of Theoretical Computer
Science, vol. A, Elsevier Science Publishers B.V., 1992, 343-389.

