
Implementation of the ROSE Algebra:

Efficient Algorithms for Realm-Based Spatial Data Types

Abstract: The ROSE algebra, defined earlier, is a system of spatial data types for use in spatial data-
base systems. It offers data types to represent points, lines, and regions in the plane together with a
comprehensive set of operations; semantics of types and operations have been formally defined. Val-
ues of these data types have a quite general structure, e.g. an object of type regions may consist of
several polygons with holes. All ROSE objects are realm-based which means all points and vertices
of objects lie on an integer grid and no two distinct line segments of any two objects intersect in their
interior. In this paper we describe the implementation of the ROSE algebra, providing data structures
for the types and new realm-based geometric algorithms for the operations. The main techniques used
are (parallel) traversal of objects, plane-sweep, and graph algorithms. All algorithms are analyzed
with respect to their worst case time and space requirements. Due to the realm properties, these algo-
rithms are relatively simple, efficient, and numerically completely robust. All data structures and al-
gorithms have indeed been implemented in the ROSE system; the Modula-2 source code is freely
available from the authors for study or use.

Keywords: Spatial data types, algebra, realm, finite resolution, numerical robustness, efficient algo-
rithms, plane sweep, ROSE.

This work was supported by the DFG (Deutsche Forschungsgemeinschaft) under grant Gu 293/1-2.

Ralf Hartmut Güting

Praktische Informatik IV
Fernuniversität Hagen

D-58084 Hagen
GERMANY

gueting@fernuni-hagen.de

Thomas de Ridder

Praktische Informatik III
Fernuniversität Hagen

D-58084 Hagen
GERMANY

thomas.deridder@fernuni-
hagen.de

Markus Schneider

Praktische Informatik IV
Fernuniversität Hagen

D-58084 Hagen
GERMANY

markus.schneider@fernuni-
hagen.de



− 1 −

1 Introduction

We consider a spatial database system to be a full-fledged database system with additional capabilities
for representing, querying, and manipulating geometric data (for a survey see [Gü94]). Such a system
provides the underlying database technology needed to support applications such as geographic in-
formation systems and others. Spatial data types like point, line, and region provide a fundamental ab-
straction for modeling the structure of geometric entities, their relationships, properties, and opera-
tions. Their definition and implementation is probably the most fundamental issue in the development
of spatial database systems.

There have been quite a few proposals for systems of spatial data types and operations, or spatial al-
gebras; they have been embedded into query languages, implemented in prototype systems, and some
of them have been defined formally. For a discussion and references see [GüS93b, Gü94]. This paper
continues the development of one such proposal, the ROSE algebra [GüS93b], which has a number
of interesting features: (i) it offers (values of) data types of a very general structure, (ii) has a complete
formal definition of the semantics of types and operations, (iii) has a discrete geometric basis (so-
called realms, see below) which allows for a correct and robust implementation in terms of integer
arithmetics, (iv) treats consistency between distinct geometric objects with common parts, and (v) has
a general object model interface which allows it to cooperate with different kinds of database systems.

The development of the ROSE algebra so far consists of three steps: (1) the concept of a realm
[GüS93a] as a discrete geometric basis, (2) the formal definition of the ROSE algebra itself offering
realm-based spatial data types and operations [GüS93b], and (3) the ROSE system as an implementa-
tion of the ROSE algebra, which realizes its types and operations by providing efficient data structures
and algorithms defined over a discrete grid. This third step is the subject of this paper. Let us briefly
review the first two steps.

A realm conceptually describes the complete underlying geometry of a particular application space in
two dimensions. Formally, a realm is a finite set of points and line segments over a discrete grid (see
Figure 1(a)) such that (i) each point and each end point of a line segment is a grid point, (ii) each end
point of a realm segment is also a point of the realm, (iii) no realm point lies within a realm segment
(which means on it without being an end point), and (iv) no two realm segments intersect except at
their end points. The idea is now to construct the geometries of spatial objects by composing them
from realm primitives (see Figure 1(b)). The realm concept solves numerical robustness and topolog-
ical correctness problems, enforces geometric consistency of related spatial objects, and enables one
to formally define spatial data types or algebras on top of it that enjoy nice closure properties not only
in theory but also in an implementation.

Figure 1

A B
C

D

(a) Example of a realm (b) Realm objects over the realm in (a)



− 2 −

The ROSE algebra [GüS93b] offers three data types called points, lines, and regions whose values are
realm-based, i.e. composed from elements of a realm, together with a comprehensive set of opera-
tions. Figure 2 illustrates these data types.

The structure of spatial objects is defined in terms of the notions of an R-point, an R-block and an
R-face. For a given realm R, an R-point is a point of R. An R-block is a connected set of line segments
of R. An R-face is essentially a polygon with holes that can be defined over realm segments. Then a
value of type points is a set of R-points, a value of type lines is a set of disjoint R-blocks, and a value
of type regions is a set of edge-disjoint R-faces (where edge-disjoint means that two faces may have
a common vertex, but no common edge).

There are four classes of spatial operations: (1) spatial predicates expressing topological relationships
(e.g. inside, intersects, meets), (2) operations returning atomic spatial data type values (e.g. inter-
section, plus, minus, contour), (3) spatial operators returning numbers (e.g. dist, perimeter, area),
and (4) spatial operations on sets of database objects (e.g. sum, closest, fusion). The signature of the
first three groups of operations of the ROSE algebra can be found in the Appendix, for the meaning
of operations see [GüS93b]. The operations of the fourth group have not yet been implemented be-
cause they require the implementation of the object model interface (described in [GüS93b]) which is
not yet available.

The topic of this paper is the implementation of the ROSE algebra. To be precise, we must distinguish
between a descriptive and an executable algebra [Gü89, BeG92]. A descriptive algebra offers types
and operations at a conceptual level which can be used to formulate queries; its semantics are given
by defining a “carrier” set of objects for each sort of the algebra and a function for each operator. An
executable algebra describes the actual representations and query processing algorithms present in a
system; hence in such an algebra there is a data structure associated with each sort (or type) and an
algorithm, or a procedure realizing it, with each operator. In a database system, it is the task of the
optimizer to translate an expression of the descriptive algebra into an equivalent, efficiently evaluable
expression of the executable algebra. The ROSE algebra, as defined in [GüS93b], is a descriptive al-
gebra. Hence in this paper we first describe a corresponding executable algebra - essentially polymor-
phic descriptive operators are decomposed into several executable operators - and then data structures
and algorithms to implement it. The main new aspects of this design and paper are the following:

• We describe at a very high level, yet precisely, robust and efficient algorithms dealing with
the complex geometric entities available in the ROSE algebra. They can be grouped into par-
allel traversal, plane sweep, and graph algorithms. For each paradigm, we show a few “pro-
totype” operators and their algorithms and discuss which other operators can be realized
similarly and which modifications are necessary. Many algorithms require only linear time,
the remaining ones O(n log n) time where n is a bound on the size of the operand objects.

a points value a lines value a regions value

Figure 2: Examples of spatial values



− 3 −

• All spatial objects processed by the operations are realm-based, i.e., they are defined over a
discrete basis and in particular no two segments intersect within their interiors and no point
lies within a segment. These properties can be exploited for designing efficient geometric al-
gorithms. For example, many operations can now be realized through a simple parallel tra-
versal for which otherwise more complex and expensive plane sweep algorithms would be
needed. When plane sweep is needed, it is simpler because no intersection points of segments
can be discovered during the sweep (e.g., a static sweep event structure can be used).

• In contrast to traditional papers on algorithms, the focus is not on finding the most efficient
algorithm for one single problem (operation), but rather on considering a spatial algebra as
a whole, and on reconciling the various requirements posed by different algorithms within a
single data structure for each type. We are not aware that implementations of complete spa-
tial algebras have been described before in a similar manner.

• The implementation is designed for use in a spatial database system. In particular, represen-
tations for spatial data types do not use pointer data structures in main memory, but are all
embedded into compact storage areas which can be efficiently transferred between a main
memory buffer and disk. Data structures are also designed to allow for realm updates.

• The ROSE system has actually been implemented and is running; the complete source code
is available from the authors for study or use [Ri95]. The implementation was done in Mod-
ula-2 for UNIX systems. We feel it is important to make such well-designed “modules” for
spatial DBMS systems available to the research community.

The importance of a finite-precision / finite-resolution computational geometry, as described in this
paper, defined on a uniform, discrete grid such that points, end points of line segments, vertices of
polygons etc. have integer coordinates instead of arbitrary floating-point coordinates, has been em-
phasized by Greene and Yao [GrY86] as well as Yao [Ya92]. Finite-precision geometry has so far only
been studied by a few researchers (overviews can be found in [KeK81, Ov88b, Ov88c]). Problems
considered are, for example, the nearest neighbour searching problem [KaM85], range searching on
a grid [Ov88a, Ov88b], the point location problem [Mü85], the computation of rectangle intersections
and maximal elements by divide-and-conquer [KaO88b], computing the convex hull of a set of points,
reporting all intersections of a set of arbitrarily oriented line segments, and the calculation of rectangle
intersections and maximal elements by using the plane-sweep technique [KaO88a, Ov88b]. To our
knowledge, geometric algorithms over a discrete domain for more complex structures like those of
the ROSE algebra have not been described in the literature.

The paper is structured as follows: In Section 2 an executable algebra is designed for the given de-
scriptive ROSE algebra. In Section 3 we give a high-level specification of data structures for the rep-
resentation of ROSE objects which provides a basis for the subsequent description of algorithms. Sec-
tion 4 introduces realm-based geometric algorithms for the implementation of ROSE operations. Sec-
tion 5 shows the actual data structures used and discusses some important implementation concepts.

2 Descriptive and Executable ROSE Algebra

In this section we develop an executable algebra for the given descriptive ROSE algebra. Essentially
this means that we have to decompose each polymorphic descriptive operator into corresponding ex-
ecutable operators for the possible combinations of data types. Both algebras use second-order signa-
ture [Gü93] as the underlying formalism. Second-order signature allows one to define a type system
together with an algebra over that type system. In particular, it is possible to describe polymorphic



− 4 −

operations by quantification over kinds. For the purpose of this paper it suffices to view kinds just as
type sets; the two relevant sets are EXT = {lines, regions} and GEO = {points, lines, regions}. Here
are a few examples of spatial predicates of the ROSE algebra:

∀ geo in GEO. ∀ ext1, ext2 in EXT. ∀ area in regionsarea-disjoint.
geo × geo → bool =, ≠, disjoint
geo × regions → bool inside
ext1 × ext2 → bool intersects
area × area → bool adjacent, encloses

Here geo is a type variable ranging over the three types in kind GEO so that the first three operations
can compare two values of equal type and the inside operation can compare a points, a lines, or a re-
gions value with a regions value. The intersects operation can be applied to two values of the same
or different type within kind EXT. The notation regionsarea-disjoint is an attempt to capture the structure
of partitions of the plane (into disjoint regions) in the type system. It ensures that the two operands
given to the adjacent or encloses operator are two regions taken from the same partition of the plane,
hence they are either disjoint or equal; for details see [GüS93b]. For the executable algebra this is not
relevant and we can introduce executable operators with functionality regions × regions → bool.

In the executable algebra, we generally need different algorithms for the different data types. For ex-
ample, it is obvious that an algorithm which examines the disjointness of two points objects will be
different from an algorithm which determines whether two regions objects overlap. Hence the de-
scriptive operator disjoint is mapped to the three executable operators:

points × points → bool pp_disjoint
lines × lines → bool ll_disjoint
regions × regions → bool rr_disjoint

The Appendix lists the signature of the ROSE algebra and shows its translation into executable oper-
ators. For example, the first line of the ROSE signature shown above is represented as follows:

The last four columns of this table describe the algorithmic technique used to implement this (group
of) executable operators (PT = parallel traversal, PS = plane sweep, G = graph algorithm) and the
worst case time complexity. The algorithms are discussed below. There is a gap in the table because
we have not yet studied efficient algorithms for distance problems (operator dist of the third group).

3 Specification of Data Structures for the Types

Algorithms for the executable ROSE operators need to access, and sometimes to build, the data struc-
tures representing values of the three types points, lines, and regions. Rather than describing these
data structures directly in terms of arrays, records, etc., we first introduce a higher level description

Descriptive Operator Executable Operator PT PS G TC

geo × geo → bool = pp_equal, ll_equal, rr_equal x O(n)

≠ pp_unequal, ll_unequal, rr_unequal x O(n)

disjoint pp_disjoint, ll_disjoint x O(n)

rr_disjoint x O(n log n)



− 5 −

which offers suitable access and construction operations to be used in the algorithms. Basically, we
define a little abstract data type for each of the three data structures. In a second step, one can then
design and implement the data structure itself.

The specification of an abstract data type consists of a many-sorted signature together with a set of
laws, or equations, defining the behaviour of operations. To be precise, we use a slightly different
specification method sometimes called “denotational specification” (e.g. [Kl83]). It simply means that
we assign semantics to the sorts and operations of the many-sorted signature directly by defining car-
rier sets for the sorts and functions for the operations on these carrier sets, i.e., we define a little alge-
bra for each of the three data structures representing points, lines, or regions values, respectively. In
other words, we give a concrete mathematical model for the data type instead of a set of laws. In fact,
the whole ROSE algebra itself has been defined by the same method.

For most executable operators it turns out to be sufficient to regard a spatial object as an ordered se-
quence of elements where it is possible to access these elements consecutively and to insert a new el-
ement into the sequence. Hence this is our basic strategy for modeling the three data structures.

Before we can introduce the algebra points, a few notations are needed. Realms and realm-based spa-
tial objects are defined over a finite discrete space N × N with N = {0, ..., m − 1} ⊆ N. PN = {(x, y) |
x ∈ N, y ∈ N} denotes the set of all N-points. Furthermore, an (x, y)-lexicographic order is assumed
on PN which is defined as p1 < p2 ⇔ x1 < x2 ∨ (x1 = x2 ∧ y1 < y2).

algebra points

sorts points, PN, bool

ops new : → points
select_first : points → points
select_next : points → points
end_of_pt : points → bool
get_pt : points → PN
insert : points × PN → points

sets points = {(pos, < p1, ..., pn >) | pos ≥ 0; n ≥ 0; for 1 ≤ i ≤ n, pi ∈ PN; for 1 ≤ i < n, pi < pi+1}

functions Let P = (i, < p1, ..., pn >) ∈ points and p ∈ PN.
new() = (0, ◊)

⎧ (1, < p1, ..., pn >) if n ≥ 1
select_first(P) = ⎨

⎩ (0, ◊) otherwise
⎧ (i + 1, < p1, ..., pn >) if 1 ≤ i < n

select_next(P) = ⎨
⎩ (0, < p1, ..., pn >) otherwise

end_of_pt(P) = (i = 0)
⎧ pi if 1 ≤ i ≤ n

get_pt(P) = ⎨
⎩ undefined otherwise
⎧ (j, < p1, ..., pn >) if ∃ j ∈ {1, ..., n}: p = pj

insert(P, p) = ⎨ (1, < p, p1, ..., pn >) if p < p1
⎪ (n + 1, < p1, ..., pn, p>) if p > pn
⎩ (j + 1, < p1, ..., pj, p, pj+1, ..., pn >) if ∃ j∈{1, ..., n-1}: pj < p < pj+1

end points.



− 6 −

The sorts and ops parts describe the syntax of the algebra, i.e., the signature. The sets and functions
parts give the semantics in terms of carrier set and function definitions. The algebra points contains
the sorts points (to be defined), PN, and bool. The carrier set of the sort points is defined as the set of
all ordered sequences < p1, ..., pn > of n N-points together with a pointer indicating a position within
the sequence. The symbol ◊ denotes the empty sequence. Functions manipulate such values, for ex-
ample, select_first positions the pointer pos on the smallest element of the point sequence, and get_pt
yields the point at the current position.

A crucial idea for the representation of the relatively complex lines and regions values, which is the
basis for most of our algorithms, is to regard them as ordered sequences of halfsegments. Let SN =
{(p, q) | p ∈ PN, q ∈ PN} denote the set of N-segments. The equality of two N-segments s1 = (p1, q1)
and s2 = (p2, q2) is defined as s1 = s2 ⇔ (p1 = p2 ∧ q1 = q2) ∨ (p1 = q2 ∧ p2 = q1). W. l. o. g. we nor-
malize SN by the assumption that ∀ s ∈ SN : s = (p, q) ⇒ p < q which enables us to speak of a left and
a right end point of a segment. Let further HN = {(s, d) | s ∈ SN, d ∈ {left, right}} be the set of half-
segments. A halfsegment h = (s, d) consists of an N-segment s and a flag d emphasizing one of the N-
segment’s end points which is called the dominating point of h. If d = left then the left (smaller) end
point of s is the dominating point of h, and h is called left halfsegment. Otherwise, the right end point
of s is the dominating point of h, and h is called right halfsegment. Hence, each N-segment s is mapped
to two halfsegments (s, left) and (s, right). Let dp be the function which yields the dominating point
of a halfsegment.

For two distinct halfsegments h1 and h2 with a common end point p, let α be the enclosed angle such
that 0 < α ≤ 180° (an overlapping of h1 and h2 is excluded by the realm properties). Let a predicate
rot be defined as follows: rot(h1, h2) is true iff h1 can be rotated around p through α to overlap h2 in
counter-clockwise direction. We can now define a complete order on halfsegments which is basically
the (x, y)-lexicographic order by dominating points. For two halfsegments h1 = (s1, d1) and h2 =
(s2, d2) it is:

h1 < h2 ⇔ dp(h1) < dp(h2) ∨ (dp(h1) = dp(h2) ∧ ((d1 = right ∧ d2 = left) ∨ (d1 = d2 ∧ rot(h1, h2))))

We now define the algebra regions (the algebra lines is almost the same, see below). The carrier set
of the sort regions is defined as the set of ordered sequences < h1, ...., hn > of halfsegments where each
halfsegment hi has an attached set of attributes ai whose elements are values of some new sort attr.
Attribute sets are used in algorithms to attach auxiliary information to segments.

algebra regions

sorts regions, HN, attr, bool

ops new : → regions
select_first : regions → regions
select_next : regions → regions
end_of_hs : regions → bool
get_hs : regions → HN
get_attr : regions → attr
update_attr : regions × attr → regions
insert : regions × HN → regions



− 7 −

sets regions = {(pos, < h1, ..., hn >, < a1, ..., an >) |
(1) pos ≥ 0, n ≥ 0
(2) ∀ i ∈ {1, ..., n} : hi ∈ HN, ai ⊆ attr
(3) ∀ i ∈ {1, ..., n-1} : hi < hi+1 }

functions Let Rh = < h1, ..., hn >, Ra = < a1, ..., an >, R = (i, Rh, Ra) ∈ regions, and h ∈ HN.
new() = (0, ◊, ◊)

⎧ (1, Rh, Ra) if n ≥ 1
select_first(R) = ⎨

⎩ (0, ◊, ◊) otherwise
⎧ (i + 1, Rh, Ra) if 1 ≤ i < n

select_next(R) = ⎨
⎩ (0, Rh, Ra) otherwise

end_of_hs(R) = (i = 0)
⎧ hi if 1 ≤ i ≤ n

get_hs(R) = ⎨
⎩ undefined otherwise
⎧ ai if 1 ≤ i ≤ n

get_attr(R) = ⎨
⎩ undefined otherwise
⎧ (i, Rh, < a1, ..., ai-1, a, ai+1, ..., an >) if 1 ≤ i ≤ n

update_attr(R, a) = ⎨
⎩ undefined otherwise
⎧ (j, Rh, Ra) if ∃ j ∈ {1, ..., n}: h = hj
⎪ (1, < h, h1, ..., hn >, < ∅, a1, ..., an >) if h < h1

insert(R, h) = ⎨ (n + 1, < h1, ..., hn, h>, < a1, ..., an, ∅>) if h > hn
⎪ (j + 1, < h1, ..., hj, h, hj+1, ..., hn >, < a1, ..., aj, ∅, aj+1, ..., an >)
⎩ if ∃ j ∈ {1, ..., n-1}: hj < h < hj+1

end regions.

Note that the algebra regions just offers manipulation of halfsegment sequences; it does not ensure
that a sequence indeed represents a correct regions value as defined in the ROSE algebra. The algo-
rithms using this structure are responsible for constructing only sequences that indeed represent re-
gions values. The algebra lines (not presented here) is identical to the algebra regions except for all
the parts related to attributes which are not needed.

Simple implementations for each of the three data types (algebras) would represent a sequence of n
points or halfsegments in a linked list or sequentially in an array; the latter representation would also
be compatible with the “compact storage area” requirement needed for efficient database loading/stor-
ing. In this case, all operations except for insert need O(1) time; insert requires O(n) time for arbitrary
positions and O(1) time for appending an element at the end of the sequence. Such a representation
would in fact be quite good for all “parallel traversal” algorithms of the ROSE algebra, because result
objects are always constructed in the lexicographic point or halfsegment order and can therefore be
built in linear time.

The actual implementation in the ROSE system uses for all three structures an AVL-tree embedded
into an array (the array serving as a storage pool for nodes); the elements, i.e. points or halfsegments,
are additionally linked in sequence order. With this representation, all operations except insert need
O(1) time and insert O(log n) time. The requirement to support insertion in O(log n) time actually does
not come from the ROSE algebra but from the connection with realms; realm updates due to insertion
of points or segments into the realm must be propagated to ROSE objects residing in a database
[GüS93a]. This means that the data structures should support replacement of a segment in a lines or



− 8 −

regions object by a chain of segments, i.e., the segment must be deleted and the replacement segments
be inserted into the structure. Unfortunately, a consequence of this is that the parallel traversal algo-
rithms cannot construct the result objects in linear time any more, but need O(k log k) for this where
k is the size of the result object. This is a case of conflicting requirements, as mentioned in the intro-
duction. On the other hand, deriving the internal structure of a lines or regions object (e.g. faces and
holes) which is needed to complete the construction (see Section 5) requires O(k log k) time anyway.

4 Algorithms for the Executable Algebra

This section introduces realm-based geometric algorithms whose characteristic features are numeri-
cal robustness, topological correctness, closure properties, and efficiency. Realm-based algorithms
are more efficient than their Euclidean counterparts. The design of these algorithms is based on tra-
versal techniques, on the plane-sweep paradigm, and on graph theory. Realm-based geometry deals
with spatial objects that are defined over the same discrete domain and assumes that no two segments
intersect within their interiors and that no point lies within a segment.

Executable operators are grouped by the applied algorithmic technique. For each group we show and
explain some example algorithms.

4.1 Algorithms with Simple or Parallel Object Traversal

A number of operators of the executable ROSE algebra can be realized by a simple or parallel travers-
al (scan) through the point or halfsegment sequence of one or two objects. To simplify the description
of algorithms, for each possible combination of two spatial data types two operations are introduced
which allow for a parallel traversal through two ordered sequences of elements (halfsegments, points).

As an example, we consider the two operations for two regions objects. The operation
rr_select_first(R1, R2, object, status) selects the first halfsegment of each of the regions objects R1 and
R2 (compare to the function select_first of algebra regions) and positions a logical pointer on both of
them. The parameter object with possible values {none, first, second, both} indicates which of the two
object representations contains the smaller halfsegment. If the value of object is none, no halfsegment
is selected, since R1 and R2 are empty. If it is first (second), the smaller halfsegment belongs to R1
(R2). If it is both, the first halfsegments of R1 and R2 are identical. The parameter status with possible
values {end_of_none, end_of_first, end_of_second, end_of_both} describes the state of both halfseg-
ment sequences. If the value of status is end_of_none, both objects still have halfsegments. If it is
end_of_first (end_of_second), R1 (R2) is empty. If it is end_of_both, both object representations are
empty.

The operation rr_select_next(R1, R2, object, status) searches for the next smaller halfsegment of R1
and R2; parameters have the same meaning as for rr_select_first. Obviously, this is realized by
select_next operations of the two objects.

Both operations together allow one to scan in linear time two object representations like one ordered
sequence. Analogous operations can be defined for two lines objects (ll_select_first, ll_select_next)
and a lines and a regions object (lr_select_first, lr_select_next). For the comparison of halfsegments
with points, the dominating points of the halfsegments are used so that points and lines objects



− 9 −

(pl_select_first, pl_select_next) as well as points and regions objects (pr_select_first, pr_select_next)
can be treated in a similar way.

In the sequel we discuss algorithms for the operations (see algorithms below):

points × regions → bool pr_on_border_of
points × points → points pp_plus
lines × lines → bool ll_intersects

Operator pr_on_border_of determines whether all points of a points object lie on the faces’ bound-
aries of a regions object. Hence the algorithm checks whether for each point p of a points object P
(denoted as p ∈ P(P)) a halfsegment h of a regions object R (denoted h ∈ H(R)) exists whose domi-
nating point is equal to p. The while-loop of the algorithm is executed as long as no point is found
which is in P but not a dominating point of a halfsegment of R and as long as none of the object se-
quences is exceeded. For the predicate to be true, termination of the while-loop must not have oc-
curred because a point was found which is not on the boundary of R (object ≠ first). This implies that
termination is due to reaching the end of one or both sequences, and the predicate is true if this was
not the regions sequence alone (status ≠ end_of_second).

Operator pp_plus forms the union of two points objects. The algorithm just scans the point sequences
of the two objects and merges them into a new points object.

algorithm ll_intersects
input: Two lines objects L1 and L2
output:true, if no common segment exists, but a com-

mon point which is not a meeting point
false, otherwise

begin
ll_select_first(L1, L2, object, status);
if object = first then act_dp := dp(get_hs(L1))
else if object = second then act_dp := dp(get_hs(L2))
end-if;
act_obj := object; found := false; count := 0;
while (status = end_of_none) and (object ≠ both) do

ll_select_next(L1, L2, object, status);
if (status ≠ end_of_both) and (object ≠ both) and

not found then
if object = first then

new_dp := dp(get_hs(L1))
else if object = second then

new_dp := dp(get_hs(L2))
end-if;
if new_dp ≠ act_dp then (* new point *)

act_dp := new_dp; count := 0;
act_obj := object;

else if object ≠ act_obj then (* object switch *)
count := count + 1; act_obj := object;
found := found or (count > 2);

end-if;
end-if;

end-while;
return found and (object ≠ both);

end ll_intersects.

algorithm pr_on_border_of
input: A points object P and a regions object R
output:true, if ∀ p ∈ P(P) ∃ h ∈ H(R) : p = dp(h)

false, otherwise
begin

pr_select_first(P, R, object, status);
while (object ≠ first) and (status = end_of_none) do

pr_select_next(P, R, object, status);
end-while;
return (object ≠ first) and (status ≠ end_of_second)

end pr_on_border_of.

algorithm pp_plus
input: Two points objects P1 and P2
output:A points object Pnew containing all points
begin

Pnew := new();
pp_select_first(P1, P2, object, status);
while status ≠ end_of_both do

if object = first then p := get_pt(P1)
else if object = second then p := get_pt(P2)
else if object = both then p := get_pt(P1)
end-if;
Pnew := insert(Pnew, p);
pp_select_next(P1, P2, object, status);

end-while;
return Pnew

end pp_plus.



− 10 −

Operator ll_intersects examines whether two lines objects L1 and L2 intersect. According to the def-
inition of the ROSE algebra it yields true if both objects have no common (half)segments but at least
one common point which is not a meeting point but an intersection point. Point p is a meeting point if
the angularly sorted list of halfsegments of L1 and L2 with the same dominating point p can be subdi-
vided into two sublists so that one list contains only halfsegments of L1 and the other list only half-
segments of L2. The idea is now to walk around p, scanning the segments, and to count the number of
“object changes” in this ordered list of halfsegments of L1 and L2. Point p is a meeting point if this
number is less than or equal to two; otherwise an intersection point has been found. The while-loop
of the algorithm terminates if either the end of one of the objects has been reached or a common half-
segment has been found. In the latter case the result value is false (object ≠ both), in the first case the
decision is based on whether at least one intersection point has been found or not (found). The algo-
rithms for the other operators are similar. The complete list of operators that can be treated by (paral-
lel) traversal is indicated by column PT in the Appendix. For all predicates and for operations return-
ing numbers (e.g. l_length) realized by PT algorithms, the worst case time complexity is O(n), where
n is the total number of points or halfsegments in the one or two operands. For operations returning
new spatial objects the time bound is O(n + k log k) where k is the number of points or halfsegments
in the result object; O(n) time is needed for scanning the operands and O(k log k) for constructing the
result. Since k = O(n), this is always bounded by O(n log n).

4.2 Algorithms Using the Plane-Sweep Paradigm

Plane-sweep [PrS85, Me84] is a popular technique of computational geometry for solving geometric
set problems which transforms a two-dimensional problem into a sequence of one-dimensional prob-
lems which are easier than the original two-dimensional one. A vertical sweep line sweeping the plane
from left to right stops at special points called event points, which are generally stored in a queue
called event point schedule. The event point schedule must allow one to insert new event points dis-
covered during processing; these are normally the initially unknown intersections of line segments.
The state of the intersection of the sweep line with the geometric structure being swept at the current
sweep line position is recorded in vertical order in a data structure called sweep line status. Whenever
the sweep line reaches an event point, the sweep line status is updated. Event points which are passed
by the sweep line are removed from the event point schedule. Note that in general an efficient fully
dynamic data structure is needed to represent the event point schedule and that in many plane-sweep
algorithms an initial sorting step is needed to produce the sequence of event points in x-order (or xy-
lexicographic order).

In the special case of realm-based geometry where no two segments intersect within their interiors,
the event point schedule is static (because new event points cannot exist) and given by the ordered
sequence of points or halfsegments of the operand objects. No further explicit event point structure is
needed. Also, no initial sorting is necessary since the plane-sweep order of points and segments is our
base representation of objects anyway.

If a left (right) halfsegment of a regions object is reached during a plane-sweep, its segment compo-
nent is stored into (removed from) the segment sequence of the sweep line status sorted by the order
relation above. A segment s lies above a segment t if the intersection of their x-intervals is not empty
and if for each x of the intersection interval the y-coordinate of s is greater than the one of t (except
possibly for a common end point where the y-coordinates are equal). Points and halfsegments of lines
objects are used to query the sweep line status.



− 11 −

The sweep line status can be described as an algebra (a formal description is omitted here) with an
ordered sequence of segments as a carrier set where each segment has an attached set of attributes and
a pointer indicates the position within the sequence. The operation new_sweep produces and initial-
izes the sweep line status. The operation add_left (del_right) inserts (removes) the segment compo-
nent of a left (right) halfsegment into (from) the ordered segment set of the sweep line status. The op-
erations pred_of_s and pred_of_p yield the position of the greatest segment that is smaller than a ref-
erence segment and point, respectively. The operations current_exists and pred_exists allow one to
check whether a current segment and the predecessor of the current segment, resp., exists in the sweep
line status. The operation set_attr sets the attribute set for the current segment, and the operations
get_attr and get_pred_attr yield the attribute set of the current and the preceding segment, respective-
ly. For the sweep line status an efficient internal dynamic structure like the AVL tree can be employed
(and is used in the ROSE system) which realizes each of the operations add_left, del_right, pred_of_s,
and pred_of_p in worst case time O(log n) and the other operations in constant time.

In the sequel for all algorithms we assume that all those halfsegments of a regions object R have an
associated attribute InsideAbove where the area of R lies above or left of its segment. This segment
classification can be computed by a plane-sweep algorithm (not shown here) which views all seg-
ments intersecting the current sweep line from bottom to top. It is obvious that the lowest segment
obtains the attribute InsideAbove, the following does not, the third again obtains it, etc. Whether the
attribute InsideAbove is associated with a segment depends on the assignment of the attribute to the
immediate preceding segment in the sweep line status. This segment classification is called at the end
of the construction of a regions object and the attribute stored with each halfsegment. It requires
O(n log n) time for an object with n halfsegments.

The first class of plane-sweep algorithms considers the relationships between a points or lines object
and a regions object. The algorithm scheme is to insert only the segments of the regions object into
the sweep line status and to use the elements of the points and lines object, resp., as query elements.
The operations of this class have the following signature:

points × regions → bool pr_inside
lines × regions → bool lr_inside, lr_intersects, lr_meets
regions × lines → bool rl_intersects, rl_meets
regions × lines → lines rl_intersection

As examples, we show the algorithms for pr_inside and rl_intersection (see algorithms on the next
page). The algorithms for the other operations are similar. The algorithm pr_inside checks whether
all points of a points object P lie within the areas of a regions object R. A point of P may coincide
with an endpoint of a segment of R. Both objects are traversed in parallel during a plane-sweep. The
segment components of the left halfsegments of R together with the associated attribute InsideAbove
are inserted into the sweep line status, the segment components of the right halfsegments are removed.
If a point p of P does not coincide with a dominating point of a halfsegment of R, the existence of a
segment in the sweep line status immediately below p is checked. If no segment is found, then p def-
initely lies outside of R. Otherwise, it must be checked if the attribute InsideAbove has been assigned
to the segment. If this is the case, then p lies inside of R, otherwise outside. The while-loop of the al-
gorithm is executed at most l+m times (l the number of points of P, m the number of halfsegments of
R). The loop terminates when all points of P have been examined or when a point has been found
which does not lie in R. The insertion of a left halfsegment into and the removal of a right halfsegment
from the sweep line status needs O(log m) time. A point which coincides with the dominating point
of a halfsegment can be ignored, since it lies definitely within R. For all other points the preceding



− 12 −

segment in the sweep line status has to be searched which also needs O(log m) time. Altogether, the
worst case time complexity of pr_inside is O((l + m) log m).

The algorithm for rl_intersection produces in a similar way a new lines object which contains all seg-
ments lying within R. It is crucial for the correctness of this algorithm that we can be sure that a com-
plete (half)segment lies within R, if its dominating point lies within an area of R. This is because the
boundary of R cannot intersect the interior of the segment due to the realm properties. This algorithm
requires O((l + m) log m + k log k) where k is the size of the result object and l and m the size of the
lines and regions operand, respectively.

For all other operations of this class, the time complexity is O((l + m) log m) if m is the size of the
regions operand and l the size of the other operand. Of course, for n = l + m, O(n log n) is a simpler
upper bound for all operations.

The second class of plane-sweep algorithms considers the relationships between two regions objects.

regions × regions → bool rr_disjoint, rr_inside, rr_area_disjoint,
rr_edge_disjoint, rr_edge_inside, rr_vertex_inside,
rr_intersects, rr_meets, rr_adjacent, rr_encloses

regions × regions → regions rr_intersection, rr_plus, rr_minus

algorithm rl_intersection
input: A lines object L and a regions object R
output:A new lines object Lnew containing all halfseg-

ments of L whose segment components lie in R
begin

Lnew := new(); S := new_sweep();
lr_select_first(L, R, object, status);
while status = end_of_none do

if object = second then
h := get_hs(R); (* Let h = (s, d) . *)
attr := get_attr(R);
if d = left then

S := add_left(S, s);
if InsideAbove ∈ attr then

S := set_attr(S, {InsideAbove});
end-if

else S := del_right(S, s);
end-if

else if object = both then
h := get_hs(L); Lnew := insert(Lnew, h);

else
h := get_hs(L); (* Let h = (s, d) . *)
S := pred_of_s(S, s);
if current_exists(S) and

(InsideAbove ∈ get_attr(S)) then
Lnew := insert(Lnew, h);

end-if;
end-if;
lr_select_next(L, R, object, status);

end-while;
return Lnew;

end rl_intersection.

algorithm pr_inside
input: A points object P and a regions object R
output:true, if all points of P lie in the area of R

false, otherwise
begin

S := new_sweep();
inside := true;
pr_select_first(P, R, object, status);
while (status ≠ end_of_first) and inside do

if (object = both) or (object = second) then
h := get_hs(R); (* Let h = (s, d) . *)
attr := get_attr(R);
if d = left then

S := add_left(S, s);
if InsideAbove ∈ attr then

S := set_attr(S, {InsideAbove});
end-if

else
S := del_right(S, s);

end-if
else

S := pred_of_p(S, get_pt(P));
if current_exists(S)

then inside := (InsideAbove ∈ get_attr(S))
else inside := false

end-if
end-if;
pr_select_next(P, R, object, status);

end-while;
return inside;

end pr_inside.



− 13 −

Note that here the immediate application of the technique introduced above is impeded by the fact that
regions objects may have holes. Hence, for the algorithms of this class we introduce the concepts of
overlap numbers and segment classification. A point of the realm grid obtains the overlap number k
if it is covered by (or part of) k regions objects. For example, for two intersecting simple polygons the
area outside of both polygons gets overlap number 0, the intersecting areas get overlap number 2, and
the other areas get overlap number 1. Since a segment of a regions object separates space into two
parts, an inner and an exterior one, each segment is associated with a pair (m/n) of overlap numbers,
a lower (or right) one m and an upper (or left) one n. The lower (upper) overlap number indicates the
number of overlapping regions objects below (above) the segment. In this way, we obtain a segment
classification of a fixed set of regions objects and speak of (m/n)-segments. For two regions objects
(we only consider binary operators here) m, n ≤ 2 holds; of the nine possible combinations only seven
describe valid segment classes. This is because a (0/0)-segment contradicts the definition of a regions
object, since then at least one of both regions objects would have two holes or an outer cycle and a
hole with a common border. Similarly, (2/2)-segments cannot exist, since then at least one of the two
regions objects would have a segment which is common to two outer cycles of the object. Hence, pos-
sible (m/n)-segments are (0/1)-, (0/2)-, (1/0)-, (1/1)-, (1/2)-, (2/0)-, and (2/1)-segments. Examples of
(m/n)-segments are given in Figure 3.

As an example for the plane-sweep algorithms of the second class we show the algorithm for
rr_inside (see algorithm below) which tests whether a regions object R1 is completely contained in a
regions object R2. This means that all segments of R1 must lie within the area of R2 but no segment
(and hence no hole) of R2 may lie within R1. If we consider the objects R1 and R2 as halfsegment se-
quences together with the segment classes, the predicate rr_inside is true if (1) all halfsegments that
are only element of R1 have segment class (1/2) or (2/1), since only these segments lie within R2, (2)
all halfsegments that are only element of R2 have segment class (0/1) or (1/0), since these definitely
do not lie within R1, and (3) all common halfsegments have segment class (0/2) or (2/0), since the ar-
eas of both objects lie on the same side of the halfsegment. In the case of a (1/1)-segment the areas
would lie side by side so that R1 could not be contained by R2. In the algorithm, whenever a segment
is inserted into the sweep line status, first the pair (mp/np) of overlap numbers of the predecessor is
determined (it is set to (*/0) if no predecessor exists). Then the overlap numbers (ms/ns) for this seg-
ment are computed. Obviously ms = np must hold; ns is also initialized to np and then corrected. If R1
has l and R2 m halfsegments, the while-loop is executed at most n = l + m times, since each time a new
halfsegment is visited. The most expensive operations within the loop are the insertion and the remov-
al of a segment into and from the sweep line status. Since at most n elements can be contained in the
sweep line status, the worst case time complexity of the algorithm is O(n log n) which is also valid
for all other operations of this class.

The other operations mostly require slight modifications of the algorithm above. The algorithm for
rr_edge_inside forbids common segments, the algorithm for rr_vertex_inside even common points,

2

1

0

0
2

2
0

0

1

1
1

1

1
1

0
1

Figure 3: Segment classification



− 14 −

a problem which to treat is a little bit more complicated. The operation rr_area_disjoint yields true
if both objects have no common areas and only allows (0/1)-, (1/0)-, and (1/1)-segments. The opera-
tion rr_edge_disjoint additionally forbids common segments (no (1/1)-segments) and rr_disjoint
even common points which needs a little bit more effort. The operation rr_adjacent which checks
the neighbourhood of two regions objects is equal to rr_area_disjoint but additionally requires the
existence of at least one (1/1)-segment. The operation rr_meets which checks whether two regions
objects meet in a point is equal to rr_edge_disjoint but additionally requires the existence of at least
one common point. The operation rr_intersects is true if two regions objects have a common area
which means that there exist some segments of segment class (0/2), (1/2), (2/0), or (2/1). The follow-
ing three operations produce a new regions object. The intersection of two regions objects (operation
rr_intersection) implies the search for all segments with segment classification (0/2), (1/2), (2/0), and
(2/1). For the union of two regions objects (operation rr_union) all (0/1)-, (1/0)-, (0/2)-, and (2/0)-
segments are collected. The computation of the difference of two regions objects R1 and R2 (operation
rr_minus) requires all (0/1)- and (1/0)-segments of R1, all (1/2)- and (2/1)-segments of R2, and all
common (1/1)-segments. The operation rr_encloses yields true for two regions objects R1 and R2 if
each face and hence each segment of R2 is contained in a hole of R1. Note that this condition does not
mean that R1 and R2 are area-disjoint, since it is possible that another face of R1 lies within R2. Here
a method is used which gives the overlap numbers a different interpretation: We do not consider the
overlapping of object areas but the overlapping of the single cycle areas of an object. In this way, the
exterior of R1 gets the number 0, the area of a face of R1 the number 1, and a hole the number 2. If a
hole of R1 contains another face of the same object, this face gets the number 3 and a hole of this face
the number 4, etc. If we compute such a segment classification for R1, then R1 encloses R2 if all seg-
ments of R2 lie on a level with even overlap number (greater than 0).

if ((object = first) or (object = both)) and
(InsideAbove ∈ get_attr(R1))
then ns := ns + 1
else ns := ns − 1

end-if;
if ((object = second) or (object = both)) and

(InsideAbove ∈ get_attr(R2))
then ns := ns + 1
else ns := ns − 1

end-if;
S := set_attr(S, (ms/ns));
if object = first then

inside := ((ms/ns) ∈ {(1/2), (2/1)})
else if object = second then

inside := ((ms/ns) ∉ {(1/2), (2/1)})
else

inside := ((ms/ns) ∈ {(0/2), (2/0)})
end-if;

end-if;
rr_select_next(R1, R2, object, status);

end-while;
return inside;

end rr_inside.

algorithm rr_inside
input: Two regions objects R1 and R2
output:true, if R1 lies within R2

false, otherwise
begin

S := new_sweep();
inside := true;
rr_select_first(R1, R2, object, status);
while (status ≠ end_of_first) and inside do

if (object = first) or (object = both)
then h := get_hs(R1); (* Let h = (s, d) . *)
else h := get_hs(R2); (* Let h = (s, d) . *)

end-if;
if d = right then

S := del_right(S, s);
else

S := add_left(S, s);
if not pred_exists(S)

then mp/np := */0
else mp/np := get_pred_attr(S)

end-if;
ms := np;
ns := np;



− 15 −

4.3 Graph Algorithms

A realm can be interpreted as a spatially embedded planar graph [GüS93a]. Hence, a lines or a regions
object defined over such a realm can also be regarded as a planar graph G = (V, E) where the vertex
set V is the set of all end points of the segments and the edge set E is the set of all segments of the
object. Note that such an embedded planar graph represents not only the usual incidence relationships
between nodes and edges, but also the neighbourhood relationship among segments incident to the
same node. This graph-theoretic view offers two primitive operations, illustrated in Figure 4, that are
crucial for the algorithms discussed in this section: For a given halfsegment, (i) find its two neighbours
incident to the same node w.r.t. the counter-clockwise order, and (ii) find the “partner halfsegment”
representing the same segment (which is equivalent to following an edge of the graph).

Basically, the data structure needed to support these two primitives in O(1) time is an adjacency list
for each node containing the outgoing edges in counter-clockwise order. As it happens, the halfseg-
ment sequence representing a lines or regions object is already close to the desired structure because
it contains all halfsegments with the same dominating point as a compact subsequence in counter-
clockwise order (this fact has already been used in algorithm ll_intersects). What is needed addition-
ally is a pointer from each halfsegment to the partner halfsegment. For convenience, we also doubly
link the halfsegments around a node. Figure 5 shows a lines object and its graph representation in two
arrays Edge and Node.

Figure 4: Relationships in a graph

Array Edge

index h pred succ link node_index

1 1 1 5 1

2 3 3 4 2

3 2 2 6 2

4 4 4 2 3

5 8 6 1 4

6 5 7 3 4

7 6 8 9 4

8 7 5 10 4

9 9 9 7 5

10 10 10 8 6

11 11 11 12 7

12 12 12 11 8

h1
l

h2
l

h3
l

h2
r

h1
r

h3
r

h4
l

h5
l

h4
r

h5
r

h6
l

h6
r

Array Node

index on_stack

1 false

2 false

3 false

4 false

5 false

6 false

7 false

8 false

p1

p2

p3

p4

p6

p5

p7

p8

s1

s3

s2

s5

s4

s6

Figure 5: Graph Representation of
a lines object



− 16 −

This is essentially the temporary representation of a lines or regions object used in the ROSE system
as a basis for graph algorithms. In array Edge, field h contains the halfsegment. The fields pred and
succ contain the indexes of the preceding and succeeding halfsegments in the counter-clockwise or-
der; link is the index of the partner halfsegment. The field node_index points into the second array
Node.

The data structure definition and an algorithm for creating this temporary representation are shown at
the bottom of this page. In algorithm init_edge_and_node_array, the while-loop is executed once
for each halfsegment. All operations within the loop need constant time except for linking a right with
its corresponding left halfsegment which requires O(log n) time where n is the number of halfseg-
ments of the lines or regions object. Hence the whole algorithm has time complexity O(n log n). After
initialization of the arrays, for an index of an element we can find its predecessor, successor, opposite
halfsegment, and node information in constant time.

This graph-theoretic view is used to realize the executable operators l_interior, r_contour, l_count,
and r_count which have the following signature:

lines → regions l_interior
regions → lines r_contour
lines → int l_count
regions → int r_count

Here l_interior determines a regions object formed from the areas enclosed by segments of a lines
object, r_contour returns a lines object formed from the segments of only the outer cycles of the faces
of a regions object (holes are omitted). The other two operations return the number of components

(* New or first point reached. *)
topV := topV + 1;
Node[topV].on_stack := false;
Edge[topE].node_index := topV;
Edge[topE].succ := topE;
Edge[topE].pred := topE;

else
(* The same dominating point. *)
Edge[topE].node_index := topV;
(* Produce doubly-linked ring. *)
Edge[topE].pred := topE − 1;
Edge[topE].succ := Edge[topE − 1].succ;
Edge[topE − 1].succ := topE;
Edge[Edge[topE].succ].pred := topE;

end-if;
if d = right then

< Compute index i of the corresponding left
halfsegment of the array Edge in the range 1 to
topE by using binary search. >
Edge[topE].link := i;
Edge[i].link := topE;

end-if;
old_dp := act_dp;
L := select_next(L);

end-while;
return Edge, Node;

end init_edge_and_node_array.

const MaxComp = ...;
type EdgeRec = record

h : HN;
pred, succ : cardinal;
link, node_index : cardinal;

end;
NodeRec = record

on_stack : boolean;
end;

var Edge = array [1..MaxComp] of EdgeRec;
Node = array [1..NoOfPoints] of NodeRec;

algorithm init_edge_and_node_array
input: A lines object L (or a regions object R)
output:The two arrays Edge and Node
begin

topV := 0;
topE := 0;
old_dp := (m, m); (* outside of the realm *)
L := select_first(L);
while not end_of_hs(L) do

topE := topE + 1;
h := get_hs(L); (* Let h = (s, d). *)
Edge[topE].h := h;
act_dp := dp(h);
if (act_dp ≠ old_dp) or (topV = 0) then



− 17 −

which is the number of blocks (connected components) for a lines object and the number of faces for
a regions object. As an example, we show the algorithm for r_contour.

The main problem is the assignment of the segments to the correct outer and hole cycles which ac-
cording to the face definition is unique [GüS93a]. According to that definition, the regions object in
Figure 6(a) consists of two faces rather than of a single face with a hole.

An important observation is that for the first halfsegment of any cycle (with respect to the order of
halfsegments) we can decide whether it belongs to an outer cycle or a hole. It is a left halfsegment and
belongs to an outer cycle iff the attribute InsideAbove has been set, otherwise to a hole.

We adopt the following strategy: If for a given left halfsegment it is known that it belongs to an outer
cycle, then we traverse the graph forming a minimal cycle containing that segment. This works as fol-
lows: For the given halfsegment, get the partner halfsegment (i.e. follow the edge). From the partner,
go around that node to the predecessor in the counter-clockwise order. Follow that edge, etc. As soon
as the node of the initial segment is reached again, a complete cycle has been found and its segments
can be marked as outer segments.

This strategy works fine for the regions object in Figure 6(a) where it correctly determines the left
face. However, in Figure 6(b) the cycle would include the hole segments. Therefore the strategy is
refined as follows: If the first segment belongs to an outer cycle, then try to form a minimal cycle tra-
versing the graph as described above. Put each encountered halfsegment on a stack and mark its node
as being on_stack. As soon as a node is encountered which is on the stack already, two cases are pos-
sible:

• Case 1. This is the node of the initial segment. Then a complete outer cycle has been found.
Remove all segments from the stack, marking them as outer segments, and also from the
graph. Repeat the procedure for the remaining segments.

• Case 2. This is not the initial node. Then a hole cycle has been found. Remove segments from
the stack until the current node is found there, marking them as hole segments. Remove these
segments also from the graph. Then continue building the outer cycle. - Before removing
segments from the stack one must store the next segment of the outer cycle in order to avoid
continuing with some other face that may lie in the hole, as shown in Figure 6(b).

If the first segment belongs to a hole, then try to form a maximal cycle by going always to the succes-
sor around a node. Apart from that, proceed in the same way as for outer cycles. However, if here a
node is encountered which is not the initial one, then a cycle belonging to another hole has been found
sharing a vertex with the hole cycle of the initial segment.

On the next page we present two algorithms. Algorithm cycle_classification classifies the segments
of a regions object as outer or hole segments, following the strategy just discussed. Here the type
EdgeRec is extended by the fields visited and inside_above. The first field is initialized by the value

Figure 6: Traversal of Cycles
(a) (b)



− 18 −

false; the latter field is true if a halfsegment of the regions object has the attribute InsideAbove. A vari-
able top always contains the index of the top stack element; it is implicitly changed by the stack op-
erations push and pop. “Remove Edge[j] from the graph” means remove the edge from the cycle of
segments around its node. This algorithm requires O(n log n) time for a regions object with n halfseg-
ments due to the included preprocessing step for computing the Edge and Node arrays; apart from that
it needs only O(n) time.

The second algorithm r_contour then computes the contour of a regions object by using the first al-
gorithm. After cycle_classification has been done, this is trivial and needs only O(n) additional time.
The total time for r_contour, as presented, is O(n log n).

The algorithm for l_interior first follows a similar strategy as cycle_classification to extract only
complete cycles from a lines object. It then uses plane sweep to remove any cycles enclosed by other
cycles. This algorithm needs O(n log n) time. Computing the components in a lines object (l_count)

Edge[k]. >;
Node[Edge[k].node_index].on_stack
 := false;
if Edge[k].node_index = j then

count := count + 1
end-if

until (j = Edge[k].node_index) and
(count = 2);

push(rem); Edge[rem].visited := true;
l := Edge[rem].link;
push(l); Edge[l].visited := true;

end-if
until top = 0;

else (* Hole cycle. *)
< Proceed analogously. >

end-if
end-if

end-for;
end cycle_classification.

algorithm r_contour
input: A regions object R
output:A lines object L containing the halfsegments of

all outer cycles of R.
begin

L := new();
cycle_classification(R);
R := select_first(R);
while not end_of_hs(R) do

attr := get_attr(R);
if OuterSegment ∈ attr then

h := get_hs(R);
L := insert(L, h);

end-if;
R := select_next(R);

end-while;
return L;

end r_contour.

algorithm cycle_classification
input: A regions object R
output:A modified regions object R whose halfseg-

ments obtain the attribute HoleSegment if they
belong to a hole and OuterSegment otherwise.

begin
init_edge_and_node_array(R);
top := 0;
for i := 1 to < number of segments in Edge > do

if not Edge[i].visited then
if Edge[i].inside_above then (* Outer cycle. *)

Node[Edge[i].node_index].on_stack := true;
push(i); Edge[i].visited := true;
first_node_index := Edge[i].node_index;
l := Edge[i].link;
push(l); Edge[l].visited := true;
repeat

j := Edge[l].node_index;
if not Node[j].on_stack then

Node[j].on_stack := true;
j := Edge[l].pred;
push(j); Edge[j].visited := true;
l := Edge[j].link;
push(l); Edge[l].visited := true;

else if j = first_node_index then
while top > 0 do (* Outer cycle. *)

j := pop();
< Remove Edge[j] from the graph. >;
< Set attribute OuterSegment for
Edge[j]. >;
Node[Edge[j].node_index].on_stack
:= false

end-while
else (* Hole cycle. *)

rem := Edge[l].pred; count := 0;
repeat

k := pop();
< Remove Edge[j] from the graph.>;
< Set attribute HoleSegment for



− 19 −

can be done by a simple depth-first traversal [AhHU83]. Determining the number of components (fac-
es) in a regions object is also a by-product of cycle classification. The last two algorithms require O(n)
time once the graph representation has been constructed.

4.4 Special Algorithms

The diameter operator of the ROSE algebra determines the maximal extent of an object, that is, the
maximal distance between any two vertices. The implementation of the corresponding three execut-
able operators p_diameter, l_diameter, and r_diameter uses special algorithms different from the
three techniques mentioned before. The computation of all distances between any two points of an
object is too time-consuming. To reduce the number of elements, we determine the convex hull of the
object, since the diameter of the convex hull is equal to the diameter of the whole object [PrS85]. An
algorithm which calculates the convex hull of the point set of a simple polygon in linear time can be
found in [Me84]. An algorithm which computes the diameter of a convex polygon in linear time is
shown in [PrS85]. The combination of these two algorithms is used in the ROSE system to realize the
three diameter operations in O(n) time for an object with n points or halfsegments.

5 Implementation

In this section we discuss in more detail the actual representation of ROSE objects and some differ-
ences between the conceptual view of algorithms, as presented above, and the actual procedures in
the system. On the next page, the representation of a regions object is shown (for points and lines ob-
jects it is similar). A regions object is given as (a pointer to) a record whose last component is an array
elem; one can dynamically allocate storage to represent regions objects of any desired size. The array
serves as a storage pool for three different kinds of nodes representing halfsegments, faces, or holes,
respectively. Halfsegments are organized in an AVL-tree to allow for updates in O(log n) time; addi-
tional pointers connect all halfsegments within the object, within a face, and within a cycle (outer cy-
cle or hole cycle) into linked lists ordered in halfsegment order. Additionally all faces, and for each
face its holes, are linked. Hence the complete structure of a regions object is explicitly represented
and access operations are offered (in the module hiding this representation) to perform all kinds of
scans in linear time. Furthermore, bounding boxes are stored for the object, each face, and each hole.
The record contains general information about the object such as the root segment of the AVL-tree,
fields for perimeter, diameter and area; the attr field tells which of these values have already been
computed for this particular object.

In Section 4.3, we have described the graph algorithms from a conceptual point of view. What really
happens is that the graph structure is analyzed at the time of closing an object, that is, after all seg-
ments have been inserted. More precisely, the construction of a regions object consists of the follow-
ing steps:

• Allocate storage, insert n halfsegments into the AVL-tree.

To close the object:
• Perform an inorder traversal of the tree to link all halfsegments of the object; compute the

bounding box.
• Use plane sweep to compute InsideAbove attributes (sketched in Section 4.2).
• Use algorithm cycle_classification (including init_edge_and_node_array) to attach a



− 20 −

unique cycle number to each segment.
• Use a second plane sweep (a variant of the previous one) to determine for each hole segment

the cycle number of the outer cycle of its surrounding face.
• In a final scan of the complete list of segments, link all segments within faces and cycles (this

is possible since each segment has now an associated cycle number and face number) and
compute the remaining information such as bounding boxes, links of faces and holes, etc.

Clearly the whole construction takes no more than O(n log n) time and O(n) space. An analogous strat-
egy is used for the more simple lines and points objects. Because all this information is now explicitly
available in the data structures, the algorithms and running times for some operations change: all
no_of_components algorithms perform a simple lookup in O(1) time. The algorithm for r_contour
simply scans the list of faces and for each face the list of segments of its outer cycle which requires
only O(k log k) time (where k is the size of the result object). For operators computing diameter,
length, area and perimeter, only the first call takes O(n) time; the value is then stored with the object

FROM Primitives IMPORT

  (* type *) BBOX, HALFSEGMENT, POINT, SEGMENT;

TYPE
  OBJATTRIBS  = (Closed, Perimeter, Diameter, Area);
  ATTRIBSET   = SET OF OBJATTRIBS;
  COMPATTRIBS = (InsideUp, HoleSegment);
  COMPSET     = SET OF COMPATTRIBS;
  FIELDTYPE   = (HalfsegField, FaceField, HoleField);
  SELECTTYPE  = (RegionsSelected, FaceSelected, CycleSelected);

  REGIONSELEM = RECORD
                  CASE kind : FIELDTYPE OF
                    HalfsegField:
                      h               : HALFSEGMENT; (* Key-element. *)
                      attrib          : COMPSET;     (* Element status.*)
                      left            : CARDINAL;    (* AVL-tree. *)
                      right           : CARDINAL;
                      height          : CARDINAL;
                      next_in_regions : CARDINAL;    (* In order lists.*)
                      next_in_face    : CARDINAL;
                      next_in_cycle   : CARDINAL;
                  | FaceField:
                      face_bbox     : BBOX;     (* Face bounding box. *)
                      first_in_face : CARDINAL; (* First halfsegment. *)
                      last_in_face  : CARDINAL; (* (Help pointer.) *)
                      last_in_cycle : CARDINAL; (* (Help pointer.) *)
                      first_hole    : CARDINAL; (* First hole in face. *)
                      last_hole     : CARDINAL; (* (Help pointer.) *)
                      next_face     : CARDINAL; (* Face list. *)
                  | ELSE
                      hole_bbox     : BBOX;     (* Hole bounding. *)
                      first_in_hole : CARDINAL; (* First Halfsegment. *)
                      last_in_hole  : CARDINAL; (* (Help pointer.) *)
                      next_hole     : CARDINAL; (* Hole list. *)
                    END;
                END;

  REGIONS     = POINTER TO RECORD
                  attr      : ATTRIBSET;  (* The object’s status. *)
                  perimeter : REAL;       (* Length of Segments. *)
                  diameter  : REAL;       (* Diameter. *)
                  area      : REAL;       (* Area of object. *)
                  bbox      : BBOX;       (* Bounding box. *)
                  count     : CARDINAL;   (* Number of faces. *)
                  holes     : CARDINAL;   (* Number of holes. *)
                  free      : CARDINAL;   (* Number of free fields. *)
                  first_idx : CARDINAL;   (* Idx of smallest halfseg. *)
                  face_idx  : CARDINAL;   (* Idx of first face. *)
                  root_idx  : CARDINAL;   (* Idx of root of AVL-tree. *)
                  act_idx   : CARDINAL;   (* Idx of selected halfseg. *)
                  act_face  : CARDINAL;   (* Idx of selected face. *)
                  sel_kind  : SELECTTYPE; (* Kind of traversal. *)
                  max_idx   : CARDINAL;   (* Idx of largest half-field. *)
                  act_hole  : CARDINAL;   (* Idx of selected hole. *)
                  elem      : ARRAY [1..MaxInRegions] OF REGIONSELEM
                END;



− 21 −

so that subsequent calls are lookups in O(1) time. Further differences between the algorithms de-
scribed above and the actual procedures result from:

• Use of filter techniques. Most operations first compare bounding boxes of objects, some in a
second step also component bounding boxes, in order to avoid running the more expensive
algorithms on the actual halfsegments, whenever possible. Such strategies are well-known
(e.g. [OrM88, Gü94]).

• Estimating the size of the result is necessary in all operations constructing new objects to al-
locate the appropriate amount of storage for them.

For further details, we recommend the study of [Ri95].

6 Conclusions

We have described the implementation of a large part of a spatial algebra for database systems - that
is, the almost complete implementation of the first three groups of operators of the ROSE algebra
(only the dist operator is missing) which deal with “atomic” objects (whereas the fourth group ma-
nipulates set of database objects). Use of high-level primitives has made it possible to describe a rel-
atively large number of algorithms in compact, precise notation. We are not aware of any similar work
- treating a whole algebra by giving precise algorithms including analysis of their complexity.

The fact that ROSE objects are realm-based has led to relatively simple, efficient, and numerically
robust algorithms. All manipulations of objects are discrete (entirely based on integer arithmetics);
real numbers occur only to describe properties such as length or area of objects. A crucial concept is
the use of ordered halfsegment sequences as a base representation of objects. Manipulation of such
sequences in parallel traversal or plane sweep implements most operations efficiently. On the other
hand, we have also shown how the structure of objects (faces, holes, etc.) can be determined by graph
algorithms and be represented in the data structures.

The ROSE system is available for study or use, currently in the form of a stand-alone Modula-2 library
[Ri95]. It is in principle suitable for use in database systems since all objects have compact represen-
tations. However, for a serious integration it is necessary to solve the problem of managing very large
ROSE objects in a way that is compatible with the DBMS object and storage management. We are
currently working on the definition and implementation of a general “algebra interface” between an
external implementation of a system of data types and a database system. The ROSE algebra will be
made available under such an interface and integrated into the Gral system [Gü89, BeG92]. In this
approach, it is only necessary to replace the array components “at the end” of object representations
by identifiers of so-called “database arrays” which behave exactly like ordinary arrays but have their
own page sequences and buffer management and interact properly with DBMS transaction manage-
ment. This is a straightforward, technical modification of the ROSE algebra; algorithms remain un-
changed.

Another aspect of integration into a database system is the connection to the underlying realms, in par-
ticular the propagation of updates from the realm to ROSE objects in a database [GüS93a]. Our realm
implementation is almost completed. All these integration aspects will be described in a forthcoming
paper.



− 22 −

Appendix

The structure of this table is explained in Section 2. In column “time complexity” (TC), n denotes the
total size of the operand(s), m the size of the regions operand (only used if there is just one), and k the
size of the result object.

Descriptive Operator Executable Operator PT PS G TC

geo × geo → bool = pp_equal, ll_equal, rr_equal x O(n)

≠ pp_unequal, ll_unequal,
rr_unequal

x O(n)

disjoint pp_disjoint, ll_disjoint x O(n)

rr_disjoint x O(n log n)

geo × regions → bool inside pr_inside, lr_inside x O(n log m)

rr_inside x O(n log n)

regions × regions → bool area_disjoint rr_area_disjoint x O(n log n)

edge_disjoint rr_edge_disjoint x O(n log n)

edge_inside rr_edge_inside x O(n log n)

vertex_inside rr_vertex_inside x O(n log n)

ext1 × ext2 → bool intersects ll_intersects x O(n)

lr_intersects, rl_intersects x O(n log m)

rr_intersects x O(n log n)

meets ll_meets x O(n)

lr_meets, rl_meets x O(n log m)

rr_meets x O(n log n)

border_in_common ll_border_in_common,
lr_border_in_common,
rl_border_in_common,
rr_border_in_common

x O(n)

area × area → bool adjacent rr_adjacent x O(n log n)

encloses rr_encloses x O(n log n)

points × ext → bool on_border_of pl_on_border_of,
pr_on_border_of

x O(n)

points × points → points intersection pp_intersection x O(n + k log k)

lines × lines → points intersection ll_intersection x O(n + k log k)

regions × regions → regions intersection rr_intersection x O(n log n)

regions × lines → lines intersection rl_intersection x O(n log m +
k log k)

geo × geo → geo plus pp_plus, ll_plus x O(n + k log k)

rr_plus x O(n log n)



− 23 −

References

[AhHU83] Aho, A.V., J.E. Hopcroft, and J.D. Ullman, Data Structures and Algorithms. Addison-Wesley, Reading,
Massachusetts, 1983.

[BeG92] Becker, L., and R.H. Güting, Rule-Based Optimization and Query Processing in an Extensible
Geometric Database System. ACM Transactions on Database Systems 17 (1992), 247-303.

[GrY86] Greene, D., and F. Yao, Finite-Resolution Computational Geometry. Proc. 27th IEEE Symp. on
Foundations of Computer Science, 1986, 143-152.

[Gü89] Güting, R.H., Gral: An Extensible Relational Database System for Geometric Applications. Proc. of the
15th Intl. Conf. on Very Large Databases (Amsterdam, The Netherlands), 1989, 33-44.

[Gü93] Güting, R.H., Second-Order Signature: A Tool for Specifying Data Models, Query Processing, and
Optimization. Proc. ACM SIGMOD Conf. (Washington, USA), 1993, 277-286.

[Gü94] Güting, R.H., An Introduction to Spatial Database Systems. VLDB Journal 3, 4 (1994) (Special Issue on
Spatial Database Systems), 357-399.

[GüS93a] Güting, R.H., and M. Schneider, Realms: A Foundation for Spatial Data Types in Database Systems.
Proc. of the 3rd Intl. Symposium on Large Spatial Databases (Singapore), 1993, 14-35.

[GüS93b] Güting, R.H., and M. Schneider, Realm-Based Spatial Data Types : The ROSE Algebra. Fernuniversität
Hagen, Informatik-Report 141, 1993. To appear in the VLDB Journal.

[KaM85] Karlsson, R.G., and J.I. Munro, Proximity on a Grid. Proc. of the 2nd Symp. on Theoretical Aspects of
Computer Science, Springer-Verlag, LNCS 182, 1985, 187-196.

[KaO88a] Karlsson, R.G., and M.H. Overmars, Scanline Algorithms on a Grid. BIT 28 (1988), 227-241.

geo × geo → geo minus pp_minus, ll_minus x O(n + k log k)

rr_minus x O(n log n)

ext1 × ext2 → lines common_border ll_common_border,
lr_common_border,
rl_common_border,
rr_common_border

x O(n + k log k)

ext → points vertices l_vertices, r_vertices x O(n + k log k)

regions → lines contour r_contour x O(n log n) /
O(k log k)

lines → regions interior l_interior x O(n log n)

geo → int no_of_components p_no_of_components x O(n) / O(1)

l_no_of_components,
r_no_of_components

x O(n log n) /
O(1)

geo1 × geo2 → real dist pp_dist, pl_dist, pr_dist, lp_dist,
ll_dist, lr_dist, rp_dist, rl_dist,
rr_dist

geo → real diameter p_diameter, l_diameter,
r_diameter

special algo-
rithm

O(n) / O(1)

lines → real length l_length x O(n) / O(1)

regions → real area r_area x O(n) / O(1)

perimeter r_perimeter x O(n) / O(1)

Descriptive Operator Executable Operator PT PS G TC



− 24 −

[KaO88b] Karlsson, R.G., and M.H. Overmars, Normalized Divide-and-Conquer: A Scaling Technique for Solving
Multi-Dimensional Problems. Information Processing Letters 26 (1988), 307-312.

[KeK81] Keil, J.M., and D.G. Kirkpatrick, Computational Geometry on Integer Grids. Proc. of the 19th Annual
Allerton Conference on Communication, Control, and Computing, 1981, 41-50.

[Kl83] Klaeren, H.A., Algebraische Spezifikation. Springer Verlag, Berlin, 1983.

[Me84] Mehlhorn, K., Data Structures and Algorithms 3: Multidimensional Searching and Computational
Geometry. Springer Verlag, 1984.

[Mü85] Müller, H., Rastered Point Location. Proc. Workshop on Graphtheoretic Concepts in Computer Science,
Trauner Verlag, 1985, 281-293.

[OrM88] Orenstein, J., and F. Manola, PROBE Spatial Data Modeling and Query Processing in an Image
Database Application. IEEE Trans. on Software Engineering 14 (1988), 611-629.

[Ov88a] Overmars, M.H., Efficient Data Structures for Range Searching on a Grid. Journal of Algorithms 9
(1988), 254-275.

[Ov88b] Overmars, M.H., New Algorithms for Computer Graphics. Advances in Computer Graphics,
Eurographics Seminars, Springer Verlag, 1988, 3-19.

[Ov88c] Overmars, M.H., Computational Geometry on a Grid: An Overview. Theoretical Foundations for
Computer Graphics and CAD, Springer Verlag, 1988, 167-184.

[PrS85] Preparata F.P., and M.I. Shamos, Computational Geometry. Springer Verlag, 1985.

[Ri95] de Ridder, T., The ROSE System. Modula-2 Program System (Source Code). Fernuniversität Hagen,
Praktische Informatik IV, Software Report 1, 1995. Available as a LaTeX file for printing and/or as a
compressed collection of ASCII files.

[Ya92] Yao F.F., Computational Geometry. Algorithms and Complexity. Handbook of Theoretical Computer
Science, vol. A, Elsevier Science Publishers B.V., 1992, 343-389.


