Realms. A Foundation for Spatial Data Types
in Database Systems®

Ralf Hartmut Glting
Markus Schneider

Praktische Informatik 1V, FernUniversitét Hagen
Postfach 940, D-5800 Hagen, Germany
gueting@fernuni-hagen.de, schneide@fernuni-hagen.de

Abstract: Spatial data types or algebras for database systems should (i) be fully general (which
means, closed under set operations, hence e.g. a region value can be a set of polygons with holes),
(ii) have formally defined semantics, (iii) be defined in terms of finite representations available in
computers, (iv) offer facilities to enforce geometric consistency of related spatial objects, and (v) be
independent of a particular DBMS data model, but cooperate with any. We offer such a definition in
two papers. The central idea, introduced in this (first) paper, is to use realms as geometric domains
underlying spatial datatypes. A realm as ageneral database concept is afinite, dynamic, user-defined
structure underlying one or more system data types. A geometric realm defined hereisaplanar graph
over afinite resolution grid. Problems of numerical robustness and topological correctness are solved
below and within the ream layer so that spatial algebras defined above a realm enjoy very nice
algebraic properties. Reams also interact with a DBMS to enforce geometric consistency on object
creation or update.

Keywords. Spatia data types, algebra, realm, finite resolution, numerical robustness, topological
correctness, geometric consistency.

1 Thiswork was supported by the DFG (Deutsche Forschungsgemeinschaft) under grant Gu 293/1-1.

1 Introduction

We consider a spatial database system to be afull-fledged DBM S with additional capabilitiesfor the
representation and manipulation of geometric data. As such, it provides the database technology
needed to support applications such as geographic information systems. The standard DBM S view for
the organization of spatial information is the following: A database consists of several classes of
objects. A spatial object isjust an object with an associated value (“attribute”) of a spatial data type,
such as, for example, POINT, LINE, or REGION. Thisis true regardless of whether the DBM S uses
a relational, complex object, object-oriented or some other data model. Hence the definition and
implementation of spatial data types is probably the most fundamental issue in the development of
spatial database systems.

Although spatial data types (SDTs) are used routinely in the description of spatial query languages
(e.g. [LIN87, JoC88, SvH91]), have been implemented in some prototype systems (e.g. [RoFS88,
OrMa88, Guig9]), and some formal definitions have been given [Gl88a, ScVV 89, GaNT91], thereisstill
no completely satisfactory solution available according to the following criteria:

» Generality. The geometric objects used as SDT values should be as general as possible. For
example, a region value should be able to represent a collection of digoint areas each of
which may have holes. More precisely, this means that the domains of data types POINT,
LINE, and REGION must be closed under union, intersection, and difference of their
underlying point sets. This alows for the definition of powerful data type operations with
nice closure properties.

» Rigorous definition. The semantics of SDTS, that is, the possible values for the types and the
functions associated with the operations, must be defined formally to avoid ambiguities for
the user and the implementor.

» Finite resolution. The formal definitions must take into account the finite representations
available in computers. This has so far been neglected in definitions of SDTs. It isleft to the
programmer to close this gap between theory and practice which leads rather inevitably not
only to numerical but also topological errors.

» Treatment of geometric consistency. Distinct spatial objects may be related through
geometric consistency constraints (e.g. adjacent regions have a common boundary). The
definition of SDTs must offer facilities to enforce such consistency.

» General object model interface. Spatial datatypes as such are rather useless; they need to be
integrated into a DBMS data model and query language. However, a definition of SDTs
should be valid regardless of aparticular DBMS datamodel and therefore not depend on it.?
Instead, the SDT definition should be based on an abstract interface to the DBM S data model
which we call the object model interface.

The purpose of this paper (together with a companion paper) is to develop a formal definition of
spatial data types fulfilling these criteria. The central ideaisto introduce into the DBM S the concept
of arealm. A realmisin general afinite, user defined structure that is used as a basis for one or more
system data types. Realms are somewhat similar to enumeration types in programming languages. A

2 This also holds for the implementation level: A spatial type extension package (STEP) should be able to cooperate

with any extensible DBMS offering a suitable interface regardless of its data model.

realm used as abasisfor spatial datatypesisessentialy afinite set of points and non-intersecting line
segments. Intuitively, it describes the complete underlying geometry of an application. All points,
lines and regions associated with objects (from now on called spatial attribute values) can be defined
in terms of points and line segments present in the realm. In fact, in adatabase spatial attribute values
are then never created directly but only by selecting some realm objects. They are never updated
directly. Instead, updates are performed on the realm and from there propagated to the dependent
attribute values.

Hence, al attribute values occurring in a database are realm-based. Furthermore, the algebraic
operations for the spatial data types are defined to construct only geometric objects that are realm-
based as well. So the spatial algebrais closed with respect to a given realm. This meansin particular
that no two values of spatial data types occurring in geometric computation have “proper”
intersections of line segments. Instead, two initially intersecting segments have aready been split at
the intersection point when they were entered into the realm. One could say that any two intersecting
SDT values (say, lines or regions) “have become acquainted” already when they were entered into the
realm. Thisisacrucia property for the correct and efficient implementation of geometric operations.

Realm objects - points and segments - are defined not in abstract Euclidean space but in terms of finite
representations. All geometric primitives and realm operations (e.g. updates) are defined in error-free
integer arithmetic. For mapping an application’s set of intersecting line segmentsinto arealm’s set of
non-intersecting segments the concept of redrawing and finite resolution geometry from [GrY 86] is
used. Although intersection points computed with finite resolution in general move away from their
exact Euclidean position, this concept ensures that the unavoidable distortion of geometry (that is, the
numerical error) remains bounded and very small and that &esentially3 no topological errors occur.
This means that a programmer has a precise specification that directly lends itself to a correct
implementation. It also meansthat the spatial algebra obeys algebraic laws precisely in theory aswell
as in practice. Furthermore, it is rather obvious that realms also solve the geometric consistency
problem.

Most closely related to thiswork are the formal definitions of spatial datatypes (or algebras) given by
Guting [GU88a, Gui88b], Scholl and Voisard [ScV 89, V092], and Gargano et al. [GaNT91]. All of
these proposalsdo not fulfill most of the criteriagiven above. In [Gl88a, GUi88b] datatypesfor points,
lines, and regions are available but too restricted, e.g. aregion is a single simple polygon (without
holes). In [ScV89] general regions are defined; in Voisard's thesis [V092] this has been extended to
general types for points and lines. However, the definitions are unnecessarily complex. In [GaNT91]
thereisonly asingletypefor all kinds of geometric objects; avalueis essentially aset of setsof pixels.
We fedl this is not sufficient, since many interesting spatial operations cannot be expressed. As
mentioned, all of these proposals give formal definitions. However, those of Giting and of Scholl and
Voisard are not based on finite resol ution; hence the numeric correctness problems are not addressed.
Gargano et al. base their definitions in principle on afinite underlying set (of pixels). But thisis not
practical since these finite representations are far too large to be efficiently manageable. The
geometric consistency problem is not solved in any of these proposals; there is some weak support in
[GU88a] through an AREA data type, but it is not sufficient. Finally, al three proposals have
connected their spatial typesto afixed datamodel — Guting and Gargano et al. to the relational model

3 Seethediscussionin Sections 2 and 8.

and Scholl and Voisard to a complex object algebra [AbB88]. Only Scholl and Voisard emphasize a
clean interface between the spatial algebra and the general object model. We shall extend their work
by offering an abstract interface not dependent on any particular data model.

The topological data model based on simplicial complexes suggested by Egenhofer et al. [EQFJ89]
has a similar purpose as our concept of realms. Essentially they offer an irregular triangular network
partition of the plane as a geometric domain over which spatial objects could be defined. However,
the connections are missing to the underlying finite arithmetic as well as to spatial data types based
on thismodel. Also, in our view atriangular partition contains too much information; it is sufficient
to keep those points and segments in a geometric domain that are needed for spatial attribute values.
Finally, their model is an abstract one whereas we show realms within a database context.

Our description and formal development of realm-based spatial data typesis given in two papers. In
this paper the lower layers, namely numerically robust geometric primitives, reams and their
operations and the structure of values of the spatial data types are defined. In [GUS92] the object
model interface and the spatial datatypes and operations, that is, the spatial algebra, are described. In
the following section we first provide an informal overview of the complete concept.

2 Overview: Realm-Based Spatial Data Types

A realmisaset of points and non-intersecting line segments over adiscrete domain, that is, agrid, as
shownin Figure 1.

Figure 1

Values of spatial datatypes can be composed from the objects present in arealm. Figure 2 shows some
values definable over the realm of Figure 1. Our realm-based spatial data types are called POINTS,
LINES, and REGIONS, hence A and B represent REGIONS values, C isa LINES value, and D a
POINTS value. The precise structure of these valuesis not yet relevant here. One can imagine A and
B to belong to two adjacent countries, C to represent ariver, and D acity.

The underlying grid of arealm arises smply from the fact that numbers have a finite representation
in computer memory. In practice, these representations will be of fixed length and correspond to
INTEGER or REAL datatypes available in programming languages. Of course, the resolution will be
much finer than could be shown in Figure 1.

Figure 2

The concept of realm as abasis of spatial data types serves the following purposes:

It enforces geometric consistency of related spatial objects. For example, the common part
of the borders of countries A and B is exactly the same for both objects.

It guarantees nice closure properties for the computation with spatial data types above the
realm. For example, the intersection of region B with line C (the part of river C lying within
country B) isaso arealm-based LINES value.

It shields geometric computation in query processing from numeric correctness and
robustness problems. This is because such problems arise essentially from the computation
of intersection points of line segments which normally do not lie on the grid. With realm-
based SDTs, there are never any new intersection points computed in query processing.
Instead, the numeric problems are treated below the realm level, namely, whenever updates
are made to arealm.

Additionally, a data structure representing arealm can be used as an index into the database.
Our implementation concept assumes that each point and segment in a realm has an
associated list of logical pointersto the spatial attribute values defined over it in the database.

L et us now focus on the treatment of numeric correctness problems below and within the realm level.
This is necessary because geometric data coming from the application are not intersection-free, as
required for arealm. Application datacan at the lowest level of abstraction be viewed asaset of points
and intersecting line segments. These need to be transformed into arealm. As mentioned before, the
fundamental problem is that intersection points usually do not lie on the grid.

Figure 3 Figure 4

In Figure 3, the intersection point D’ of line segments A and B will be moved to the closest grid point
D. This leads, for example, to the following topological errors: (1) A test whether D lieson A or B

fails. (2) A test whether D lies properly within some area defined below A and B will incorrectly yield
true. (3) If there is another segment C between the true intersection point and D, D will be reported to
lie on the wrong side of C. The basic idea to avoid these errorsis to slightly change segments A and
B by transforming them into chains of segments going through D, as shown in Figure 4. However, this
does not suffice, since it allows a segment to drift (through a series of intersections) by an arbitrary
distance from its origina position. For example, a further intersection of A with some segment C
(Figure 5) is resolved as shown in Figure 6, where intersection point E has aready a considerable
distance from the true intersection point of A and C. Notein particular, that segment A hasin Figure
6 been moved to the other side of agrid point (indicated by the arrow) which may later be reported to
lie on the wrong side of A.

Figure5 Figure 6
A refined solution was proposed by Greene and Yao [GrY 86]. Theideaisto definefor asegment san
envelope E(s) roughly as the collection of grid points that are immediately above, below, or on s. An
intersection of swith some other segment may lead to arequirement that s should pass through some
point P on its envelope (the grid point closest to the true intersection point). This requirement is then
fulfilled by redrawing s by some polygonal line within the envel ope rather than by simply connecting
P with the start and end points of s. Figure 7 shows a segment s (drawn fat) together with the grid
points of its envelope. Slightly above s aredrawing of sthrough P is shown.
P

Figure7

Intuitively, the process of redrawing can be understood as follows: Think of segment s as a rubber
band and the points of the envelope as nails on a board. Now grip s at the true intersection point and
pull it around P. The resulting polygonal path is the redrawing. The number of segments of this path
isin the worst case logarithmic in the size of the grid, but it seems that in most cases only very few
segments are created.

This approach guarantees that the polygonal line describing a segment always remains within the
envelope of the original segment. We adopt the technique for realms. It then means that by redrawing
a segment can never drift to the other side of arealm point. It might still happen, though, that after a
redrawing arealm point is found to lie on a segment which it did not originally.

The formal definition of realm-based SDTs is organized as a series of layers. Each layer defines its
own structures and primitives, using the notions of the layers below. We describe these layers
bottom-up in the rest of this paper and the companion paper [GUS92]. Let us briefly provide an
overview of this development.

Robust geometric primitives are introduced in Section 3 (and an appendix). This lowest layer defines
adiscrete space N x Nwhere N ={0, ..., n— 1} isasubset of the natural numbers. The objectsin this
space are points and line segments with coordinatesin N, called N-points and N-segments. A number
of operations (predicates) such as whether an N-point lies on an N-segment or whether two
N-segmentsinter sect, and which N-point isthe result of intersecting two N-segments, are defined. The
crucial point isthat these definitions are given in terms of error-freeinteger arithmetic, hencethey are
directly implementable.

In Section 4 geometric realms are defined as described above; elements are called R-points and
R-segments. Basic operations on realms (given in Section 5) areinsertion and del etion of N-points and
N-segments. However, to cooperate with a database system, arealm — as an abstract data type — has
a more general interface. For example, the operation of inserting an N-segment returns besides a
modified realm a redrawing of the inserted segment and a set of redrawings of segments in the
database that need to be modified together with logical pointers (SCIDs = spatial component
identifiers) to database representations of these segments. The management of identifiers makes it
necessary to offer operationsthat register spatial attribute valuesin the database with their underlying
realm objects. A last group of operations allows to get a set of realm objects (within a rectangular
window) and to identify objects when aclose N-point is given. Thismakesit possible to display parts
of arealm at aDBM Sgraphical user interfaceandto let auser build spatial attribute valuesby clicking
at realm objects displayed.

The next layer (Section 6) defines certain structures present in a realm that serve as a basis for the
definition of SDTs. A realm can be viewed as a planar graph; an R-cycleis a cycle of this graph. An
R-face is an R-cycle possibly enclosing some other digoint R-cycles corresponding to aregion with
holes. An R-unit isaminimal R-face. These three notions support the definition of a REGIONS data
type. An R-block is a connected component of the realm graph; it supports the definition of aLINES
data type. For all of these structures there are also predicates defined to describe their possible
rel ationships.

After these preparations in the next layer (Section 7) the domains of spatial data types POINTS,
LINES, and REGIONS are defined. A POINTS value is a set of R-points. There are two alternative
views of LINES and REGIONS. Thefirstisthat a LINES value is a set of R-segments and aregions
value a set of R-units. The other view is equivalent but “ semantically richer”: A linesvalueis a set of
disoint R-blocks and aregionsvalue aset of (edge-) digoint R-faces. This completesthe scope of this

paper.

In the companion paper [GUS92] first the notion of properties of collections of values is introduced.
The purpose isto support notions such asamap which is essentially aset of objectswhose REGIONS
attribute values are digoint. One would like to identify such constraints and to use them for the
definition of algebra operations, e.g. map overlay. Next, the object model interface (OMI) is defined.
We identify a number of conceptsthat need to be present in the DBM S data (or object) model to allow
it to cooperate with our spatial algebra. For example, the OMI must offer afunction that yields for a

given object an associated SDT value, operations to form aggregates of objects or to group sets of
objects by attribute values (which in connection with the spatial algebra alowsto realize a*“fusion”
operation [ScV89, GaNT91]). The corresponding idea at the system level is that any extensible
database system offering an OMI implementation can cooperate with aspatial type extension package
(STEP) realizing the spatial algebra. Finally the spatial algebraitself is described; the semantics of all
operations are formally defined. Due to the underlying realms, this algebra has smple and powerful
operations, nice closure properties and observes a number of algebraic laws. It is straightforward to
implement this algebrain such away that the laws do also hold in practice.

3 Robust Geometric Primitives

The bottom layer of the formal development introduces a finite discrete space, points and line
segments over this space, and some simple predicates and operations on them. Let N={0, ..., n— 1}
c N. AnN-pointisapair (X,y) € Nx N. AnN-segment isapair of distinct N-points (p, g). Py denotes
the set of all N-points and S the set of al N-segments. We introduce the primitives shown in Figure
8 on N-points and N-segments. In this graph representation, undirected edges denote predicates and
directed edges other operations (here inter section takes two N-segments and returns an N-point).

intersection

=, intersect, parald,
overlap, aligned, meset,

= dlgOi nt

Figure 8

In the appendix these operations are defined in terms of integer arithmetic. Therefore they have a
straightforward implementation free of numerical errors. We briefly explain them informally here:
Two N-segments meet if they have exactly one end point in common. They overlap if they are
collinear and share a (partial) N-segment. If they are collinear and do not share a (partial) N-segment,
we call them aligned. If they have exactly one common point but do not meet, they intersect. If they
have the same slope, they are parallel. They are digoint if they are neither equal nor meet nor
intersect. The on primitive tests if an N-point lies on an N-segment; the in primitive does nearly the
same but the N-point must not coincide with one of the end points of the N-segment. The intersection
primitive calculates the intersection point of two N-segments and rounds it to the nearest N-point.

4 Realms

Given N, arealmover N, or N-realmfor short, isaset R=P U Ssuch that
(i) PcPnScSy
(i) VseS:s=(p,g)=>pe ParqeP
(i) Vpe PVse S:=(piny)
(iv) Vste S:—(s=t) A—(sandtintersect) A — (sandt overlap)

The elements of P and Sare called R-points and R-segments. There is an obvious interpretation of a
realm as a spatially embedded planar graph with set of nodes P and set of edges S.

5 Operationson Realms/ The Realm Interface

Obviously the fundamental operations on realms are the insertion of an N-point or N-segment and the
deletion of an R-point or R-segment. However, the interface is a bit more complex since we study
realms not just as abstract entities but in connection with spatial databases. That means that there are
gpatial attribute values in the database depending on realm objects. This dependency needs to be
modeled and treated by the operations.

Our approach to implement the dependency is the following: We assume that (the geometry of) a
spatia attribute value of some object is stored together with the object in the database and thereis a
logical pointer from each segment or point describing the spatial value to the underlying realm object.
Furthermore, associated with each realm object (point or segment) is a set of logical pointers; one
pointer to each corresponding component of aspatial value in the database. In other words, points and
segments in the database are doubly linked with the corresponding points and segmentsin the realm.
Pointers from the database into the realm are realized by realm object identifiers from a set ROID,
pointers from the ream into the database by spatial component identifiers from a set SCID. It is
assumed that each roid or scid uniquely identifies the corresponding entity and that the
implementation guarantees fast access to these components. Additionally, a scid also identifies the
spatial value as awhole.

This approach stores geometries redundantly with a database object and in the realm. One might save
some space by representing attribute values just by structures composed of pointersto realm objects.
However, we believe its crucia for efficient query processing and well worth the extra space to keep
the geometries with the objects. In thisway one can directly apply SDT operationsto spatial attribute
valueswhereas otherwiseit would always be necessary to access (load pages of) the underlying realm.
Note that the two-way linking is necessary in any case since changes in the realm (e.g. a new
Intersection point on a segment) need to be propagated to the dependent spatial values.

We model the management of pointers formally as follows: Let R be arealm. A representation of R
isaset of triples{(r, roid(r), scids(r)) | r € R} whereroid is afunction giving for arealm object its
unique identifier in ROID and scidsis afunction returning the set of SCIDs of dependent components
of spatial attribute values. We also allow the notation roid(v) to assign anew ROID to anewly created
realm object v.

Therealm interface is described by the following signature. Slightly extending standard notations we
allow operators to return tuples of values and sets of values — the type of a set of X valuesis denoted
by X*. Thefirst group of operations are those mentioned above:

sorts Realm, Point, Segment, RealmObject, ROID, SCID, Rectangle, Bool, Integer

ops InsertNPoint: Realm x Point — Realmx ROID x (SCID x (Segment x ROID)*)*

InsertNSegment: Realmx Segment — Realm x (Segment x ROID)* x (SCID x
(Segment x ROID)*)* x Bool

Delete: Realm x ROID — Realmx Bool

The sort (type) Realm refers to a realm representation, Point to the set Py, Segment to the set S.
RealmObject is a union type of Point and Segment; we assume one can recognize whether a given
instance is a point or a segment. ROID and SCID have been discussed above. Rectangle denotes the
set of axis-parallel rectangles definable over space N x N, that is, N-rectangles.

The update operations implement the approach of Greene and Yao [GrY 86] described in Section 2to
preserve the topology for a set of intersecting line segments when they are represented over a finite
grid. Greene and Yao do not deal with collections of pointsthat are part of our realms. We extend their
approach by an additional integrity rule for points and line segmentsthat are very close to each other.
In Section 2 the concept of an envelope was aready introduced as a set of grid points “adjacent” to a
segment (formally defined in [GrY 86]). Let us call the “proper envelope’ the subset of envelope
points that are not end points of the segment (denoted E (s) for segment s). Then theruleis:

No R-point lies on the proper envelope of any R-segment.

The intuition behind this is that points that are so close are meant to lie on the segment. Update
operations maintain this constraint by redrawing the segment whenever apoint is discovered to lieon
its proper envelope (which can happen on point insertion or on segment insertion).

The operation InsertNPoint takes a realm and an N-point. It returns (i) the modified realm, (ii) an
identifier for the inserted point, which could be an old one if the point was in the realm already, and
(iii) a set of segments in the database that need to be redrawn, which may be empty. A segment may
need redrawing because the point lies on its proper envelope. For each such segment its “address’ in
the database (SCID) together with alist of pairs (s, roid(s)) (where sisasegment of the redrawing) is
returned. It isthen the task of the DBMS to replace segments by their redrawings.

The operation InsertNSegment takes a realm and an N-segment. It returns (i) the modified realm, (ii)
alist of segments with their roids which may contain either the original segment as the only element
or aredrawing of this segment, (iii) a possibly empty set of segments that need to be redrawn (as for
InsertNPoint). Here the inserted segment may need redrawing because it or its proper envelope
touches R-points or because it intersects R-segments. The other segments need redrawing because
they are intersected by this segment. The last parameter (iv) indicates whether insertion was
performed; it was rejected, if not both end points of the segment were present in the realm.

The operation Delete takes arealm and the identifier of arealm object (point or segment) and removes
the object from the realm if this doesn’t violate certain integrity constraints. It returns (i) the modified
realm and (ii) an indication whether the object was removed. The following conditions are checked:
A point isonly removed if there is no segment ending in the point. Any realm object is only removed
iIf its set of scids (dependent objects) is empty.

The second group of operations supports the management of the two-way linking between realm
objects and components of spatial values in the database:

Register: Realmx ROID x SCID — Realm
Unregister: Realimx ROID x SCID — Realm
GetCIDs: Realm x ROID — CID*
GetRealmObject: Realm x ROID — RealmObject

- 10 -

Here Register informs arealm object roid about a spatial component scid depending on it. Unregister
removes such an information. GetSCIDs returns the scids of spatial components depending on the
given roid, GetRealmODbject returns the geometry. These operations are to be used, for example, as
follows: A spatia attribute value is constructed by selecting a number of realm objects in a certain
order (thisis supported by the last group of operations, see below). After all components have been
selected, the representation of this value is built and stored in the database. Then all components are
registered with their underlying realm objects. When a spatial attribute value is deleted, the
registration isremoved for all objects. GetSCIDs and GetReal mObject are general purpose operations
to support query processing.

The last group of operations supports the selection of realm objects for the construction of spatial
values:

Window: Realm x Rectangle — (RealmObject x ROID)*
| dentify: Realm x Point x Integer — ROID x Bool

Window returnsall realm objectstogether with their roid that are inside or intersect agiven rectangular
window. Identify triesto identify arealm object close to the N-point given as a parameter. The number
given as a third parameter controls the “pick distance”. A roid (possibly undefined) is returned
together with an indication whether identification was successful. These two operations can be used
to retrieve a portion of a realm in order to define spatial attribute values over it. For example, this
portion may be displayed at agraphical user interface. With a pointing device one can select N-points
which through I dentify determine realm objects from which the spatial values can be built.

We now define the semantics of the realm operations InsertNPoint and I nsertNSegment. All the other
operations are rather ssmple so that their meaning should be clear from the explanations above.
InsertNPoint and InsertNSegment are described by giving algorithms for them. As mentioned before,
the concepts of Greene and Yao [GrY 86] are applied and extended, some of which need now to be
explained in more detail. In [GrY86], for a set of line segments redrawings are computed in two
phases. First, for each segment that needs to be redrawn, the set of points on its envelope, that need to
be passed by the redrawing, is computed. These points are attached to the segment in the form of
“hooks’. A hook is a short directed line segment (an “arrow”) from a point on the segment to the
envel ope point that needs to be passed.

Figure 9

Figure 9 shows a segment s with two hooks <p’, p>and <q', g>. Such a “hooked segment” is
represented asalist (s, <p’, p>, <q', g>). Thefirst hook arisesfrom the intersection of segments sand
tin p’; when this intersection is discovered, the hook <p’, p> is added to both segments sand t. Let
us assume that the other hook in Figure 9 arises from the fact that point q wasinserted into the realm;

— 11 —

sinceit lieson the envelope of s, sshould go through g. In such a case we take the point on the segment
closest to the target point (in this case q') asthe start point of the hook and denote it as base(<target>,
<segment>), in thiscase g = base(q, s).*

Figure9 asoillustratesthat for each hook created one generally needsto check whether any segments
are intersected by it. In the example an intersection with segment u would be discovered and a
corresponding hook <", g> be added to segment u (where q” isthe intersection point of the hook and
u). Only after all hooks have been determined, redrawings (polygonal lines within the envelope) are
computed. This can now be done for each hooked segment independently from all other segments.
See [GrY 86] for adescription of how redrawings are computed.

The algorithm InsertNPoint has to treat the following cases:. (i) the point is aready present in the
realm, (ii) the point is new and does not lie on any envelope, and (iii) the point falls on one or more
proper envelopes. Only thelast caseisabit more complex: All segmentswhose envel opes are touched
get a hook. Later, all those segments are redrawn. The description uses predicates ExistsRPoint and
ExistsRSegment with the obvious meaning to check whether a realm object to be created is present
already.

algorithm InsertNPoint (R, p, R, r, SP)
{Inputs are arealm R = P u Sand an N-point p. Outputs are the modified realm R, a realm object
identifier r for p, and a set SP of spatial component identifiers and redrawings for the spatial objects

which have to be updated.}
Sepl
P =,

if 3ge P: p=q (a most one such R-point can exist)
thenr :=roid(q); R :=R
else ifVse S:peg E(9)
thenr :=roid(p); R :=Ru{(p, r, D)}
else (R-segments exist whose proper envelopes contain p)
Sq:=9; (aset of R-segments which have to be redrawn)
r:=roid(p);
S :={se S|pe E(5)};
for each sin Sy, do
Insert ahook h = <base (p, S), p>ons, Sq:=Sq {s}
(one does not need to check for segments in Sintersecting h because they are already
in Senv)
Sep 2 (redraw hooked lines)
Let Sq:={ty, ... to}. Let{t; 1, ..., ti,ki} be the set of k; R-segments of the redrawing of t; through p.
Letti;=(pij qij) i€ {L ...n}je {1 ...k}

Sep 3 (update realm)
R =R\ {(t, roid(t;), scids(t))) | i € {1, ..., n}}
(Insert the end points of the R-segments of the redrawings and the R-segments themselves if they
do not already exist in the realm)

4 In[GrY86] all hooks arise from segment intersections.

for eachiin 1..ndo
for eachjin 1.k do
if not ExistsRPoint(p; ;) then R :=R" u {(p;;, roid(p; j), 9)};
if not ExistsRPoint(q; ;) then R := R {(q }, roid(q; j), D)}
if not EX|StsRSegment(t,’J) thenR =R v {(ti,j' I'Oid(ti,j), @)},
n

P = U {(se, {(t, roid(t; ;) [€ {1, ..., ki}}) | sc e scids(t;)}
i=1
end InsertNPoint.

The algorithm InsertNSegment first checks whether the end points of the segment are present in the
realm; otherwise it rejects insertion. This agrees with the graph-theoretic view of arealm: An edge
canonly exist if itsnodes are there. It impliesthat the user of the realm layer has to make sure that the
points are present (in case of doubt just insert them first; this doesn’t hurt). Hence, when asegment is
inserted, it is known that the end points have already interacted properly with envelopes of other
segments. The following cases are now distinguished: (i) the segment isin the realm already, (ii) the
segment is new and doesn’t touch anything, and (iii) the segment may intersect some other segments
and / or its envelope touches some realm points.

algorithm InsertNSegment (R, s, R, RD, SP, ok)
{Inputsareaream R=P u Sand an N-segment s. Outputs are the modified reelm R', aset RD of pairs
of R-segments and realm object identifiers either for sor aredrawing of s, aset SP of spatial component
identifiers and redrawings for the spatial objects which have to be updated, and a parameter ok which
indicates whether the insertion was performed. Insertion was rejected if the end points of s were not
present in the realm.}
Sep 1 (initializations)

F =

Sep 2 (check, whether end points of s have already been inserted)
Let s=(qy, 0p). ok := ExistsRPoint(q,) and ExistsRPaint(qy);

if ok then (execute steps 3-5)

Sep 3 (insert hooks)
if 3te S:s=t (at most one such R-segment can exist)
then R :=R; RD :={(s, roid(t))}
efse ifVte S:sandtaredigointAVpe P:pe E(s)
then R :=RuU {(s, roid(s), @)}; RD :={(s, roid(s))}
else (sintersects R-segments and/or there are R-points in the proper envelope of s)
Sq = D (the set of R-segments which have to be redrawn)

(Get all R-points lying in the proper envelope of s except for the end points. Get all
R-segments intersecting S.)
Pen(s) ={pe P|pe E(s)}
Sntersect(S) :={t € S|sandt intersect}
for each pin Pgy(s) do
Insert ahook h = <base(p, s), p>ons
for each tin Sdo
if hand tintersect at p’
then
Insert ahook h=<p’, p>ont; Sq:=Sq v {t}

for each tin §persect(S) do

Insert ahook h = <q, p> both on sand on t from the intersection point g of sand t
to the closest grid point p (Note that p = g ispossibleif qisagrid point)
Sa:=Sa {t}
for each vin Sdo

if hand vintersect at p’

then

Insert ahook h' =<p’, p>onv; Sq:=Squ{V}

Sep 4 (redraw hooked lines)
Redraw s. Let{sy, ..., S,,} bethe R-segments of the redrawing of s. Let s, = (p;, ¢j), i € {1, ..., m}.
Redraw all R-segments of Sq := {ty, ..., t}. Let {t; , ..., tj } be the set of k; R-segments of the
redrawing of ti. Lett;; = (pjj, Gi;). i € {1, ..., n},j e {1, ..., k}
Sep 5 (update realm)
R =R\ {(t, roid(t;), scids(t))) | i € {1, ..., n}}
(Insert the end points of the R-segments of the redrawings and the R-segments themselves if they
do not aready exist in the realm.)
for eachiin 1.mdo
if not ExistsRPoint(p;) then R := R w {(p;, roid(p;), D)}
if not ExistsRPoint(q;) then R := R u {(q;, roid(q;), ©)}
if not ExistsRSegment(s) then R := R U {(s;, roid(s), @)}
for eachiin 1.ndo
for eachjin 1.k do
if not ExistsRPoint(p; ;) then R := R U {(p; j, roid(p; ;),)}
if not ExistsRPoint(q; ;) then R := R L {(q; j, roid(q;),)}
if not ExistsRSegment(t; ;) then R :=R L {(t;}, roid(t; j), D)}

RD :={(s, roid(s)) |i € {1, ..., m}}

n
SP = U {(sc, {(t;j, roid(ti) [j € {1, ..., ki}}) | sc € scids(t)}
i=1
end InsertNSegment.

6 Realm-Based Structuresand Primitives

We can now assume that the problems of numerical robustness and topological correctness are solved
by the lower layers. Given is a realm which can be viewed as a planar graph over the grid N x N.
Within arealm one can discover certain structures and relationships between these structures useful
for the definition of spatial datatypes. These structures are called R-cycle, R-face, R-unit, and R-block.
For the relationships we will define a number of predicates (primitives).

An R-cycle c isjust a cycle in the graph interpretation of a ream, defined by a set of R-segments
Sc) ={sy, -y Sy}, such that

(i) Vie{l, ..,m:s Mmeetss;ji1)modm
(i) No other pairs of segmentsin S(c) meet.

Obviously the following relationships may exist between an N-point p and an R-cycle c:

(i) ponc & dse Yc):pons

Forp=(x,y) let s, = ((X, y), (x, n— 1)) (that is, a vertical segment extending from p upwards to the
edge of the grid). Let S(c) be the segments in §c) whose right end point, but not the left one, is on
Sp- Let §(c) be the segments in S(c) that intersect s,. Then

(i) pinc = ﬁpch|Sr(c)|+|S1(c)|isodd5
(iii) poutc ¢ —(poncvpinc)

Hence c partitions the set Py into three subsets P;,(C), Pyn(C), and Py +(C). Let P(c) := Py, (C) U Pip(C).

Cycles areinteresting because they are the basic entitiesfor the definition of regions over realms. The
relationships shown in Figure 10 may be distinguished between two R-cyclesc; and ¢, :

5 :
[\ 9

Figure 10

We introduce the following terminology for these configurations:

Cylis ¢, and c, are
o (area’)inside(i, ii, iii) e area-digoint (iv, v, vi)
* edge-inside (ii, iii) » edge-digoint (v, vi)
» vertex-inside (iii) * (vertex-)digoint (vi)
Cy.

The meaning is that (i) ¢, is (w.r.t area) inside c4, (ii) additionally has no common edges with ¢4,
(iii) has not even common vertices with c,. Similarly (iv) c, is digoint w.r.t. area with cq,
(v) additionally has no common edges with ¢, (vi) additionally has not even common vertices with
c,. area-inside is the standard interpretation of the term inside, vertex-digoint the standard
interpretation of the term digoint.

Furthermore there are two positive notions: ¢, and ¢, are adjacent if they are area-digoint and have
common edges, they meet if they are area-digoint and have common vertices. These predicates are
formally defined as follows:

c; (area-)inside ¢, & P(cy c P(c)

C, edge-inside ¢, ‘& ¢ area-inside ¢, A §¢)) N §cy) =Y

C, vertex-inside ¢, ‘& Cq edge-inside ¢y A Pga(Cq) N Pop(cy) =<
¢, and c, are area-digjoint ‘= Pin(c) nP(cy) =3 A Pj(cy)) nP(cy) =<

Thisisa precise grid-based formulation of the well-known “plumbling” algorithm.

- 15 -

¢, and ¢, are edge-digoint <= Ccqandc, arearea-digoint A §¢;) N §cy) =L
c, and ¢, are (vertex-)digoint < c; and ¢, are edge-digoint A Pg,(C1) N Pgn(Co) =D

(whichis equivalent to saying that P(c,) N P(cy) = &)

¢, and ¢, are adjacent ‘& ¢qandc, arearea-digoint A §cy) N Yc,) =D
¢, and ¢, meet ‘& ¢ and ¢, are edge-digoint A Pg(Cq) N Pgn(Co) # <

One can observe similar ways how an R-segment s can lie within an R-cyclec:

* s(area-)insidec(i, ii, iii)

* sedge-inside c (i, iii)
* svertex-inside c (iii)

Figure 11

For an R-point p and an R-cycle c we have two possibilities:
Q,
« p(area)insidec (i, ii)
s pvertex-inside c (ii)

Figure 12

Formal definitions are left to the reader.

Based on the concept of R-cycles, for the definition of aspatial datatypefor regionsthe notions R-face
and R-unit are introduced which describe regions from two different perspectives and which are used
equivaently. Both of them essentially define polygonal regions with holes. An R-unit isa“minimal”
R-face in the sense that any R-face within the R-unit is equal to the R-unit. Hence R-units are the
smallest region entities that exist over arealm. We will see that any two R-units are area-digoint and
that any R-face can be described as a set of R-units. In the next section a region (data type) will be
defined that can either be viewed as a set of R-faces or, equivalently, asaset of R-units. Thefirst view
emphasizes aminimal representation of the boundary of aregion whereas the latter view supports the
definition of set operationsfor regions. We will define operationsto convert between the two (formal)
representations.

Let C(R) denote the set of all R-cycles. An R-face f is a pair (c, H) where cisan R-cycleand H =
{hq, ..., hy} is a(possibly empty) set of R-cycles such that the following conditions hold (let)
denote the set of all segments of all cycles of f):

(i) Vie{l, .., m:hedgeinsidec
(i) Vi,je{l .., mi=#]:h andh areedge-digoint

(iii) Eachcyclein) iseither equal to c or to one of the cyclesin H (no other cycle can be formed
from the segments of f)

The last condition ensures uniqueness of representation, that is, there are no two different

- 16 -

interpretations of a set of segments as sets of faces. For example, it guarantees that the configuration
shown in Figure 13 must beinterpreted astwo faces, and not as asingle face with 5 holes (since under
the latter interpretation the cycle drawn fat would violate condition (iii)).

=

With terms defined below condition (iii) can be rephrased as “an R-face cannot be decomposed into
two or more edge-digoint R-faces”.

The grid points belonging to an R-face f are defined as:

m
P(f) :=P(c)\ U P;, (h)
i=1
Let S(F) denote the set of al R-segments of a set of R-faces F.

The possible rel ationships between an R-point p or an R-segment s and an R-face f = (c, H) are:

(i) p(area)insidef < parea-insdecA YV he H:—pvertex-insideh
(i) s(area-)insidef :& sarea-insdecAV he H:— sedgeinsideh

The various notions of inside and digoint can be extended for the comparison of two R-faces
f=(fo, F) and g =(gq, G), for example:

f (arear)insideg & fyarea-insidegoA V g e G : g area-digointfov3fe F : g area-inside f

Figure 14

Thisdefinition isillustrated in Figure 14.

— 17 —

farea-digointg & foarea-disointggv3ge G :fyareasinsidegvIfe F:gparea-insidef
f edge-digointg < fyedge-disointgyv3 g e G :fyedge-insideg v3 T e F : gpedge-inside f

The meaning of the remaining predicates edge-inside, vertex-inside, vertex-digoint, adjacent, meet
should be clear; definitions are omitted for brevity.

An R-unit as aminimal R-face is defined as follows. Let F(R) denote the set of all possible R-faces.
Let f be an R-face.

fisanR-unit :© Vge F(R):garea-insidef = g=f
We a so denote by U(R) the set of all R-units.

Our goal is now to establish an equivalence between two representations of a region over aream,
namely, as a set of (pairwise) edge-disoint R-faces, and as a set of R-units. First we consider the
conversion of aset of faces into a set of units. We need two lemmas, whose proofs are technical and
are only sketched:

Lemma6-1 Letf bean R-face and u an R-unit. Then either u area-inside f or u area-disjoint f.

The idea of the proof isthat if thisis not the case, then one of the cycles of f, say f’, must properly
intersect one of the cyclesof u, say u’.

£ u

Figure 15

But then a part of f’ lies within u and forms a cycle there with a part of u’. Hence there would be a
face contained in u different from u which contradicts the definition of an R-unit.

Lemma6-2 Letfbean R-face and u an R-unit such that u area-inside f. Then “subtracting” u from
f resultsin a set of R-faces.

The idea of the proof isthe following: If u is even edge-inside f then removing the area of u from f
just adds another hole to f. If u's outer cycle up has some adjacent parts with f's outer cycle fg, then a

Figure 16 Figure 17

“bay” isformed in fy (Figure 16). If it is adjacent with ahole f; in f, then f; will grow (Figure 17). If
several adjacencies are present, then f may be decomposed into several faces.

- 18 -

The second lemma implies that the units inside a face f cover the area of f completely. For, if some
areawere left, it would form its own face which could again be decomposed into units.

Therefore the following definition correctly decomposes faces into units. Let F be a set of edge-
digoint R-faces.

units(F) :={ue U(R) |3 f e F: uarea-inside f}

We now consider the conversion of a set of unitsinto a set of faces. Given a set of R-segments S, we
say, Sdescribes a set of pairwise edge-digoint R-faces < there exists a set of edge-digoint R-faces
F such that S= SF). Furthermore, let A denote the operator for symmetrical set difference, that is,
VAW=(V\W) u (W\V). Aformsthe union of two sets removing their intersection. The operator is
associative and commutative. The basis for the conversion is the following lemma:

Lemma 6-3 Letfandgbetwo area-digoint R-faces. Then §f) A §g) describes aset of edge-disjoint
R-faces.

The basic ideaisthat the A operator just removes segments that are common to both faces. The area-
digointness condition makes sure that only boundaries between adjacent areas are removed (and not
boundaries between a covered region in one face and a hole in the other face).

The lemma can be extended to two sets of faces: Let F, G be two sets of edge-digoint R-faces such
that the facesin F U G are pairwise area-digoint. Then SF) A S(G) describes a set of edge-disjoint
R-faces. Let the resulting set of R-faces be denoted as F + G. Now the conversion from unitsto faces
can be defined asfollows. Let U be a set of R-units.

faces(U) = » {u}

ue U
We summarise the equivalencein
Theorem 6-4 V F c F(R): faces(units(F)) = F

For the definition of a spatial data type for lines the notion of an R-block is introduced. A set S of
R-segmentsiscalled connected :< Vr,te S35, ...,S,, §5€ S:r=s;,t=sp,andVie {1, .., m-
1} : 5 and s, meet. An R-block is a connected set of R-segments. Two R-blocks b; and b, are
disoint:= V s; € §by) Vs, e §by) : 51 and s, are digoint. For an R-point p we consider the
angularly sorted cyclic list L, of R-segmentsse S(by) U (by) that meet in p. p is called a meeting
point if L, can be subdivided into two sublists L, ; and L, , (whose concatenation leads to L) so that
all R-segments of L, 1 are elements of Sb,) and all R-segments of L, , are elements of Sby), or vice
versa (see Figure 18).

Figure 18: pisameeting point, p’ is not a meeting point.

Two R-blocks by and b, meet 1<

(i) Vse Yby)Vte Shy): st
(i) Vse Yby) Vte Yhy):sandtmeet = sandt meet in ameeting point.

Again, we have two equivalent representations of alines value, namely, as a set of segments, or asa
set of digjoint R-blocks. For a set of segments S < Slet blocks(S) denote its partition into maximal
connected components. Then Sblocks(S)) =S.

7 Realm-Based Spatial Data Types

A formal definition of realm-based spatial datatypes (including operations) is given in the companion
paper [GUS92]. However, to conclude this paper we show the connection between the realm-based
structures of the previous section and the domains of the spatial datatypes. The basic typesintroduced
are called POINTS, LINES, and REGIONS. Thereis a“flat” and a “structured” view of values of
these types. The “flat” view isthe following:

For agivenrealmR, a value of type POINTSis a set of R-points, a value of type LINESis a set
of R-segments, and a value of type REGIONS s a set of R-units.

The structured view, that we shall assume as the formal definition, is asfollows:

For agivenrealmR, a value of type POINTSis a set of R-points, a value of type LINESis a set
of pairwise digoint R-blocks, and a REGIONSvalue is a set of pairwise edge-digoint R-faces.

We have shown in the previous section that the two views are equivalent. The first view is
conceptually very simple and supports a direct understanding of set operations. The second view
shows LINES and REGIONS values as consisting of a number of components (blocks or faces),
allows oneto express relationshi ps between these components and al so emphasi zes the representation
of the boundary in case of regions. Figure 19 illustrates the data types.

aPOINTS vaue aLINESvaue aREGIONS value

Figure 19

It should be obvious now that these data types have very nice closure properties. For example, the set
operations are defined asfollows. Let P, and P, betwo POINTS values, L, and L, two LINES values,
and Ry, R, two REGIONS values. Then

union (P, Py) =P, U P,

union (L4, Ly) := blocks(§(L;) U SL>,))
union (Ry, Ry) := faces(units(R;) L units(R,))

- 20 -

For intersection and difference the definitions are analogous. The primitives introduced in the
previous sections offer aformal basisfor the definition of operations of aspatial algebra. For example,
one can define what it means for two regions to be adjacent:

F and G areadjacent <& Fand G arearea-digoint A3fe F3ge G:fand g areadjacent
(assuming area-digoint to be defined already for regions).

8 Conclusions

In this paper we have offered geometric realms as a concept to solve several problems related to
gpatial datatypesfor database systems. In particular, realms solve the geometric consistency problem
as well as problems of numeric robustness and topological correctness. Realm-based structures can
be used for the definition of quite general spatial data types and guarantee all the desired closure
properties in theory as well as in computational practice. Starting from integer arithmetics, we have
developed bottom-up a precise formal framework that makes it easy to define spatial algebras and to
implement them correctly. Indeed, such arealm-based algebrais defined in [GUS92].

In closing, let us briefly discuss some open problems and questions that arise with this approach.

Topological correctness. Although it goes a long way, the approach of Greene and Yao does not
completely guarantee topological correctness. As is also stated in [GrY86], through the finite
representation “... digoint points and lines may collapse. However, aside from such degeneracies, we
do guarantee that topology does not change.” There has been alot of work on numeric robustness and
topological correctness for geometric computation (e.g. [OtTU87, GuiSS89, EAM 88, NaM E9Q]). We
have selected [GrY 86] because it fits well with our idea of realms as grid-based planar graphs
underlying spatial data types. However, one might try to extend this by adding further integrity
constraints (such as our rule that R-points must not lie on envelopes) or by techniques from the other
approaches (e.g. symbolic reasoning) to avoid the remaining anomalies.

Efficiency. The reaAlm update algorithms of Section 5 have been given in rather abstract terms, one
might be concerned, whether they are efficiently implementable. We suggest to represent arealmin a
gpatial index structure (e.g. [Gut84]) and are currently implementing realms on the basis of LSD-
Trees [HeSW89]. The lookup operations needed in the algorithms can then be performed efficiently.
Such a ream representation can at the same time be used as an index into the database. A separate
issueistheefficiency of spatial algebraoperations (such asintersecting two regions). Thiscan be done
by variations of plane-sweep algorithms such as [NiP82, BeO79]. Indeed, these algorithms are now
much simpler and more efficient since they do not need to discover new intersections and do not have
to treat special cases. The study of algorithmsfor realm-based data types might become an interesting
field of its own.

Space overhead. By redrawing, many more segments may be created than were present in the original
set of intersecting line segments. How many more, is an interesting question that should be studied
theoretically as well as in experiments with “real life” data. In any case, we feel one cannot trade
correctness for space.

Multiple realms. In this paper we have only discussed the case of asingle realm underlying all spatial
data (of acertain application area). There are several reasons why one might be interested in several

- 21 -

realms over the same area. One is to reduce space overhead (by not intersecting spatial values of
different realms). Another reason isthat there exist interesting SDT operationsthat are not closed with
respect to arealm. An example isthe creation of a*“buffer area” around a polyline. To accommodate
such operations one might dynamically create arealm containing just the “new” spatial values, select
aset of SDT valuesthat might interact with these new geometries and createa*“small” realm for them,
and then use a“merge”’ operation on realms to compute all intersections correctly.

Appendix: Definition of Geometric Primitives

Asabasisfor definition and implementation we only assume that the following arithmetic primitives
are available and are error-free with respect to overflow.

INT % INT — INT +, —, *, div, mod

INT x INT — BOOL =#55,2,>

To fulfill this requirement in an implementation it is sufficient that the INT data type can represent
numbers in the range [-2n%, 2n°] where n = |N| (see below). Either this relationship holds between N
needed by the application and a programming language integer type, or one needs to implement a
specia integer type with these operations.

For an N-point p we denote by p.x and p.y itsfirst and second component, respectively. Two N-points
p and g are equal,

P=4 & PpX=0gXApy=qy.
Two N-segments s; = (py, Pp) and s, = (qy, 0p) are equal,

1= © (P1=WAP2=G)V(PL=0RAP2=0)

Let sy = (Py, P2) = (X1, Y11)» (X12, Y12)) and s, = (A1, G) = ((X21, Y21), (%22, Y22)) be two N-segments.
For the calculation of a possible intersection point of the two N-segments we use the following matrix

representation where A, i are rational numbers (to be represented by pairs of INT values).

Xl ool X2 Z{*af | 2 [*2 fu Xo| X2
Y Yio| [Yna Yo1 Yoo| Y

This leads to the following inhomogeneous linear equation system in two variables:

X1 = Xo1 = —A (X12 = Xq1) + 1 (X2 = Xo1)

Y11= Y21 = A (Yo — Y1) + 1 (Y22 — Y21)
Let agy 1= Xqq — Xq2, 812 1= X2 — Xo1, Dy 1= Xq1 — Xo1, 891 1= Y11 — Y12, 892 1= Yoo — Vo1, AN by 1= ygg —
Y21 Then

apn A +tappu=by - L@ ap-apap) =brayp-bap

a1 A+apu=hy 1 (g @n—ap) =brag; —byay

With D := dq1 Ao — Aq0 Ayq, Dl = b1 Aoy — b2 aqo, D2 = b2 g — b1 adoq, and D # 0 we get

x—Dl _ D EQ 1
_B’“_B. (Q)

- 22 -

Two N-segmentsintersect if D#0and 0 <A <1and O <p < 1. Note that the situation where an end
point of one segment lies on the other segment is excluded. In particular no two end points are equal .
Two N-segments are parallel if D = 0.

For an N-segment s = ((Xq, Y1), (X2, ¥)), X-ext(s) := {min(Xy, X,), ..., max(X, Xo)} < N and y-ext(s) :=
{min(yy, ¥5), ..., max(yy, ¥2)} < N denote the x- and y-intervals of its bounding box. The resulting
intervals are called N-intervals. Two N-intervals 1, and |, overlap if card(l; n1,) > 1. They are
digoint if I N I, = . Two N-segments s, s, overlap if

() D=0

(i) D;=D,=0

(i) x-ext(s;) and x-ext(s,) overlap v y-ext(s;) and y-ext(s,) overlap.

If condition (iii) does not hold and the x- and y-intervals of s, and s, are digoint, the two N-segments
are called aligned. Two N-segments s; = (py, Po) and s, = (s, 0) meet if they have exactly one end
point in common. Two N-segments are digoint if they are neither equal nor meet nor intersect. If two

N-segments s; = (py, Po) = (Xa1, Ya1), (¥a2 ¥12)) and s; = (dy,) intersect, then intersection(sy, s,)
isthe N-point (X, y) := (round_to_N(xg), round_to_N(yg)) where

[=Xq1 + A (X — X

() Xo=Xu + A (X2 —Xp9) (EQ2)
Yo=Y+ (Yi2— Y1)
X and yg are two rational numbers resulting from solving the two equations in exact

rational arithmetic (to be implemented through the INT primitives alone). A is chosen as
mentioned in (EQ 1).

(i) thefunction round to N rounds arational number to the “nearest” number in N.

For the function round_to_N we give a simple algorithm to show that integer arithmetic is sufficient
to calculate the “nearest” number in N from arational number ¢ = %:
function round_to N (a, b : integer) : integer;
var z: integer;
begin
ifa>bthenz:=adivb;a:=amodbelsez:=0end; (* nowa<bsothat 0<a/b<1hold*)
if a=0then return zend,;
if 2+*a<bthenreturnzesereturnz+ 1lend
end round _to N;

Let s=(p1, P2) = ((X1, Y1), (X, ¥2)) be an N-segment and let p = (X, y) be an N-point. p lieson s, for
short: pons, if

(i) (2—x) (y—y)+(X=X) (y1-¥2) =0
(i) xe x-ext(s) vye y-ext(s)

An N-point p lieswithin an N-segment s, for short: pin s, if additionally to (i) and (ii) holds
(i) xe {x, %} vye {y,ya} -

One can observe that the largest numbers occur in the equations (EQ 2)

X11D +

- 23 _

D; (X;;—=%49) _ Y110+ Dy (Yo —Y19)

XO:

D »70 D

which leads to the requirement that numbers up to |2n3| should be representable.

References
[AbBSS]
[BeO79)
[EdMV88]
[EgFJ89)]
[GaNT91]
[GrY86]
[GiSS8Y]
[Gut84]
[Giigga]
[GUigsh]
[GU89]
[GiiS92]

[HeSW89]

[JoCsg]
[LiN87]
[NaME9Q]
[NiP82]
[OrM8g]
[OtTUS7]
[RoFS88]

[Scvag]

Abiteboul, S., and C. Beeri, On the Power of Languages for the Manipulation of Complex Objects.
Technical Report 846, INRIA (Paris), 1988.

Bentley, J.L., and T. Ottmann, Algorithms for Reporting and Counting Geometric Intersections. |EEE
Trans. on Computers C-28 (1979), 643-647.

Edelsbrunner, H., and E.P. Micke, Simulation of Simplicity. Proc. ACM Symposium on Computational
Geometry (Urbana-Champaign, Illinois), 1988.

Egenhofer, M.J., A. Frank, and J.P. Jackson, A Topological DataModel for Spatial Databases. Proc. SSD
89 (Santa Barbara, California), 1989, 271-286.

Gargano, M., E. Nardelli, and M. Talamo, Abstract Data Types for the Logical Modeling of Complex
Data. Information Systems 16, 5 (1991).

Greene, D., and F. Yao, Finite-Resolution Computational Geometry. Proc. 27th IEEE Symp. on
Foundations of Computer Science, 1986, 143-152.

Guibas, L., D. Salesin, and J. Stolfi, Epsilon-geometry: Building Robust Algorithms from Imprecise
Computations. Proc. SIAM Conf. on Geometric Design (Tempe, Arizona), 1989.

Guttman, A., R-Trees. A Dynamic Index Structure for Spatial Searching. Proc. ACM SIGMOD Conf.
1984, 47-57.

Guting, R.H., Geo-Relational Algebra: A Model and Query Language for Geometric Database Systems.
Proc. of the Intl. Conf. on Extending Database Technology (Venice, Italy), 1988, 506-527.

Guting, R.H., Modeling Non-Standard Database Systems by Many-Sorted Algebras. Fachbereich
Informatik, Universitdt Dortmund, Report 255, 1988.

Giting, R.H., Gral: An Extensible Relational Database System for Geometric Applications. Proc. of the
15th Intl. Conf. on Very Large Databases (Amsterdam, The Netherlands), 1989, 33-44.

Giting, R.H., and M. Schneider, Realm-Based Spatial Data Types. FernUniversitét Hagen, Manuscript
in preparation, 1992.

Henrich, A., H.-W. Six, and P. Widmayer, The LSD Tree: Spatial Accessto Multidimensional Point- and
Non-Point-Objects. Proc. of the 15th Intl. Conf. on Very Large Data Bases (Amsterdam, The
Netherlands), 45-53.

Joseph, T., and A. Cardenas, PICQUERY: A High Level Query Language for Pictorial Database
Management. |EEE Trans. on Software Engineering 14 (1988), 630-638.

Lipeck, U., and K. Neumann, Modelling and M anipulating Objectsin Geoscientific Databases. Proc. 5th
Intl. Conf on the Entity-Relationship Approach (Dijon, France, 1986), 1987, 67-86.

Nagy, G., M. Mukherjee, and D.W. Embley, Making Do with Finite Numerical Precision in Spatial Data
Structures. Proc. 4th Intl. Symp. on Spatial Data Handling (Zurich, Switzerland), 1990, 55-65.

Nievergelt, J., and F.P. Preparata, Plane-Sweep Algorithms for Intersecting Geometric Figures.
Communications of the ACM 25 (1982), 739-747.

Orengtein, J., and F. Manola, PROBE Spatial Data Modeling and Query Processing in an Image
Database Application. IEEE Trans. on Software Engineering 14 (1988), 611-629.

Ottmann, T., G. Thiemt, and C. Ullrich, Numerical Stability of Geometric Algorithms. Proc. 3rd ACM
Symp. on Computational Geometry, 1987, 119-125.

Rossopoulos, N., C. Faloutsos, and T. Sellis, An Efficient Pictorial Database System for PSQL. |IEEE
Trans. on Software Engineering 14 (1988), 639-650.

Scholl, M., and A. Voisard, Thematic Map Modeling. Proc. SSD 89, (Santa Barbara, California), 1989,
167-190.

- 24 -

[SvH91] Svensson, P, and Z. Huang, Geo-SAL: A Query Language for Spatial Data Analysis. Proc. SSD 91
(Zurich, Switzerland), 1991, 119-140.
[Vo92] Voisard, A., Bases de données géographiques:. du modéle de données a I’interface utilisateur. Ph.D.

Thesis, University of Paris-Sud (Centre d’ Orsay), 1992.

