
Realms: A Foundation for Spatial Data Types

in Database Systems1

Ralf Hartmut Güting
Markus Schneider

Praktische Informatik IV, FernUniversität Hagen
Postfach 940, D-5800 Hagen, Germany

gueting@fernuni-hagen.de, schneide@fernuni-hagen.de

Abstract: Spatial data types or algebras for database systems should (i) be fully general (which
means, closed under set operations, hence e.g. a region value can be a set of polygons with holes),
(ii) have formally defined semantics, (iii) be defined in terms of finite representations available in
computers, (iv) offer facilities to enforce geometric consistency of related spatial objects, and (v) be
independent of a particular DBMS data model, but cooperate with any. We offer such a definition in
two papers. The central idea, introduced in this (first) paper, is to use realms as geometric domains
underlying spatial data types. A realm as a general database concept is a finite, dynamic, user-defined
structure underlying one or more system data types. A geometric realm defined here is a planar graph
over a finite resolution grid. Problems of numerical robustness and topological correctness are solved
below and within the realm layer so that spatial algebras defined above a realm enjoy very nice
algebraic properties. Realms also interact with a DBMS to enforce geometric consistency on object
creation or update.

Keywords: Spatial data types, algebra, realm, finite resolution, numerical robustness, topological
correctness, geometric consistency.

1 This work was supported by the DFG (Deutsche Forschungsgemeinschaft) under grant Gu 293/1-1.

− 1 −

1 Introduction

We consider a spatial database system to be a full-fledged DBMS with additional capabilities for the
representation and manipulation of geometric data. As such, it provides the database technology
needed to support applications such as geographic information systems. The standard DBMS view for
the organization of spatial information is the following: A database consists of several classes of
objects. A spatial object is just an object with an associated value (“attribute”) of a spatial data type,
such as, for example, POINT, LINE, or REGION. This is true regardless of whether the DBMS uses
a relational, complex object, object-oriented or some other data model. Hence the definition and
implementation of spatial data types is probably the most fundamental issue in the development of
spatial database systems.

Although spatial data types (SDTs) are used routinely in the description of spatial query languages
(e.g. [LiN87, JoC88, SvH91]), have been implemented in some prototype systems (e.g. [RoFS88,
OrM88, Gü89]), and some formal definitions have been given [Gü88a, ScV89, GaNT91], there is still
no completely satisfactory solution available according to the following criteria:

• Generality. The geometric objects used as SDT values should be as general as possible. For
example, a region value should be able to represent a collection of disjoint areas each of
which may have holes. More precisely, this means that the domains of data types POINT,
LINE, and REGION must be closed under union, intersection, and difference of their
underlying point sets. This allows for the definition of powerful data type operations with
nice closure properties.

• Rigorous definition. The semantics of SDTs, that is, the possible values for the types and the
functions associated with the operations, must be defined formally to avoid ambiguities for
the user and the implementor.

• Finite resolution. The formal definitions must take into account the finite representations
available in computers. This has so far been neglected in definitions of SDTs. It is left to the
programmer to close this gap between theory and practice which leads rather inevitably not
only to numerical but also topological errors.

• Treatment of geometric consistency. Distinct spatial objects may be related through
geometric consistency constraints (e.g. adjacent regions have a common boundary). The
definition of SDTs must offer facilities to enforce such consistency.

• General object model interface. Spatial data types as such are rather useless; they need to be
integrated into a DBMS data model and query language. However, a definition of SDTs
should be valid regardless of a particular DBMS data model and therefore not depend on it.2

Instead, the SDT definition should be based on an abstract interface to the DBMS data model
which we call the object model interface.

The purpose of this paper (together with a companion paper) is to develop a formal definition of
spatial data types fulfilling these criteria. The central idea is to introduce into the DBMS the concept
of a realm. A realm is in general a finite, user defined structure that is used as a basis for one or more
system data types. Realms are somewhat similar to enumeration types in programming languages. A

2 This also holds for the implementation level: A spatial type extension package (STEP) should be able to cooperate
with any extensible DBMS offering a suitable interface regardless of its data model.

− 2 −

realm used as a basis for spatial data types is essentially a finite set of points and non-intersecting line
segments. Intuitively, it describes the complete underlying geometry of an application. All points,
lines and regions associated with objects (from now on called spatial attribute values) can be defined
in terms of points and line segments present in the realm. In fact, in a database spatial attribute values
are then never created directly but only by selecting some realm objects. They are never updated
directly. Instead, updates are performed on the realm and from there propagated to the dependent
attribute values.

Hence, all attribute values occurring in a database are realm-based. Furthermore, the algebraic
operations for the spatial data types are defined to construct only geometric objects that are realm-
based as well. So the spatial algebra is closed with respect to a given realm. This means in particular
that no two values of spatial data types occurring in geometric computation have “proper”
intersections of line segments. Instead, two initially intersecting segments have already been split at
the intersection point when they were entered into the realm. One could say that any two intersecting
SDT values (say, lines or regions) “have become acquainted” already when they were entered into the
realm. This is a crucial property for the correct and efficient implementation of geometric operations.

Realm objects - points and segments - are defined not in abstract Euclidean space but in terms of finite
representations. All geometric primitives and realm operations (e.g. updates) are defined in error-free
integer arithmetic. For mapping an application’s set of intersecting line segments into a realm’s set of
non-intersecting segments the concept of redrawing and finite resolution geometry from [GrY86] is
used. Although intersection points computed with finite resolution in general move away from their
exact Euclidean position, this concept ensures that the unavoidable distortion of geometry (that is, the
numerical error) remains bounded and very small and that essentially3 no topological errors occur.
This means that a programmer has a precise specification that directly lends itself to a correct
implementation. It also means that the spatial algebra obeys algebraic laws precisely in theory as well
as in practice. Furthermore, it is rather obvious that realms also solve the geometric consistency
problem.

Most closely related to this work are the formal definitions of spatial data types (or algebras) given by
Güting [Gü88a, Gü88b], Scholl and Voisard [ScV89, Vo92], and Gargano et al. [GaNT91]. All of
these proposals do not fulfill most of the criteria given above. In [Gü88a, Gü88b] data types for points,
lines, and regions are available but too restricted, e.g. a region is a single simple polygon (without
holes). In [ScV89] general regions are defined; in Voisard’s thesis [Vo92] this has been extended to
general types for points and lines. However, the definitions are unnecessarily complex. In [GaNT91]
there is only a single type for all kinds of geometric objects; a value is essentially a set of sets of pixels.
We feel this is not sufficient, since many interesting spatial operations cannot be expressed. As
mentioned, all of these proposals give formal definitions. However, those of Güting and of Scholl and
Voisard are not based on finite resolution; hence the numeric correctness problems are not addressed.
Gargano et al. base their definitions in principle on a finite underlying set (of pixels). But this is not
practical since these finite representations are far too large to be efficiently manageable. The
geometric consistency problem is not solved in any of these proposals; there is some weak support in
[Gü88a] through an AREA data type, but it is not sufficient. Finally, all three proposals have
connected their spatial types to a fixed data model − Güting and Gargano et al. to the relational model

3 See the discussion in Sections 2 and 8.

− 3 −

and Scholl and Voisard to a complex object algebra [AbB88]. Only Scholl and Voisard emphasize a
clean interface between the spatial algebra and the general object model. We shall extend their work
by offering an abstract interface not dependent on any particular data model.

The topological data model based on simplicial complexes suggested by Egenhofer et al. [EgFJ89]
has a similar purpose as our concept of realms. Essentially they offer an irregular triangular network
partition of the plane as a geometric domain over which spatial objects could be defined. However,
the connections are missing to the underlying finite arithmetic as well as to spatial data types based
on this model. Also, in our view a triangular partition contains too much information; it is sufficient
to keep those points and segments in a geometric domain that are needed for spatial attribute values.
Finally, their model is an abstract one whereas we show realms within a database context.

Our description and formal development of realm-based spatial data types is given in two papers. In
this paper the lower layers, namely numerically robust geometric primitives, realms and their
operations and the structure of values of the spatial data types are defined. In [GüS92] the object
model interface and the spatial data types and operations, that is, the spatial algebra, are described. In
the following section we first provide an informal overview of the complete concept.

2 Overview: Realm-Based Spatial Data Types

A realm is a set of points and non-intersecting line segments over a discrete domain, that is, a grid, as
shown in Figure 1.

Values of spatial data types can be composed from the objects present in a realm. Figure 2 shows some
values definable over the realm of Figure 1. Our realm-based spatial data types are called POINTS,
LINES, and REGIONS, hence A and B represent REGIONS values, C is a LINES value, and D a
POINTS value. The precise structure of these values is not yet relevant here. One can imagine A and
B to belong to two adjacent countries, C to represent a river, and D a city.

The underlying grid of a realm arises simply from the fact that numbers have a finite representation
in computer memory. In practice, these representations will be of fixed length and correspond to
INTEGER or REAL data types available in programming languages. Of course, the resolution will be
much finer than could be shown in Figure 1.

Figure 1

− 4 −

The concept of realm as a basis of spatial data types serves the following purposes:
• It enforces geometric consistency of related spatial objects. For example, the common part

of the borders of countries A and B is exactly the same for both objects.
• It guarantees nice closure properties for the computation with spatial data types above the

realm. For example, the intersection of region B with line C (the part of river C lying within
country B) is also a realm-based LINES value.

• It shields geometric computation in query processing from numeric correctness and
robustness problems. This is because such problems arise essentially from the computation
of intersection points of line segments which normally do not lie on the grid. With realm-
based SDTs, there are never any new intersection points computed in query processing.
Instead, the numeric problems are treated below the realm level, namely, whenever updates
are made to a realm.

• Additionally, a data structure representing a realm can be used as an index into the database.
Our implementation concept assumes that each point and segment in a realm has an
associated list of logical pointers to the spatial attribute values defined over it in the database.

Let us now focus on the treatment of numeric correctness problems below and within the realm level.
This is necessary because geometric data coming from the application are not intersection-free, as
required for a realm. Application data can at the lowest level of abstraction be viewed as a set of points
and intersecting line segments. These need to be transformed into a realm. As mentioned before, the
fundamental problem is that intersection points usually do not lie on the grid.

In Figure 3, the intersection point D’ of line segments A and B will be moved to the closest grid point
D. This leads, for example, to the following topological errors: (1) A test whether D lies on A or B

A B

C

D

Figure 2

BA
B

D’

A DD

Figure 3 Figure 4

− 5 −

fails. (2) A test whether D lies properly within some area defined below A and B will incorrectly yield
true. (3) If there is another segment C between the true intersection point and D, D will be reported to
lie on the wrong side of C. The basic idea to avoid these errors is to slightly change segments A and
B by transforming them into chains of segments going through D, as shown in Figure 4. However, this
does not suffice, since it allows a segment to drift (through a series of intersections) by an arbitrary
distance from its original position. For example, a further intersection of A with some segment C
(Figure 5) is resolved as shown in Figure 6, where intersection point E has already a considerable
distance from the true intersection point of A and C. Note in particular, that segment A has in Figure
6 been moved to the other side of a grid point (indicated by the arrow) which may later be reported to
lie on the wrong side of A.

A refined solution was proposed by Greene and Yao [GrY86]. The idea is to define for a segment s an
envelope E(s) roughly as the collection of grid points that are immediately above, below, or on s. An
intersection of s with some other segment may lead to a requirement that s should pass through some
point P on its envelope (the grid point closest to the true intersection point). This requirement is then
fulfilled by redrawing s by some polygonal line within the envelope rather than by simply connecting
P with the start and end points of s. Figure 7 shows a segment s (drawn fat) together with the grid
points of its envelope. Slightly above s a redrawing of s through P is shown.

Intuitively, the process of redrawing can be understood as follows: Think of segment s as a rubber
band and the points of the envelope as nails on a board. Now grip s at the true intersection point and
pull it around P. The resulting polygonal path is the redrawing. The number of segments of this path
is in the worst case logarithmic in the size of the grid, but it seems that in most cases only very few
segments are created.

This approach guarantees that the polygonal line describing a segment always remains within the
envelope of the original segment. We adopt the technique for realms. It then means that by redrawing
a segment can never drift to the other side of a realm point. It might still happen, though, that after a
redrawing a realm point is found to lie on a segment which it did not originally.

CC

BA
BA DD

E E

Figure 5 Figure 6

s

P

Figure 7

− 6 −

The formal definition of realm-based SDTs is organized as a series of layers. Each layer defines its
own structures and primitives, using the notions of the layers below. We describe these layers
bottom-up in the rest of this paper and the companion paper [GüS92]. Let us briefly provide an
overview of this development.

Robust geometric primitives are introduced in Section 3 (and an appendix). This lowest layer defines
a discrete space N × N where N = {0, ..., n − 1} is a subset of the natural numbers. The objects in this
space are points and line segments with coordinates in N, called N-points and N-segments. A number
of operations (predicates) such as whether an N-point lies on an N-segment or whether two
N-segments intersect, and which N-point is the result of intersecting two N-segments, are defined. The
crucial point is that these definitions are given in terms of error-free integer arithmetic, hence they are
directly implementable.

In Section 4 geometric realms are defined as described above; elements are called R-points and
R-segments. Basic operations on realms (given in Section 5) are insertion and deletion of N-points and
N-segments. However, to cooperate with a database system, a realm − as an abstract data type − has
a more general interface. For example, the operation of inserting an N-segment returns besides a
modified realm a redrawing of the inserted segment and a set of redrawings of segments in the
database that need to be modified together with logical pointers (SCIDs = spatial component
identifiers) to database representations of these segments. The management of identifiers makes it
necessary to offer operations that register spatial attribute values in the database with their underlying
realm objects. A last group of operations allows to get a set of realm objects (within a rectangular
window) and to identify objects when a close N-point is given. This makes it possible to display parts
of a realm at a DBMS graphical user interface and to let a user build spatial attribute values by clicking
at realm objects displayed.

The next layer (Section 6) defines certain structures present in a realm that serve as a basis for the
definition of SDTs. A realm can be viewed as a planar graph; an R-cycle is a cycle of this graph. An
R-face is an R-cycle possibly enclosing some other disjoint R-cycles corresponding to a region with
holes. An R-unit is a minimal R-face. These three notions support the definition of a REGIONS data
type. An R-block is a connected component of the realm graph; it supports the definition of a LINES
data type. For all of these structures there are also predicates defined to describe their possible
relationships.

After these preparations in the next layer (Section 7) the domains of spatial data types POINTS,
LINES, and REGIONS are defined. A POINTS value is a set of R-points. There are two alternative
views of LINES and REGIONS. The first is that a LINES value is a set of R-segments and a regions
value a set of R-units. The other view is equivalent but “semantically richer”: A lines value is a set of
disjoint R-blocks and a regions value a set of (edge-) disjoint R-faces. This completes the scope of this
paper.

In the companion paper [GüS92] first the notion of properties of collections of values is introduced.
The purpose is to support notions such as a map which is essentially a set of objects whose REGIONS
attribute values are disjoint. One would like to identify such constraints and to use them for the
definition of algebra operations, e.g. map overlay. Next, the object model interface (OMI) is defined.
We identify a number of concepts that need to be present in the DBMS data (or object) model to allow
it to cooperate with our spatial algebra. For example, the OMI must offer a function that yields for a

− 7 −

given object an associated SDT value, operations to form aggregates of objects or to group sets of
objects by attribute values (which in connection with the spatial algebra allows to realize a “fusion”
operation [ScV89, GaNT91]). The corresponding idea at the system level is that any extensible
database system offering an OMI implementation can cooperate with a spatial type extension package
(STEP) realizing the spatial algebra. Finally the spatial algebra itself is described; the semantics of all
operations are formally defined. Due to the underlying realms, this algebra has simple and powerful
operations, nice closure properties and observes a number of algebraic laws. It is straightforward to
implement this algebra in such a way that the laws do also hold in practice.

3 Robust Geometric Primitives

The bottom layer of the formal development introduces a finite discrete space, points and line
segments over this space, and some simple predicates and operations on them. Let N = {0, ..., n − 1}
⊆ N. An N-point is a pair (x, y) ∈ N × N. An N-segment is a pair of distinct N-points (p, q). PN denotes
the set of all N-points and SN the set of all N-segments. We introduce the primitives shown in Figure
8 on N-points and N-segments. In this graph representation, undirected edges denote predicates and
directed edges other operations (here intersection takes two N-segments and returns an N-point).

In the appendix these operations are defined in terms of integer arithmetic. Therefore they have a
straightforward implementation free of numerical errors. We briefly explain them informally here:
Two N-segments meet if they have exactly one end point in common. They overlap if they are
collinear and share a (partial) N-segment. If they are collinear and do not share a (partial) N-segment,
we call them aligned. If they have exactly one common point but do not meet, they intersect. If they
have the same slope, they are parallel. They are disjoint if they are neither equal nor meet nor
intersect. The on primitive tests if an N-point lies on an N-segment; the in primitive does nearly the
same but the N-point must not coincide with one of the end points of the N-segment. The intersection
primitive calculates the intersection point of two N-segments and rounds it to the nearest N-point.

4 Realms

Given N, a realm over N, or N-realm for short, is a set R = P ∪ S such that
(i) P ⊆ PN, S ⊆ SN

(ii) ∀ s ∈ S : s = (p, q) ⇒ p ∈ P ∧ q ∈ P

(iii) ∀ p ∈ P ∀ s ∈ S : ¬ (p in s)

(iv) ∀ s, t ∈ S : ¬ (s = t) ∧ ¬ (s and t intersect) ∧ ¬ (s and t overlap)

N-point
on, in

N-segment

intersection

=, intersect, parallel,
overlap, aligned, meet,
disjoint=

Figure 8

− 8 −

The elements of P and S are called R-points and R-segments. There is an obvious interpretation of a
realm as a spatially embedded planar graph with set of nodes P and set of edges S.

5 Operations on Realms / The Realm Interface

Obviously the fundamental operations on realms are the insertion of an N-point or N-segment and the
deletion of an R-point or R-segment. However, the interface is a bit more complex since we study
realms not just as abstract entities but in connection with spatial databases. That means that there are
spatial attribute values in the database depending on realm objects. This dependency needs to be
modeled and treated by the operations.

Our approach to implement the dependency is the following: We assume that (the geometry of) a
spatial attribute value of some object is stored together with the object in the database and there is a
logical pointer from each segment or point describing the spatial value to the underlying realm object.
Furthermore, associated with each realm object (point or segment) is a set of logical pointers; one
pointer to each corresponding component of a spatial value in the database. In other words, points and
segments in the database are doubly linked with the corresponding points and segments in the realm.
Pointers from the database into the realm are realized by realm object identifiers from a set ROID,
pointers from the realm into the database by spatial component identifiers from a set SCID. It is
assumed that each roid or scid uniquely identifies the corresponding entity and that the
implementation guarantees fast access to these components. Additionally, a scid also identifies the
spatial value as a whole.

This approach stores geometries redundantly with a database object and in the realm. One might save
some space by representing attribute values just by structures composed of pointers to realm objects.
However, we believe its crucial for efficient query processing and well worth the extra space to keep
the geometries with the objects. In this way one can directly apply SDT operations to spatial attribute
values whereas otherwise it would always be necessary to access (load pages of) the underlying realm.
Note that the two-way linking is necessary in any case since changes in the realm (e.g. a new
intersection point on a segment) need to be propagated to the dependent spatial values.

We model the management of pointers formally as follows: Let R be a realm. A representation of R
is a set of triples {(r, roid(r), scids(r)) | r ∈ R} where roid is a function giving for a realm object its
unique identifier in ROID and scids is a function returning the set of SCIDs of dependent components
of spatial attribute values. We also allow the notation roid(v) to assign a new ROID to a newly created
realm object v.

The realm interface is described by the following signature. Slightly extending standard notations we
allow operators to return tuples of values and sets of values − the type of a set of X values is denoted
by X*. The first group of operations are those mentioned above:

sorts Realm, Point, Segment, RealmObject, ROID, SCID, Rectangle, Bool, Integer

ops InsertNPoint: Realm × Point → Realm × ROID × (SCID × (Segment × ROID)*)*

InsertNSegment: Realm × Segment → Realm × (Segment × ROID)* × (SCID ×
(Segment × ROID)*)* × Bool

Delete: Realm × ROID → Realm × Bool

− 9 −

The sort (type) Realm refers to a realm representation, Point to the set PN, Segment to the set SN.
RealmObject is a union type of Point and Segment; we assume one can recognize whether a given
instance is a point or a segment. ROID and SCID have been discussed above. Rectangle denotes the
set of axis-parallel rectangles definable over space N × N, that is, N-rectangles.

The update operations implement the approach of Greene and Yao [GrY86] described in Section 2 to
preserve the topology for a set of intersecting line segments when they are represented over a finite
grid. Greene and Yao do not deal with collections of points that are part of our realms. We extend their
approach by an additional integrity rule for points and line segments that are very close to each other.
In Section 2 the concept of an envelope was already introduced as a set of grid points “adjacent” to a
segment (formally defined in [GrY86]). Let us call the “proper envelope” the subset of envelope
points that are not end points of the segment (denoted (s) for segment s). Then the rule is:

No R-point lies on the proper envelope of any R-segment.

The intuition behind this is that points that are so close are meant to lie on the segment. Update
operations maintain this constraint by redrawing the segment whenever a point is discovered to lie on
its proper envelope (which can happen on point insertion or on segment insertion).

The operation InsertNPoint takes a realm and an N-point. It returns (i) the modified realm, (ii) an
identifier for the inserted point, which could be an old one if the point was in the realm already, and
(iii) a set of segments in the database that need to be redrawn, which may be empty. A segment may
need redrawing because the point lies on its proper envelope. For each such segment its “address” in
the database (SCID) together with a list of pairs (s, roid(s)) (where s is a segment of the redrawing) is
returned. It is then the task of the DBMS to replace segments by their redrawings.

The operation InsertNSegment takes a realm and an N-segment. It returns (i) the modified realm, (ii)
a list of segments with their roids which may contain either the original segment as the only element
or a redrawing of this segment, (iii) a possibly empty set of segments that need to be redrawn (as for
InsertNPoint). Here the inserted segment may need redrawing because it or its proper envelope
touches R-points or because it intersects R-segments. The other segments need redrawing because
they are intersected by this segment. The last parameter (iv) indicates whether insertion was
performed; it was rejected, if not both end points of the segment were present in the realm.

The operation Delete takes a realm and the identifier of a realm object (point or segment) and removes
the object from the realm if this doesn’t violate certain integrity constraints. It returns (i) the modified
realm and (ii) an indication whether the object was removed. The following conditions are checked:
A point is only removed if there is no segment ending in the point. Any realm object is only removed
if its set of scids (dependent objects) is empty.

The second group of operations supports the management of the two-way linking between realm
objects and components of spatial values in the database:

Register: Realm × ROID × SCID → Realm

Unregister: Realm × ROID × SCID → Realm

GetSCIDs: Realm × ROID → SCID*

GetRealmObject: Realm × ROID → RealmObject

E

− 10 −

Here Register informs a realm object roid about a spatial component scid depending on it. Unregister
removes such an information. GetSCIDs returns the scids of spatial components depending on the
given roid, GetRealmObject returns the geometry. These operations are to be used, for example, as
follows: A spatial attribute value is constructed by selecting a number of realm objects in a certain
order (this is supported by the last group of operations, see below). After all components have been
selected, the representation of this value is built and stored in the database. Then all components are
registered with their underlying realm objects. When a spatial attribute value is deleted, the
registration is removed for all objects. GetSCIDs and GetRealmObject are general purpose operations
to support query processing.

The last group of operations supports the selection of realm objects for the construction of spatial
values:

Window: Realm × Rectangle → (RealmObject × ROID)*

Identify: Realm × Point × Integer → ROID × Bool

Window returns all realm objects together with their roid that are inside or intersect a given rectangular
window. Identify tries to identify a realm object close to the N-point given as a parameter. The number
given as a third parameter controls the “pick distance”. A roid (possibly undefined) is returned
together with an indication whether identification was successful. These two operations can be used
to retrieve a portion of a realm in order to define spatial attribute values over it. For example, this
portion may be displayed at a graphical user interface. With a pointing device one can select N-points
which through Identify determine realm objects from which the spatial values can be built.

We now define the semantics of the realm operations InsertNPoint and InsertNSegment. All the other
operations are rather simple so that their meaning should be clear from the explanations above.
InsertNPoint and InsertNSegment are described by giving algorithms for them. As mentioned before,
the concepts of Greene and Yao [GrY86] are applied and extended, some of which need now to be
explained in more detail. In [GrY86], for a set of line segments redrawings are computed in two
phases. First, for each segment that needs to be redrawn, the set of points on its envelope, that need to
be passed by the redrawing, is computed. These points are attached to the segment in the form of
“hooks”. A hook is a short directed line segment (an “arrow”) from a point on the segment to the
envelope point that needs to be passed.

Figure 9 shows a segment s with two hooks <p’, p>and <q’, q>. Such a “hooked segment” is
represented as a list (s; <p’, p>, <q’, q>). The first hook arises from the intersection of segments s and
t in p’; when this intersection is discovered, the hook <p’, p> is added to both segments s and t. Let
us assume that the other hook in Figure 9 arises from the fact that point q was inserted into the realm;

u

s

Figure 9

t

q

q’

p’

p

− 11 −

since it lies on the envelope of s, s should go through q. In such a case we take the point on the segment
closest to the target point (in this case q’) as the start point of the hook and denote it as base(<target>,
<segment>), in this case q’ = base(q, s).4

Figure 9 also illustrates that for each hook created one generally needs to check whether any segments
are intersected by it. In the example an intersection with segment u would be discovered and a
corresponding hook <q”, q> be added to segment u (where q” is the intersection point of the hook and
u). Only after all hooks have been determined, redrawings (polygonal lines within the envelope) are
computed. This can now be done for each hooked segment independently from all other segments.
See [GrY86] for a description of how redrawings are computed.

The algorithm InsertNPoint has to treat the following cases: (i) the point is already present in the
realm, (ii) the point is new and does not lie on any envelope, and (iii) the point falls on one or more
proper envelopes. Only the last case is a bit more complex: All segments whose envelopes are touched
get a hook. Later, all those segments are redrawn. The description uses predicates ExistsRPoint and
ExistsRSegment with the obvious meaning to check whether a realm object to be created is present
already.

algorithm InsertNPoint (R, p, R’, r, SP)

{Inputs are a realm R = P ∪ S and an N-point p. Outputs are the modified realm R’, a realm object

identifier r for p, and a set SP of spatial component identifiers and redrawings for the spatial objects

which have to be updated.}

Step 1

SP := ∅;

if ∃ q ∈ P : p = q (at most one such R-point can exist)

then r := roid(q); R’ := R

else if ∀ s ∈ S :

then r := roid(p); R’ := R ∪ {(p, r, ∅)}

else (R-segments exist whose proper envelopes contain p)

Srd := ∅; (a set of R-segments which have to be redrawn)

r := roid(p);

Senv := {s ∈ S | };

for each s in Senv do
Insert a hook h = <base (p, s), p> on s; Srd := Srd ∪ {s}

(one does not need to check for segments in S intersecting h because they are already

in Senv)

Step 2 (redraw hooked lines)

Let Srd := {t1, ..., tn}. Let {ti,1, ..., ti,ki
} be the set of ki R-segments of the redrawing of ti through p.

Let ti,j = (pi,j, qi,j), i ∈ {1, ..., n}, j ∈ {1, ..., ki}

Step 3 (update realm)

R’ := R \ {(ti, roid(ti), scids(ti)) | i ∈ {1, ..., n}}

(Insert the end points of the R-segments of the redrawings and the R-segments themselves if they

do not already exist in the realm)

4 In [GrY86] all hooks arise from segment intersections.

p E s()∉

p E s()∈

− 12 −

for each i in 1..n do
for each j in 1..ki do

if not ExistsRPoint(pi,j) then R’ := R’ ∪ {(pi,j, roid(pi,j), ∅)};

if not ExistsRPoint(qi,j) then R’ := R’ ∪ {(qi,j, roid(qi,j), ∅)};

if not ExistsRSegment(ti,j) then R’ := R’ ∪ {(ti,j, roid(ti,j), ∅)};

SP := {(sc, {(ti,j, roid(ti,j)) | j ∈ {1, ..., ki}}) | sc ∈ scids(ti)}

end InsertNPoint.

The algorithm InsertNSegment first checks whether the end points of the segment are present in the
realm; otherwise it rejects insertion. This agrees with the graph-theoretic view of a realm: An edge
can only exist if its nodes are there. It implies that the user of the realm layer has to make sure that the
points are present (in case of doubt just insert them first; this doesn’t hurt). Hence, when a segment is
inserted, it is known that the end points have already interacted properly with envelopes of other
segments. The following cases are now distinguished: (i) the segment is in the realm already, (ii) the
segment is new and doesn’t touch anything, and (iii) the segment may intersect some other segments
and / or its envelope touches some realm points.

algorithm InsertNSegment (R, s, R’, RD, SP, ok)

{Inputs are a realm R = P ∪ S and an N-segment s. Outputs are the modified realm R’, a set RD of pairs

of R-segments and realm object identifiers either for s or a redrawing of s, a set SP of spatial component

identifiers and redrawings for the spatial objects which have to be updated, and a parameter ok which

indicates whether the insertion was performed. Insertion was rejected if the end points of s were not

present in the realm.}

Step 1 (initializations)

SP := ∅;

Step 2 (check, whether end points of s have already been inserted)

Let s = (q1, q2). ok := ExistsRPoint(q1) and ExistsRPoint(q2);

if ok then (execute steps 3-5)

Step 3 (insert hooks)

if ∃ t ∈ S : s = t (at most one such R-segment can exist)

then R’ := R; RD := {(s, roid(t))}

else if ∀ t ∈ S : s and t are disjoint ∧ ∀ p ∈ P :

then R’ := R ∪ {(s, roid(s), ∅)}; RD := {(s, roid(s))}

else (s intersects R-segments and/or there are R-points in the proper envelope of s)

Srd := ∅ (the set of R-segments which have to be redrawn)

(Get all R-points lying in the proper envelope of s except for the end points. Get all

R-segments intersecting s.)

Penv(s) := {p ∈ P | }

Sintersect(s) := {t ∈ S | s and t intersect}

for each p in Penv(s) do
Insert a hook h = <base(p, s), p> on s

for each t in S do
if h and t intersect at p’

then
Insert a hook h = <p’, p> on t; Srd := Srd ∪ {t}

i 1=

n

∪

p E s()∉

p E s()∈

− 13 −

for each t in Sintersect(s) do
Insert a hook h = <q, p> both on s and on t from the intersection point q of s and t

to the closest grid point p (Note that p = q is possible if q is a grid point)

Srd := Srd ∪ {t}

for each v in S do
if h and v intersect at p’

then
Insert a hook h’ = <p’, p> on v; Srd := Srd ∪ {v}

Step 4 (redraw hooked lines)

Redraw s. Let {s1, ..., sm} be the R-segments of the redrawing of s. Let si = (pi, qi), i ∈ {1, ..., m}.

Redraw all R-segments of Srd := {t1, ..., tn}. Let {ti,1, ..., ti,k} be the set of ki R-segments of the

redrawing of ti. Let ti,j = (pi,j, qi,j), i ∈ {1, ..., n}, j ∈ {1, ..., ki}

Step 5 (update realm)

R’ := R \ {(ti, roid(ti), scids(ti)) | i ∈ {1, ..., n}}

(Insert the end points of the R-segments of the redrawings and the R-segments themselves if they

do not already exist in the realm.)

for each i in 1..m do
if not ExistsRPoint(pi) then R’ := R’ ∪ {(pi, roid(pi), ∅)}

if not ExistsRPoint(qi) then R’ := R’ ∪ {(qi, roid(qi), ∅)}

if not ExistsRSegment(si) then R’ := R’ ∪ {(si, roid(si), ∅)}

for each i in 1..n do
for each j in 1..ki do

if not ExistsRPoint(pi,j) then R’ := R’ ∪ {(pi,j, roid(pi,j), ∅)}

if not ExistsRPoint(qi,j) then R’ := R’ ∪ {(qi,j, roid(qi,j), ∅)}

if not ExistsRSegment(ti,j) then R’ := R’ ∪ {(ti,j, roid(ti,j), ∅)}

RD := {(si, roid(si)) | i ∈ {1, ..., m}}

SP := {(sc, {(ti,j, roid(ti,j)) | j ∈ {1, ..., ki}}) | sc ∈ scids(ti)}

end InsertNSegment.

6 Realm-Based Structures and Primitives

We can now assume that the problems of numerical robustness and topological correctness are solved
by the lower layers. Given is a realm which can be viewed as a planar graph over the grid N × N.
Within a realm one can discover certain structures and relationships between these structures useful
for the definition of spatial data types. These structures are called R-cycle, R-face, R-unit, and R-block.
For the relationships we will define a number of predicates (primitives).

An R-cycle c is just a cycle in the graph interpretation of a realm, defined by a set of R-segments
S(c) = {s1, ..., sm}, such that

(i) ∀ i ∈ {1, ..., m} : si meets s(i+1) mod m

(ii) No other pairs of segments in S(c) meet.

Obviously the following relationships may exist between an N-point p and an R-cycle c:

i 1=

n

∪

− 14 −

(i) p on c :⇔ ∃ s ∈ S(c) : p on s

For p = (x, y) let sp = ((x, y), (x, n − 1)) (that is, a vertical segment extending from p upwards to the
edge of the grid). Let Sr(c) be the segments in S(c) whose right end point, but not the left one, is on
sp. Let Si(c) be the segments in S(c) that intersect sp. Then

(ii) p in c :⇔ ¬ p on c ∧ |Sr(c)| + |Si(c)| is odd5

(iii) p out c :⇔ ¬ (p on c ∨ p in c)

Hence c partitions the set PN into three subsets Pin(c), Pon(c), and Pout(c). Let P(c) := Pon(c) ∪ Pin(c).

Cycles are interesting because they are the basic entities for the definition of regions over realms. The
relationships shown in Figure 10 may be distinguished between two R-cycles c1 and c2 :

We introduce the following terminology for these configurations:

c2 is c1 and c2 are
• (area-)inside (i, ii, iii) • area-disjoint (iv, v, vi)
• edge-inside (ii, iii) • edge-disjoint (v, vi)
• vertex-inside (iii) • (vertex-)disjoint (vi)

c1.

The meaning is that (i) c2 is (w.r.t area) inside c1, (ii) additionally has no common edges with c1,
(iii) has not even common vertices with c1. Similarly (iv) c2 is disjoint w.r.t. area with c1,
(v) additionally has no common edges with c1, (vi) additionally has not even common vertices with
c1. area-inside is the standard interpretation of the term inside, vertex-disjoint the standard
interpretation of the term disjoint.

Furthermore there are two positive notions: c1 and c2 are adjacent if they are area-disjoint and have
common edges, they meet if they are area-disjoint and have common vertices. These predicates are
formally defined as follows:

c1 (area-)inside c2 :⇔ P(c1) ⊆ P(c2)

c1 edge-inside c2 :⇔ c1 area-inside c2 ∧ S(c1) ∩ S(c2) = ∅

c1 vertex-inside c2 :⇔ c1 edge-inside c2 ∧ Pon(c1) ∩ Pon(c2) = ∅

c1 and c2 are area-disjoint :⇔ Pin(c1) ∩ P(c2) = ∅ ∧ Pin(c2) ∩ P(c1) = ∅

5 This is a precise grid-based formulation of the well-known “plumbline” algorithm.

(iii)

(ii)

(i)
(iv)

(v)

(vi)

Figure 10

c1

c2

− 15 −

c1 and c2 are edge-disjoint :⇔ c1 and c2 are area-disjoint ∧ S(c1) ∩ S(c2) = ∅

c1 and c2 are (vertex-)disjoint :⇔ c1 and c2 are edge-disjoint ∧ Pon(c1) ∩ Pon(c2) = ∅

(which is equivalent to saying that P(c1) ∩ P(c2) = ∅)

c1 and c2 are adjacent :⇔ c1 and c2 are area-disjoint ∧ S(c1) ∩ S(c2) ≠ ∅

c1 and c2 meet :⇔ c1 and c2 are edge-disjoint ∧ Pon(c1) ∩ Pon(c2) ≠ ∅

One can observe similar ways how an R-segment s can lie within an R-cycle c:

For an R-point p and an R-cycle c we have two possibilities:

Formal definitions are left to the reader.

Based on the concept of R-cycles, for the definition of a spatial data type for regions the notions R-face
and R-unit are introduced which describe regions from two different perspectives and which are used
equivalently. Both of them essentially define polygonal regions with holes. An R-unit is a “minimal”
R-face in the sense that any R-face within the R-unit is equal to the R-unit. Hence R-units are the
smallest region entities that exist over a realm. We will see that any two R-units are area-disjoint and
that any R-face can be described as a set of R-units. In the next section a region (data type) will be
defined that can either be viewed as a set of R-faces or, equivalently, as a set of R-units. The first view
emphasizes a minimal representation of the boundary of a region whereas the latter view supports the
definition of set operations for regions. We will define operations to convert between the two (formal)
representations.

Let C(R) denote the set of all R-cycles. An R-face f is a pair (c, H) where c is an R-cycle and H =
{h1, ..., hm} is a (possibly empty) set of R-cycles such that the following conditions hold (let S(f)
denote the set of all segments of all cycles of f):

(i) ∀ i ∈ {1, ..., m} : hi edge-inside c

(ii) ∀ i, j ∈ {1, ..., m}, i ≠ j : hi and hj are edge-disjoint

(iii) Each cycle in S(f) is either equal to c or to one of the cycles in H (no other cycle can be formed
from the segments of f)

The last condition ensures uniqueness of representation, that is, there are no two different

(ii)

• s (area-)inside c (i, ii, iii)

• s edge-inside c (ii, iii)

• s vertex-inside c (iii)

Figure 11

(i) (iii)

(i)

(ii)
• p (area-)inside c (i, ii)

• p vertex-inside c (ii)

Figure 12

− 16 −

interpretations of a set of segments as sets of faces. For example, it guarantees that the configuration
shown in Figure 13 must be interpreted as two faces, and not as a single face with 5 holes (since under
the latter interpretation the cycle drawn fat would violate condition (iii)).

With terms defined below condition (iii) can be rephrased as “an R-face cannot be decomposed into
two or more edge-disjoint R-faces”.

The grid points belonging to an R-face f are defined as:

P(f) := P(c) \

Let S(F) denote the set of all R-segments of a set of R-faces F.

The possible relationships between an R-point p or an R-segment s and an R-face f = (c, H) are:

(i) p (area-)inside f :⇔ p area-inside c ∧ ∀ h ∈ H : ¬ p vertex-inside h

(ii) s (area-)inside f :⇔ s area-inside c ∧ ∀ h ∈ H : ¬ s edge-inside h

The various notions of inside and disjoint can be extended for the comparison of two R-faces
f = (f0,) and g =(g0,), for example:

f (area-)inside g :⇔ f0 area-inside g0 ∧ ∀ ∈ : area-disjoint f0 ∨ ∃ ∈ : area-inside

This definition is illustrated in Figure 14.

Figure 13

Pin hi()
i 1=

m

∪

F G

g G g f F g f

g1

Figure 14

f

g2
f1 f2

g

− 17 −

f area-disjoint g :⇔ f0 area-disjoint g0 ∨ ∃ ∈ : f0 area-inside ∨ ∃ ∈ : g0 area-inside

f edge-disjoint g :⇔ f0 edge-disjoint g0 ∨ ∃ ∈ : f0 edge-inside ∨ ∃ ∈ : g0 edge-inside

The meaning of the remaining predicates edge-inside, vertex-inside, vertex-disjoint, adjacent, meet
should be clear; definitions are omitted for brevity.

An R-unit as a minimal R-face is defined as follows. Let F(R) denote the set of all possible R-faces.
Let f be an R-face.

f is an R-unit :⇔ ∀ g ∈ F(R) : g area-inside f ⇒ g = f

We also denote by U(R) the set of all R-units.

Our goal is now to establish an equivalence between two representations of a region over a realm,
namely, as a set of (pairwise) edge-disjoint R-faces, and as a set of R-units. First we consider the
conversion of a set of faces into a set of units. We need two lemmas, whose proofs are technical and
are only sketched:

Lemma 6-1 Let f be an R-face and u an R-unit. Then either u area-inside f or u area-disjoint f.

The idea of the proof is that if this is not the case, then one of the cycles of f, say f’, must properly
intersect one of the cycles of u, say u’.

But then a part of f’ lies within u and forms a cycle there with a part of u’. Hence there would be a
face contained in u different from u which contradicts the definition of an R-unit.

Lemma 6-2 Let f be an R-face and u an R-unit such that u area-inside f. Then “subtracting” u from
f results in a set of R-faces.

The idea of the proof is the following: If u is even edge-inside f then removing the area of u from f
just adds another hole to f. If u’s outer cycle u0 has some adjacent parts with f’s outer cycle f0, then a

“bay” is formed in f0 (Figure 16). If it is adjacent with a hole f1 in f, then f1 will grow (Figure 17). If
several adjacencies are present, then f may be decomposed into several faces.

g G g f F f

g G g f F f

f’ u’

Figure 15

f

f
u

f1

f0

u0

Figure 16 Figure 17

− 18 −

The second lemma implies that the units inside a face f cover the area of f completely. For, if some
area were left, it would form its own face which could again be decomposed into units.

Therefore the following definition correctly decomposes faces into units. Let F be a set of edge-
disjoint R-faces.

units(F) := {u ∈ U(R) | ∃ f ∈ F: u area-inside f}

We now consider the conversion of a set of units into a set of faces. Given a set of R-segments S, we
say, S describes a set of pairwise edge-disjoint R-faces :⇔ there exists a set of edge-disjoint R-faces
F such that S = S(F). Furthermore, let ∆ denote the operator for symmetrical set difference, that is,
V ∆ W = (V \ W) ∪ (W \ V). ∆ forms the union of two sets removing their intersection. The operator is
associative and commutative. The basis for the conversion is the following lemma:

Lemma 6-3 Let f and g be two area-disjoint R-faces. Then S(f) ∆ S(g) describes a set of edge-disjoint
R-faces.

The basic idea is that the ∆ operator just removes segments that are common to both faces. The area-
disjointness condition makes sure that only boundaries between adjacent areas are removed (and not
boundaries between a covered region in one face and a hole in the other face).

The lemma can be extended to two sets of faces: Let F, G be two sets of edge-disjoint R-faces such
that the faces in F ∪ G are pairwise area-disjoint. Then S(F) ∆ S(G) describes a set of edge-disjoint
R-faces. Let the resulting set of R-faces be denoted as F + G. Now the conversion from units to faces
can be defined as follows. Let U be a set of R-units.

We summarise the equivalence in

Theorem 6-4 ∀ F ⊆ F(R): faces(units(F)) = F

For the definition of a spatial data type for lines the notion of an R-block is introduced. A set S of
R-segments is called connected :⇔ ∀ r, t ∈ S ∃ s1, ..., sm, si ∈ S : r = s1, t = sm, and ∀ i ∈ {1, ..., m −
1} : si and si+1 meet. An R-block is a connected set of R-segments. Two R-blocks b1 and b2 are
disjoint :⇔ ∀ s1 ∈ S(b1) ∀ s2 ∈ S(b2) : s1 and s2 are disjoint. For an R-point p we consider the
angularly sorted cyclic list Lp of R-segments s ∈ S(b1) ∪ S(b2) that meet in p. p is called a meeting
point if Lp can be subdivided into two sublists Lp,1 and Lp,2 (whose concatenation leads to Lp) so that
all R-segments of Lp,1 are elements of S(b1) and all R-segments of Lp,2 are elements of S(b2), or vice
versa (see Figure 18).

faces U() u{ }
u U∈
∑=

p’b1 b2

p
b1 b2

Figure 18: p is a meeting point, p’ is not a meeting point.

− 19 −

Two R-blocks b1 and b2 meet :⇔

(i) ∀ s ∈ S(b1) ∀ t ∈ S(b2) : s ≠ t

(ii) ∀ s ∈ S(b1) ∀ t ∈ S(b2) : s and t meet ⇒ s and t meet in a meeting point.

Again, we have two equivalent representations of a lines value, namely, as a set of segments, or as a
set of disjoint R-blocks. For a set of segments S’ ⊆ S let blocks(S’) denote its partition into maximal
connected components. Then S(blocks(S’)) = S’.

7 Realm-Based Spatial Data Types

A formal definition of realm-based spatial data types (including operations) is given in the companion
paper [GüS92]. However, to conclude this paper we show the connection between the realm-based
structures of the previous section and the domains of the spatial data types. The basic types introduced
are called POINTS, LINES, and REGIONS. There is a “flat” and a “structured” view of values of
these types. The “flat” view is the following:

For a given realm R, a value of type POINTS is a set of R-points, a value of type LINES is a set
of R-segments, and a value of type REGIONS is a set of R-units.

The structured view, that we shall assume as the formal definition, is as follows:

For a given realm R, a value of type POINTS is a set of R-points, a value of type LINES is a set
of pairwise disjoint R-blocks, and a REGIONS value is a set of pairwise edge-disjoint R-faces.

We have shown in the previous section that the two views are equivalent. The first view is
conceptually very simple and supports a direct understanding of set operations. The second view
shows LINES and REGIONS values as consisting of a number of components (blocks or faces),
allows one to express relationships between these components and also emphasizes the representation
of the boundary in case of regions. Figure 19 illustrates the data types.

It should be obvious now that these data types have very nice closure properties. For example, the set
operations are defined as follows. Let P1 and P2 be two POINTS values, L1 and L2 two LINES values,
and R1, R2 two REGIONS values. Then

union (P1, P2) := P1 ∪ P2
union (L1, L2) := blocks(S(L1) ∪ S(L2))
union (R1, R2) := faces(units(R1) ∪ units(R2))

a POINTS value a LINES value a REGIONS value

Figure 19

− 20 −

For intersection and difference the definitions are analogous. The primitives introduced in the
previous sections offer a formal basis for the definition of operations of a spatial algebra. For example,
one can define what it means for two regions to be adjacent:

F and G are adjacent :⇔ F and G are area-disjoint ∧ ∃ f ∈ F ∃ g ∈ G : f and g are adjacent

(assuming area-disjoint to be defined already for regions).

8 Conclusions

In this paper we have offered geometric realms as a concept to solve several problems related to
spatial data types for database systems. In particular, realms solve the geometric consistency problem
as well as problems of numeric robustness and topological correctness. Realm-based structures can
be used for the definition of quite general spatial data types and guarantee all the desired closure
properties in theory as well as in computational practice. Starting from integer arithmetics, we have
developed bottom-up a precise formal framework that makes it easy to define spatial algebras and to
implement them correctly. Indeed, such a realm-based algebra is defined in [GüS92].

In closing, let us briefly discuss some open problems and questions that arise with this approach.

Topological correctness. Although it goes a long way, the approach of Greene and Yao does not
completely guarantee topological correctness. As is also stated in [GrY86], through the finite
representation “... disjoint points and lines may collapse. However, aside from such degeneracies, we
do guarantee that topology does not change.” There has been a lot of work on numeric robustness and
topological correctness for geometric computation (e.g. [OtTU87, GuiSS89, EdM88, NaME90]). We
have selected [GrY86] because it fits well with our idea of realms as grid-based planar graphs
underlying spatial data types. However, one might try to extend this by adding further integrity
constraints (such as our rule that R-points must not lie on envelopes) or by techniques from the other
approaches (e.g. symbolic reasoning) to avoid the remaining anomalies.

Efficiency. The realm update algorithms of Section 5 have been given in rather abstract terms, one
might be concerned, whether they are efficiently implementable. We suggest to represent a realm in a
spatial index structure (e.g. [Gut84]) and are currently implementing realms on the basis of LSD-
Trees [HeSW89]. The lookup operations needed in the algorithms can then be performed efficiently.
Such a realm representation can at the same time be used as an index into the database. A separate
issue is the efficiency of spatial algebra operations (such as intersecting two regions). This can be done
by variations of plane-sweep algorithms such as [NiP82, BeO79]. Indeed, these algorithms are now
much simpler and more efficient since they do not need to discover new intersections and do not have
to treat special cases. The study of algorithms for realm-based data types might become an interesting
field of its own.

Space overhead. By redrawing, many more segments may be created than were present in the original
set of intersecting line segments. How many more, is an interesting question that should be studied
theoretically as well as in experiments with “real life” data. In any case, we feel one cannot trade
correctness for space.

Multiple realms. In this paper we have only discussed the case of a single realm underlying all spatial
data (of a certain application area). There are several reasons why one might be interested in several

− 21 −

realms over the same area. One is to reduce space overhead (by not intersecting spatial values of
different realms). Another reason is that there exist interesting SDT operations that are not closed with
respect to a realm. An example is the creation of a “buffer area” around a polyline. To accommodate
such operations one might dynamically create a realm containing just the “new” spatial values, select
a set of SDT values that might interact with these new geometries and create a “small” realm for them,
and then use a “merge” operation on realms to compute all intersections correctly.

Appendix: Definition of Geometric Primitives

As a basis for definition and implementation we only assume that the following arithmetic primitives
are available and are error-free with respect to overflow.

INT × INT → INT +, −, ∗, div, mod

INT × INT → BOOL =, ≠, <, ≤, ≥, >

To fulfill this requirement in an implementation it is sufficient that the INT data type can represent
numbers in the range [−2n3, 2n3] where n = |N| (see below). Either this relationship holds between N
needed by the application and a programming language integer type, or one needs to implement a
special integer type with these operations.

For an N-point p we denote by p.x and p.y its first and second component, respectively. Two N-points

p and q are equal,

p = q :⇔ p.x = q.x ∧ p.y = q.y .

Two N-segments s1 = (p1, p2) and s2 = (q1, q2) are equal,

s1 = s2 :⇔ (p1 = q1 ∧ p2 = q2) ∨ (p1 = q2 ∧ p2 = q1)

Let s1 = (p1, p2) = ((x11, y11), (x12, y12)) and s2 = (q1, q2) = ((x21, y21), (x22, y22)) be two N-segments.
For the calculation of a possible intersection point of the two N-segments we use the following matrix
representation where λ, µ are rational numbers (to be represented by pairs of INT values).

This leads to the following inhomogeneous linear equation system in two variables:

x11 − x21 = −λ (x12 − x11) + µ (x22 − x21)

y11 − y21 = −λ (y12 − y11) + µ (y22 − y21)

Let a11 := x11 − x12, a12 := x22 − x21, b1 := x11 − x21, a21 := y11 − y12, a22 := y22 − y21, and b2 := y11 −
y21. Then

a11 λ + a12 µ = b1 ⇒
λ (a11 a22 − a12 a21) = b1 a22 − b2 a12

a21 λ + a22 µ = b2 µ (a11 a22 − a12 a21) = b2 a11 − b1 a21

With D := a11 a22 − a12 a21, D1 := b1 a22 − b2 a12, D2 := b2 a11 − b1 a21, and D ≠ 0 we get

, . (EQ 1)

x11

y11

λ
x12

y12

x11

y11

–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

+
x21

y21

µ
x22

y22

x21

y21

–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

+=

λ
D1

D
------= µ

D2

D
------=

− 22 −

Two N-segments intersect if D ≠ 0 and 0 < λ < 1 and 0 < µ < 1. Note that the situation where an end
point of one segment lies on the other segment is excluded. In particular no two end points are equal.
Two N-segments are parallel if D = 0.

For an N-segment s = ((x1, y1), (x2, y2)), x-ext(s) := {min(x1, x2), ..., max(x1, x2)} ⊆ N and y-ext(s) :=
{min(y1, y2), ..., max(y1, y2)} ⊆ N denote the x- and y-intervals of its bounding box. The resulting
intervals are called N-intervals. Two N-intervals I1 and I2 overlap if card(I1 ∩ I2) > 1. They are
disjoint if I1 ∩ I2 = ∅. Two N-segments s1, s2 overlap if

(i) D = 0

(ii) D1 = D2 = 0

(iii) x-ext(s1) and x-ext(s2) overlap ∨ y-ext(s1) and y-ext(s2) overlap.

If condition (iii) does not hold and the x- and y-intervals of s1 and s2 are disjoint, the two N-segments
are called aligned. Two N-segments s1 = (p1, p2) and s2 = (q1, q2) meet if they have exactly one end
point in common. Two N-segments are disjoint if they are neither equal nor meet nor intersect. If two
N-segments s1 = (p1, p2) = ((x11, y11), (x12, y12)) and s2 = (q1, q2) intersect, then intersection(s1, s2)
is the N-point (x, y) := (round_to_N(x0), round_to_N(y0)) where

(i) x0 = x11 + λ (x12 − x11)
(EQ 2)

y0 = y11 + λ (y12 − y11)

x0 and y0 are two rational numbers resulting from solving the two equations in exact
rational arithmetic (to be implemented through the INT primitives alone). λ is chosen as
mentioned in (EQ 1).

(ii) the function round_to_N rounds a rational number to the “nearest” number in N.

For the function round_to_N we give a simple algorithm to show that integer arithmetic is sufficient
to calculate the “nearest” number in N from a rational number :

function round_to_N (a, b : integer) : integer;
var z : integer;
begin

if a ≥ b then z := a div b; a := a mod b else z := 0 end; (* now a < b so that 0 < a/b < 1 hold *)
if a = 0 then return z end;
if 2 ∗ a ≤ b then return z else return z + 1 end

end round_to_N;

Let s = (p1, p2) = ((x1, y1), (x2, y2)) be an N-segment and let p = (x, y) be an N-point. p lies on s, for
short: p on s, if

(i) (x2 − x1) (y − y1) + (x − x1) (y1 − y2) = 0

(ii) x ∈ x-ext(s) ∨ y ∈ y-ext(s)

An N-point p lies within an N-segment s, for short: p in s, if additionally to (i) and (ii) holds

(iii) x ∉ {x1, x2} ∨ y ∉ {y1, y2} .

One can observe that the largest numbers occur in the equations (EQ 2)

c
a
b
---=

− 23 −

which leads to the requirement that numbers up to |2n3| should be representable.

References

[AbB88] Abiteboul, S., and C. Beeri, On the Power of Languages for the Manipulation of Complex Objects.
Technical Report 846, INRIA (Paris), 1988.

[BeO79] Bentley, J.L., and T. Ottmann, Algorithms for Reporting and Counting Geometric Intersections. IEEE
Trans. on Computers C-28 (1979), 643-647.

[EdM88] Edelsbrunner, H., and E.P. Mücke, Simulation of Simplicity. Proc. ACM Symposium on Computational
Geometry (Urbana-Champaign, Illinois), 1988.

[EgFJ89] Egenhofer, M.J., A. Frank, and J.P. Jackson, A Topological Data Model for Spatial Databases. Proc. SSD
89 (Santa Barbara, California), 1989, 271-286.

[GaNT91] Gargano, M., E. Nardelli, and M. Talamo, Abstract Data Types for the Logical Modeling of Complex
Data. Information Systems 16, 5 (1991).

[GrY86] Greene, D., and F. Yao, Finite-Resolution Computational Geometry. Proc. 27th IEEE Symp. on
Foundations of Computer Science, 1986, 143-152.

[GuiSS89] Guibas, L., D. Salesin, and J. Stolfi, Epsilon-geometry: Building Robust Algorithms from Imprecise
Computations. Proc. SIAM Conf. on Geometric Design (Tempe, Arizona), 1989.

[Gut84] Guttman, A., R-Trees: A Dynamic Index Structure for Spatial Searching. Proc. ACM SIGMOD Conf.
1984, 47-57.

[Gü88a] Güting, R.H., Geo-Relational Algebra: A Model and Query Language for Geometric Database Systems.
Proc. of the Intl. Conf. on Extending Database Technology (Venice, Italy), 1988, 506-527.

[Gü88b] Güting, R.H., Modeling Non-Standard Database Systems by Many-Sorted Algebras. Fachbereich
Informatik, Universität Dortmund, Report 255, 1988.

[Gü89] Güting, R.H., Gral: An Extensible Relational Database System for Geometric Applications. Proc. of the
15th Intl. Conf. on Very Large Databases (Amsterdam, The Netherlands), 1989, 33-44.

[GüS92] Güting, R.H., and M. Schneider, Realm-Based Spatial Data Types. FernUniversität Hagen, Manuscript
in preparation, 1992.

[HeSW89] Henrich, A., H.-W. Six, and P. Widmayer, The LSD Tree: Spatial Access to Multidimensional Point- and
Non-Point-Objects. Proc. of the 15th Intl. Conf. on Very Large Data Bases (Amsterdam, The
Netherlands), 45-53.

[JoC88] Joseph, T., and A. Cardenas, PICQUERY: A High Level Query Language for Pictorial Database
Management. IEEE Trans. on Software Engineering 14 (1988), 630-638.

[LiN87] Lipeck, U., and K. Neumann, Modelling and Manipulating Objects in Geoscientific Databases. Proc. 5th
Intl. Conf on the Entity-Relationship Approach (Dijon, France, 1986), 1987, 67-86.

[NaME90] Nagy, G., M. Mukherjee, and D.W. Embley, Making Do with Finite Numerical Precision in Spatial Data
Structures. Proc. 4th Intl. Symp. on Spatial Data Handling (Zürich, Switzerland), 1990, 55-65.

[NiP82] Nievergelt, J., and F.P. Preparata, Plane-Sweep Algorithms for Intersecting Geometric Figures.
Communications of the ACM 25 (1982), 739-747.

[OrM88] Orenstein, J., and F. Manola, PROBE Spatial Data Modeling and Query Processing in an Image
Database Application. IEEE Trans. on Software Engineering 14 (1988), 611-629.

[OtTU87] Ottmann, T., G. Thiemt, and C. Ullrich, Numerical Stability of Geometric Algorithms. Proc. 3rd ACM
Symp. on Computational Geometry, 1987, 119-125.

[RoFS88] Rossopoulos, N., C. Faloutsos, and T. Sellis, An Efficient Pictorial Database System for PSQL. IEEE
Trans. on Software Engineering 14 (1988), 639-650.

[ScV89] Scholl, M., and A. Voisard, Thematic Map Modeling. Proc. SSD 89, (Santa Barbara, California), 1989,
167-190.

x0

x11D D1 x12 x11–()+

D
--- y0,

y11D D1 y12 y11–()+

D
---= =

− 24 −

[SvH91] Svensson, P., and Z. Huang, Geo-SAL: A Query Language for Spatial Data Analysis. Proc. SSD 91
(Zürich, Switzerland), 1991, 119-140.

[Vo92] Voisard, A., Bases de données géographiques: du modèle de données à l’interface utilisateur. Ph.D.
Thesis, University of Paris-Sud (Centre d’Orsay), 1992.

