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Abstract

Similarity search is the problem of finding in a large collection of objects those that are
similar to a given query object, or pairs of objects similar to each other. It is a fundamental
problem in modern applications and the objects considered may be as diverse as locations
in space, text documents, images, twitter messages, or trajectories of moving objects. A
generic and unifying approach is metric space, which organizes the set of objects solely by a
distance (similarity) function with certain natural properties.

Given a set of objects S with a metric distance function, we can create a Voronoi par-
titioning of S by selecting a subset C ⊂ S as centers and assigning each element of S to
its closest center in C. This can be used to organize index structures as well as distributed
computation (e.g. similarity join or similarity clustering).

In this paper, we propose a novel index structure, the N-tree (neighborhood tree), which
is essentially a hierarchical Voronoi partitioning. In addition, distances between all centers
within a node are precomputed. This enables powerful pruning techniques for range search
and kNN search, to avoid many of the expensive distance calculations. We provide a thor-
ough experimental evaluation of parameter settings and comparison with state-of-the-art
structures. In many cases, N-tree is the most efficient structure.

1 Introduction

Finding relevant objects in a large collection of objects is a fundamental database problem. For
simple attribute data types from a one-dimensional domain such as numbers or strings, exact
match queries or range queries are the most important query types, well supported by index
structures, e.g. B-trees. For spatial data in a k-dimensional Euclidean space, range queries or
nearest neighbor queries are appropriate, well supported by indexes such as R-trees, for example.

Modern applications have to deal with huge collections of data over a wide variety of more
complex data types: audio or video data, text documents, photographs, twitter messages, social
network profiles, recommendations, points of interest, spatio-textual data, moving object tra-
jectories, to name only a few. The question is how to specify what are relevant objects, what
are we searching for.

One option is to somehow map the given objects into k-dimensional vectors, e.g. by ex-
tracting k numeric features. After this transformation, query types and indexing techniques for
spatial data are available, especially those tuned for high-dimensional spaces.

However, the most simple and natural approach to querying is to select one object from
the given domain and ask for objects similar to it, that is, similarity search. Similarity can be
defined by a distance function. Distance is inverse to similarity; hence, an object is most similar
to itself, with distance 0. Such distance functions can in principle be constructed in arbitrary
ways. However, if certain properties are known, they can be exploited in search.

A long and fruitful line of research has constructed indexes and search techniques [5] based
solely on the fact that the distance function is a metric. A metric distance function d fulfills
(i) d(x, y) ≥ 0, (ii) d(x, x) = 0, (iii) d(x, y) = d(y, x), and (iv) d(x, z) ≤ d(x, y) + d(y, z). The
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last property is known as the triangle inequality. This approach is known as the metric space
approach to similarity search [30]. The beauty of this approach is that resulting index structures
are automatically applicable to the wide diversity of data types mentioned above, as long as we
can define a metric distance function for them. The crucial property for pruning is the triangle
inequality.

In this paper, we propose an index structure for metric similarity search based on the concept
of a Voronoi partitioning. The Voronoi diagram is a popular structure in computational geometry
providing a distance-based partitioning of Euclidean space: Given a set of points S in a k-
dimensional space, space is partitioned into regions consisting of the points closest to each point
in S.

A Voronoi partitioning of a metric space is defined similarly: given a set S of objects with
a metric distance function d, select a subset C ⊂ S as centers and assign each element of S to
its closest center in C. Let cnn(s, C) denote the center closest to s in C and let P (u) denote the
partition assigned to center u.

The purpose of partitioning is to be able to restrict in query processing attention to a subset
of partitions. A crucial question is therefore how objects in different partitions can interact,
that is, whether an object s ∈ P (u) can be within distance r from an object t ∈ P (v). Voronoi
partitionings have a nice property, which we call the range distribution property : For an object
q with cnn(q, C) = u, only partitions P (v) can have elements t with d(q, t) ≤ r for which holds:

d(q, v) ≤ d(q, u) + 2r

The proposed N-tree has parameters k and l for inner node size and leaf size, respectively.
To build an N-tree for a dataset S, k centers are selected (e.g. randomly) to form C and
S is partitioned by C; if resulting partitions are larger than l, subtrees are created for them
recursively. Hence so far an N-tree is simply a hierarchical Voronoi partitioning.

A simple range search algorithm for query object q with radius r would determine in a
node the closest center and then use the range distribution property to determine the partitions
that need to be searched recursively. This works, but can be further optimized: To determine
the closest center, all distances of q to centers in C need to be evaluated. These distance
computations may be expensive.

A second major ingredient to the N-tree is therefore pre-computation of all distances between
centers of a node at tree construction time. An idea for range search with query object q is
to find the closest center cnn(q, C) and use it as a kind of proxy for q: the known distances
from cnn(q, C) to other centers should be similar to the unknown (and expensive to calculate)
distances from q to these centers. Therefore we can use the known distances to prune away
many of the expensive calculations.

Moreover, we can apply an iterative approach already in finding the closest center: in each
iteration, evaluate the distance to some center and then prune away many of the other centers
that cannot be the closest center any more, based on this distance. Experiments show that this
strategy is very effective.

Index structures for metric space have been studied for several decades, beginning perhaps
with the seminal works [13, 25]. These works introduce already two main partitioning strategies
used in this field, ball partitioning and generalized hyperplane partitioning. Ball partitioning
splits a set of objects by one or more distance thresholds from a given reference object (also called
pivot). Generalized hyperplane partitioning uses two objects (pivots) and assigns each object
of a set to the closer pivot. The conceptual positions in metric space of equal distance to the
two pivots define the generalized hyperplane. The case with more than two pivots, i.e., Voronoi
partitioning, has also been studied in the literature and is usually subsumed under generalized
hyperplane partitioning. We prefer to use the term Voronoi partitioning to emphasize the non-
binary structure and the analogy to the well known Voronoi diagrams.

An index structure using Voronoi partitioning that is most similar to our proposed N-tree
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is GNAT (Geometric Near-Neighbor Access Tree) [2]. In addition to hierarchical Voronoi par-
titioning1, for each pair of centers (called split points) (u, v) the range of distances from u to
elements of the partition P (v) is maintained, i.e., the minimal and maximal distance d(u, x) for
x ∈ P (v). This is useful for pruning in range search. However, the direct distances between cen-
ters are not maintained so that pruning techniques used in the N-tree are not available. Another
more subtle difference is that GNAT partitions the set S \ C, i.e., only the elements remaining
after removing the centers.

A data structure based on the idea of exploiting pre-computed distances between all elements
of a dataset in metric space is AESA [26]. Here the elements are called prototypes and the
problem addressed is to find the closest prototype for a given test sample (corresponding to
finding the closest center for a given object). AESA also uses the idea of iteratively evaluating
the distance to some prototype and then pruning all remaining candidate prototypes that cannot
be closest any more.

A weakness of AESA is that the data set is flat, not hierarchical, and the number of precom-
puted distances and the storage requirements are quadratic. In experiments, datasets of size up
to 1000 are considered. The authors try to address this weakness in follow-up papers. In LAESA
(linear AESA) [15], from the set of prototypes P a relatively small set B of base prototypes is
selected and distances are precomputed only between pairs (b, p) ∈ B × P . Another approach
[14] organizes the set of prototypes into a binary tree, combining this with ideas from [26] and
[15]. However, the precomputed distances are still global for the dataset, not per node of the
tree.

In contrast, the N-tree has a quadratic number of pre-computed distances only per node of
the tree, which can be kept small enough, for data sets of arbitrary size.

Our contributions in this work are the following:

� We propose a new index structure for metric space, the N-tree. It combines hierarchical
Voronoi partitioning with pre-computation of distances within nodes, enabling new pruning
techniques.

� We provide efficient algorithms for tree construction, similarity range search, and similarity
k-nearest-neighbor search.

� A careful experimental evaluation of parameter settings for the N-tree is performed such as
the used center selection technique, possible distance estimates in kNN-search, and node
sizes.

� We provide a thorough comparison of the N-tree with three well-known metric index
structures: M-tree [6], GNAT [2], and MVPT [1]. The latter two have been found in a
recent survey [5] to be among the best performing main memory indexes in terms of running
time and number of distance computations. For these four structures, the behaviour
for different node sizes, data sets and distance functions, and range and kNN queries is
evaluated. It turns out that the N-tree yields the best results for most parameter settings
in range search and in all cases of kNN search.

� The N-tree exhibits a behaviour that, to our knowledge, is not present in other metric
indexes: for increasing radius in range queries after some point the number of distance
evaluations and the cost decreases. We call this the U-turn effect.

The rest of the paper is structured as follows. In Section 2 we introduce the motivating
range distribution property. Section 3 defines the structure of the N-tree and its construction
algorithms. Section 4 addresses algorithms for range queries and their pruning rules, Section 5

1The author calls it Dirichlet domain partitioning, finding this term more appropriate. A Voronoi cell corre-
sponds to a Dirichlet domain.
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k-nearest-neighbor queries. Section 6 contains the experimental evaluation. An overview of
related work is given in Section 7. Section 8 provides conclusions and hints for future work.

2 Preliminaries: Range Distribution on a Voronoi Partitioning

Suppose we are given a data set S with a distance function d. We partition S by selecting
some of its elements as centers and assign each element of S to its closest center. We call this a
Voronoi partitioning. Let P (u) denote the partition of u, the subset of S assigned to center u.

Now let u be a center and s ∈ P (u). We want to perform a range query for s with radius r on
S, retrieving all elements of S within distance r from s. The question is: which other partitions
P (v) may contain results?

An answer to this question has several applications. A Voronoi partitioning can be used
on the one hand to organize subtrees of a node in an index structure. On the other hand, the
partitions can be assigned to different nodes of a distributed computing cluster. In the first case,
for a given query point, all relevant subtrees need to be searched; in the latter case, the query
point has to be sent to all relevant partitions in the cluster for distributed processing.

Assuming d is a metric distance function, an answer to this question has been given several
times in the literature on metric indexing as well as in distributed similarity computation. In
indexing, it is known as a pruning rule associated with generalized hyperplane partitioning,
called double pivot filtering in [5] and attributed to [30]. In distributed computation, it has been
rediscovered at least in [22] for similarity join and in [11] for density-based similarity clustering.
Here, we review Theorem 6.1 and its proof from [11].

For s ∈ S, let NEps(s) = {t ∈ S | d(s, t) ≤ Eps}. Here Eps corresponds to radius r.

Theorem 2.1 Let s, t ∈ S and T ⊂ S. Let u, v ∈ T be the elements of T with minimal distance
to s and t, respectively. Then t ∈ NEps(s) ⇒ d(v, s) ≤ d(u, s) + 2 · Eps.

Proof: Let x be a location within NEps(s) with equal distance to u and v, that is, d(u, x) =
d(v, x). Such locations must exist, because s is closer to u and t is closer to v. Then d(u, x) ≤
d(u, s) + Eps. Further, d(v, s) ≤ d(v, x) + Eps = d(u, x) + Eps ≤ d(u, s) + Eps + Eps =
d(u, s) + 2 · Eps.

u

s t

v

Eps

u

s t

v

Eps

(a) (b)

x

Figure 1: Range search on a Voronoi partitioning (used with permission) [11]

The setting of Theorem 2.1 is illustrated in Figure 1 (a). Here u and v are partition centers;
the blue objects are closer to u, the red objects are closer to v; hence s ∈ P (u) and t ∈ P (v).
The slanted line represents equal distance between u and v (the generalized hyperplane). The
proof is illustrated in Figure 1 (b).

Theorem 2.1 says that when we perform a range query with radius r from an object s within
a partition P (u), we need to consider all partitions P (v) such that d(s, v) ≤ d(s, u) + 2r. We
call this the range distribution property in this paper.
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3 The N-tree

Let S be a set with a metric distance function d. An N-tree over S is an index structure
supporting range search and kNN search on S. In this paper we study it as a main memory
index, but it is also suitable as a persistent disk based index.

3.1 Structure

An N-tree (neighborhood tree) is a multiway tree like a B-tree or R-tree. It has two parameters:
the degree k and the leaf size l, k ≤ l.

The basic structure is quite simple. Let C be a subset of S of size k called centers. S is
partitioned by C, assigning each element of S to its closest center in C. An internal node has a
set of entries (ci, T (Si)) where ci is a center together with a pointer to a subtree T (Si) organizing
the related subset Si of S. A leaf node just contains the subset. We start with a definition of
this basic structure.

Definition 3.1 Let S be a set with a metric distance function d. A basic N-tree over S of
degree k and leaf size l is defined as

T (S) =



((c1, T (S1)), ..., (ck, T (Sk))) |S| > k

such that S =
⋃

i∈{1,...,k} Si, i ̸= j ⇒ Si ∩ Sj = ∅,
∀i ∈ {1, ..., k} :

ci ∈ S,

Si = {u ∈ S | ∀j ∈ {1, ..., k} : d(u, ci) ≤ d(u, cj)}
S |S| ≤ l

□

The complete structure of an N-tree includes for each node some auxiliary information,
namely

� all pairwise distances between centers,

� two distinguished centers called pivots,

� for each center, a vector of its distances to the two pivot elements,

� for each center ci in an internal node, the radius of its associated subtree T (Si), defined
as the largest distance from ci to an element of Si.

Such information is of course used for pruning in range search and kNN search. The definition
for the complete structure is:

Definition 3.2 Let S be a set with a metric distance function d. An N-tree over S of degree k
and leaf size l is defined as

T (S) =



(((c1, T (S1), r1), ..., (ck, T (Sk), rk)), D, {p1, p2}, PD) |S| > k

such that

C = {c1, ..., ck}, S =
⋃

i∈{1,...,k} Si, i ̸= j ⇒ Si ∩ Sj = ∅,
∀i ∈ {1, ..., k} :

ci ∈ S,

Si = {u ∈ S | ∀j ∈ {1, ..., k} : d(u, ci) ≤ d(u, cj)},
ri = maxv∈Si d(ci, v),

(S,D, {p1, p2}, PD) |S| ≤ l

such that C = S
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where

D = {dij | i, j ∈ {1, ..., |C|}, dij = d(ci, cj)}
p1, p2 ∈ C

PD = {vi | i ∈ {1, ..., |C|}, vi = (d(ci, p1), d(ci, p2))}
□

It is possible that a leaf has only one element; in this case D and PD are empty and the pi are
undefined. This special case is omitted in the definition. Further, a subset S with m entries,
k < m ≤ l may be organized either as an internal node or as a leaf.

Note that there is no balancing condition; the subsets Si of a node may have different sizes
and so the representing subtrees may have different depths.

3.2 Construction

An N-tree is constructed for a set S by selecting k elements from S as centers and then par-
titioning S by these centers. For each partition, an N-tree is constructed recursively if it has
more than l elements.

Algorithm 1: build(S, k, l)

Input: S - a set of objects with a distance function d;
k - an integer, the degree of the N-tree;
l - an integer, the maximal leaf size

Output: a node representing S
1 if |S| ≤ l then
2 compute the auxiliary information D, {p1, p2}, PD;
3 return leaf(S,D, {p1, p2}, PD)

4 else
5 C := determineCenters(S, k);
6 {(c1, S1, r1), ..., (ck, Sk, rk)} := partition(S,C);
7 compute the auxiliary information D, {p1, p2}, PD;
8 return node(((c1, build(S1, k, l), r1), ..., (ck, build(Sk, k, l), rk)), D, {p1, p2}, PD)

The two pivot elements are selected randomly. Perhaps, the simplest algorithm for deter-
mineCenters is random selection, which is expected to yield good results. In Section 6.2 we
compare it experimentally with three other algorithms for selecting centers.

The algorithm for partition needs to determine for each element u of S the closest center in
C. A straightforward implementation computes all distances d(u, ci). A better implementation
uses the algorithm closestCenter developed in Section 4.2 in the context of range search, which
prunes a lot of the expensive distance calculations.

3.3 Updates

It is possible to design simple update algorithms for inserting an element into an N-tree or for
deleting an element from it. Insertion of element x follows a path from the root, always selecting
the subtree with the closest center from x and inserting x into a leaf. When a leaf overflows,
an internal node is constructed for it. On the path down, the radii of subtrees can be updated
easily.

Deletion works similarly. However, one cannot easily update radii of subtrees on the path;
so they would be left possibly a bit too large, without losing correctness. Precise algorithms are
omitted for brevity.
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4 Range Queries

In this section we develop algorithms for range queries; Section 5 addresses kNN queries. The
main idea is to use the precomputed distances available in nodes to avoid many expensive
distance computations.

We briefly review the definitions of range queries and kNN queries.

Definition 4.1 Let S be a set, q a query object, d a distance function applicable to S and q,
r ∈ R a search radius, and k ∈ N. A range query is

range(S, q, r) = {s ∈ S | d(q, s) ≤ r}

A kNN query (k-nearest-neighbors query) is

kNN(S, q, k) = U ⊆ S such that |U | = k ∧ ∀u ∈ U,∀s ∈ S \ U : d(q, u) ≤ d(q, s)

□

4.1 Overview

The problem of range search on the root node of an N-tree is illustrated in Figure 2. The
partitioning of set S into partitions ((c1, S1), . . . (ck, Sk)), where each element of S is assigned to
its closest center, corresponds to a Voronoi partitioning of the metric space. Here we illustrate
it by a Voronoi diagram in the 2D Euclidean space. There is one center cx in C that is closest
to the query object q; we say q falls into partition Sx. In Figure 2 this is partition a. There
are other partitions that may contain objects within distance r from q; these are partitions b
through i in Figure 2.

q

a

b c

d

e

f

g

h

i

Figure 2: Range query with query point inside partitioning

Hence the search on the root node needs to identify the partition into which q falls as well
as the other partitions that may contain objects within its query radius; the respective subtrees
need to be searched recursively.

The latter are given by the range distribution property: Theorem 2.1 says that an object
p assigned to another partition with center cy can only have distance d(q, p) ≤ r if d(q, cy) ≤
d(q, cx) + 2r.

As it is important for pruning to know the distance d(q, cx), the algorithm for range search
on the root node proceeds as follows:

1. Find the center cx closest to q;

2. Determine other centers cy fulfilling the condition d(q, cy) ≤ d(q, cx) + 2r, using precom-
puted distances as much as possible.

3. Recursively search all qualifying partitions.
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At levels of the tree below the root node, however, the situation is not always the same as
in the root node. For partition Sx that q falls into, it is the same, so we can search this child of
the root node in the same way. However, for the other partitions q lies “outside” as illustrated
in Figure 3.

q

Figure 3: Range query with query point outside partitioning

It turns out that in this case, the pruning criterion of Theorem 2.1 is not effective. It is
therefore not a good strategy to find the closest center to q first, also because the pruning of
distance computations in finding the closest center is not effective. In the following subsections,
we therefore address the following subproblems:

� Finding the closest center to a query point.

� Range search for a query point inside a partitioning.

� Range search for a query point outside a partitioning.

� Overall algorithm for range search.

4.2 Finding the Closest Center

The goal in designing an algorithm to find the closest center for a query point q in a set of
centers C is to avoid as many of the expensive distance computations between the query point
and a center as possible, using the precomputed distances between centers. The strategy is to
consider all centers as candidates and then, in each step, to evaluate one distance d(q, ci) and
to prune all centers cj based on their known distance to this center, dij = d(ci, cj), that cannot
be the closest center any more.

4.2.1 Pruning Rules

Two pruning rules can be determined. We call the first simple pruning. It is illustrated in
Figure 4. The distance d(q, ci) has just been evaluated; the known distances between centers
are denoted as dij . We have (triangle inequality for metric distance functions):

ci

q

cj

Figure 4: Simple pruning

|dij − d(q, ci)| ≤ d(q, cj) ≤ dij + d(q, ci)

Now assume dij > 2d(q, ci).

2d(q, ci) < dij ⇒ d(q, ci) < dij − d(q, ci) ≤ d(q, cj)
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Hence ci is closer to q than cj and cj can be pruned from the set of candidates. This is illustrated
in Figure 5. All objects with distance larger than 2d(q, ci) from ci can be pruned.

q

ci

d ci q

d ci q

Figure 5: Simple pruning

A second pruning rule is called mindist pruning. It is illustrated in Figure 6.

ci

q

cj

cnn

Figure 6: Mindist pruning

This rule uses not only the distance d(q, ci) just evaluated but also keeps track of the closest
center cnn discovered so far and the related minimal distance dmin = d(q, cnn). It is easy to
see that in this case we can prune a center cj not only when dij is too large, but also when it
is too small. Obviously, any center cj can be pruned for which holds dij < d(q, ci) − dmin or
dij > d(q, ci) + dmin. Note that the second condition is the one for simple pruning when we
substitute d(q, ci) for dmin. Hence this rule subsumes the first one.

4.2.2 The Order of Candidates

For pruning to be effective, it would be good to select first candidates ci for distance evaluation
that are close to q, because then the radius for pruning is small and many points can be pruned
early.

Consider evaluating distances from two selected elements of C, r1 and r2, to (i) q and (ii)
to the nearest neighbor of q, cnn. These distances should be similar. We can represent these
distances as 2d vectors (d(q, r1), d(q, r2)) and (d(cnn, r1), d(cnn, r2)). We can visualize these
vectors as shown in Figure 7.

d . r

d . r

d q r d q r

d cnn r d cnn r

Figure 7: Mapping distances into a Euclidean space

Hence it should be a good strategy to process candidates for distance evaluation with q in
the order of increasing distance of their vector to the vector of q. Reference points for mapping
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arbitrary distances into a Euclidean space are called pivots in the literature. Instead of using
two pivots, we might also use three or a higher number n, using Euclidean distance in an n-
dimensional space. Experiments have shown that three pivots do not yield better results than
two, so we use two pivots in our structure.

4.2.3 Algorithm closestCenter

The algorithm closestCenter can be formulated as shown in Algorithm 2.

Algorithm 2: closestCenter(C, q,D, {p1, p2}, PD)

Input: C - the set of centers;
q - a point;
D - the set of pairwise distances dij between centers in C;
{p1, p2} - the two pivot elements of C;
PD - the pivot distance vectors of C.

Output: cnn ∈ C - the center with minimal distance to q;
dmin - the distance between q and cnn

1 let C = {c1, . . . , cm};
2 let PD = {v1, . . . , vm};
3 vq := (d(q, p1), d(q, p2)) (*);
4 C ′ := ⟨ci1 , . . . , cim⟩such that ∀j, l ∈ {1, . . . ,m} : j < l ⇒ dEuc(vq, vij ) ≤ dEuc(vq, vil);
5 (cnn, dmin) := (⊥,∞);
6 while not(isempty(C ′)) do
7 ci := first(C ′);C ′ := rest(C ′);
8 u := d(q, ci) (*); DQi := u;
9 if u < dmin then

10 cnn := ci; dmin := u

11 C ′ := {cj ∈ C | u− dmin < dij < u+ dmin}
12 return (cnn, dmin)

Lines where expensive distance evaluations occur are marked as (*).
In Line 4, ⟨x, y, z, . . . ⟩ denotes the ordered sequence, or list, of elements x, y, z, . . . . In this

algorithm, dEuc denotes the 2d-distance of vectors in the Euclidean space. Hence the sequence
of candidates is returned ordered by increasing distance of their 2d vectors from vq, the 2d vector
of the query point.

In Line 8, after evaluating a distance d(q, ci) we store it in an array DQi. This avoids
reevaluating the same distance in the algorithm rangeSearch1 presented below.

4.3 Query Point Inside Partitioning

After determining the center cnn closest to q and its distance dmin = d(q, cnn), we can address
the range search problem illustrated in Figure 2. In inner nodes, we need to determine partitions
that need to be searched recursively; in leaves we need to report centers within the query range
r. The idea is to use the known distances dmin and dij to prune centers without performing
expensive distance computations, as far as possible.

4.3.1 Nearest Neighbor Pruning

A first pruning rule based on Theorem 2.1 says that a center cj must be considered (i.e., the
search must traverse the related subtree) if d(q, cj) ≤ d(q, cnn) + 2r.
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q

cj

cnn

Figure 8: Range query

Due to the triangle inequality we have:

d(cnn, cj) ≤ d(q, cnn) + d(q, cj)

Therefore

d(q, cj) ≤ d(q, cnn) + 2r ⇒ d(cnn, cj) ≤ d(q, cnn) + d(q, cnn) + 2r

= 2d(q, cnn) + 2r

Assuming that cnn is the center with index i, we can rewrite this as

d(q, cj) ≤ d(q, cnn) + 2r ⇒ dij ≤ 2 · dmin + 2r

Hence we can retrieve all centers cj fulfilling dij ≤ 2 · dmin + 2r and check whether they also
fulfill d(q, cj) ≤ dmin + 2r. Other centers can be ignored. This requires an expensive distance
calculation d(q, cj).

Let T = {cj ∈ C | dij ≤ 2 · dmin + 2r}. Can we infer for some elements of T that d(q, cj) ≤
dmin + 2r ? We know (triangle)

d(q, cj) ≤ dmin + dij

Therefore
dij ≤ 2r ⇒ d(q, cj) ≤ dmin + 2r

In summary, we can retrieve all elements of C within distance 2 · dmin + 2r from cnn. The
elements fulfilling d(q, p) ≤ dmin + 2r must be among them. For those elements cj retrieved for
which dij ≤ 2r holds, we do not need to evaluate the distance to q; they are guaranteed to fulfill
d(q, cj) ≤ dmin + 2r. For the remaining elements, we need to check this condition.

4.3.2 MaxDist Pruning

A second pruning rule uses the maximal distance of any element in the partition Sj from center
cj stored as the radius rj . Considering a center cj , we can distinguish the following cases:

1. r is too small to reach cj (for a leaf) or any element in the partition Sj (for an inner node).
We can prune cj or T (Sj).

2. r is so large that it definitely includes cj or any element in Sj . We can report cj or Sj

without distance evaluations.

3. We need to evaluate the distance d(q, cj) (for a leaf) or search the subtree T (Sj) (for an
inner node).

These cases can be determined as follows. Note that d(q, ci) = dmin, the distance to the
nearest neighbor of q.

1. r < dij − dmin − rj (Figure 9 (a))
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2. r ≥ dij + dmin + rj (Figure 9 (b))

3. Otherwise, distance or subtree needs to be evaluated.

In case of a leaf, we can simply set rj = 0.

cj

p

rj

r
q

ci = cnn

cj

q

rj

r

ci = cnn

(a) (b)

Figure 9: MaxDist Pruning (a) small r (b) large r

4.3.3 Algorithm rangeSearch1

The algorithm for range search for the “inside” case combines the two pruning rules. It is shown
as Algorithm 3. The following notations are used:

all(cj) = return all elements of the subtree for center cj .

distance(q, cj) =
if DQj is defined then return DQj else return d(q, cj)(∗) endif

The array DQi is defined in Algorithm 2; it stores distances already evaluated in that
algorithm.

The algorithm returns separately results already found, the closest center, and other centers
whose partitions need to be searched recursively. The partition for cnn will be processed again
by this algorithm (for the “inside” case) whereas the other partitions will be processed by the
algorithm of Section 4.4 (for the “outside” case).

4.4 Query Point Outside Partitioning

We now address range searching from “outside” a partitioning as illustrated in Figure 3. In
this case, it is not effective to determine the closest center initially. Instead, similar as in the
algorithm for finding the closest center, we consider the elements of the set of centers sequentially
and after each distance evaluation determine elements that can be pruned or reported.

4.4.1 MaxDist Pruning

Again we can use the maximal distance stored as radius rj for subtree T (Sj). The cases to be
considered are the same as in Section 4.3.2, namely

1. r is so small that we can prune cj or T (Sj).

2. r is so large that we can report cj or Sj without distance evaluations.

3. Evaluation is needed.
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Algorithm 3: rangeSearch1 (p, q, r)

Input: p – a node of the N-tree;
q – a query point;
r – the search radius

Output: ci – the closest center to q;
Res – elements within distance r from q, to be returned;
Search – centers for subtrees to be searched

1 (ci, dmin) := closestCenter(p.C, q, p.D, p.{p1, p2}, p.PD);
2 Res := ∅;
3 Search := ∅;
4 if p is a leaf then
5 foreach cj ∈ p.C do
6 if dij + dmin ≤ r then Res := Res ∪ {cj} else
7 if dij − dmin ≤ r then
8 if distance(q, cj) ≤ r then Res := Res ∪ {cj}

9 else
10 foreach cj ∈ p.C \ {ci} do
11 if dij + dmin + rj ≤ r then Res := Res ∪ all(cj) else
12 if (dij − dmin − rj ≤ r) ∧ (dij ≤ 2dmin + 2r) then
13 if dij ≤ 2r then Search := Search ∪ {cj} else
14 if distance(q, cj) ≤ dmin + 2r then Search := Search ∪ {cj}

15 return (ci, Res, Search)

We have the following cases. We assume d(q, ci) has just been evaluated and we consider
center cj .

� Case 1: d(q, ci) ≥ dij

1. r < d(q, ci)− dij − rj . Subtree cj can be pruned. See Figure 10 (a).

2. r ≥ d(q, ci) + dij + rj . Subtree cj can be reported. See Figure 10 (b).

� Case 2: d(q, ci) < dij

1. r < dij − d(q, ci)− rj . Subtree cj can be pruned. See Figure 11 (a).

2. r ≥ dij + d(q, ci) + rj . Subtree cj can be reported. See Figure 11 (b).

r

q

ci
cj

rj

r

q

cj
ci

rj

(a) (b)

Figure 10: MaxDist Pruning, Case 1: d(q, ci) ≥ dij . (a) small r (b) large r

These results are illustrated in Figure 12. Depending on the radius, we can prune or report
the subtree for cj without distance evaluation.
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Figure 11: MaxDist Pruning, Case 2: d(q, ci) < dij . (a) small r (b) large r
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Figure 12: Pruning or reporting depending on radius

The results can be summarized as follows:

r < |dij − d(q, ci)| − rj ⇒ subtree cj can be pruned. (1)

r ≥ dij + d(q, ci) + rj ⇒ subtree cj can be reported. (2)

For centers in leaves we have the same analysis setting rj = 0.
So the algorithm to process a node will sequentially consider its centers. For a given center

ci it evaluates the distance d(q, ci) and prunes or reports all subtrees (elements) qualified by the
conditions. The remaining centers are processed in the following steps.

4.4.2 Nearest Neighbor Pruning

When MaxDist pruning is finished, the distances from q to all remaining centers have been
computed. Hence at this time also the center cnn with minimal distance dmin is known. Therefore
the nearest neighbor pruning condition can be applied.

Consider the non-pruned centers (call this set C ′) in inner nodes. If for cj ∈ C ′ the condition

d(q, cj) ≤ dmin + 2r

does not hold, then we can prune partition Sj because no element of this partition can be
within distance r from q. If it were close enough, it would have been assigned to partition Si

for ci = cnn instead.

4.4.3 Algorithm rangeSearch2

The algorithm can be formulated as shown in Algorithm 4. It uses a subalgorithm prune shown
as Algorithm 5. The notation node(cj) refers to the root node of the subtree associated with
center cj .

The statement marked with (*) is the only one where an expensive distance evaluation is
performed.
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Algorithm 4: rangeSearch2 (p, q, r)

Input: p – a node of the N-tree;
q – a query point;
r – the search radius;

Output: the set of elements within distance r from q
1 let C = ⟨c1, . . . , ck⟩ be the centers of node p;
2 Res := ∅;
3 C ′ := ∅;
4 dmin := ∞;
5 while not(isempty(C)) do
6 ci := first(C);C := rest(C);
7 u := d(q, ci) (*);
8 if u < dmin then dmin := u if p is a leaf then
9 Res := Res ∪ prune(C, ci, u, q, r, leaf);

10 if r > u then Res := Res ∪ {ci}
11 else
12 Res := Res ∪ prune(C, ci, u, q, r, inner);
13 if r > u+ ri then
14 Res := Res ∪ all(ci);

15 else if r > u− ri then
16 C ′ := C ′ ∪ {(ci, u)};

17 C ′ := {(c, u) ∈ C ′|u ≤ dmin + 2r};
18 Res := Res ∪

⋃
(c,u)∈C′ rangeSearch2 (node(c), q, r);

19 return Res

4.5 Range Search Algorithm

The overall algorithm rangeSearch is called on the root node of the N-tree. It starts by applying
Algorithm rangeSearch1 on the root node for the “inside” case. On lower levels it uses either
rangesearch1 or rangeSearch2 depending on whether the query point is inside or outside the
partitioning. The overall algorithm is shown as Algorithm 6.
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Algorithm 5: prune(C, ci, u, r, nodetype)

Input: C - a set of candidate centers;
ci - a selected center with distance u from query point q;
u = d(q, ci);
r - the query radius;
nodetype ∈ {leaf, inner};

Side Effect: some subtrees or elements are removed from C and their elements reported
when appropriate

Output: a set of elements within distance r from q
1 Res := ∅;
2 if nodetype = leaf then
3 for cj ∈ C do
4 if r > u+ dij then
5 Res := Res ∪ {cj}; C := C \ {cj};
6 else if r < |u− dij | then
7 C := C \ {cj};

8 else
9 for cj ∈ C do

10 if r > u+ dij + rj then
11 Res := Res ∪ all(cj); C := C \ {cj};
12 else if r < |u− dij | − rj then
13 C := C \ {cj};

14 return Res

Algorithm 6: rangeSearch(p, q, r)

Input: p – a node of the N-tree;
q – a query point;
r – the search radius

Output: the set of elements within distance r from q
1 Res := ∅;
2 (cnn, Result, Search) := rangeSearch1(p, q, r);
3 if p is a leaf then
4 Res := Result;

5 else
6 Res := Res ∪ rangeSearch(node(cnn), q, r);
7 Res := Res ∪Result;
8 Res := Res ∪

⋃
c∈Search rangeSearch2(node(c), q, r);

9 return Res
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5 k-Nearest-Neighbor Queries

Apart from range search, another important query addressed by metric indexes is to identify
the k-nearest-neighbors (kNN) from a query point. To process a kNN query, one of the three
approaches described below is generally taken: [5]

1. Range search is performed several times starting with a very small radius and then the
search radius is increased gradually until k-nearest-neighbors are found.

2. The search radius is initially set to infinity and then objects in the indexes are visited in
the order of increasing distance to the query point, where the search radius is gradually
tightened. This is the most commonly taken approach.

3. A set of candidate objects is determined and the distance from q to its kth nearest neighbor
in this set is determined. Then a range search with this distance is performed.

In the N-Tree, a combination of these approaches is used, where starting from a small
radius, the radius is gradually increased until we find an approximate radius rapprox from the
query point within which it is guaranteed that all the k-nearest-neighbors lie (possibly along
with other points). Then range search is employed only once with rapprox, from which the
k-nearest-neighbors are obtained. The kNN technique is shown in Algorithm 7.

Algorithm 7: kNN (root, q, k,DE)

Input: root – the root node of the N-tree;
q – a query object;
k – the number of neighbors to find;
DE – the distance estimate DE to choose;

Output: k nearest neighbors from q
1 approxRadius := getApproxRadiusX(root, q, k,DE);
2 Res1 := rangeSearch(root, q, approxRadius);
3 Res2 := ∅;
4 for ci ∈ Res1 do
5 disti := distance(q, ci);
6 Res2 := Res2 ∪ (ci, disti);

7 Sort Res2 in increasing order of dist;
8 finalResult := first k elements of Res2;
9 return finalResult ;

The backbone of the kNN algorithm is to find the approximate radius within which it is
guaranteed that all the k-nearest-neighbors lie (Line 1). We propose two algorithms getApprox-
Radius1 (Algorithm 8) and getApproxRadius2 (Algorithm 9) to approximate the radius.

Both algorithms are similar. They differ in whether they use the closest center in certain
nodes. It is up to the user to choose either getApproxRadius1 or getApproxRadius2, which is
denoted as getApproxRadiusX in the kNN algorithm. The overall idea of both algorithms is the
same which can be described as follows.

We maintain a priority queue Q that stores single data objects as well as partitions (or
nodes) based on their distance from the query point q. We start our search from the root node
of the NTree. Initially rapprox is set to -1, and the root node is pushed into Q. In each iteration,
we pop an entry from the head of Q and check if it is a data object or a partition. If it is a
data object, we keep track of the number of objects seen so far and also update rapprox with the
current distance if the current distance is more than the rapprox seen so far. If the number of
objects seen so far equals k, then we stop execution and return rapprox. Otherwise, if the element
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Algorithm 8: getApproxRadius1 (root, q, k,DE)

Input: root – the root node of the N-tree;
q – a query point;
k – the number of neighbors to find;
DE – DE to choose;

Output: radius within which all the k points are guaranteed to lie
1 Q := priorityQueue();
2 Q.enqueue((root, 0));
3 rapprox := −1;
4 pointsV isited := 0;
5 while Q ̸= ∅ do
6 (n, dist) := Q.dequeue();
7 if n is a data object then
8 rapprox := max(rapprox, dist);
9 pointsV isited := pointsV isited+ 1;

10 if pointsVisited = k then
11 break;

12 else /* n is an internal node or a leaf */
13 let n.C = {c1, ..., cm};
14 (ci, dmin) := closestCenter(n.C, q, n.D, n.{p1, p2}, n.PD);
15 Q.enqueue((ci, dmin));
16 if n is an internal node then
17 Q.enqueue((node(ci), dmin − ri)) ;

18 for j ∈ {1, ...,m} \ {i} do
19 Q.enqueue((cj , dmin + dij)) ;
20 if n is an internal node then
21 Q.enqueue((node(cj), de(dmin, dij , rj , DE))) ;

22 return rapprox ;

popped from Q is a partition (or node), then we identify a center ci in the node (depending on
which of the two algorithms we use) and find the exact distance between q and ci. We also find
the distance between q and the partition having center ci, i.e. node(ci). We then push these
two distance information into Q. Next for all other centers cj in the same node, we find the
maximum distance between q and cj using the triangle inequality since the distance between two
centers ci and cj is already pre-computed and stored during build time. We also approximate
the distance between q and node(cj) and push it also into Q.

Suppose the exact distance between q and ci to be dx, the distance betweens ci and other
centers cj within a node to be dij and the radius of the partition with center cj to be rj . Thus by
the triangle inequality, the distance between q and cj can be estimated as dx + dij . Determining
a useful distance estimate for a partition is more difficult. Given dx, dij and rj , to estimate the
distance between q and the partition node(cj), various distance estimates (DE0 – DE8) are
proposed as shown in Table 1 and evaluated experimentally.

Now let us look into getApproxRadius1 and getApproxRadius2 and see how the two algo-
rithms are different. Given a partition (or node) that is popped out of Q, the difference is in
identifying a center ci within the partition. In getApproxRadius1, ci is always the closest center
from query point q, whereas in getApproxRadius2 either the closest center or any random center
is selected (Line 14 of both Algorithms 8 and 9). We have seen in Section 4 that finding the
closest center is not efficient if q is “outside” of the partition. Thus in getApproxRadius2 we use
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Algorithm 9: getApproxRadius2 (root, q, k,DE)

Input: root – the root node of the N-tree;
q – a query point;
k – the number of neighbors to find;
DE – distance estimate DE to choose;

Output: radius within which all the k points are guaranteed to lie
1 Q := priorityQueue();
2 Q.enqueue((root, 0, true)) /* isInside is set to true */;
3 rapprox := −1;
4 pointsV isited := 0;
5 while Q ̸= ∅ do
6 (n, dist, isInside) := Q.dequeue();
7 if n is a data object then
8 rapprox := max(rapprox, dist);
9 pointsV isited := pointsV isited+ 1;

10 if pointsVisited = k then
11 break;

12 else /* n is an internal node or a leaf */
13 let n.C = {c1, ..., cm};
14 (ci, dx) := chooseCenter(n, q, isInside) ;
15 Q.enqueue((ci, dx, isInside)) ;
16 if n is an internal node then
17 Q.enqueue((node(ci), dx − ri, isInside)) ;

18 for j ∈ {1, ...,m} \ {i} do
19 Q.enqueue((cj , dx + dij , false)) ;
20 if n is an internal node then
21 Q.enqueue((node(cj), de(dx, dij , rj , DE), false));

22 return rapprox ;

the closest center only if q is “inside” the partition. Otherwise we randomly select any center.
This is shown in the chooseCenter algorithm(Algorithm 10).

In getApproxRadius2 the priority queue Q is used to store triplets (n, dist, isInside), whereas
getApproxRadius1 stores the pair (n, dist). Here n refers to a data object or a node, dist is the
distance between q and n. The isInside variable denotes if q lies “inside” the partition or not.
Now let us explain how it is identified whether q lies “inside” a partition or not.

Along with the partition (or node) and its distance from q, the isInside variable is also
pushed into Q. Since the search starts from the root node that holds the entire data space, q
will definitely lie within this. Hence we start getApproxRadius2 by inserting (root, 0, true) into
Q (Line 2). While there are items in Q, we pop items from Q. We check the status of that
item. If it is a node then we invoke chooseCenter which returns a center ci and the distance
between q and ci as dx (Line 14). Then we push the triplet (ci, dx, isInside) into Q (Line 15).
Then for an internal node we push the partition having ci as center, along with is distance
from q and isInside into Q (Lines 16 – 17). For all other centers cj within the same node, we
consider the cj and all the nodes along this path in the tree to be “outside”. Thus we push
cj , the maximum distance between q and cj and false into Q. We also push the partition
having cj as center, estimated distance of q to this partition, along with false status (Lines 18
– 21). Thus for all nodes encountered in this path, the center will be chosen randomly. The
algorithm getApproxRadius1 is similar to this algorithm, just without the use of isInside and
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Table 1: Distance Estimates de(rx, dij , ri, DE)
DE0 |dx − dij | − rj
DE1 |dx − dij |
DE2 |dx − dij |+ rj
DE3 max(dx, dij)− rj
DE4 max(dx, dij)
DE5 max(dx, dij) + rj
DE6 dx + dij − rj
DE7 dx + dij
DE8 dx + dij + rj

Algorithm 10: chooseCenter(p, q, isInside)

Input: p – a node of the N-tree;
q – a query point;
isInside – a Boolean value identifying whether q lies inside or outside of partition;

Output: a center ci;
dx = distance(q, ci)

1 if isInside then
2 (ci, dx) := closestCenter(p.C, q, p.D, p.{p1, p2}, p.PD) ;

3 else
4 choose a random center ci from p.C ;
5 dx := distance(q, ci) ;

6 return (ci, dx) ;

chooseCenter.

6 Experimental evaluation

The N-tree metric index is compared with three other popular metric indexes, namely M-tree [6],
GNAT [2] and MVPT [1]. M-tree is chosen because it is perhaps the most well-known metric
index. GNAT and MVPT have been found in a recent survey [5] to be among the best performing
main memory metric indexes. We employ three real-world datasets and three different metric
distance functions as shown in Table 2.

Table 2: Datasets used in the Experiments
Dataset Trips X-Rays Words

Distance Function Used Hausdorff Distance L1-Norm Jaccard Distance
Object Type Trajectory Image Text
Number of Objects 49,981 55,000 355,000
(Avg.) Object Size 38.2 points 32 x 32 pixels
Total Size 1,909,385 points

The Trips2 dataset represents 49,981 trips of New York taxis. The distance between two trips
is measured using Hausdorff Distance. X-Rays3 represents 55,000 de-identified images of chest
X-Rays [28] in PNG format provided by the National Institute of Health (NIH) Clinical Center.
The distance between two images is measured using L1-norm. Words4 represents 355,000 single

2https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
3https://nihcc.app.box.com/v/ChestXray-NIHCC
4https://web.archive.org/web/20170930060409/http://icon.shef.ac.uk/Moby/
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words taken from the Moby project. The distance between two words is measured using Jaccard
Distance.

We break the evaluation into several sections. First, we try to understand the geometry
of all the datasets by measuring their distance distributions. This is important because the
performance of metric indexes highly relies on the data distribution. Second, we compare dif-
ferent partitioning schemes of the N-tree for choosing centers and find out which scheme is the
most efficient. Third, we identify the best version of the kNN algorithm for the N-tree. As
we have already seen, there are 2 algorithms to identify the approximate radius within which
the k-nearest-neighbours must lie and each of them has 9 distance estimates (DE’s), resulting in
18 different versions of the kNN algorithm. We identify which combination of algorithm and
DE is the best for the N-tree. Fourth, we vary the node sizes of each of the four tree index
structures that we compare and identify the size for which each of the structures performs the
best. Fifth, using all the parameters that we identified so far we evaluate the performance of
the N-tree against all the other structures on range and kNN search. The performance metrics
are the query execution time and the number of distance evaluations and we show that the
N-tree outperforms the other structures in these metrics. Lastly, to emphasize the superior
performance of the N-tree, we show the effect of the radius associated with each center and how
it is effective in reducing the number of distance evaluations. Throughout all experiments, the
leaf node degree is always maintained to be 100, unless specified otherwise.

Table 3: Parameter Settings
Parameter Values/Methods Default

Number k 5, 10, 20, 50, 100 20
N-tree Partition Scheme Random, Greedy, BP, HF Greedy

N-tree kNN version kNN1-0, kNN2-0, ..., kNN1-8, kNN2-8 kNN2-3

All the four indexes and the associated similarity search algorithms were implemented in
Java. All experiments were conducted on an Intel Xeon E5472 CPU having 16GB RAM. Each
measurement we report is an average over 100 query points chosen randomly from the respective
dataset.

6.1 Distance Distributions Of The Different Datasets

In order to find the distance distributions of the different datasets, 500K unique pairs were
randomly selected and the distances between them were calculated using the distance functions
shown in Table 2. The distance distributions of the three different datasets obtained are shown
in Figure 13. The Y-axis shows the number of data object pairs that have the corresponding
distance value. For the Trips and X-Rays dataset, the distributions are similar to a Gaussian
curve, whereas for Words, the distribution contains a number of “spikes”. For Trips, most of
the data points are close to each other and the distance between any two trips mostly lies within
the interval [0, 0.16] having a peak at distance 0.03. For X-Rays, the images are also close to
each other, but not as close as in the Trips dataset. The majority of the image distances lies
within the interval [51, 267], the peak being around the value 123. The distance distribution of
the Words dataset is quite different from the other two datasets. Here most of the points are
far away from each other, whereas some points are very close to each other forming a cluster
which are denoted by the “spikes” in the distribution.

6.2 Comparison Of N-tree Based On Different Partitioning Schemes

In this section we evaluate different partitioning schemes that can be employed in the construc-
tion of the N-tree, i.e., Random, Greedy [2], Base-prototypes selection (BP) [15] and Hull of Foci
(HF) [24]. In the Random approach, the k centers within each node are randomly selected. In
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Figure 13: Distance distributions of the different datasets

the Greedy method, the center selection is the same as that used for the construction of GNAT,
where for each node k points are selected (using a greedy algorithm), which are farthest apart
out of 3k randomly chosen candidate points. In the Base-prototypes selection technique, the
point whose accumulated distance from the previous centres is maximum is selected as the new
center, until k centers are found. The Hull of Foci approach aims to choose centers that are
near the hull of the dataset.

We use the Trips dataset and compare the performance of build time, range search and kNN
search for each variant of the N-tree. The N-tree is built having node size 36 (we will show in
Section 6.4 that this is the best node size we consider). For range search, the search radius was
varied as {74, 148, 296, 592, 1185}×10−4. For kNN search, the kNN2-3 algorithm was used (we
will show in Section 6.3 that this is the best kNN algorithm). The values of k were varied as
per Table 3. The N-tree build times for different indexes are shown in Figure 14, whereas the
performance of range and kNN search are shown in Figures 15 and 16, respectively.

From Figure 14 it is seen that building the N-tree with Random partitioning takes the least
time. The Greedy approach takes slightly more time than Random. But the build time of
the N-tree using BP and HF is comparatively large. From Figures 15 and 16 it is evident
that the Greedy partitioning scheme is slightly better in terms of query execution time and
distance evaluations for both range and kNN search. This helps us to conclude that the Greedy
partitioning scheme is the best among the four partitioning schemes due to its low build time,
query execution time and distance evaluations. Henceforth, for all evaluations, the N-tree is
constructed with the Greedy partitioning scheme by default. This is also shown in Table 3.

6.3 Comparison Of Different Versions Of kNN search

In this experiment, we compare all the 9 different distance estimates (DE’s) for the getApprox-
Radius1 and getApproxRadius2 algorithms. For this purpose, we use the Trips dataset and
vary the k values as shown in Table 3. The N-tree is built having node size 36 (we will show
in Section 6.4 that this is the best node size we consider). Figure 17 shows the query time
and the distance evaluations for all the 18 versions of the kNN algorithm (9 different distance
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Figure 14: N-tree build time for different partition schemes
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Figure 15: Comparison using range search varying partition schemes
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Figure 16: Comparison using kNN search varying partition schemes
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Figure 17: Comparison of the different kNN algorithms for the N-tree
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Figure 18: Comparison of the best three algorithms from Figure 17

estimates for each of the two algorithms). The versions are labeled kNNX-Y where X denotes
the selection of algorithm getApproxRadiusX and Y the distance estimate DEY. Since it is not
clear from Figure 17 which is/are the best algorithm(s) for the N-tree, we take the best 3 plots
from the figure, which are kNN2-3, kNN1-4 and kNN1-6 and create Figure 18.

From Figure 18 it is seen that kNN1-6 performs the worst among the best 3 plots. The
performance of kNN2-3 and kNN1-4 is similar in terms of query time and the number of distance
evaluations. For small k (k ≤ 20), kNN1-4 performs best, after which kNN2-3 takes the lead in
terms of distance evaluations. Generally the number of distance evaluations governs the query
execution time. So we consider kNN2-3 as our default kNN algorithm, since its performance is
similar to kNN1-4 for small k and is best for large k. Henceforth for the rest of the evaluations,
kNN2-3 is used as the default kNN algorithm. This is also shown in Table 3.

6.4 Comparison Of All Index Structures Varying Their Node Sizes

In this experiment we compare the N-tree with all other index structures by varying the node
sizes. The node sizes were maintained to be a square value to maintain uniformity among all
the indexes, since the size of a node in MVPT is always a perfect square. We vary the node
sizes as 4, 9, 16, 25, 36, 49, 64 and 144. As mentioned before, the leaf node size in all cases is
maintained at 100, except for node size 144 where the leaf node size is kept at 200.

The evaluation is performed using the Trips dataset. All the indexes were compared based
on the performance of range and kNN search. For range search, the search radius is fixed at
0.0074, where the number of data points returned for each query point is around 250 on average.
For kNN search, k is fixed to 20, the default value as per Table 3. The index build times are
shown in Figure 19. From Figure 19(a) we see that due to the high build time of GNAT, the
build times of the other structures are not clear. To get a clear understanding of the build times
of the other structures, a separate plot is shown in Figure 19(b) which is actually Figure 19(a)
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(b) Figure 19(a) without GNAT

Figure 19: Index build time varying node size
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Figure 20: Comparison using range search varying node size

without GNAT. The performance of range and kNN search are shown in Figures 20 and 21.
From Figure 20 it is seen that for range search on the M-tree the query time and number of

distance evaluations decreases as the node size increases. From node size 25 and onwards, the
execution time and number of distance evaluations do not differ too much. From Figure 21 we
see that in case of kNN search the query time and number of distance evaluations first decreases
and then increases with the node size. The execution time is minimum at node size 16 whereas
the number of distance evaluations appears to be the least at both node sizes 16 and 25. Thus it
seems that node size 25 is a good compromise between range and kNN search. For kNN search
it is a minimum (equal to 16) and for range search it is not much more than the minimum at
144.

In case of GNAT it is clearly seen from Figures 20 and 21 that the query execution time
and number of distance evaluations for both range and kNN search increases in general with the
increase of node size. The least value is found to be with node size 4.

Similar to GNAT, in case of MVPT too it appears that the general trend is that the per-
formance of range and kNN search decreases with increase of node size. We see that for node
size 16, performance of kNN search is the best, but this appears to be an outlier. Since the
performance with node size 4 is quite similar to node size 16, node size of 4 is considered to be
the best here.

In case of the N-tree we see that the performance is mostly invariant of the node size. On
close inspection we see that nodes sizes 36 and 49 are the two best options for range search,
whereas it is 64 for kNN search. As seen from Figure 19, since the build time of the N-tree
increases with the increase in node size, we consider node size 36 to be the best here.

To conclude, we can say that 25, 4, 4 and 36 are the best node sizes for M-tree, GNAT, MVPT
and N-tree, respectively, which we are going to maintain as default for further evaluations.
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Figure 21: Comparison using kNN search varying node size

6.5 Comparison Among Different Structures

In this set of experiments, the node degrees were set as mentioned in Section 6.4; the search
radius and k were varied to compare the performances of all the indexes. The size of each
dataset and search radius for range queries were varied as shown in Table 4. For range search,
the evaluation is further sub-divided into two parts:

1. Keeping the search radius low such that the selectivity is also quite low, i.e., the cardinality
of the dataset returned after applying the range search is within 250. For each dataset,
the first set of radii in the third column of Table 4 denotes the search radii for which the
selectivity is low. The radius set {148, 296, 444, 592, 741} × 10−5 in the Trips dataset is
such an example.

2. Varying the search radius from low to high to compare the behaviour of all the index
structures. The radii are increased such that the selectivity varies between 250 to nearly
the entire dataset. The second set of radii in the third column of Table 4 denotes such
radii. For the Trips dataset, {74, 148, 296, 592, 1185} × 10−4 is such an example.

For kNN queries, k values were varied as per Table 3, i.e., k = {5, 10, 20, 50, 100}. For
both range search and kNN search, we compare the running time and the number of distance
functions evaluated for N-tree with other structures.

Table 4: Search Radius Setting
Dataset Cardinality Radius for range search

Trips 49,981 {148, 296, 444, 592, 741} × 10−5, {74, 148, 296, 592, 1185} × 10−4

X-Rays 55,000 {30, 34.5, 39, 43.5, 48}, {80, 110, 140, 170, 200}
Words 355,000 {0.08, 0.11, 0.14, 0.17, 0.2}, {0.3, 0.45, 0.6, 0.75, 0.9}

The results for range search are shown in Figures 22 and 23. We see that the performance
of GNAT and M-tree are the worst for range search. The performance of MVPT is closest to
the N-tree, hence we only explain the performances of MVPT compared to the N-tree in case of
range search.

From Figures 22 and 23 it is evident that for the Trips dataset, the performances of MVPT
and N-tree are nearly the same. For low-to-high radius, the N-tree always outperforms all other
structures. In case of the X-Rays dataset, with radius as low as 30, MVPT performs the best.
But with gradual increase in radius the N-tree starts performing better. With low-to-high radius,
the N-tree again performs the best. With the Words dataset also we see a similar behaviour for
very low radius. With low-to-high radius, the number of distance evaluations is the least though
the running time is not the best in all cases.

From Figure 24, we see that for kNN search the N-tree outperforms all the other structures
in all the datasets in terms of both running time and the number of distance evaluations. For the
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Figure 22: Comparison using range search with very low radius

Trips dataset, the M-tree performs the worst, whereas the performance of GNAT and MVPT are
similar. For the X-Rays dataset, MVPT performs the worst in terms of running time whereas
the M-tree is worst in terms of distance evaluations. For the Words dataset, the running time
of MVPT is huge compared to the other trees, although the number of distance evaluations is
second to best. With k=5, MVPT takes around 6s, whereas the running time of the other trees
are within 0.3s. With k=100, MVPT takes nearly 50s to run, but the other trees are within
0.5s. Since the running time for all the other structures are not clear in Figure 24(e) due to the
high running time of MVPT, a separate plot (Figure 24(g)) is made without MVPT. From this
plot it is clear that the N-tree takes the least running time among all structures.

To conclude, we can say that the N-tree always performs better compared to M-tree and
GNAT both in range and kNN search. In case of range search, with very low search radius,
the performance of the N-tree is similar to that of MVPT, but as the search radius gradually
increases, the N-tree performs better than MVPT. For kNN search, the N-tree always outper-
forms the other structures. An interesting observation that is found in the N-tree but not in
other structures is that after a certain point, the number of distance evaluations decreases with
the increase in search radius for range search. E.g. from Figure 23(b), we see that for the Trips
dataset up to a radius of 0.0296 the number of distance evaluations increases with the increase
in search radius, after which it keeps on decreasing, whereas for the other structures the number
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Figure 23: Comparison using range search with low to high radius
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Figure 24: Comparison using kNN search
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of distance evaluations keeps increasing with increase in search radius. Normally the number
of distance evaluations should increase with the increase in search radius, since the number of
data points falling within the search radius also increases. But our structure efficiently uses the
radius associated with each center ci within a node in the N-tree to include an entire partition
into the final result set, without any distance evaluation, thereby reducing the number of dis-
tance evaluations in spite of an increase in the search radius. We call this property the U-Turn
effect, which, to the best of our knowledge, is not present in other metric indexes. Due to this
property, the number of distance evaluations (along with the query time, since the query time is
mostly dependent on the number of distance evaluations) in the N-tree remains similar for both
very small as well as very large search radius. The effect of the efficient handling of radius is
shown in Section 6.6.

6.6 Effect of Radius

As discussed in the algorithms for range search, the radius associated with each center can be
utilized to include all the points which lie within the search radius, which is the reason for the
U-Turn effect. Thus we can include many data points without any distance evaluation at all.
The more the data points are closely related to each other in a dataset, the larger is the number
of points that can be included without any distance evaluations, since a lot of points lie within
a partition. To emphasize this feature, we try to compare the average output size with the
number of points included without any distance evaluations for all the three datasets for range
search, varying the radii from low to high. The effect of this feature is best seen when the search
radius is a bit large, so that a larger number of points lies within the search radius. The results
are shown in Figure 25. We do not consider kNN search here because kNN search internally
utilizes range search.
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Figure 25: Points reported without Distance Evaluations for Range Search using low to high
radius

From the figure we see that the percentage of points included without any distance eval-
uations (out of the average output) generally increases with the increase in search radius. In
case of the Trips dataset, the percentage of points reported without any distance evaluations is
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4.6%, 25.1%, 51.4%, 81.8% and 94.7%, respectively, for each radius. For the X-Rays dataset, the
values are 0.5%, 5.1%, 11.8%, 30.4% and 54.7%. Finally for the Words dataset 18.3%, 15.5%,
16.6%, 21.5% and 37% of the total points are reported without any distance evaluations. It is
evident that the percentage of points reported without any distance evaluations depends on the
underlying distance distribution. If the majority of the points are close to each other, then a
higher number of points is reported, since the larger the search radius, the more partitions fall
within the search radius due to which more points get reported. That is why we observe that
for the Trips dataset the best results are observed, since most of the trips are close to each
other. In this case, for the largest search radius (which reports nearly 47.5K points out of 50K),
nearly 94.7% of the points get reported without any distance evaluations. Since in the X-Rays
dataset, the images are not too close to each other, only around 55% of the points are reported
without any distance evaluations. The distance distribution of the Words dataset suggests that
the dataset forms several clusters. Since most of the data points are far from each other, for the
largest search radius around 37% of the points are reported without any distance evaluations.
Thus it can be concluded that even with different data distributions, the N-tree performs better
compared to the other structures.

7 Related Work

A significant body of previous work investigated the topic of indexing metric spaces. Chen et
al. [5] conducted a comprehensive survey of such indexing techniques. These approaches can be
grouped into three categories: compact-partitioning based metric indexes (CMI), pivot-based
metric indexes (PMI), and hybrid metric indexes (HMI) incorporating ideas from CMI and PMI.

Compact-partitioning based metric indexes The indexes in the CMI category utilize the
principle of partitioning the search space and they aim to attain this partitioning as compactly
as possible. Such partitioning allows filtering out unqualified partitions during query execution.
Three different kinds of partitioning techniques have been proposed, namely, ball partitioning,
generalized hyperplane partitioning and hash partitioning. CMI indexes usually utilize one of
these techniques, while a few use hybrid partitioning by leveraging both ball partitioning and
hyperplane partitioning. The ball partitioning divides the search space into two subsets S1 and
S2 using a spherical cut [30]. Given an arbitrarily chosen point p and radius r, all the objects
that are at a distance less than or equal to r from p belong to S1 and the rest of the objects are
in S2. The generalized hyperplane partitioning divides the search space into two subsets S1 and
S2 using two arbitrarily chosen reference points p1 and p2. The objects are assigned to either
S1 or S2 depending on their proximity to the reference points. The hash partitioning leverages
a hash function for partitioning the search space. A popular hash function is the ρ-split function
that partitions the search space into three subsets S1, S2 and S3. This leaves out points near
a particular threshold when determining membership in S1 and S2, whereas S3 includes the
excluded points. This is why this technique is also known as excluded middle partitioning [29].

One of the earliest indexing approaches based on generalized hyperplane partitioning is the
Bisector Tree (BST) [13]. It is a binary tree that is built recursively using two reference points,
such that objects closer to the first reference point belong to the first subtree and the objects
nearer to the second reference point are in the second subtree. The covering radii corresponding
to each of the reference points are maintained in the nodes. The Monotonous BST (MBST) [19]
is a follow-up work of BST. It is based on the idea that every internal node (except for the root
node) inherits one of the reference points from its parent node. The Voronoi Tree (VT) [7] is
another extension of BST. It attempts to pack the objects more compactly by decreasing the
covering radii while moving downwards in the tree. The Generalized Hyperplane Tree (GHT)
proposed by [25] is based on similar concepts as the BST. However, instead of using covering
radii for pruning, it uses a criterion involving the hyperplane between the reference points to
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decide which subtrees to visit.
Among the ball partitioning based techniques, the M-tree [6] is perhaps the most well-known.

It is a height-balanced index structure, and can support efficient external memory operations.
In the M-tree, the internal nodes maintain pointers to the next level nodes, while the objects are
kept at the leaf nodes. Each internal node entry also includes information regarding covering
radius and parent distance. Several variants of M-tree have been proposed, such as the MM-
tree [20], M+-tree [31] and BM+-tree [32]. The List of Clusters (LC) index [3] leverages a list of
clusters in which each cluster is identified by a center and a radius. The main idea of LC is to
store each object within a particular cluster whose distance to the center of that cluster is not
larger than the radius. The LC index can be of two variants: fixed radius and fixed size. The
Dynamic LC (DLC) [17] is an extension of LC, which is essentially a dynamic version of it.

The hash partitioning approaches include the MB+-tree [12]. The MB+-tree partitions the
search space into two subsets using hash partitioning. Alternatively, it can also use generalized
hyperplane partitioning recursively. The MB+-tree utilizes two data structures: block tree and
B+-tree. The block tree is used to maintain partition information. For each object a key is
generated by the MB+-tree, which is indexed by the B+-tree.

Pivot-based metric indexes (PMI) The indexing approaches in this category leverage pre-
computed distance, since distance computation during query execution is an expensive operation.
Sometimes, this distance pre-computation is performed by first selecting a set of pivots and then
calculating the distance of every object to those pivots and storing those distances.

The Approximating and Eliminating Search Algorithm (AESA) [26] is one of the earliest
approaches in the PMI category. It maintains a table storing the distances between all pairs
of objects. During query processing, the pre-computed distances can be used to filter out
objects. Whereas AESA can improve search performance, a key drawback is that this requires
scanning the pre-computed table to find a match. Another drawback is the space requirements
to store the pairwise distances. To address these limitations with AESA, several approaches were
subsequently proposed. Among them, the Reduced-Overhead AESA (ROAESA) [27] sorts the
pre-computed distances during the search and applies heuristics to potentially avoid unnecessary
table scans.

The Linear AESA (LAESA) [9] index utilizes a fixed number of pivot points and only stores
pre-computed distances from objects to those pivot points. However, selecting suitable pivots
becomes an issue. This can be addressed by other techniques, such as [15], which attempts to
identify pivots that are as far away from each other as possible [30].

The Extreme Pivot Table (EPT) [21] approach uses different pivot points for different objects,
rather than leveraging the same set of pivot points for all objects. This is done by selecting
a set of pivot groups, each of which consists of a fixed number of pivots. EPT uses a group
inclusion criteria for each object based on the expected value of the distance between the object
and the pivot points, and a threshold α, which aims to maximize. EPT maintains the data and
pre-computed distance information in main memory. For larger datasets, CPT [16] proposes an
I/O efficient approach. The objects are maintained on disk using an M-tree. The pre-computed
distance table keeps pointers to the leaf node entries in the M-tree.

The Vantage Point Tree (VPT) [25] is based on partitioning a dataset into two subsets based
on a vantage point or pivot. The pivot is chosen as the root node. All objects that are located
within a distance from the pivot less than the median distance are kept in the left subtree,
while the rest of the objects are maintained in the right subtree. The partitioning process is
recursively applied to form a balanced binary tree. VPT is primarily targeted for continuous
distance functions, and discrete distance functions can also be supported. Instead of using the
median distance, an alternative approach is to use the mean of distances from the pivot to
all objects. This approach is known as middle point in [4], which may perform better with
high-dimensional data, however, it may result in an unbalanced tree. A dynamic variant of
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VPT, called DVPT [10], was proposed that supports insertion and deletion operations. Another
approach, Multi Vantage Point Tree (MVPT) [1], extends the VPT approach. It utilizes multiple
pivots (typically 2 or 3) to partition each node, rather than one as with VPT. On the other
hand, with MVPT the children at the lower level leverage the same pivots, whereas with VPT
there are different pivots at lower levels.

The Omni-family [24] of indexes utilizes the pivot mapping technique that is used to represent
objects as vectors of their distances to pivots [5]. Following this pivot mapping, the pre-computed
distances with respect to the pivots are indexed using an existing external-memory index. The
OmniB+-tree employs a B+-tree, whereas the OmniR-tree utilizes an R-tree.

Hybrid metric indexes (HMI) The approaches in the hybrid metric index category leverage
both compact partitioning and pivots. The Geometric Near-Neighbor Access Tree (GNAT) [2]
utilizes m pivots in each internal node. Based on the shortest distance of the objects to one
of these pivots, the dataset is partitioned accordingly using generalized hyperplane partitioning
(Voronoi partitioning). This process is applied recursively to build an m-ary tree. GNAT
maintains pre-computed distances from the objects to their corresponding pivots.

The Evolutionary Geometric Near-Neighbor Access Tree (EGNAT) [18] is an extension of
GNAT and adapted for external memory. It can support insertion and deletion operations. The
EGNAT index includes two types of nodes: buckets (leaves) and gnats (internal nodes), where
internal nodes are similar to internal GNAT nodes. The index construction process is carried
out by recursively selecting the closest pivot for a new object until reaching the leaf level. At
the leaf level, objects are inserted into the buckets, without internal structure, which can result
in reduction in storage compared to GNAT.

The D-index [8] uses a combined hash partitioning and pivot mapping based approach. It
utilizes several ρ-split functions, one at each level, to construct a multilevel structure. The
Pivoting M-tree (PM-tree) [23] is an extension of the M-tree that utilizes pivoting to reduce
metric region volumes. The PM-tree first selects a set of pivots. For each inner node in the tree,
a routing entry is defined that includes an array of hyper-rings. Each hyper-ring is the smallest
interval encompassing distances between the pivot and each of the objects stored in leaves of
the subtree. Each leaf node in the PM-tree maintains an array of pivot distances.

Discussion Our approach, the N-tree, can be considered as a hybrid approach. It leverages
both compact partitioning and pivoting techniques. The N-tree uses generalized hyperplane
partitioning with many centers (Voronoi partitioning). Within each node, it maintains all pair-
wise distances between centers as well as distances to the two pivot elements. The N-tree uses
various pruning criteria during query processing.

As explained in more detail in the introduction, the approach that appears to be most closest
to the N-tree is GNAT which also uses Voronoi partitioning. In the N-tree, this is combined
with ideas also present in AESA to precompute all distances between centers and do iterative
pruning based on sequential distance evaluations to the query point. However, in contrast to
AESA this is not done globally, but per node.

8 Conclusions

We have presented the N-tree, a new index structure for metric search based on a hierarchical
Voronoi partitioning of metric space. Its second main feature is the use of pre-computed distances
between all elements of a node for pruning in range search and kNN search. In our experimental
evaluation, the N-tree shows excellent results for range queries and kNN queries in comparison
to state-of-the-art structures; for kNN queries it clearly outperforms the competitors we have
evaluated.
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The N-tree has a property that we did not observe in other index structures: with increasing
query radius for range queries, at some point the number of distance evaluations begins to
decrease so that for very large query radii very few distances evaluations are needed (the U-turn
effect).

In this paper we have examined the N-tree, first of all, as a main memory index structure.
Due to the fact that the performance is equally good for large node sizes, we expect it to be also
well suited as an external index. An experimental evaluation of this case is a subject for future
work.

In designing the index structure, we have observed a strong duality between the use of a
Voronoi partitioning in structuring an index and for parallel/distributed computation. Based
on the range distribution property, a similarity join can easily be implemented in a distributed
manner. One possibility is to implement the join in each partition as a nested loop join using an
index such as the N-tree. Partitioning the data set can be done in parallel and efficiently using
the closestCenter algorithm of the N-tree. This is another area for future work.

Whereas the experimental evaluation and comparison with other structures was based on
a stand-alone implementation in Java, an implementation within the DBMS Secondo is also
freely available for experiments and practical use.

Acknowledgement Thanks to Catherine Higgins for preparing the New York trips data set
and her support in the early stages of this project.
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