
Modeling Temporally Variable Transportation 
Networks* 

Zhiming Ding and Ralf Hartmut Güting 

Praktische Informatik IV 
Fernuniversität Hagen, D-58084 Hagen, Germany 

{zhiming.ding, rhg}@fernuni-hagen.de 

Abstract. In this paper, a State-Based Dynamic Transportation Network 
(SBDTN) model is presented, which can be used to describe the spatio-
temporal aspect of temporally variable transportation networks. The basic idea 
of this model is to associate a temporal attribute to every node or edge of the 
graph system so that state changes (such as traffic jams and blockages caused 
by temporary constructions) and topology changes (such as insertion and dele-
tion of nodes or edges) can be expressed. Since the changes of the graph system 
are discrete, the temporal attribute can be expressed as a series of temporal units 
and each temporal unit describes one single state of the node or edge during a 
certain period of time. The data model is given as a collection of data types and 
operations which can be plugged as attribute types into a DBMS to obtain a 
complete data model and query language. 
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1   Introduction 

The management of moving objects has been intensely investigated in recent years. 
However, the interaction between moving objects and the underlying transportation 
networks has been largely ignored. To explore this relationship by involving transpor-
tation networks into the modeling of moving objects is one of the main aims of the 
research project “databases for moving objects”, which we participate in. Obviously, 
the first step along the research line is to model transportation networks themselves. 

The work described in this paper arose from the observation that in many moving 
objects database (MOD) applications, not only the moving objects are “dynamic”, but 
the underlying transportation networks are “dynamic” as well - new routes can be 
added into the network and existing routes can be blocked or become obsolete. There-
fore, we need a mechanism to model the “dynamic” aspect of the transportation net-
works. For simplicity, we will call temporally variable transportation networks “dy-
namic transportation networks”, or simply “dynamic graphs” throughout this paper. 
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In the literature, a lot of strategies have been proposed to model the spatio-temporal 
aspect of geographical data. Rasinmäki in [9] has proposed a valid-period based 
method in which every object is associated with a pair of time stamps, one for the time 
of creation and one for cessation. Hamre in [6] has presented a snapshot-based model, 
in which the state of the world is given at regular or irregular intervals as different 
snapshots. Besides, Peuquet et al. in [8] have proposed an Event-oriented Spatio-
Temporal Data Model (ESTDM). However, most of these methodologies are focused 
on general graph problems without considering the next step modeling of moving 
objects. As a result, they can not be used directly for the modeling of dynamic trans-
portation networks which has some unique requirements. 

In modeling dynamic transportation networks, one of the most important require-
ments is that every node or edge of the graph system should have a unique identifier 
associated so that the locations of moving objects can be presented by referring to 
these identifiers. For each node or edge, its identifier should keep constant during its 
whole life time, no matter whether it is opened, closed, or blocked (see Section 2). 
This is important because otherwise, moving objects on the same physical edge can 
have different edge identifiers associated at different time instants so that logically 
related information can be scattered among several different places in the database, 
making identifier-based queries hard to be processed.  

Another requirement is that a mechanism should be provided to deal with block-
ages. In a transportation system, blockages can happen quite frequently due to car 
accidents, temporary constructions, and even heavy traffic jams. In the MOD system, 
blockages can greatly change the behavior and decision of moving objects so that they 
should be tracked and taken into account in evaluating query results. 

In order to meet these requirements, we propose a State-Based Dynamic Transpor-
tation Network (SBDTN) model in this paper. The basic idea is to associate a tempo-
ral attribute to every node or edge of the graph system so that its state at any time 
instant can be retrieved. Since the changes of the graph system are discrete, we can 
use a series of temporal units to represent a temporal attribute with each temporal unit 
describing one single state during a certain period of time. In this way, the whole state 
and topology history of the graph system can be presented and queried.  

The remaining part of this paper is organized as follows. Section 2 formally defines 
the data types of the SBDTN model, Section 3 defines the signatures of the corre-
sponding operations, Section 4 provides a group of query examples, and Section 5 
finally concludes the paper. 

2   Data Types of the SBDTN Model 

In this and the next section, we formally define the SBDTN model. Obviously, to 
make this model readable and clean, it is crucial to have a formal specification frame-
work which allows us to describe widely varying data models and query languages. 
Such a specification framework, called second-order-signature, was proposed in [3]. 
The basic idea is to use a system of two coupled signatures where the first signature 
describes a type system and the second one an algebra over the types of the first signa-



ture. In the following discussion, we will define our model with the second-order-
signature, and especially, we will focus on the discrete model so that the data types 
and operations defined in this paper can be implemented directly in an extensible 
database system such as Secondo [1] to obtain a complete data model and query lan-
guage. The notation of the definitions will follow those described in [4].  

This section will be focused on the type system of the SBDTN model. We suppose 
that in the whole database system, several logically independent graphs may coexist. 
This assumption is necessary because in many real-life applications, moving objects 
can traverse several transportation networks during one single journey so that multiple 
graphs can be involved. 

2.1   Overview of the Type System 

Table 1 presents the type system of the SBDTN model. Type constructors listed in 
Group 1 have been defined and implemented in our earlier work [4, 2, 7] and we will 
use them directly without redefinition in this paper. In the following discussion, we 
will focus on the type constructors listed in Group 2. 

Table 1. Signature describing the type system of SBDTN 

Group Type constructor Signature 
 int, real, string, bool  � BASE 
1 point, points, line, region  � SPATIAL 
 instant  � TIME 
 range BASE 4 TIME � RANGE 
 blockage, blockreason, blockpos  � GBLOCK 
 statedetail, state  � GSTATE 
2 temporalunit,temporal, intimestate  � GTEMPORAL 
 dynnode, dynedge, dyngraph  � DGRAPH 
 gpoint, gpoints, gedgesect, gline, gregion  � GSPATIAL 

Among the data types listed in Group 2, graph blockage (GBLOCK) data types and 
graph state (GSTATE) data types are used to describe the state of nodes or edges of 
the graph system. Graph temporal (GTEMPORAL) data types are used to track the 
state history and also the life span of a node or an edge. Dynamic graph (DGRAPH) 
data types enable us to define nodes, edges, and graphs. Graph spatial (GSPATIAL) 
data types can be used to describe static spatial objects residing on the graph system, 
which form a basis for our next step modeling and querying of moving objects. 

2.2 Graph State Data Types and Graph Blockage Data Types 

Graph state data types and graph blockage data types are used to describe the state of 
a node or an edge. In dynamic transportation networks, a node can have two states, 
opened and closed, while an edge can have three states, opened, closed, and blocked. 
If a node or an edge is opened, then it is entirely available to moving objects. If a node 



or an edge is closed, then it is entirely unavailable to moving objects, which means 
that no moving objects are allowed to stay or move in any part of it. A closed node or 
edge is not deleted from the system. Instead, it is only temporarily unavailable to mov-
ing objects and can be reopened afterwards. 

The blocked state is used to describe a special kind of state of an edge, which 
means “partially available” to moving objects. That is, the unblocked part of the edge 
is still available to moving objects, but no moving objects can move through the 
blocked part. Figure 1 gives an example of blocked edge. 

Fig. 1. A blocked edge with moving objects 

Definition 1 (state) The carrier set of the state data type is defined as follows: 
Dstate = {opened, closed, blocked} 
In a transportation system, blockages can happen quite frequently. For instance, a 

road section can be blocked for hours by a car accident or by a temporary construc-
tion, or even by heavy traffic jams. Typically, the location of a blockage is static. We 
suppose that the total length of the road section is 1, and then every location in the 
road section can be represented by a real number p c [0, 1]. The location of a block-
age can then be expressed as a closed interval over [0, 1], whose boundaries indicate 
the border of the blocked area. 

Definition 2 (blockage reason) The data type blockreason describes the reason of 
a blockage, and its carrier set is defined as follows: 

Dblockreason = {temporal-construction, traffic-jam, car-accident, others} 
Definition 3 (interval) Let (S, <) be a set with a total order. Intervals and closed 

intervals over S can be defined as follows: 
interval(S)  =  {(s, e, lc, rc) | s, e c S, lc, rc c bool, s ≤ e, (s = e) u (lc = rc = true)} 
cinterval(S) = {(s, e, lc, rc) | s, e c S, s ≤ e, lc = rc = true} 

where lc and rc are two flags indicating “left-closed” and “right-closed” respectively. 
The semantics of the interval definitions can be found in [2]. 

Definition 4 (blockage position) The data type blockpos is used to describe the 
position of a blockage, and its carrier set is defined as follows:  

Dblockpos = { Ψ | Ψ c cinterval([0,1])}  
In Definition 4 we assume that a blockage can not move during its life time. In 

most cases this is true. However, sometimes, a blockage can also be “dynamic” if we 
take the blockages caused by floods or parades into consideration. In these cases, a 
blockage should be modeled as a moving interval over [0, 1] and can be handled by 
using the techniques proposed in [4], which is out of the scope of this paper. 

Definition 5 (blockage, blockages) The blockage data type is used to describe a 
blockage, including its reason and its location. The blockages data type is used to 
describe multiple blockages inside one single edge. Their carrier sets are defined as 
follows:  

Dblockage = {(br, Ψ ) | br c Dblockreason, Ψ c Dblockpos }  
Dblockages = {B | B ` Dblockage }  

Blockage 



Definition 6 (state detail) The data type statedetail is used to describe the detailed 
state of a node or an edge, and its carrier set is defined as follows:  

Dstatedetail = {(s, B) | s c Dstate, B c Dblockages, s g blocked w B=—}  
Definition 6 is based on the fact that several blockages can exist in one road section 

at the same time so that they should be described as a set of blockages instead of a 
single blockage value. 

2.3 Graph Temporal Data Types 

Graph temporal data types are used to track the state history, and also the life span of 
a node or an edge. During its life time, a node or an edge can discretely assume a 
series of states, and each state can last for a certain period of time.  

Definition 7 (temporal unit) The temporalunit data type describes the state of a 
node or an edge during a certain time period. Its carrier set is defined as follows: 

Dtemporalunit = {(I, sd) | I c interval(Dinstant), sd c Dstatedetail } 
Definition 8 (temporal) The temporal data type is defined as a sequence of tempo-

ral units which describe the state history of a node or an edge. Its carrier set is defined 
as follows: 

Dtemporal ={<µ1, ... , µn > | n m 1,  µi = (Ii, sdi) c Dtemporalunit (1 [ i [ n), and: 
(1) ∀ i, j c {1, … n}, i g j: Ii 3 Ij = ∅  
(2) ∀ i c {1, … n-1}: Ii , Ii+1  (, means “before” in time series)} 
For a certain temporal unit µi = (Ii, sdi) (1 [ i [ n), Ii is composed of two time in-

stant values min(Ii) and max(Ii), which indicate the starting point and the endpoint of Ii 
respectively. min(Ii) must be a defined value while max(Ii) can be either defined or 
undefined. If max(Ii) is an “undefined” value Ω, then Ii is called an open temporal unit. 
Otherwise, it is called a closed temporal unit. Semantically, Ω means “until now”. 
Therefore, if a node or edge is still active in the transportation network, its temporal 
attribute will contain exactly one open temporal unit, which forms its last temporal 
unit. Otherwise, if it has been deleted from the transportation network, then its tempo-
ral attribute will only contain closed temporal units. 

The insertion and deletion time of a node or an edge can be decided by min(I1) and 
max(In) respectively. In this way, we can decide the topology of the graph system at 
any time instant. Figure 2 illustrates an example temporal attribute value. 

Fig. 2. An example temporal attribute value 

Definition 9 (intimestate)  The intimestate data type is used to describe the state of 
a node or an edge at a certain time instant. Its carrier set is defined as follows: 

Dintimestate ={(t, sd) |  t c Dinstant, sd c Dstatedetail } 

t 
opened blocked closed opened 

t1                       t2             t3               t4             now 

 [t1, t2), (opened, —) 

 [t2, t3), (blocked, {(traffic-jam, [0.2,0.3])}) 

 [t3, t4),  (closed, —) 

 [t4 , ⊥ ), (opened, —) 

a) state changes of  an edge                      b) the corresponding temporal units 



2.4 Dynamic Graph Data Types 

In SBDTN, transportation networks are modeled as dynamic graphs with every 
node or edge associated with a temporal attribute which describes its state history.  

Definition 10 (dynamic node) A dynamic node can be considered as a normal 
graph node with a temporal attribute associated. The carrier set of the dynnode data 
type is defined as follows: 

Ddynnode = {(nid, pos, tp) | nid c Dint, pos c Dpoint, tp c Dtemporal} 
where nid is the identifier of the dynamic node which is isomorphic to integer, pos is  
a point value which describes the position of the node, and tp is the temporal attribute 
associated with the node. 

Definition 11 (polyline) A polyline can be expressed by a sequence of points 
which correspond to the vertices of the polyline. Therefore we can define polylines as 
follows. 

polyline = {<p1, p2, ..pn> | n m 2, ∀ i c {1, …n} : pi  c Dpoint } 
Definition 12 (dynamic edge) A dynamic edge can be viewed as a normal graph 

edge with a temporal attribute associated. The carrier set of the dynedge data type is 
defined as follows: 

Ddynedge={(eid, nidf, nidt, route, tp)|eid, nidf, nidt  c Dint, route c polyline, tp c Dtemporal} 
where eid is the identifier of the edge, nidf and nidt are identifiers of the “from” node 
and the “to” node of the edge respectively, route is a polyline which describes the 
geographical shape of the edge, and tp is the temporal attribute associated with the 
edge.  

In the above definition, we use a polyline instead of a line value (a line value is de-
fined as a set of line segments [4] so that it can also be used to describe curves in the 
X%Y plane) to describe the route of an edge because we need the order of the line 
segments indicated in the polyline to transform the location expressed by a real num-
ber p c [0, 1] to the corresponding Euclidean coordinate value and vice versa.  

From the above definition we can see that, since the route attribute is represented 
by a polyline, a dynamic edge can actually assume a shape of complicated curve in the 
X%Y plane instead of just a straight line.  

Definition 13 (dynamic graph) A dynamic graph, G, is composed of a set of dy-
namic nodes and a set of dynamic edges. The carrier set of the dyngraph data type is 
defined as follows: 

Ddyngraph = {(gid, N, E ) | gid c Dint , N ` Ddynnode , E ` Ddynedge, and: 
(1) ∀ e c E: ∃ v1, v2 c N  ∧  from(e) = v1 ∧  to(e) = v2 
(2) ∀ v c N: ∃ e c E ∧  (from(e) = v ∨  to(e) = v) } 
In implementation, N and E can be implemented as relational tables so that in a 

dyngraph value only the relation names are kept (see Subsection 2.6).  
In a dynamic graph system, since every node or edge has a temporal attribute asso-

ciated, we can know its state at any given time instant. This is very useful in moving 
objects databases since a lot of queries can only be processed efficiently by accessing 
the states of the transportation networks. For instance, “please tell me all the edges 
which are currently blocked by traffic jams”. Besides, through the temporal attribute, 
we can also know the life span of any node or edge of the graph system so that the 



topology changes of the transportation networks can also be expressed and queried. 
For instance, “find the shortest path from a to b at time instant t”. 

2.5 Graph Spatial Data Types 

Based on the above definitions for dynamic transportation networks, we can then 
define some useful data types, gpoint, gpoints, gedgesect, gline, and gregion, which 
form the basis for the modeling and querying of moving objects. 

Definition 14 (graph point, graph points) The gpoint data type describes a point 
inside the graph system, and the gpoints data type describes a set of graph points. 
Their carrier sets are defined as follows: 

Dgpoint  ={( gid, eid, pos) | gid, eid c Dint,  pos c [0, 1]} 
Dgpoints ={PS | PS ` Dgpoint } 
In the definition of graph point, gid and eid together decide a unique edge e of the 

graph system, while pos c [0, 1] indicates a position inside e. If pos = 0 or 1, then the 
graph point actually coincides with a node. Since node information can be retrieved 
from edges, we only need to represent edge identifiers here to make the model clean. 

Definition 15 (graph edge section) The gedgesect data type represents a section of 
an edge. Its carrier set is defined as follows: 

Dgedgesect ={(gid, eid, S) | gid, eid c Dint,  S c cinterval([0, 1])} 
Definition 16 (graph line) A graph line is defined as a consecutive chain of edge 

sections inside the graph system. Its carrier set is defined as follows: 

Dline  = {< ωi > 1
n
i= | n m 1, ωi = (gidi, eidi, Si) c Dgedgesect  where: 

(1) ∀ i c {2, … n-1} : Si  = [0, 1]; 
(2) ∀ i c {1, n}: Si c cinterval([0, 1]); 
(3) ∀ i c {1, …n-1} : adjacent(ωi, ωi+1)} 

where adjacent(ωi, ωi+1) means that ωi, ωi+1 meet with their end points spatially so that 
all edge sections in the graph line should form a chain. 

Definition 17 (graph region) A graph region is defined as a set of graph edge sec-
tions. The carrier set of the gregion data type is defined as follows: 

Dgregion = { W | W ` Dedgesection} 
Different from graph line, graph region can be formed by a set of arbitrary graph 

edge sections.  

2.6 An Application Example 

In this subsection, we give an example to show how the data types defined above can 
be used as attribute types in defining database schemas. We suppose that the transpor-
tation networks for automobiles in the Verkehrsverbund Rhein-Ruhr (VRR) area of 
Germany are composed of one highway network and N city street networks. The 
highway network connects different cities while each city network corresponds to the 
transportation network inside a city. The highway network and the street networks can 
overlap each other and moving objects can transfer from one network to another via 



geographically overlapped nodes (such as from the node “FernUni-HagenNet” to the 
node “FernUni-HighwayNet”), as illustrated in Figure 3. 

Fig. 3. Transportation networks 

In the database system, all these transportation networks can be presented in a rela-
tion DynGraphs with each tuple of the relation describing an independent graph:  

DynGraphs(gname: string, dgraph: dyngraph); 
For each dynamic graph (say HagenNet), the corresponding dynamic nodes and 

dynamic edges are also implemented as independent relations so that they can be 
expressed by two relations, one for nodes and one for edges:  

HagenNodes(dnode: dynnode); HagenEdges(dedge: dynedge); 
As a result, in the dgraph attribute of the DynGraphs relation, only the relation 

names (for instance, HagenNodes and HagenEdges) are stored. Besides, we suppose 
that there are several auxiliary relational tables in the system, which allow us to trans-
late logic node, edge, or graph names to the corresponding identifiers. 

Table 2. Operations of the SBDTN model 

Group Class Operations 
 Predicates isempty, = , ! , < , ≤ , > , ≥ , intersects, inside, before 

touches, attached, overlaps, on_border, in_interior 

 Set operations intersection, union, minus, crossings, touch_points 
common_border 

Aggregation min, max, avg, avg[center], single 1 
Numeric no_components, size, perimeter, size[duration]  

size[length], size[area] 
 Distance & direction distance, direction 
 Base type specific and, or, not 
 Time type specific year, month, day, hour, minute, second, period 
 Transformation euc_graph, graph_euc, node_edge, edge_nodefrom 

edge_nodeto, dyngraph, dynode, dynedge 
 Construction gedgesect, gpoint 
 Data Extraction getnodes, getedges, id, pos, route, temporal, atinstant 

statedetail, state, blockages, blocksel, blockpos 
2 Truncation atperiods, present, at 
 When & Projection when, deftime 
 Graph General snapshot, shortestpath 
 Range Specific intervalnum, getinterval 

HighwayNet 

CityNet-1 

CityNet-2 
Moving Object 



3   Operations of the SBDTN Model 

3.1 Overview 

Table 2 lists the operations of the SBDTN model. Operations in Group 1 have been 
defined and implemented in our earlier work [4, 2, 7, 5] so that we will use them di-
rectly without redefinition in this paper. In the following discussion, we will focus on 
the operations listed in Group 2. 

3.2 Transformation Operations 

The signatures of transformation operations are listed in Table 3. For the sake of 
readability, gid, nid, and eid are used instead of int in defining the signatures. 

Table 3.  Transformation operations 

Operation Signature  Operation Signature  
euc_graph 
 
 

point 
points 
region 

�  gpoints 
�  gpoints 
�  gregion 

node_edge 
edge_nodefrom 
edge_nodeto 

gid ×  nid 
gid ×  eid 
gid ×  eid 

�  set(eid) 
�  nid 
�  nid 

graph_euc 
 

gpoint 
gpoints 
gline 
gregion 

�  point 
�  points 
�  line 
�  line 

dyngraph 
dynnode 
dynedge 

gid 
gid ×  nid 
gid ×  eid 

�  dyngraph 
�  dynnode 
�  dynedge 

As shown in Table 3, transformation operations can be further divided into three 
groups. The first group of operations, graph_euc and euc_graph, transform Euclid-
ean information to the corresponding graphical representation and vice versa. Since 
every node or edge is spatially embedded, that is, its geographical information is 
known to the system, it is easy to implement these two transformation operations. 

Operations in the second group, node_edge, edge_nodefrom, and edge_nodeto, 
transform node identifiers to the associated edge identifiers and vice versa. These two 
operations are also not hard to be implemented since the needed information is con-
tained in the corresponding dynedge values. 

The third group of operations, dyngraph, dynnode, and dynedge, transform iden-
tifier representations to the corresponding graphical entities. 

3.3 Construction Operations 

Construction operations are used to construct gpoint and gedgesect values, which can 
be used in further queries of moving objects. Their signatures are listed in Table 4. 

As shown in Table 4, there can be two ways to indicate the position in a dynamic 
edge when constructing gpoint and gedgesect values. One way is to give the real num-
ber value α c [0, 1] directly and the other way is to give the Euclidean information of 



the position. In the second case, further computation is needed to transform the point 
value to the corresponding real number value. 

Table 4. Construction operations 

Operation Signature 
gpoint gid ×  eid ×  real 

gid ×  eid ×  point 
�  gpoint 
�  gpoint 

gedgesect gid ×  eid ×  range(real) 
gid ×  eid ×  point×  point 

�  gedgesect 
�  gedgesect 

3.4 Data Extraction Operations 

Date extraction operations are relatively simple and their only functionality is to ex-
tract detailed information from a given object. Their signatures are listed in Table 5. 

Table 5. Data extraction operations 

Operation Signature  
getnodes dyngraph �  set(dynnode) 
getedges dyngraph �  set(dynedge) 
id 
 

dynnode 
dynedge 

�  nid 
�  eid  

pos dynnode �  point 
route dynedge �  line 
temporal 
 

dynnode 
dynedge 

�  temporal 
�  temporal 

atinstant temporal  ×  instant �  intimestate 
statedetail  intimestate �  statedetail 
state statedetail �  state 
blockages statedetail �  blockages 
blocksel blockages ×  bloackreason �  blockages 
blockpos blockages ×  bloackreason �  blockages 

As stated earlier, since node or edge sets can be implemented as relational tables, 
the outputs of the operations getnodes and getedges are actually relation names. 

3.5 Truncation and Projection Operations 

Conceptually, the temporal attribute associated with a node or an edge is similar to a 
“moving statedetail” value with the exception that the statedetail value can only 
change discretely. The operations in the Truncation, When, and Projection classes are 
designed because of this similarity. The signatures of these operations are listed in 
Table 6. 

The atperiods operator returns part of the temporal value which corresponds to the 
given time period. The present operation decides whether the temporal attribute is 
defined or not at a certain time instant. The at operation returns part of the temporal 



value which corresponds to the indicated state. The when operation returns part of the 
temporal value which satisfies a certain condition. The deftime operation returns the 
defined time of the temporal value. 

Table 6. Truncation, When, and Projection operations 

Operation Signature  
atperiods  temporal  ×  periods �  temporal 
present temporal  ×  instant �  bool 
at  temporal  ×  state �  temporal 
when  temporal  ×  (statedetail�bool) �  temporal 
deftime temporal �  periods 

3.6 Graph General Operations 

Graph general operations include the snapshot operation and the shortestpath opera-
tion. Their signatures are defined in Table 7. 

Table 7. Graph general operations 

Operation Signature  
snapshot dyngraph × instant 

dynnode × instant 
dynedge × instant 

�  line 
�  point 
�  line 

shortestpath gpoint  × gpoint ×  instant �  gline 

The snapshot operation returns the snapshot of a node, an edge, or a graph at a cer-
tain instant of time. For a certain node or edge ζ, this operation needs to check the 
defined time of the temporal attribute first. If the temporal attribute is defined at the 
given time instant t, then the state of ζ at time t will be further checked. If ζ is opened, 
then its geometry will be output. If ζ is blocked (in this case, ζ must be an edge), then 
only the unblocked part of its geometry will be output while the blocked part will be 
taken away from the output, as illustrated in Figure 4. 

Fig. 4. Snapshot of a blocked edge 

If the temporal attribute of ζ is not defined at time t, or if ζ is in a closed state at 
time t, then the geometry of ζ will not be output. The snapshot of a graph can be ob-
tained through the union of the snapshots of its component nodes and edges. 

The shortestpath operation computes the shortest path between two graph points 
at a certain instant of time. The result of the operation depends on the topology of the 
graph system and also the states of the nodes and edges at the given time instant. 
Blocked edges are handled in a similar way as stated in the snapshot operation. 

blockages 

a) a blocked edge                                                            b) the corresponding snapshot 



3.7 Range Specific Operations 

A range value can be viewed as a set of disjoint intervals over a certain data type. We 
assume that δ c BASE 4 TIME is a type variable. The signatures of the range specific 
operations intervalnum and getinterval can be defined as follows. 

Table 8. Range specific operations 

Operation Signature  
intervalnum range(δ) �  int 
getinterval range(δ) × int �  range(δ) 

The intervalnum operation returns the number of intervals contained in a range 
value. The getinterval operation returns the ith interval of a range value. If i is a nega-
tive number, then the backward-counted ith interval will be returned. 

4   Query Examples 

In this section, we give some query examples which are based on the database schema 
described in Subsection 2.6. Since node, edge, and graph names can be translated into 
the corresponding identifiers through the auxiliary relations, we suppose that the iden-
tifiers are already known and put them in the brackets behind the logic names. 

Example 1. “What did the Hagen street network (gid) look like at time instant t1?” 
LET HagenAtT1=snapshot(dyngraph(gid)) 
This query returns the snapshot of the graph at the given time instant. The result is 

a line value which describes the topology of the graph at the indicated time instant. 
Example 2. “Find all road sections in the Hagen street network (gid) which are cur-

rently blocked by traffic jams” 
SELECT id(dedge) FROM getedges(dyngraph(gid)) WHERE not(isempty (blockage-
sel (blockages(statedetail(atinstant(temporal(dedge), NOW))),traffic-jam))); 
This example shows how the information contained in a graph can be extracted. As 

stated in Subsection 2.6, we suppose that node sets and edge sets are implemented as 
relations so that the result of getedges(graph(gid)) is actually a relation name. NOW 
is a real number variable whose value equals to the current time instant. 

Example 3. “When was the Berliner street (gid, eid) closed for the second time?” 
SELECT min(getinterval(deftime(at(temporal(dedge),closed)),2))  
FROM getedges(dyngraph(gid)) WHERE id(dedge)=eid; 
In this query, the at operation returns part of the temporal attribute which corre-

sponds to the closed state. The result is then projected to a periods value by the 
deftime operation. The operation getinterval returns the indicated time interval and 
the beginning time of the interval is returned as the final result. 

Example 4. “For how many times was the Berliner street (gid, eid) in a closed state 
in the year 2000?” 

SELECT intervalnum(deftime(atperiods(temporal(dedge),year(2000))  
when[state(.)=closed])) FROM getedges(dyngraph(gid)) WHERE id(dedge)=eid; 



This query first selects part of the temporal attribute according to the indicated year 
and the indicated state. Then the number of intervals in the result is output as the final 
result. 

Example 5. “What is the state of the Hagener street (gid, eid) at time instant t1?” 
SELECT statedetail(atinstant(temporal(dedge),t1))  
FROM getedges(dyngraph(gid)) WHERE id(dedge)=eid; 
In this query, the detailed state information of the street at the given time instant 

will be returned as the final result. 
Example 6. “Which roads were deleted from the Hagen street network (gid) in 

2002?” 
SELECT id(dedge) FROM getedges(dyngraph(gid))  
WHERE max(deftime(temporal(dedge))) inside year(2002) 
This query shows how to decide the deletion time according to the temporal attrib-

ute. For nodes or edges which are now still active, the maximum defined time of the 
temporal attribute will be the undefined value (Ω).  

Example 7. “Find all road sections in the Hagen street network (gid) which inter-
sects with region R and were added in the year 2000” 

SELECT id(dedge) FROM getedges(dyngraph(gid)) WHERE min(deftime(temporal  
(dedge))) inside year(2000) AND intersects(route(dedge),  R); 
This query is very similar to Example 6. Through the temporal attribute we can de-

cide the insertion time. Besides, we can extract the geographical information from 
dynamic edges and the information can be used for further computations. 

Example 8. “Which road sections in the Hagen street network (gid) were blocked 
at 2 or more places and when?” 

SELECT id(dedge), deftime(temporal(dedge) when [intervalnum(blockpos (block-
ages(.)))≥ 2]) FROM getedges(dyngraph(gid)) WHERE not(isempty(temporal(dedge) 
when [intervalnum(blockpos(blockages(.)))≥ 2]));  
This query shows the functionality of the when operation. Through this operation, 

the query can deal with complicated situations by specifying flexible conditions. 
Example 9. “Find all building road sections in the Hagen street network (gid). For 

how long have they been in the building state for the last time?” 
SELECT id(dedge), duration(getinterval(deftime(temporal(dedge) when [not(isempty  
(blockpos(blocksel(blockages(.), temporal-construction))))])),-1))  
FROM getedges(dyngraph(gid)) WHERE not(isempty(blockagesel(blockages  
(statedetail(atinstant(temporal (dedge), NOW))),temporal-construction))); 
This query is fairly complicated. Through the data extraction operations and the 

when operation, the information contained in the dynamic edges can be extracted and 
analyzed. Besides, the range specific operations enable us to take just one specific 
interval value for processing.  

Example 10. “What is the shortest path from point p1 in the Hagener street (gid1, 
eid1) to point p2 in the Düsseldorfer street (gid2, eid2) currently?” 

LET H=gpoint(gid1,eid1,p1); LET D=gpoint(gid2,eid2,p2); 
LET ShortestHD=shortestpath(H, D, NOW) 
In this query, the time instant NOW must be specified for the shortestpath opera-

tion since the result can vary from time to time because of state changes and topology 
changes of the graph system. 



5   Conclusion 

In this paper, we have presented a State-Based Dynamic Transportation Network 
(SBDTN) model which can be used to describe the spatio-temporal aspect of tempo-
rally variable transportation networks. In this model, every node or edge of the graph 
system is associated with a temporal attribute which is composed of a series of tempo-
ral units. Each temporal unit describes the state of the node or edge during a certain 
period of time. In this way, the whole state and topology history of the graph system 
can be presented. The model is aimed to better support the next step modeling of 
moving objects in transportation networks. During its whole life cycle, every node or 
edge can keep a constant identifier. Besides, state changes such as closures and block-
ages can be expressed and queried. 

The data model is given as a collection of data types and operations which can be 
plugged as attribute types into a DBMS to obtain a complete data model and query 
language. These data types and operations are designed as a discrete model which 
offers a precise basis for the implementation of data structures in an extensible DBMS 
such as Secondo. Secondo is a new generic environment supporting the implementa-
tion of database systems for a wide range of data models and query languages. In the 
Secondo system, the data types and operations defined above can be implemented in 
C++ as two algebra modules, spatial algebra and dynamic graph algebra, so that the 
database system is extended to support the modeling and querying of temporally vari-
able transportation networks.  
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