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Abstract: Spatio-temporal databases deal with geometries changing over time. In general, geometries
cannot only change in discrete steps, but continuously, and we are talking about moving objects. If
only the position in space of an object is relevant, then moving point is a basic abstraction; if also the
extent is of interest, then the moving region abstraction captures moving as well as growing or
shrinking regions. We propose a new line of research where moving points and moving regions are
viewed as three-dimensional (2D space + time) or higher-dimensional entities whose structure and
behavior is captured by modeling them as abstract data types. Such types can be integrated as base
(attribute) data types into relational, object-oriented, or other DBMS data models; they can be
implemented as data blades, cartridges, etc. for extensible DBMSs. We expect these spatio-temporal
data types to play a similarly fundamental role for spatio-temporal databases as spatial data types have
played for spatial databases. The paper explains the approach and discusses several fundamental
issues and questions related to it that need to be clarified before delving into specific designs of spatio-
temporal algebras.
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1 Introduction

In the past, research in spatial and temporal data models and database systems has mostly been done
independently. Spatial database research has focused on supporting the modeling and querying of
geometries associated with objects in a database [Gü94]. Temporal databases have focused on
extending the knowledge kept in a database about the current state of the real world to include the
past, in the two senses of “the past of the real world” (valid time) and “the past states of the
database” (transaction time) [TCG+93]. Nevertheless, many people have felt that the two areas are
closely related, since both deal with “dimensions” or “spaces” of some kind, and that an integration
field of “spatio-temporal databases” should be studied1 and would have important applications. The
question is, what the term spatio-temporal database really means.

Clearly, when we try an integration of space and time, we are dealing with geometries changing over
time. In spatial databases, three fundamental abstractions of spatial objects have been identified: A
point describes an object whose location, but not extent, is relevant, e.g. a city on a large scale map.
A line (meaning a curve in space, usually represented as a polyline) describes facilities for moving
through space or connections in space (roads, rivers, power lines, etc.). A region is the abstraction
for an object whose extent is relevant (e.g. a forest or a lake). These terms refer to two-dimensional
space, but the same abstractions are valid in three or higher-dimensional spaces.

Now, considering points, the usual word for positions or locations changing over time is move.
Regions may change their location (i.e. move) as well as their shape (grow or shrink). Hence we
conclude that spatio-temporal databases are essentially databases about moving objects.

Since lines (curves) are themselves abstractions or projections of movements, it appears that they are
not the primary entities whose movements should be considered, and we should focus first on
moving points and moving regions. In the approach described in this paper we will consider the
fundamental properties of moving points and moving (and evolving) regions and try to support their
treatment in data modeling and querying, rather than be driven by particular (existing) applications.
On the other hand, if we succeed in providing such basic support, then we may be able to initiate
applications that so far have never been thought of. Table 1 shows a list of entities that can move, and
questions one might ask about their movements.

Although we focus on the general case of geometries that may change in a continuous manner (i.e.
move), one should note that there is a class of applications where geometries change only in discrete
steps. Examples are boundaries of states, or cadastral applications, where e.g. changes of ownership
of a piece of land can only happen through specific legal actions. Our proposed way of modeling is
general and includes these cases, but for them also more traditional strategies could be used, and we
shall compare the approaches in the paper.

Also, if we consider transaction time (or bitemporal) databases, it is clear that changes to geometries
happen only in discrete steps through updates to the database. Hence it is clear that the description of
moving objects refers first of all to valid time. So we assume that complete descriptions of moving
objects are put into the database by the applications, which means we are in the framework of histo-

1 This is in fact the goal of the EU-TMR-Project CHOROCHRONOS under which this work was done.
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rical databases reflecting the current knowledge about the past of the real world. Transaction time
databases about moving objects may be feasible, but will not be considered initially.

Moving Points Moving Regions

People:
• Movements of a terrorist/spy/criminal

Animals
• Determine trajectories of birds, whales, …
• Which distance do they traverse, at which speed? How

often do they stop?
• Where are the whales now?
• Did their habitats move in the last 20 years?

Stars
• All the astronomical stuff

Cars
• Taxis: Which one is closest to a passenger request

position?
• Trucks: Which routes are used regularly?
• Did the trucks with dangerous goods come close to a

high risk facility?
Planes

• Were any two planes close to a collision?
• Are two planes heading towards each other (going to

crash)?
• Did planes cross the air territory of state X?
• At what speed does this plane move? What is its top

speed?
• Did Iraqi planes cross the 39th degree?

Ships
• Are any ships heading towards shallow areas?
• Find “strange” movements of ships indicating illegal

dumping of waste.
Rockets, missiles, tanks, submarines

• All kinds of military analyses

Countries
• What was the largest extent ever of the Roman

empire?
• On which occasions did any two states merge?

(Reunification, etc).
• Which states split into two or more parts?
• How did the Serb-occupied areas in former Yugoslavia

develop over time? When was the maximal extent
reached? Was Ghorazde ever part of their territory?

Forests, Lakes
• How fast is the Amazone rain forest shrinking?
• Is the dead sea shrinking? What is the minimal and

maximal extent of river X during the year?
Glaciers

• Does the polar ice cap grow? Does it move?
• Where must glacier X have been at time Y (backward

projection)?
Storms

• Where is the tornado heading? When will it reach
Florida?

High/low pressure areas
• Where do they go? Where will they be tomorrow?

Scalar functions over space, e.g. temperature
• Where has the 0-degree boundary been last midnight?

People
• Movements of the celts etc.

Troops, armies
• Hannibal going over the alps. Show his trajectory.

When did he pass village X?
Cancer

• Can we find in a series of X-ray images a growing
cancer? How fast does it grow? How big was it on
June 1, 1995. Why was it not discovered then?

Continents
• History of continental shift.

Table 1: Moving objects and related queries

There is also an interesting class of applications that can be characterized as artifacts involving space
and time, such as interactive multimedia documents, virtual reality scenarios, animations, etc. The
techniques developed here might be useful to keep such documents in databases and ask queries
related to the space and time occurring in these documents.

The purpose of this paper is to describe and discuss an approach to modeling moving and evolving
spatial objects based on the use of abstract data types. Essentially, we introduce data types for
moving points and moving regions together with a set of operations on such entities. One needs also a
number of related auxiliary data types, such as pure spatial or temporal types, time-dependent real
numbers, and so forth. This collection of types and operations can then be integrated into any DBMS
object algebra or query language to obtain a complete data model and query language.

The goal of this first paper on the approach is not yet to offer a specific design of such types and
operations or a formal definition of their semantics. This needs to be done in further steps. Instead,
here the goal is to give an outline of the work that should be done, to justify the approach in the light
of possible alternatives, and to discuss a number of basic design choices that need to be made before
delving into the specific designs.
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There has been a large body of work on spatial and on temporal databases. We discuss the basic
approaches taken in these fields within Section 3. Not so many papers have addressed the integration
of space and time. We discuss this more specific research in Section 4.

The paper is structured as follows: Section 2 explains the basic idea of spatio-temporal data types in a
bit more detail. Section 3 is devoted to discussing basic questions regarding the approach as well as
some fundamental design choices that need to be made. Section 4 discusses related work, and Section
5 offers conclusions and future work.

2 The Basic Idea

Let us assume that a database consists of a set of object classes (of different types or schemas).
Each object class has an associated set of objects; each object has a number of attributes with values
drawn from certain domains or atomic data types. Of course, there may be additional features, such
as object (or oid-) valued attributes, methods, object class hierarchies, etc. But the essential features
are the ones mentioned above; these are common to all data models and already given in the relational
model.

We now consider extensions to the basic model to capture time and space. As far as objects are con-
cerned, an object may be created at some time and destroyed at some later time. So we can associate a
validity interval with it. As a simplification, and to be able to work with standard data models, we can
even omit this validity interval, and just rely on time-dependent attribute values described next.

2.1 Spatio-Temporal Types and Operations

Besides objects, attributes describing geometries changing over time are of particular interest. Hence
we would like to define collections of abstract data types, or in fact many-sorted algebras contai-
ning several related types and their operations, for spatial values changing over time. Two basic types
are mpoint and mregion. Let us assume that purely spatial data types called point and region are
given that describe a point and a region in the 2D-plane2 (a region may consist of several disjoint areas
which may have holes) as well as a type time that describes the valid time dimension. Then we can
view the types mpoint and mregion as mappings from time into space, that is

mpoint = time → point
mregion = time → region

More generally, we can introduce a type constructor τ which transforms any given atomic data type α
into a type τ(α) with semantics

τ(α) = time → α

and we can denote the types mpoint and mregion also as τ(point) and τ(region), respectively.

2 We restrict attention to movements in 2D space, but the approach can, of course, be used as well to describe time-

dependent 3D space.
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A value of type mpoint describing a position as a function of time can be represented as a curve in the
three-dimensional space (x, y, t) shown in Figure 1. We assume that space as well as time dimen-
sions are continuous, i.e., isomorphic to the real numbers. (It should be possible to insert a point in
time between any two given times and ask for e.g. a position at that time.)

x

y

t

Figure 1: A moving point

A value of type mregion is a set of volumes in the 3D space (x, y, t). Any intersection of that set of
volumes with a plane t = t0 yields a region value, describing the moving region at time t0. Of course,
it is possible that this intersection is empty, and an empty region is also a proper region value.

We now describe a few example operations for these data types. Note that these are purely for
illustrative purposes; this is in no way intended to be a closed or complete design. Such a complete
design is being developed in [GBE+98].

Generic operations for moving objects are, for example:

τ(α) × time → α at
τ(α) → α minvalue, maxvalue
τ(α) → time start, stop
τ(α) → real duration
α → τ(α) const

At gives the value of a moving object at a particular point in time. Minvalue and maxvalue give the
minimum and maximum values of a moving object. Both functions are only defined for types α on
which a total order exists. Start and stop return the minimum and maximum of a moving value’s
(time) domain, and duration gives the total length of time intervals a moving object is defined. We
shall also use the functions startvalue(x) and stopvalue(x) as an abbreviation for at(x, start(x)) and
at(x, stop(x)), respectively. Whereas all these operations assume the existence of moving objects,
const offers a canonical way to build spatio-temporal objects: const(x) is the “moving”3 object that
yields x at any time.

3 Actually, const(x) does not move at all!
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In particular, for moving spatial objects we may have operations such as

mpoint × mpoint → mreal mdistance
mpoint × mregion → mpoint visits

Mdistance computes the distance between the two moving points at all times and hence returns a time
changing real number, a type that we call mreal (“moving real”; mreal = τ(real)), and visits returns
the positions of the moving point given as a first argument at the times when it was inside the moving
region provided as a second argument. Here it becomes clear that a value of type mpoint may also be
a partial function, in the extreme case a function where the point is undefined at all times.

Operations may also involve pure spatial or pure temporal types and other auxiliary types. For the
following examples, let line be a data type describing a curve in 2D space which may consist of
several disjoint pieces; it may also be self-intersecting. Let region be a type for regions in the plane
which may consist of several disjoint faces with holes. Let us also have operations

mpoint → line trajectory
mregion → region traversed
point × region → bool inside
line → real length

Here trajectory is the projection of a moving point onto the plane. The corresponding projection for
moving regions is the operation traversed that gives the total area the moving region ever has
covered. Inside checks whether a point lies inside a region, and length returns the total length of a
line value.

2.2 Some Example Queries

The presented data types can now be embedded into any DBMS data model as attribute data types,
and the operations be used in queries. For example, we can integrate them into the relational model
and have a relation

flights (id: string, from: string, to: string, route: mpoint)

We can then ask a query “Give me all flights from Düsseldorf that are longer than 5000 kms”:

SELECT id
FROM flights
WHERE from = "DUS" AND length (trajectory (route)) > 5000

This query uses projection into space. Dually, we can also formulate queries projecting into time. For
example, “Which destinations can be reached from San Francisco within 2 hours?”:

SELECT to
FROM flights
WHERE from = "SFO" AND duration (route) <= 2.0
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Beyond projections into space and time, there are also genuine spatio-temporal questions that cannot
be solved on projections. For example, “Find all pairs of planes that during their flight came closer to
each other than 500 meters!”:

SELECT A.id, B.id
FROM flights A, flights B
WHERE A.id <> B.id AND minvalue (mdistance (A.route, B.route)) < 0.5

This is in fact an instance of a spatio-temporal join.

The information contained in spatio-temporal data types is very rich. In particular, relations that would
be used in traditional or spatial databases can be readily derived. For instance, we can easily define
views for flight schedules and airports:

CREATE VIEW schedule AS
SELECT id, from, to, start (route) AS departure, stop (route) AS arrival
FROM flights

CREATE VIEW airport AS
SELECT DISTINCT from AS code, startvalue (route) AS location
FROM flights

The above examples use only one spatio-temporal relation. Even more interesting examples arise if we
consider relationships between two or more different kinds of moving objects. To demonstrate this
we use a further relation consisting of weather information, such as high pressure areas, storms, or
temperature maps.

weather (kind: string, area: mregion)

The attribute “kind” gives the type of weather event, such as, “snow-cloud” or “tornado”, and the
“area” attribute provides the evolving extents of the weather features.

We can now ask, for instance, “Which flights went through a snow storm?”

SELECT id
FROM flights, weather
WHERE kind = "snow storm" AND duration (visits (route, area)) > 0

Here the expression visits(route, area) computes for each flight/storm combination a moving point
that gives the movement of the plane inside this particular storm. If a flight passed a storm, this
moving point is not empty, that is, it exists for a certain amount of time, which is checked by
comparing the duration with 0. Similarly, we can find out which airports were affected by snow
storms:

SELECT DISTINCT from
FROM airport, weather
WHERE kind = "snow storm" AND location inside traversed (area)
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Finally, we can extend the previous query to find out which airports are most affected by snow
storms. We can intersect the locations of airports with all snow storms by means of visits and
determine the total durations:

SELECT code, SUM(duration (visits (const (location), area)) AS storm_hours
FROM airport, weather
WHERE kind = "snow storm"
GROUP BY code
HAVING storm_hours > 0
ORDER BY storm_hours

3 Some Fundamental Issues and Choices

Given this proposal of an approach to spatio-temporal modeling and querying, several basic questions
arise that need to be clarified before proceeding in this direction:

• How is this related to the approaches taken in spatial databases and in temporal databases?
• Is it not sufficient to simply plug in spatial data types into temporal databases?
• We have seen spatio-temporal data types that are mappings from time into spatial data types.

Is this realistic? How can we store them? Don’t we need finite, discrete representations?
• If we use discrete representations, what do they mean? Are they observations of the moving

objects?
• If we use discrete representations, how do we get the infinite entities from them that we

really want to model? What kind of interpolation should be used?
• Finally, how does all this compare to the constraint database approach?

In the following subsections we discuss these questions.

3.1 The Spatial vs. the Temporal Database Approach

The proposed approach is in fact quite similar to what has been done in spatial databases so far.
There, a database is viewed as a collection of object classes; objects may or may not have attributes of
spatial data types. Research has then tried to identify “good” designs of collections of types and ope-
rations, or algebras (e.g. [SV89, SH91, GS95]). As far as the DBMS is concerned, spatial data types
are in principle not different from other data types. Of course, they need special support in indexing,
join methods, etc., but this might also happen to other data types. So the proposal of spatio-temporal
data types directly continues the spatial DB approach.

The obvious question is whether one could not equally well, or perhaps better, extend the approach
taken in temporal databases.

The following is surely a simplification, but should in essence be true: in temporal databases the
emphasis has been on considering databases as containing collections of facts rather than objects.
Hence a tuple in a relation is basically a fact. A normal database contains facts that describe what is
now believed in the database to be the current state of the real world. To obtain temporal databases,
tuples are extended with time stamps that associate either a valid time interval (historical databases)
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or a transaction time interval (rollback databases), or both (bitemporal databases) [SA85, Sn87]. A
valid time interval expresses when this fact was true in the real world; a transaction time interval
shows when the fact was believed in the database. Hence we get, for example, relations like the
following:

employee (name: string | salary: int  || from | to | begin | end)

It is important to note that time stamps are system-defined and maintained attributes rather than user-
defined as in spatial databases. In a temporal database of some flavor (e.g. historical), every relation
has these (e.g. valid time) attributes. This makes sense, since time is a universal concept that applies
to all facts in a database. Because time is so general that it affects all facts of the database, it definitely
makes sense to let the system deal with it as far as possible automatically. Hence the user does not
have to specify time attributes when creating a new relation schema, and in querying, a lot of effort
has been invested to make sure that these system-maintained attributes behave naturally. For example,
performing a join on two tables, the system automatically puts only tuples together that are valid at the
same time. Also, if the user is not interested in the time aspects and does not mention them in a query,
the behavior should be consistent with that of a standard database (these issues are known as upward
compatibility, snapshot reducibility, support of legacy applications, etc. [BJ96]).

Because a user does not declare and see explicit time attributes, there is no big incentive to offer e.g.
time intervals with a number of operations in the style of abstract data types that would then be used
like other data types in querying (although some work in this direction exists [Lo93]). Rather, special
query language extensions are provided to allow the user to refer to and describe relationships
between the implicit time attributes.

If we try to extend this approach in a straightforward way to integrate space, we could add a system-
maintained spatial attribute (e.g. a region) to each tuple. But what would that mean? To be consistent
with the fact-based interpretation, it should mean that this is the region in space where this fact is true.
There may be a few applications with facts whose truth varies over space. But the vast majority of
facts is independent of space. Hence on the whole, it does not seem the right approach to associate a
system-defined spatial attribute with each tuple.

We have discussed only the perhaps most popular approach of using tuple time stamps. There is also
work in temporal databases proposing attribute time stamps, that is, describe the development of an
attribute value by giving a set of (time-interval, value) pairs, or a sequence of (time, value) pairs
[CC87, GV85, Ga88]. In fact, at an abstract level these approaches view attribute values as functions
from time into some domain, as we do here. Hence this is not so far from our proposal of spatio-
temporal data types. Also the time sequences approach [SS87] appears much more closely related
than tuple time stamps.

3.2 Why Not Just Use “Temporal Databases With Spatial Data Types”

Here the idea is quite simple: take any temporal data model or DBMS with its system-maintained time
attribute(s), and enhance it by offering spatial data types with operations to be used as user-defined
attributes, as in spatial databases. For example, we may have a valid-time relation:

country (name: string | area: region || from | to)
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Each tuple describes the extent of a country during a certain period of time. Whenever a country’s
boundaries change, this is recorded in another tuple.

This is something like the cross product of temporal and spatial databases. Capabilities of spatial and
temporal systems are combined without any specific integration effort. This approach is natural and
reasonable, and it appears that its technology is already well-understood, as techniques from the two
fields can be used. However, it is limited to certain classes of spatio-temporal applications and also
has some other drawbacks, as we will see. As far as data modeling is concerned, this kind of model
can essentially describe stepwise constant values. To understand its scope, let us first introduce a
classification of spatio-temporal applications.

3.2.1 Classes of Applications

We characterize applications with respect to their “shape” in the three-dimensional space (2D space,
time). For example, (point, point) means a point in space and a point in time.

(1) Events in space and time – (point, point). Examples are archeological discoveries, plane
crashes, volcano eruptions, earth quakes (at a large scale where the duration is not relevant).

(2) Locations valid for a certain period of time – (point, interval). Examples are: cities built
at some time, still existing or destroyed; construction sites (e.g. of buildings, highways);
branches, offices, plants, or stores of a company; coal mines, oil wells, being used for some
time; or “immovables”, anything that is built at some place and later destroyed.

(3) Set of location events – sequence of (point, point). Entities of class (1) when viewed
collectively. For example, the volcano eruptions of the last year.

(4) Stepwise constant locations – sequence of (point, interval). Examples are: the capital of a
country; the headquarter of a company; the accomodations of a traveler during a trip; the trip
of an email message (assuming transfer times between nodes are zero).

(5) Moving entities – moving point. Examples are people, planes, cars, etc., see Table 1.
(6) Region events in space and time – (region, point). E.g, a forest fire at large scale.
(7) Regions valid for some period of time – (region, interval). For example, the area closed

for a certain time after a traffic accident.
(8) Set of region events – sequence of (region, point). For example, the Olympic games

viewed collectively, at a large scale.
(9) Stepwise constant regions – sequence of (region, interval). For example, countries, real

estate (changes of shape only through legal acts), agricultural land use, etc.
(10) Moving entities with extent – moving region. For example, forests (growth); forest fires at

small scale (i.e. we describe the development); people in history; see Table 1.

3.2.2 Suitability of this Approach

As far as describing the structure of data is concerned, the approach of using “temporal databases with
spatial data types” (SDT-TDB for short) can naturally describe application classes (1) through (4) and
(6) through (9). But it cannot capture any kind of movement, that is, classes (5) and (10). On the
other hand, our proposal of spatio-temporal data types is entirely general and can easily describe all
ten classes of applications.
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If we consider operations on data, then SDT-TDBs have difficulty to support queries that refer to the
development of an entity over time, for example, “What was the largest extent of a country ever?” or
“Find travelers that move frequently!”. Such questions have to be translated into operations on sets of
tuples, and the first step is always to retrieve all tuples describing the entity. Apart from being
inefficient, defining operations on sets of tuples and integrating these into a query language as well as
into query processing is difficult. Viewing the time-dependent geometry as an entity and an ADT as
we propose seems much cleaner and simpler.

There is also a problem if the object with the stepwise constant spatial attribute changes frequently
with respect to other attribute values. In that case, a fresh version of the tuple needs to be created
whenever the other attribute value changes. Traditional temporal database research has assumed that
attribute values have small representations. This is not true for spatial entities, which may have quite
large descriptions. Hence if we keep many copies of the spatial attribute, just because another attribute
changes, then a lot of storage is wasted. One can try to avoid this by vertical decomposition of such
relations, but this, of course, has also its drawbacks, as joins are needed to put tuples together again.

In summary, this approach is valid and can support some applications, but also has its problems.
Spatio-temporal data types support in addition all kinds of movements, and avoid the mentioned
problems. So they seem preferable even for those applications that can be treated with SDT-TDBs.

3.3 Abstract vs. Discrete Modeling

What does it mean to develop a data model with spatio-temporal data types? Actually, this is a design
of a many-sorted algebra. There are two steps:

1. Invent a number of types and operations between them that appear to be suitable for que-
rying. So far these are just names, which means one gives a signature. Formally, the signa-
ture consists of sorts (names for the types) and operators (names for the operations).

2. Define semantics for this signature, that is, associate an algebra, by defining carrier sets for
the sorts and functions for the operators. So the carrier set for a type t contains the possible
values for t, and the functions are mappings between the carrier sets.

For a formal definition of many-sorted signature and algebra see [EM85] or [Gü93]. Now it is
important to understand that one can make such designs at two different levels of abstraction, namely
as abstract or as discrete models.

3.3.1 Abstract Models Are Simple …

Abstract models allow us to make definitions in terms of infinite sets, without worrying whether finite
representations of these sets exist. This allows us to view a moving point as a continuous curve in the
3D space, as an arbitrary mapping from an infinite time domain into an also infinite space domain.
All the types that we get by application of the type constructor τ are functions over an infinite domain,
hence each value is an infinite set.

This abstract view is the conceptual model that we are interested in. The curve described by a plane
flying over space is continuous; for any point in time there exists a value, regardless of whether we
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are able to give a finite description for this mapping (or relation). In Section 2 we have in fact descri-
bed the types mentioned under this view. In an abstract model, we have no problem in using types
like “moving real”, mreal, and operations like

mpoint × mpoint → mreal mdistance

since it is quite clear that at any time some distance between the moving points exists (when both are
defined). It is also easy to introduce an operation velocity:

mpoint  → mpoint velocity

This is just the derivative of the time-dependent vector ��
K
r t( )giving the position of the moving point,

that is, 
��
∂
∂t

r t
K
( ), usually denoted as ��

K̇
( )r t , which is a time-dependent vector again and hence matches

the type mpoint.

Defining formally an algebra for an abstract model looks as follows. As mentioned above, we need to
define carrier sets for the types (sorts) and functions for the operators. For a type t, we denote its
carrier set as At and for an operator op the function giving its semantics as fop. We consider the
following example signature:

sorts point, time, real, mpoint, mreal
operators

mpoint × time → point attime
mpoint × mpoint → mreal mdistance

Here attime is the operation that gives us the position of the moving point at the specified time. We
first define the carrier sets:

Apoint := IR2 ∪ {⊥}

Atime := IR ∪ {⊥}

Areal := IR ∪ {⊥}

Ampoint := {f | f: Atime → Apoint  is a function}

Amreal := {f | f: Atime → Areal  is a function}

So a point is an element of the plane over real numbers, or undefined.4 For the “moving” types one
could also provide a single generic definition based on the type constructor τ introduced in Section 2:

∀α ∈ {point, real, …}: Aτ(α)  := {f | f: Atime → Aα is a function}

Functions are defined as follows. Let r, s be values of type mpoint and t a time.

fattime (r, t) := r(t)

fmdistance (r, s) := 

4 We include the value ⊥ (undefined) into all domains to make the functions associated with operators complete. This

is more practical than have the system return an error when evaluating a partial function.
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g: Atime → Areal such that g(t) = 
d r t s t r t s t( ( ), ( )) ( ) ( ) if 

otherwise⊥
≠ ⊥ ∧ ≠ ⊥⎧

⎨
⎩

where d(p, q) denotes the Euclidean distance between two points in the plane.

So abstract models are conceptually simple and their semantics can be defined relatively easily. Again,
this simplicity is due to the fact that we admit definitions in terms of infinite sets and functions without
worrying whether finite representations exist.

3.3.2 … But Only Discrete Models Can Be Implemented

The only trouble with abstract models is that we cannot store and manipulate them in computers. Only
finite and in fact reasonably small sets can be stored; data structures and algorithms have to work with
discrete (finite) representations of the infinite point sets. From this point of view, abstract models
are entirely unrealistic; only discrete models are usable.

This means we somehow need discrete models for moving points and moving regions as well as for
all other involved types (mreal, region, …). We can view discrete models as approximations, finite
descriptions of the infinite shapes we are interested in. In spatial databases there is the same problem
of giving discrete representations for in principle continuous shapes; there almost always linear
approximations have been used. Hence, a region is described in terms of polygons and a curve in
space (e.g. a river) by a polyline. Linear approximations are attractive because they are easy to handle
mathematically; most algorithms in computational geometry work on linear shapes such as rectangles,
polyhedra, etc. A linear approximation for a moving point is a polyline in 3D space; a linear approxi-
mation for a moving region is a set of polyhedra (see Figure 2). Remember that a moving point can be
a partial function, hence it may disappear at times, the same is true for the moving region.
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Figure 2: Discrete representations for moving points and moving regions

Defining formally an algebra for a discrete model means the same as for the continuous model: Define
carrier sets for the sorts and functions for the operators. We consider a part of the example above:
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sorts point, time, real, mpoint
operators

mpoint × time → point attime

Type mreal and operator mdistance have been omitted; for good reason, as we will see. Carrier sets
can be defined as follows:

Apoint := Dpoint ∪ {⊥} where Dpoint = real × real

Atime := Dtime ∪ {⊥} where Dtime = real

Areal := real ∪ {⊥}

Ampoint := {<(p1, t1, b1, c1), …, (pm, tm, bm, cm)> | m ≥ 0,

( ∀ ≤ ≤1 i m : pi ∈ Dpoint , ti ∈ Dtime , bi ∈ bool, ci ∈ bool),

( ∀ ∈ …i j m, { , , }:     1  i j t ti j< ⇒ <  ) }

A few explanations are needed. Here by “real” and “bool” we mean data types offered by a program-
ming language. We have introduced names for the defined part of a carrier set, e.g. Dpoint. A moving
point is represented by a sequence of quadruples. The sequence may be empty; this will mean that the
position is undefined at all times. Each quadruple contains a position in space pi and a time ti. It also
contains a flag bi which tells whether the point is defined at times between ti and ti+1 (bi = true). This
allows for the representation of partial functions (of the conceptual level). Finally, there is a flag ci

which states whether between ti and ti+1 a stepwise constant interpretation is to be assumed, i.e., the
point stayed in pi, did not move (ci = true), or linear interpolation, i.e., a straight line between pi and
pi+1, is to be used (ci = false). This representation has been chosen in order to support all classes of
applications for moving points (1) through (5) of Section 3.2.1, e.g. unique events, stepwise constant
locations, etc.

The intended meaning of the structure that we have just described needs of course to be formalized.
This is exactly the semantics of the operator attime:

Let r be a value of type mpoint and t a time value. Let r = <(p1, t1, b1, c1), …, (pm, tm, bm,
cm)> for some m ≥ 0.

fattime (r, t) :=

⊥
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where lin p t p t t( ,  ,  ,  ,  )1 1 2 2 is a function that performs linear interpolation (puts a line through
the two points (p1, t1) and (p2, t2) in 3D space and returns the point p on the line at time t).

One can observe that definitions for the discrete model are considerably more complex than those for
the abstract model. On the other hand, they can be translated into data structures and algorithms which
is not the case for the abstract model.

Apart from complexity, there are other difficulties with discrete modeling. Suppose we wish to define
the type mreal and the operation mdistance. What is a discrete representation of the type mreal ?
Since we like linear approximations for the reasons mentioned above, the obvious answer would be to
use a sequence of pairs (value, time) and use linear interpolation between the given values, similarly
as for the moving point. Then an mreal value would look as shown in Figure 3. (For one-dimen-
sional values depending on time it is more natural to use a horizontal time axis.)

t

v

Figure 3: Discrete model of a moving real

If we now try to define the mdistance operator

mpoint × mpoint → mreal mdistance

we have to determine the time-dependent distance between two moving points represented as poly-
lines. To see what that means, imagine that through each vertex of each of the two polylines we put a
plane t = ti parallel to the xy-plane. In three dimensions this is hard to draw; so we show it just in the
x and t dimensions in Figure 4a. Within each plane t = ti we can easily compute the distance; this will
result in one of the vertices for the resulting mreal value. Between two adjacent planes we have to
consider the distance between two line segments in 3D space (see Figure 4b). However, this is not a
linear but a quadratic function (moving along the time axis, the distance may decrease and then
increase again).

t

x         x

y

t

(a) (b)

Figure 4: (a) Laying planes through vertices of a moving point; (b) two segments passing in 3D
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This is annoying, especially since the minimal distance between two moving points can be much
smaller than the distance measured in any of the planes t = ti. Hence using just these measurements as
vertices for the moving real and then use linear interpolation would lead to quite wrong results. What
can be done? One can either stick with linear interpolation and then add as vertices the focal points of
the parabolas describing the time-dependent distance between two planes. In this way at least the
minimal distance would not be missed. However, then the discrete model would already be incon-
sistent in itself, as the behavior of the distance between the two polylines is not correctly represented.
An alternative would be to define the discrete model for the moving real in such a way, that it contains
parameters for quadratic functions between two vertices. But this immediately raises other questions.
Why just quadratic functions motivated by the mdistance operation, perhaps other operations need
other functions? Should we allow parameters for polynomials? Up to what degree? Storing these
parameters is expensive. And all kinds of operations that we need on moving reals must then be able
to deal with these functions.

We have discussed this example in some detail to make clear what kind of nasty problems arise in
discrete modeling that we simply do not see in abstract modeling. This is certainly not the only
example, we will discuss a similar problem below. Nevertheless, only discrete models are (directly)
implementable.

3.3.3 Both Levels of Modeling Are Needed

We conclude that both levels of modeling are indispensable. For the discrete model this is clear
anyway, as only discrete models can be implemented. However, if we restrict attention directly to
discrete models, there is a danger that a conceptually simple, elegant design of query operations is
missed. This is because the representational problems might lead us to prematurely discard some
options for modeling.

For example, from the discussion above one might conclude that moving reals are a problem and no
such type should be introduced. But then, instead of operations minvalue, maxvalue, etc. on moving
reals one has to introduce corresponding operations for each time-dependent numeric property of a
moving object. Suppose we are interested in distance between two moving points, speed of a
moving point, and size and perimeter of a moving region. Then we need operators mindistance,
maxdistance, minspeed, maxspeed, and so forth. Clearly, this leads to a proliferation of operators
and to a bad design of a query language. So the better strategy is to start with a design at the abstract
level, and then to aim for that target when designing discrete models.

3.4 Discrete Models: Observations vs. Description of Shape

Looking at the sequence of 3D points describing a moving point in a discrete model, one may believe
that these are observations of the moving object at a certain position at a specific time. This may or
may not be the case. Our view is that it is, first of all, an adequate description of the shape of a conti-
nuous curve (i.e., an approximation of that curve). We assume that the application has complete
knowledge about the curve, and puts into the database a discrete description of that curve.
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What is the difference to observations? Observations could mean that there are far too many points in
the representation, for example, because a linear movement over an hour happens to have been
observed every second. Observations could also be too few so that arbitrarily complex movements
have happened between two recorded points; in that case our (linear or other) interpolation between
these points could be arbitrarily wrong. Hence we assume that the application, even if it does make
observations, employs some preprocessing of observations and also makes sure that enough observa-
tions are taken. Note that it is quite possible that the application adds points other than observations to
a curve description, as it may know some physical laws governing the movements of this particular
class of objects.

The difference in view becomes even more striking if we consider moving regions. We require the
application to have complete knowledge about the 3D shape of a moving region so that it can enter
into the database the polyhedron (or set of polyhedra) as a good approximation. In contrast,
observations could only be a sequence of region values. But whereas for moving points it is always
possible to make a straight line interpolation between two adjacent positions, there is no way that a
database system could, in general, deduce the shape of a region between two arbitrary successive
observations. For example, two observations may look as shown in Figure 5. This region has split
and one of the resulting parts has developed a hole.

x

y

t

Figure 5: Two observations of a moving region

Hence, it is the job of the application to make enough observations and otherwise have some know-
ledge how regions of this kind can behave and then apply some preprocessing in order to produce a
reasonable polyhedral description. How to get polyhedra from a sequence of observations, and what
rules must hold to guarantee that the sequence of observations is “good enough” may be a research
issue in its own right. We assume this is solved when data are put into the database.

3.5 Discrete Models: Linear vs. Nonlinear Functions for Shape Description

In a discrete model one can describe the shape of a continuous curve (e.g. a moving point) by either
linear functions (a polyline) or other functions. In Section 3.3.2 we have explained why linear
functions are attractive, and we have used linear interpolation in the example model. However, it is
also possible to use, for example, higher order polynomials, and this has also certain advantages.

Technically, the model of Section 3.3.2 describes a moving point by a sequence of 3D points, and
uses linear interpolation between two adjacent points. But this is entirely equivalent to a model which
decomposes the time axis into a sequence of time intervals, and describes the curve within each time
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interval by giving (the parameters of) a linear function. That is, one interval could be described as
([t', t"], a, b, c, d), meaning that the curve within the interval [t', t"] is r(t) = (x(t), y(t)) with x(t) =
at + b, y(t) = ct + d. Similarly, one could use in the model (and later store in a data structure)
parameters of other functions.

Whereas in any case we are using a piece-wise approximation of the curve to be described, an advan-
tage of higher-order polynomials could be that less pieces are needed, and that perhaps the appro-
ximation of the curve within each piece (time interval) could be more precise. Also, linear appro-
ximations are a bit unnatural for describing movements. Firstly, movements in most cases do not have
sudden bends. Second, if we compute the derivative of linear functions for operations like speed
(returning an mreal) or velocity (returning an mpoint), then we get stepwise constant results. If we
take the derivative of such a result again (acceleration), it is either 0 (within time intervals) or infinite
(at interval boundaries). All of this is quite unnatural.

An interesting option might be to allow piece-wise description by (up to) cubic polynomials. They
have enough parameters (four) so that one can select independently two slopes and two positions at
interval boundaries (see Figure 6). This allows one to describe bends in such a way that the first
derivative (speed, velocity) is continuous.
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Figure 6: Fitting a curve at the boundaries of a time interval

Remember that it is the application’s task to produce a good description of the curve, hence we
assume here that the application would determine the time intervals as well as the parameters within
each time interval and then put this into the database.

Whereas such a model would offer a more natural description of movement and speed, it is not clear
into which difficulties it might lead in terms of definition of functions for other operations and of
algorithms. Note that the curve so described is the “semantics” of the moving point, and all operations
have to be formulated in terms of the positions on that curve. For example, we have to compute the
mdistance between two moving points on the curves, or compute the part of the curve inside a
polyhedron for the visits operation of Section 2. As mentioned before, most algorithms in computa-
tional geometry deal with linear shapes.

3.6 Relationship with the Constraint Database Approach

Following the seminal paper by Kanellakis, Kuper, and Revesz [KKR90, KKR95], the constraint
database approach has gained a lot of interest, especially as a theoretically well-founded basis for spa-
tial modelling and querying. The basic idea is that a spatial object is a, usually infinite, point set in a k-
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dimensional space, in other words, a possibly infinite k-ary relation. One would like to describe
manipulation of spatial objects (e.g.., predicates, operations of spatial data types) as queries on these
infinite relations described in one of the well-studied formalisms for querying relational databases
such as relational algebra or calculus. Of course, directly manipulating infinite relations is impossible
(quite similar to our discussion in Section 3.3); hence finite representations are needed. The idea is to
describe the points/tuples belonging to an infinite relation by a formula of some logical theory. Hence
a spatial object is represented as a set

{(x1, …, xk) | ϕ(x1, …, xk)}

where x1, …, xk are real variables occurring free in formula ϕ. Formula ϕ is in general a disjunction
of conjunctions of constraints. Such a conjunction of constraints is called a generalized tuple, ϕ as a
whole a generalized relation. For example, a generalized tuple may have the form x + 2y ≤ 3 ∧ x > 8
which can be viewed as a generalization of a “classical” tuple name = “Smith” ∧ age = 32, describing
a single point. Various classes of constraints with different expressive power have been studied, for
example, polynomial constraints [KKR95, PVV94] or linear (polynomial) constraints (e.g. [VGV95,
GRSS97, BBC97]). Note that with linear constraints, each constraint represents a hyperplane (=) or
halfspace (<, ≤, >, ≥); a conjunction of constraints can represent a point, part of a hyperplane, or a
convex polytope. Hence a generalized relation can represent basically any linear shape, e.g. a union of
convex polytopes.

For querying, for example a symbolic relational algebra can be defined [GRSS97] which expresses
the classical operations to be applied to the “semantic” infinite relations in terms of corresponding
constraint manipulations. For example, σF(R) where F is a conjunction of constraints, is applied to a
generalized relation R by conjuncting F to each tuple in R.

How does this compare to the ADT approach used in spatial databases and also proposed in this paper
for ST data bases? With the ADT approach, one tries to identify some basic abstractions (e.g. point,
region) and to capture them in data types. One considers operations that appear to be basic, and tries
to maintain closure properties (e.g. union, intersection and difference of the underlying point sets).
Topological, direction, or distance relationships are introduced as far as they seem relevant. Semantics
of types and operations are defined using some “unrestricted” mathematical notation. Data structures
and algorithms for the operations are selected independently; they are not automatically derived from
the semantics definition. In a system, mentioning an operation in a query leads rather directly to the
selection of a corresponding algorithm for the query plan.

In contrast, constraint databases offer essentially a single type geometry represented as a generalized
relation; this type can represent arbitrary shapes in k dimensions. The way operations are determined
in designs of spatial algebras are criticized as being ad-hoc; here relational calculus or algebra are
viewed as more appropriate theoretically well-founded formalisms. In designing a spatial algebra one
can identify an operation of interest, and then describe its semantics with essentially “unlimited
expressive power” (since arbitrary mathematics can be used); on the other hand, the user of such a
design is restricted to the operations offered in formulating queries. In contrast, in constraint
databases manipulations are restricted to what the given formalism offers (e.g. linear calculus or
algebra in [VGV95]). For example, one cannot express distance computations or connectivity
predicates [GRS98]. But then, one has a clear picture of the expressive power of this language.
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Another aspect is that users would like to formulate queries in terms of simple, natural concepts and
relationships such as inside or adjacent rather than encode these concepts in operations of the
constraint language.

Recently the trend in constraint database research has been to acknowledge that certain operations are
needed that cannot be expressed in the given formalism, and to add these as external functions
[BBC97] or primitives [GRS98], and also to add macro operations, which are operations of interest
at the user level which are expressible, but complex, in the formalism.

In conclusion, it seems that the two approaches can very well augment each other. Constraint
databases have advantages in their dimension-independence and more systematic expressive power.
The ADT approach offers a clear picture of what operations are needed at the user level, can offer any
kind of operation perceived as needed, and can link these directly to efficient algorithms.

4 Related Work

For several years researchers both in the spatial and in the temporal community have recognized the
need of a simultaneous treatment and integration of data with spatial and temporal features in data-
bases. A comprehensive bibliography on spatio-temporal databases until 1994 is given in [ASS94].
Many of its articles document the interaction of space and time through application examples. But
nevertheless, up to now research on models for spatio-temporal databases is still in its infancy.

Most of the research on this topic has focused on the extension of specialized spatial or temporal
models to incorporate the other dimension. Most modeling approaches adopt the snapshot view, i.e.,
represent space-time data as a series of snapshots. Gadia et al. [GCT93] propose time- and space-
stamping of thematic attributes as a method to capture their time- and space-varying values. The time
dimension describes when an attribute value is valid, and the spatial dimension expresses where it is
valid. While each value has always a temporal evolution, it is doubtful whether it always has a spatial
aspect, as discussed in Section 3.1. Worboys [Wo94] defines spatio-temporal objects as so-called
spatio-bitemporal complexes. Their spatial features are given by simplicial complexes; their temporal
features are described by bitemporal elements attached to all components of simplicial complexes. In
[CT95] and [PD95] event-based approaches for ST databases are proposed. Events indicate changes
of the locations and shapes of spatial objects and trigger the creation of new versions in the database.
All these approaches are only capable of modeling discrete or stepwise constant but not continuous
temporal evolutions of spatial data.

Yeh and Cambray [YC93, YC95] emphasize some aspects also mentioned in our paper. Since spatial
data over time can be highly variable, they consider a continuous view of these data as indispensable
and a snapshot view as inappropriate. So-called behavioral time sequences are introduced. Each
element of such a sequence contains a geometric value, a date, and a behavioral function, the latter
describing the evolution up to the next element of the sequence. Examples of such user or predefined
functions are punctual functions, step functions, linear functions, and interpolation functions. A 2D
object evolving in the course of time is described by a 3D object. Boundary representation is used to
represent a solid as a union of faces. While there are some similar ideas, they have no notion of
abstract spatio-temporal data types with operations.
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An interesting proposal that directly addresses moving objects is given in [SWC+97]. Here a moving
object, e.g. a car or plane, is described by a so-called dynamic attribute. A dynamic attribute con-
tains a motion vector and can describe the current status of a moving object (e.g. heading in a certain
direction at a certain speed). An update to the database can change this motion vector (e.g. when a
plane takes a turn). In this model a query will return different results when posed at different times;
queries about the expected future are also possible. This model is geared towards vehicle tracking
applications; in contrast to our proposal attributes do not contain the whole history of a moving object.

Work in constraint databases generally applies to spatio-temporal settings as arbitrary shapes in
multidimensional spaces can be described. Two papers that explicitly deal with spatio-temporal
examples and models are [GRS98, CR97].

Several papers in the GIS literature study storage schemes for stepwise changing region values
[Kä94, Pr89, RYG94, BM78]. The general idea is to use a start version and then record the changes.

Some work addresses spatio-temporal modeling within multimedia documents. In [VTS97] the
assumption is that objects are rectangles that appear for some time related spatially and/or temporally
with other objects. The temporal relationships are represented by a set of operators that apart from the
relationship maintain its causality. This model does not cover motion and does not address arbitrary or
changing object shapes. In [NNS97] a model for moving objects in a multimedia scene is proposed.
Objects are represented in terms of their trajectory, as discrete snapshots. A set of objects comprises a
scene represented as a graph. Edges between object nodes are labeled by spatio-temporal relation-
ships. This model focuses on considering whole scenes and also the evolvement of relationships
between objects. It also does not address changes in the shape of objects.

Computational geometry has also shown interest in time-varying spatial objects. For instance, [AR92,
FL91, GMR91] deal with Voronoi diagrams of moving points. The task is to maintain the Voronoi
diagram when a set of points is moving continuously over time.

5 Conclusions and Future Work

We have proposed a new approach to the modeling and implementation of spatio-temporal database
systems based on spatio-temporal data types. This approach allows an entirely general treatment of
time-changing geometries, whether they change in discrete steps, or continuously. Hence in contrast
to most other work it also supports the modeling and querying of moving objects. Spatio-temporal
data types can be used to extend any DBMS data model, and they offer a clear implementation strategy
as extension packages to extensible DBMSs.

We feel that the paper opens up a new direction of research. As a first step, it is of crucial importance
to clarify the underlying assumptions and to understand the available design options. Besides propo-
sing the approach as such, this is the main contribution of this paper.

The next steps in this approach are the design of an abstract model, then a discrete model based on it,
investigation of efficient data structures and algorithms for the discrete model, and implementation.
We are currently completing the systematic design and formal definition of a system of data types and
operations at the abstract level [GBE+98]. We plan to define a part of this design as a discrete model.
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Our own choice is to use linear descriptions for the mpoint and mregion types as well as for the
spatial types (line, region) but to use (square roots of) quadratic functions for the representation of
moving reals. In this way we can use the standard computational geometry algorithms for linear
shapes, but have representations of time-dependent distances as well as perimeters and sizes of
regions, that are consistent with the linear shapes on which they are based. As far as the design of
data structures and algorithms and implementation are concerned, similar work has been done earlier
for spatial databases in the ROSE algebra [GS95, GRS95].
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