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Abstract

Spatiotemporal pattern queries allow for querying moving objects by their movement profiles.
That is, one can specify for example temporal order constraints on the fulfillment of predicates on
moving objects. We propose a complete design for spatiotemporal pattern queries in the context
of spatiotemporal DBMSs. The design builds on the well established concept of lifted predicates.
Hence, unlike previous approaches, it is not restricted to specific sets of predicates. It can express
a wide range of spatiotemporal patterns including various types of predicates such as kNN, range,
metric, topological, set operations, aggregations, distance, direction, and boolean operations. Our
design covers the language integration in SQL, the evaluation of the queries, and the integration
with the query optimizer. We also propose a simple language for defining temporal constraints. The
approach allows for queries that were never available. We provide a complete implementation in C++
and Prolog in the context of the SECONDO platform. The implementation is made publicly available
online as a SECONDO Plugin. We have also included in the Plugin automatic scripts for repeating the
experiments in this paper.

1 Introduction

Moving objects are objects that change their position and/ or extent with time. Having the trajectories
of these objects stored in a suitable database system allows for issuing spatiotemporal queries. One can
query, for example, for animals which crossed a certain lake during a certain time or for the total length
of a car trajectory inside a certain zone.

Spatiotemporal pattern queries provide a more complex query framework for moving objects. In
particular, they specify a temporal order among a set of spatiotemporal predicates. They are used to
filter a set of trajectories and pass only those which fulfill a certain relative or exact temporal ordering of
predicates during their movement.

The term Spatiotemporal Patterns (STP) is used in the literature with different meanings. In the
database literature, the research on STP goes in two directions, namely data mining and database query.
Although there is no clear cut between both areas, it happened that the literature clusters itself into these
two classes.

From the data mining perspective, STPs refer to the collective movement behavior, also called group
patterns. The methods analyze simultaneous movements and the interaction between objects (e.g. pat-
terns like leadership, play, fighting, migration, trend-setting, ... etc). The research in this direction aims
at developing a toolbox of data mining algorithms and visual analytic techniques for movement analysis.
For example, algorithms for the flock, leadership, convergence and encounter patterns are presented in
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[13]. More systematically, Dodge et al. [8], presented a classification of the movement patterns. They
gave examples for different classes and referred to relevant mining algorithms in the literature. The next
logical step is to build tools that can, more generally, identify classes of patterns.

In this paper, we are interested in the other perspective. It is focused on the development of query
methods that can be added to extensible spatiotemporal DBMS. These query methods should allow the
user to query for database objects that depict individual spatiotemporal patterns. In this sense, every
object/tuple can individually answer the user query. This is the intuitive way to query the moving objects
by their movement profiles.

The pattern is a set of spatiotemporal predicates that are related to each other by temporal constraints.
For example, suppose predicates P , Q, and R that can hold over a time interval or a single instant. We
would like to be able to express spatiotemporal pattern conditions like the following:

• P then (later) Q then R.

• P ending before 8:30 then Q for no more than 1 hour.

• (Q then R) during P .

The predicates P , Q, R, etc. might be of the form:

• Vehicle X is on road W .

• The extent of the storm area Y is larger than 4 square kms.

• The speed of air plane Z is between 400 and 500 km/h.

The literature in this perspective refers to spatiotemporal patterns using different names:

• They are called spatiotemporal patterns in [9] and [17].

• In [20] they are called inverse elementary queries. They are inverse because the user already knows
how to describe the pattern and wants to retrieve objects depicting the pattern. This is opposite to
looking for a frequent pattern. They are elementary in the sense that one trajectory can individually
answer the query. This is opposite to the synoptic queries that target collective patterns similar to
the data mining approach.

• In [21] they are called trajectory based queries because they rely on sequential information in the
trajectory. This is in contrast to coordinate based queries that concentrate on a single part of the
trajectory.

We call them spatiotemporal patterns (STP). So far, there exist only few proposals for handling STP
queries. A language based approach is proposed by Mouza and Rigaux [19]. They discretize the spatial
space into labeled zones (e.g. a spatial grid), and the temporal dimension into constant-size intervals.
The trajectories are strings of labels that show the visiting order of the cells. The patterns are represented
as regular expressions. Thanks to this representation, the problem of matching a spatiotemporal pattern
is reduced to matching a regular expression against a set of strings. Hadjieleftheriou et. al. [17] propose
efficient algorithms that use a specialized index structure to evaluate STP queries consisting of spatial
and nearest neighbor predicates. Another discussion by Erwig [9] outlines some ideas to extend the
spatiotemporal predicates [11] towards spatiotemporal patterns. We discuss the details and limitations of
these approaches in more detail in Section 6.

Our contributions are the following:
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• We propose a new approach for answering STP queries that is based on a very general and powerful
class of predicates, the so-called lifted predicates [16]. They are very powerful as they are simply
the time dependent version of arbitrary static predicates. Instead of returning a bool value (like
standard predicates) they return a moving(bool ) (a boolean function of time). Our approach allows
one to formulate temporal constraints on the results of arbitrary expressions returning such moving
booleans. Formulating STP queries over lifted predicates allows for a wide range of queries that
are not addressed before.

• Thanks to the clean design, the proposed approach can be easily extended to support more complex
patterns. In Section 5, we describe an extension that further increases the expressive power.

• In contrast to previous work we are able to actually integrate STP queries into the query optimizer.
Obviously for an efficient execution of pattern queries on large databases the use of indexes is
mandatory. In Section 7 we consider how STP queries can be mapped by the query optimizer to
efficient index accesses.

• We propose a simple language for describing the relationship between two intervals (e.g. Allen’s
operators). The language makes it easier, from the user point of view, to express interval relations
without the need to memorize their names.

• We provide the complete implementation for the proposed design in the context of the SECONDO

platform [4]. The implementation is made publicly available as a SECONDO Plugin and can be
downloaded from the Plugin web site [1]. Parallel to this paper, we have written a user manual
describing how to install and run our spatiotemporal pattern algebra within a SECONDO system.

• We also provide automatic scripts to repeat the experiments in this paper. The scripts are installed
during the installation of the Plugin. In Section 11 we describe the detailed procedure to repeat the
experiments. The scripts, together with the well documented source code provided in the Plugin,
allow the readers to explore our approach, further elaborate on it, and compare with other future
approaches.

The rest of this paper is organized as follows. Section 2 gives a brief background about the problem
domain and recalls some necessary definitions from previous work in moving objects databases. In Sec-
tion 3, we outline the proposed approach. Section 4 formalizes the spatiotemporal pattern predicate as a
constraint satisfaction problem. Then we describe the evaluation algorithms. In Section 5, the basic spa-
tiotemporal pattern predicate is extended into a more expressive version. Section 6 reviews the previous
related work. In Section 7 we show how to integrate our approach seamlessely with the query optimizers.
Section 8 is dedicated to the technical aspects of the implementation in the SECONDO framework. The
experimental evaluation is shown in Section 9. In Section 10, we demonstrate two application examples
that emphasize the expressive power of our approach. Section 11 and the Appendices at the end of the
paper describe the experimental repeatability. Finally we conclude in Section 12.

2 Moving Objects Databases

Moving objects can be abstracted as geometries that change their position and/or extent with time. In
previous work [16], [12], and [7], a model for representing and querying moving objects is proposed.
The work is based on abstract data types (ADT). The moving type constructor is used to construct the
moving counterpart of every static data type. Moving geometries are represented using three abstractions;
moving(point), moving(region) and moving(line). Simple data types (e.g. integer , bool , real ) are also
mapped to moving types. In the abstract model [16], moving objects are modeled as temporal functions
that map time to geometry or value. For example, moving points are modeled as curves in the 3D space
(i.e. time to the 2D space).
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In [12] a discrete data model implementing the abstract model is defined. For all data types in the
abstract model, corresponding discrete types whose domains are defined in terms of finite representations
are introduced. In the discrete model, moving types are represented by the sliced representation as units.

Definition 1 A data type moving(α) is a temporally ordered sequence of units. Every unit is a pair (I ,
Instant → α). The semantic of a unit is that at any time instant during the interval I , the value of the
instance can be calculated from the temporal function Instant → α. Units are not allowed to temporally
overlap, yet gaps are possible (i.e. periods during which the value of the object is undefined).

�

The moving(point), for example, is modeled as a temporally ordered list of units. Every unit is a pair
that consists of a time interval and a linear function in time. The semantics of a unit is that the position
of the point at any time instance within the interval is obtained by evaluating the temporal function. This
is illustrated in Figure 1.

Figure 1: The sliced representation of a moving(point)
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The model offers a large number of operations that fall in three classes:

1. Static operations over the non-moving types. Examples are the topological predicates, set opera-
tions and aggregations.

2. Spatiotemporal operations offered for the temporal types (e.g. trajectory of a moving(point), area
of a moving(region)).

3. Lifted operations offered for combinations of moving and non-moving types. Basically they are
time dependent versions of the static operations.

Lifted operations are obtained by a mechanism called temporal lifting. All the static operations de-
fined for non-moving types are uniformly and consistently made applicable to the corresponding moving
types. For example, a static predicate and its corresponding lifted predicate are defined as follows.

Definition 2 A static predicate is a function with the signature

P1 × .... × Pn → bool

where Pi is any static data type (e.g. integer , point , region). �

Example: FernUni inside Hagen.

Definition 3 A lifted predicate is a function with the signature

P1 × .... × Pk× ↑ Pk+1 × ...× ↑ Pn →↑ bool

where ↑ is the moving type constructor. It can be applied to any static data type and returns its moving
counterpart. A lifted predicate is obtained by allowing one or more of the parameters of a static predicate
to be of a moving data type. Consequently, the return type is a moving(bool ), also denoted mbool . �
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Example: Train RE1206 inside Hagen.
The large number of operations in the second and third classes of operations allow for spatiotemporal

queries that involve an arbitrary set of spatiotemporal conditions. They fall short, however, of expressing
a relative temporal order of the conditions. Spatiotemporal pattern predicates (STPP), that we propose
in this paper, allow for expressing such temporal order. The importance of spatiotemporal patterns for
many fields of application is illustrated in [9].

Our design builds on the concept of lifted predicates, hence we can easily leverage a considerable
part of the available infrastructure.

3 Spatiotemporal Pattern Predicates

In this section we describe the proposed model. We do so using a series of definitions with examples.

Definition 4 A predicate alias is a query level unique identifier that identifies a predicate. �

Example: Train RE1206 inside Hagen as RE Hagen Predicate.
We compose the spatiotemporal pattern predicate using a set of lifted predicates. Predicate aliases

are needed to refer to the different lifted predicates in a user query.

Definition 5 A temporal connector is an infix binary predicate/constraint that accepts two mbool pa-
rameters and enforces a certain temporal arrangement between the pairs of their units. The operation has
the signature

mbool × mbool → bool

�

Assume the expression P � Q where P and Q are lifted predicates each returning an mbool value.
Let the set of time intervals of the units during which P is true be called P true and similarly Qtrue for
Q. The temporal connector � is evaluated by calculating the Cartesian product of P true and Qtrue, then
applying the temporal constraint on every pair of time intervals. The temporal connector is satisfied
if one or more pairs satisfy the constraint and we call such a pair a supported assignment. Temporal
connectors can be simple or vectors as shown in Definitions 6, 7.

Definition 6 Simple temporal connectors are temporal connectors that enforce only one interval rela-
tionship. The set of simple temporal connectors is inspired from the 13 Allen’s operators [5] with the
addition that the intervals may degenerate into time instants. Hence 26 simple temporal connectors are
possible. �

We use a simple language for writing the simple connectors. The letters aa denote the begin and end
time instants of the left hand side argument. Similarly bb are the begin and end of the right hand side.
The order of letters describes the constraint, that is, a sequence ab means a < b. The dot symbol denotes
the equality constraint, hence, the sequence a.b means a = b. Table 1 lists the 26 possible temporal
constraints with their graphical illustration.

A temporal connector can alternatively be written as a vector of simple temporal connectors.

Definition 7 A vector temporal connector is a set of simple temporal connectors. Vectors are interpreted
as the disjunction of their constituent simple temporal connectors. Hence 226 vector temporal connectors
are possible. In the following we use the operator vec as a tool for constructing these vectors (e.g.
vec(aabb, abab, a.bab) ). �

Now we define the spatiotemporal pattern predicate.
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Table 1: Simple temporal connectors
Connector Illustration Connector Illustration

Both arguments are intervals (Allen’s operators)
aabb aaaa abba aaaaaaaa

bbbb bbbb
bbaa aaaa a.bab aaaa

bbbb bbbbbbbb
aa.bb aaaa a.bba aaaaaaaa

bbbb bbbb
bb.aa aaaa baa.b aaaa

bbbb bbbbbbbb
abab aaaa aba.b aaaaaa

bbbb bbbb
baba aaaa a.ba.b aaaa

bbbb bbbb
baab aaaa

bbbbbbbb
The LHS argument is an instant

a.abb a bb.a.a a
bbbb bbbb

a.a.bb a bba.a a
bbbb bbbb

ba.ab a
bbbb

The RHS argument is an instant
b.baa aaaa aa.b.b aaaa

b b
b.b.aa aaaa aab.b aaaa

b b
ab.ba aaaa

b
Both arguments are instants

a.ab.b a b.ba.a a
b b

a.a.b.b a
b

Definition 8 A spatiotemporal pattern predicate (STPP) is a triple 〈t, L, C〉 where t is a tuple containing
at least one moving object, L is a set of aliased lifted predicates that apply to the moving object in t and
C is a set of binary constraints. Every binary constraint in C is in the form Li�Lj where � is a temporal
connector (simple or vector). The predicate is fulfilled if and only if the evaluations of the set of aliased
predicates L fulfill all the constraints in C. In SQL, we use the operator pattern to write spatiotemporal
pattern predicates. �

Example: A query for possible bank robbers may look for the cars which entered a gas station, kept close
to the bank for a while, then drove away fast. The query may be written as follows:

SELECT c.licencenumber
FROM cars c, landmark l
WHERE l.type = "gas station" and

pattern([ c.trip inside l.region as gas,
distance(c.trip, bank) < 50.0 as bnk,
speed(c.trip) > 100000 as leaving],

[gas vec(aabb) bnk, bnk vec(abab, aa.bb, aabb) leaving])
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The predicate pattern in this query gets, as input, single tuples from the set of tuples generated by
the SELECT FROM clauses. This is already the first parameter to the STPP. Every tuple contains the
attribute trip, a moving(point) that stores the car’s trajectory. The STPP includes three lifted predicates
with aliases gas, bnk, and leaving, each of which returns a moving(bool ). Two constraints apply to the
lifted predicates; a simple temporal connector between the first and the second predicate, and a vector
temporal connector between the second and third predicate. The first constraint states that the car came
close to the bank after it has left the gas station. The second constraint is a bit more tricky. We wish to say
that the car left the bank area quickly. This means that the car started fast, or may have started normally
and then sped up after a while. Therefore we use a vector temporal connector to state all possibilities.

For syntactic elegance, we allow for defining names for the temporal connectors. Using the let
statement, it is possible to write

let then = vec(abab, aa.bb, aabb);
let later = vec(aabb);

SELECT c.licencenumber
FROM cars c, landmark l
WHERE l.type = "gas station" and

pattern([c.trip inside l.region as gas,
distance(c.trip, bank) < 50.0 as bnk,
speed(c.trip) > 100000 as leaving],

[gas later bnk, bnk then leaving])

4 Evaluating Spatiotemporal Pattern Predicates

The spatiotemporal pattern predicate can be modeled as a Constraint Satisfaction Problem (CSP).

Definition 9 Formally, a constraint satisfaction problem is defined as a triple 〈X, D, C〉, where X is a
set of variables, D is a set of initial domains and C is a set of constraints. Each variable Xi ∈ X has a
non-empty domain Di ∈ D. CSP algorithms remove values from the domains during evaluation once it
is discovered that the values cannot be part of a solution. Each constraint involves a subset of variables
and specifies the allowable combinations of values for this subset. An assignment for a subset of variables
is supported if it satisfies all constraints. A solution to the CSP is in turn a supported assignment of all
variables. �

The definition of CSP maps to the definition of spatiotemporal pattern predicates. The variables map
to the lifted predicates and their evaluations are the variable domains. The temporal connectors are the
constraints, hence only binary constraints (i.e. constraints involving exactly two variables) exist.

A CSP having only binary constraints is called binary CSP and can be represented graphically in a
constraints graph. The nodes of the graph are the variables and the links are the binary constraints. Two
nodes are linked if they share a constraint. The neighborhood of a variable in the constraints graph are
all variables that are directly linked to it. The spatiotemporal pattern predicate is fulfilled if and only if
its corresponding CSP has at least one supported assignment.

CSPs are usually solved using variants of the backtracking algorithm. The algorithm is a depth-first
tree search that starts with an empty list of assigned variables and recursively tries to find a solution (i.e.
a supported assignments of all variables). In every call, backtracking adds a new variable to its list and
tries all the possible assignments. If an assignment is supported, a new recursive call is made. Otherwise
the algorithm backtracks to the last assigned variable. The algorithm runs in exponential time and space.

Constraint propagation methods [6] (also called local consistency methods) can reduce the domains
before backtracking to improve the performance. Examples are the ARC Consistency and Neighborhood
Inverse Consistency (NIC) algorithms. They detect and remove some values from the variable domains
that cannot be part of a solution. Local consistency algorithms do not guarantee backtrack-free search.
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To have the nice property of backtrack-free search one would need to enforce n-consistency (equivalent
to global consistency), which is again exponential in time and space.

The solvers for CSPs assume that the domains of the variables are known in advance. This is,
however, a precondition that we wish to avoid. In STPP, calculating the domain of a variable is equivalent
to evaluating the corresponding lifted predicate. Since this can be expensive, we wish to delay the
evaluation of the domains.

The proposed algorithm Solve Pattern tries to solve the sub-CSP of k − 1 variables (CSPk−1) first
and then to extend it to CSPk. Therefore, an early stop is possible if a solution to the CSPk−1 cannot
be found.

It uses three data structures: the SA list (for Supported Assignments), the Agenda and the Constraint
Graph. The Agenda keeps a list of variables that are not yet consumed by the algorithm. One variable
from the Agenda is consumed in every iteration. Every supported assignment in the SA list is a solution
for the sub-CSP consisting of the variables that have been evaluated so far. In iteration k there are k − 1
previously evaluated variables and one newly evaluated variable (Xk with domain Dk). Every entry in
SA at this iteration is a solution for the CSPk−1. To extend the SA, the Cartesian product of SA and
Dk is calculated. Then only the entries that constitute a solution for CSPk are kept in SA. CSPk is
constructed using the consumed variables and their corresponding constraints in the constraint graph.

Algorithm Solve Pattern
input: variables, constraints
output: whether the CSP consistent or not

1. Clear SA, Agenda and Constraint Graph

2. Add all variables to Agenda

3. Add all constraints to the Constraint Graph

4. WHILE Agenda not empty

(a) Pick a variable Xi from the Agenda

(b) Calculate the variable domain Di (i.e. evaluate the
corresponding lifted predicate)

(c) Extend SA with Di

(d) IF SA is empty return NotConsistent

5. return Consistent

Algorithm Extend
input: i, Di; the index and the domain of the newly evaluated variable

1. IF SA is empty

(a) FOREACH interval I in Di

i. INSERT a new row sa in SA having sa[i]= I and
undefined for all other variables

ELSE

(a) set SA = the Cartesian product SA × Di

(b) Construct the subgraph CSPk that involves the
variables in SA from the Constraint Graph.

(c) FOREACH row sa in SA

i. IF sa does not satisfy the CSPk, remove sa from SA
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The methodology for picking the variables from the Agenda has a big effect on the run time. The
best method will choose the variables so that inconsistencies are detected soon. For example, suppose an
STPP having four predicates with aliases u, v, w, and x. The constraints are u vec(abab) x, v later x,
and w vec(bb.a.a) x. If the variables are picked in sequential order u, v, w, then x, the space and time
costs are the maximum. Since u, v, and w are not connected by any constraints, the SA is populated by
the Cartesian product of their domains in the first three iterations. The actual filter to SA starts in the
fourth iteration after x is picked.

The function that picks the variables from the Agenda chooses the variables according to their con-
nectivity rank in the Constraint Graph. The connectivity rank of a variable is the summation of its
individual connectivities in the Constraint Graph. If a given variable is connected to an Agenda variable
with a constraint, it gets 0.5 connectivity score for this constraint. This means that evaluating this vari-
able contributes 50% in evaluating the constraint because the other variable is still not evaluated. If the
other variable in the constraint is a non-Agenda variable (i.e. a variable that is already evaluated), the
connectivity score is 1. Back again to the example, in the first iteration, the variables u, v, and w have
connectivity ranks of 0.5, whereas x has 1.5. Therefore, x is picked in the first iteration. In the second
iteration u, v, and w have equal connectivity ranks of 1, so the algorithm picks any of them.

This variable picking methodology tries to maximize the number of evaluated constraints in every
iteration with the hope that they filter the SA list and detect inconsistencies as soon as possible.

The time cost of the Solve Pattern algorithm is

n∑

i=1

i∏

k=1

dk × ek

where n is the number of variables, dk is the number of values in the domain of the kth variable and ek

is the number of constraints in CSPk. The storage cost is

n∑

i=1

i∏

k=1

dk

The algorithm runs in O(edn) and takes O(dn) space.
The exponential time and space costs are not prohibitive in this case. This is because the calculations

done within the iterations are simple comparisons of time instances. Moreover, the number of variables
in an STP query is expected to be less than 8 in the normal case. The Solve Pattern algorithm is more
focused on minimizing the number of evaluated lifted predicates (statement 4.b of the algorithm). The
cost of evaluating the lifted predicates varies, but it is expected to be expensive because the evaluation
usually requires retrieving and processing the complete trajectory of the moving object. The run time
analysis of many lifted predicates is illustrated in [7].

5 Extending the Definition of STPP

Back to the example of bank robbers, a sharp eyed reader will notice that the provided SQL statement
can retrieve undesired tuples. Suppose that long enough trajectories are kept in the database. A car that
entered a gas station in one day, passed close to the bank in the next day, and in a third day sped up will
be part of the result. To avoid this, we would like to constrain the period between leaving the gas station
till speeding up to be at most 1 hour.

Indeed the proposed design is flexible so that such an extension is easy to integrate. The idea is that
after the STPP is evaluated, the SA data structure contains all the supported assignments. As illustrated
before, a supported assignment assigns an interval to each lifted predicate during which it is satisfied.
At the same time the interval values of all variables satisfy all the constraints in the STPP. Now that we
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know the time intervals, we can impose more constraints on them. For example, we state that the period
between leaving the gas station (first predicate) till speeding up (third predicate) must be at most 1 hour.

To implement the extension, two changes are required:

1. Change step 5 in the Solve Pattern algorithm to return SA.

2. Extend the definition of STPP (Definition 8) by Definition 10.

Definition 10 An extended spatiotemporal pattern predicate, denoted patternex in SQL, is a quadruple
〈t, P, C, f〉 where 〈t, P, C〉 is an STPP and f is a boolean expression that filters the list of supported
assignments SA after solving the STPP. �

The processing of extended STPP is done in two parts that both must succeed. The first part processes
the triple 〈t, P, C〉 as described above. The second part, which is processed only after the success of the
first part, evaluates the boolean expression. Hence, conditions on the list SA are possible.

Syntactically, the user is provided with two functions start and end. They accept a predicate alias
and return the start and end of the assigned interval. Note that SA may include several supported as-
signments. The expression f is tested iteratively against each entry in SA till it is true; otherwise, the
extended STPP fails.

Example: The SQL for the bank robbers example is rewritten as follows:

SELECT c.licencenumber
FROM cars c, landmark l
WHERE l.type = "gas station" and

patternex([c.trip inside l.region as gas,
distance(c.trip, bank) < 50.0 as bnk,
speed(c.trip) > 100000 as leaving],

[gas later bnk, bnk then leaving],
start(leaving) - end(gas) < 1)

More complex conditions can be issued in the second part. The time intervals can be used, for
example, to retrieve parts from the moving object trajectory to express additional spatial conditions. For
example, the query for possible bank robbers may more specifically look for the cars which entered a gas
station, made a round or more surrounding the bank, then drove away fast. To check that the car made a
round surrounding the bank, a possible solution is to check the part of the car trajectory close to the bank
for self intersection. The query may be written as follows

SELECT c.licencenumber
FROM cars c, landmark l
WHERE l.type = "gas station" and

patternex([c.trip inside l.region as gas,
distance(c.trip, bank) < 50.0 as bnk,
speed(c.trip) > 100000 as leaving],

[gas later bnk, bnk then leaving],
isSelfIntersecting(
trajectoryPart(c.trip, start(bnk), end(bnk))) and

(start(leaving) - end(bnk)) < 1)

where trajectoryPart computes the spatial trajectory of the moving object between two time instants and
isSelfIntersecting checks a line for self intersection.

6 Related Work

Although our technical development is not yet finished, we discuss related work already at this point of
the paper. This is because none of the related work addresses issues of query optimization and system
integration that we study below.
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A theory and a design for spatiotemporal pattern queries, although important, are not yet well estab-
lished. Only few proposals exist. In [19], a model that relies on a discrete view of the spatiotemporal
space is presented. The 2D space is partitioned in a finite set of user defined partitions, called zones.
The time axis is partitioned into constant-sized intervals. Every spatial partition (zone) is given a label.
The trajectories are then represented as strings of labels. If the moving object entered in a zone a, for
example, the character a is appended to its trajectory. If the same object moved to zone b and stayed
there for three time units then the string bbb is appended and so on. The pattern is composed in the user
query as a formal expression, which is then evaluated using efficient string matching techniques.

Their approach is not general in the sense that the space and time have to be partitioned. The par-
titioning depends on the intended application and has to be done in advance. Moreover, only patterns
that describe the change of location of moving points can be expressed. The approach leaves back all
other kinds of predicates (e.g. topological, metric, distance) as well as other types of moving objects
(e.g. moving regions).

In [17], an index structure and efficient algorithms to evaluate STP queries that consist of spatial and
neighborhood predicates is presented. They addressed the problem of conjoint neighborhood queries
(e.g. find all objects that were as close as possible to A at time T1 then were as close as possible to B at
time T2). The two NN conditions in this query have to be evaluated conjointly. In other words, an object
which minimizes the sum of the two distances at the two time points is the answer of this query.

Again the approach addresses only limited kinds of predicates, and handles moving points only.
Moreover, it is not extensible in the context of systems. The evaluation of the predicates (lifted predicates
in our case) is an integral part of the evaluation of the STPP. Hence, the algorithms have to be extended for
every predicate. An extensible design for a DBMS requires separating the evaluation of the predicates
from the evaluation of the STPP. This is not the case in the approach of [17]. On the other hand, the
evaluation of the predicates within the STPP allows for more efficient evaluation. It allows also for the
conjoint neighborhood queries that are not possible in our approach.

The series of publications [10], [11], [9], and [22] provide a concrete formalism for spatiotemporal
predicates and developments. A spatiotemporal development is a composite structure built as an alternat-
ing sequence of spatiotemporal and spatial predicates, and they are themselves spatiotemporal predicates.
They describe the change, wrt. time, in the spatial relationship between two moving objects. Consider,
for example, a moving point MP and a moving region MR. The development MP Crosses MR is
defined as:

Crosses= Disjoint meet Inside meet Disjoint

where meet is a spatial predicate that yields true when its two arguments touch each other, and Disjoint
is a spatiotemporal predicate that yields true when its two arguments are always spatially disjoint. The
spatiotemporal predicates, denoted by being capitalized, differ from the spatial predicates in that, the
former hold at time intervals while the later hold at instants. Spatiotemporal developments consider two
spatiotemporal objects and precisely describe the change in their topological relationship. In this sense,
they can be thought of as describing micro STP.

Complex spatiotemporal developments can be defined by means of regular expressions over other
spatial and spatiotemporal predicates [10], [11]. To evaluate a development for a pair of moving objects,
one has to find a connected alternating sequence of time intervals and instants during which the constitut-
ing sequence of spatiotemporal and spatial predicates hold. If such partitioning of time cannot be found,
the development yields false.

In contrast, our approach does not partition the moving objects. We evaluate the predicates for the
complete movement, by means of lifted predicates, then evaluate the STPP over the resulting moving
booleans. This difference in formalizing STP predicates has the following consequences:

1. The spatiotemporal developments by Erwig and Schneider [10], [11] are capable of describing the
change in the topological relationship between two moving objects (i.e. topological predicates).
They cannot handle other kinds of predicates.
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2. A pattern that is described by a spatiotemporal development is restricted to two moving objects.
A natural way of describing the movement pattern of an object would involve its interactions with
many other objects in the spatiotemporal space. This is inherent to our approach because the lifted
predicate can be independently parameterized.

3. The formalism of spatiotemporal developments requires that the constituting predicates are ful-
filled in a connected sequence of time intervals and instants. Our approach can more freely express
all the possible interval relationships.

4. Spatiotemporal developments, in contrast to our approach, can not express patterns involving non-
spatial moving objects (e.g. moving(integer )).

The first and third limitations of spatiotemporal predicates were partially discussed by Erwig in
[9]. He outlined some ideas (without proposing a full fledged design) to generalize the spatiotempo-
ral developments towards spatiotemporal patterns. The last point shows another kind of patterns that
is not addressed by the three reviewed approaches, that is temporal patterns. It is possible to use a
moving(integer ), for example, to encode the T-shirt number of the player who possesses the ball in a
soccer game. We would like to be able to express patterns on this (e.g. find all the attacks where player
10 passes to 4, then 4 passes to 20). Although such purely temporal patterns (i.e. patterns not involv-
ing moving objects) are not in the focus of our design, they are a nice result of the proposed modular
two steps design. Since the lifted predicate (first step) can process temporal moving objects, the STP
predicate (second step) leverages this capability for free.

Furthermore, the extended STP predicate in Section 5 increases the expressive power by making it
possible for the user to access the fulfillment times of the lifted predicates.

In the other hand, our approach can not currently express repetitions and alternations in the pattern, in
contrast to Mouza and Rigaux [19], and Erwig and Schneider [11]. Difficulties are in the language inte-
gration in SQL, and the modification of our CSP-based evaluation algorithm. We address this limitation
in the future work.

7 Optimizing Spatiotemporal Pattern Predicates

In Section 4 we explained the evaluation of the spatiotemporal pattern predicate. The proposed algorithm
is efficient because it avoids the unnecessary evaluation of lifted predicates. In the context of large-scale
DBMS, this is not enough. Obviously for an efficient execution of pattern queries on large databases
the use of indexes is mandatory. It should be triggered by the query optimizer during the creation of the
executable plans.

In this section, we demonstrate a generic procedure for integrating the STPP with query optimizers.
We do not assume a specific optimizer or optimization technique. The optimizer is however required
to have some basic features that will probably be available in any query optimizer. In the following
subsection, we describe these basic assumptions.

7.1 Query Optimization

A typical query optimizer contains two basic modules; the rewriter and the planner [18]. The rewriter
uses some heuristics to transform a query into another equivalent query that is, hopefully, more efficient
or easier to handle in further optimization phases. The planner creates for the user query (or the rewritten
version) the set of possible execution plans (possibly restricted to some classes of plans). Finally it
applies a selection methodology (e.g. cost based) to select the best plan.

We assume that the query optimizer contains the rewriter and the planner modules. We also assume
that it supports the data types and operations on moving objects, in SQL predicates as described in [16]
and [12].
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7.2 Query Optimization for Spatiotemporal Pattern Predicates

One observation that we like to make clear is that the STPP itself does not process database objects
directly. Instead, the first operation applied is the evaluation of the lifted predicates that compose the
STPP. The idea, hence, is to design a general framework for optimizing the lifted predicates within
the STPP. This framework should trigger the optimizer to use the available indexes for the currently
supported lifted predicates as well as for those that might be added in the future. It should utilize the
common index structures. Although specialized indexes, as in [17], can achieve higher performance,
the overhead of maintaining them within a system is high and they only serve specific purposes, which
makes them unfavorable in the context of systems.

The idea is to add each of the lifted predicates, in a modified form, as an extra standard predicate
to the query, that is, a predicate returning a boolean value. The standard predicate is chosen according
to the lifted predicate, so that the fulfillment of the standard predicate implies that the lifted predicate
is fulfilled at least once. This is done during query rewriting. The additional standard predicates in the
rewritten query trigger the planner to use the available indexes. To illustrate the idea, the following query
shows how the bank robbers query in Section 3 is rewritten.

SELECT c.licencenumber
FROM cars c, landmark l
WHERE l.type = "gas station" and

pattern([c.trip inside l.region as gas,
distance(c.trip, bank) < 50.0 as bnk,
speed(c.trip) > 100000 as leaving],

[gas later bnk, bnk then leaving])
and
c.trip passes l.region and
sometimes(distance(c.trip, bank) < 50.0) and
sometimes(speed(c.trip) > 100000)

The three lifted predicates in the STPP x inside y, distance(x, y) < z, and speed(x)
< y are mapped to the standard predicates x passes y, sometimes(distance(x, y) < z),
and sometimes(speed(x) < y), respectively. Here sometimes(.) is a predicate that accepts a
moving(bool ) and yields true if the argument ever assumes true during its lifetime, otherwise false.
Each of the standard predicates ensures that the corresponding lifted predicate is fulfilled at least once, a
necessary but not sufficient condition for the pattern predicate to be fulfilled. Clearly, the rewritten query
is equivalent to the original query.

The choice of the standard predicate depends on the type of the lifted predicate and the types of the
arguments. For example, the lifted spatial range predicates (i.e. the spatial projection can be described
by a box) are mapped into the passes standard predicate. The passes predicate [16], in this example, is
fulfilled if the car c.trip ever passed the gas station l.region. If passes fails, then we know that
inside is never true and that pattern will also fail. The planner should have for the added passes predicate
already some optimization rule available (e.g. use a spatial R-tree index when available). In Section 9.2.2
we show an optimized query written in the SECONDO executable language.

To generalize this solution, we define a table of mappings between the lifted predicates (or groups of
them) and the standard predicates. Clearly, this mapping is extensible for the lifted predicates that can
be introduced in the future. The mapping for the set of lifted predicates proposed in [16] is shown in
Table 2.

For the lifted spatial range predicates, they map into passes and the available translation rules for
passes do the rest. The distance(x, y) < z is conceptually equivalent to a lifted spatial range predicate,
where the spatial range is the minimum bounding box of the static argument extended by z in every side.
Other types of lifted predicates are mapped into sometimes. We need to provide translation rules that
translate sometimes(.) into index lookups. For every type of lifted predicates, one such translation rule
is required. For example, the sometimes(Pred), where Pred is a lifted left range predicate, searches for a
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Table 2: Mapping lifted predicates into standard predicates.
Lifted Predicates Type Standard Predicates

σ = α lifted spatial σ passes α

mpoint × point → mbool range
mregion × region → mbool

σ inside α

mpoint × region → mbool

mpoint × points → mbool

mpoint × line → mbool

mregion × region → mbool

mregion × points → mbool

mregion × line → mbool

σ intersects α

mregion × points → mbool

mregion × region → mbool

mregion × line → mbool

σ = α lifted equality sometimes(σ = α)
mint × int → mbool

mbool × bool → mbool

mstring × string → mbool

mreal × real → mbool

σ <= α, σ < α lifted left sometimes(σ <= α),
mint × int → mbool range sometimes(σ < α)
mbool × bool → mbool

mstring × string → mbool

mreal × real → mbool

σ >= α, σ > α lifted right sometimes(σ >= α),
mint × int → mbool range sometimes(σ > α)
mbool × bool → mbool

mstring × string → mbool

mreal × real → mbool

distance(σ , α) < threshold lifted spatial σ passes enlargeRect(bbox(α), threshold, threshold)
mpoint × region → mreal range
mpoint × point → mreal

mregion × point → mreal

mregion × region → mreal

Other lifted predicates, P sometimes(P )

B-tree defined on the units of the moving object, and performs a left range search in the B-tree. We show
examples for these translation rules within SECONDO in Section 8.2.

This two steps optimization helps to develop a general framework for optimizing the sometimes(.)
predicate, which may also appear directly in the user queries. Note that we can alternatively rewrite all
lifted predicates into sometimes(.), and provide translation rules accordingly. It remains an implementa-
tion decision, which approach to use.

8 The Implementation in SECONDO

SECONDO [4], [14], [15] is an extensible DBMS platform that does not presume a specific database
model. Rather it is open for new database model implementations. For example, it should be possible to
implement relational, object-oriented, spatial, temporal, or XML models.

SECONDO consists of three loosely coupled modules: the kernel, GUI and query optimizer. The
kernel includes the command manager, query processor, algebra manager and storage manager. The

14



kernel may be extended by algebra modules. In an algebra module one can define new data types and/or
new operations. The integration of the new types and/or operations in the query language is then achieved
by adding syntax rules to the command manager.

The SECONDO kernel accepts queries in a special syntax called SECONDO executable language. The
SQL-like syntax is provided by the optimizer. For more information about SECONDO modules see [4]
and [3]. For more information about extending SECONDO see the documentation on [2].

If it is the case that a new data type needs a special graphical user interface (GUI) for display, the
SECONDO GUI module is also extensible by adding viewer modules. Several viewers exist that can
display different data types. Moving objects, for example, are animated in the Hoese viewer with a time
slider to navigate forwards and backwards.

A large part of the moving objects database model presented in [16], [12], [7], that we also assume
in the paper, is realized in SECONDO. That is, the current SECONDO version 2.9.1 includes the algebra
modules, the viewer modules, and the optimizer support for moving objects. In the following subsections,
we describe the implementation of our STPP in SECONDO 2.9.1. This implementation is available as a
SECONDO Plugin as explained in Section 11.

8.1 Extending the Kernel

We have implemented the STPP in the SECONDO kernel in a new algebra module called STPatternAlge-
bra. The algebra contains:

1. One data type stvector. The class represents the temporal connectors. Simple temporal connectors
are treated as a special case of vector temporal connectors (i.e. vectors having only one element).
The SECONDO operator vec is used to create an stvector instance. The operator accepts a set of
strings from Table 1, and constructs the stvector instance accordingly.

Example: vec("aabb", "a.abb", "a.a.bb").

2. The stconstraint operator. The operator represents a constraint within the STPP. The signature of
the operator is

string × string × stvector → bool

The first and second parameters are the aliases for two lifted predicates.

Example: stconstraint("predicate1", "predicate2", vec("a.a.bb")).

3. The stpattern operator. The operator implements the STPP, Section 4. It has the signature

tuple ×AliasedPredicateList × ConstraintList → bool

where the AliasedPredicateList is a list of lifted predicates, each of which has an alias, and the
ConstraintList is a list of the stconstraint operators.

4. The stpatternex operator. The operator implements the extended STPP, Section 5. It has the
signature

tuple ×AliasedPredicateList × ConstraintList× bool → bool

5. The start and the end operators described in Section 5. They accept a string representing a predi-
cate alias and return the start or end of the corresponding time interval in the SA list. The operators
have the signature

string → instant
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Using these operators, the query for bank robbers can be written in SECONDO executable language
as follows:

query cars feed {c}
landmark feed {l}

filter[.type l = "gas station"]
product
filter[.

stpatternex[gas: .trip c inside .region l,
bnk: distance(.trip c, bank) < 50.0,
leaving: speed(.trip c) > 100000;

stconstraint("gas", "bnk", vec("aabb")),
stconstraint("bnk", "leaving", vec("abab", "aa.bb", "aabb"));

duration2real(start("leaving") - end("gas")) < (1/24) ]]
consume

where feed is a postfix operator that scans a relation sequentially and converts it into a stream of tuples.
The query performs a cross product between the tuples of the cars relation and the tuples of landmark
relation that has the value “gas station” in their type attribute. The resulting tuple stream after the cross
product is filtered using the extended STP predicate stpatternex. Finally, the consume operator converts
the resulting tuple stream into a relation, so that it can be displayed.

8.2 Extending the Optimizer

The SECONDO optimizer is written in Prolog. It implements an SQL-like query language which is trans-
lated into an optimized query in SECONDO executable language. The SECONDO optimizer includes a
separate rewriting module that can be switched on and off by setting the optimizer options. The plan-
ner implements a novel cost based optimization algorithm which is based on shortest path search in a
predicate order graph. The predicate order graph (POG) is a weighted graph whose nodes represent
sets of evaluated predicates and whose edges represent predicates, containing all possible orders of pred-
icates. For each predicate edge from node x to node y, so-called plan edges are added that represent
possible evaluation methods for this predicate. Every complete path via plan edges in the POG from the
bottom-most node (i.e. zero evaluated predicates) till the top-most node (i.e. all predicates evaluated)
represents a different execution plan. Different paths/execution plans represent different orderings of the
predicates and different evaluation methods. The plan edges of the graph are weighted by their estimated
costs, which in turn are based on given selectivities. Selectivities of predicates are either retrieved from
prerecorded values, or estimated by sending selection or join queries on small samples of the involved
relations to the SECONDO kernel and reading the cardinality of the results. The algorithm is described in
more detail in [15] as well as in the SECONDO programmers guide [2].

Our extension to the optimizer has three major parts: query rewriting, operator description, and
translation rules. In the query rewriting, we choose to rewrite all the lifted predicates into sometimes(.).
This is because an accurate rewriting based on the mapping in Table 2 requires that we know the data
types of the arguments. The SECONDO optimizer knows the data types only after query rewriting is done.

Following are the Prolog rules that do the rewriting:

inferPatternPredicates([], []).

inferPatternPredicates([Pred|Preds],
[sometimes(Pred)|Preds2] ):-

assert(removefilter(sometimes(Pred))),
inferPatternPredicates(Preds,Preds2).

where the inferPatternPredicate accepts the list of the lifted predicates within the STPP as a first argu-
ment, and yields the a list of rewritten predicates in the second argument. The additional sometimes(.)
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predicates are kept in the table removefilter(.), so that it is possible to exclude them from the
executable plan afterwards.

In the operator descriptions, we annotated the lifted predicates by their types (e.g. lifted left range)
as in Table 2. Then we provided translation rules for sometimes(.) for every type of lifted predicates.
Following is an example for such a rule:

indexselectLifted(arg(N), Pred ) =>
gettuples(rdup(sort(windowintersectsS(
dbobject(IndexName), BBox))), rel(Name, *))

:-
Pred =..[Op, Arg1, Arg2],
((Arg1 = attr(_, _, _), Attr= Arg1) ;
(Arg2 = attr(_, _, _), Attr= Arg2)),
argument(N, rel(Name, *)),
getTypeTree(Arg1, _, [_, _, T1]),
getTypeTree(Arg2, _, [_, _, T2]),
isLiftedSpatialRangePred(Op, [T1, T2]),
(
( memberchk(T1, [rect, rect2, region, point, line, points, sline]),
BBox= bbox(Arg1)

);
( memberchk(T2, [rect, rect2, region, point, line, points, sline]),
BBox= bbox(Arg2)

)
),
hasIndex(rel(Name, _), Attr, DCindex, spatial(rtree, unit)),
dcName2externalName(DCindex, IndexName).

where this rule translates the lifted spatial range predicates into an R-tree window query, as indicated in
the rule header. The => operator can be read as translates into. It means that the expression to the right
is the translation of the expression to the left, if the conditions in the rule body hold. The body of the
rule starts by inferring the types of the arguments of the lifted predicate within the sometimes(.). Then
it uses them to make sure that the predicate is of the type lifted spatial range. Finally, it checks whether
a spatial R-tree index on the involved relation and attribute is available in the catalog. It tries to find a
spatial R-tree built on the units of the moving object. Similar translation rules are provided for other
types of indexes. The optimized query in Section 9.2.2 shows the effect of these translation rules.

9 Experimental Evaluation

We proceed with an experimental evaluation of the proposed technique. The intention is to give an insight
into the performance. It is clear that the runtime of an STP predicate depends on the number and types
of the lifted predicates. Therefore, we show two experiments. The first measures only the overhead of
evaluating the spatiotemporal pattern predicate. That is, we set the time of evaluating the lifted predicates
to negligible values.

In the second experiment, we generate random STP predicates with varying numbers of lifted pred-
icates and constraints and measure the run time of the queries. The experiment also evaluates the opti-
mization of STPP. Every query is run twice; once without invoking the optimizer, and another time with
the optimizer being invoked.

The experiments use the berlintest database that is available with the free distribution of SECONDO.
The experiments are run on a SECONDO platform installed on a Linux machine. The machine is a
Pentium-4 dual-core 3.0 GHz processor with 2 GBytes main memory.

17



9.1 The Overhead of Evaluating STPP

To perform the first experiment, we add two operators to SECONDO; randommbool and passmbool. The
operator randommbool accepts an instant and creates an mbool object whose definition time starts at the
given time instant, and consists of a random number of units. The operator passmbool mimics a lifted
predicate. It accepts the name of an mbool database object, loads the object and returns it. More details
are given below.

9.1.1 Preparing the Data

This section describes how the test data for the first experiment is created. The randommbool operator
is used to create a set of 30 random mbool instances and store them as database objects. The operator
creates mbool objects with a random number of units varying between 0 and 20. The first unit starts
at the time instant provided in the argument. Every unit has a random duration between 2 and 50000
milliseconds. The value of the first unit is randomly set to true or false. The value of every other unit
is the negation of its preceding unit. Hence, the minimal representation requirement [12] of the moving
types in SECONDO is met. That is, adjacent units can not be further merged because they have different
values.

The 30 mbool objects are created by calling randommbool(now()) 30 consecutive times. This
increases the probability that the definition times of the objects temporally overlap.

9.1.2 Generating the Queries

The queries of the first experiment are selection queries consisting of one filter condition in the form
of an STPP. The queries are generated with different experimental settings, that is, different numbers of
lifted predicates and constraints in the STPP. The number of lifted predicates varies between 2 and 8. The
number of constraints varies between 1 and 16. The queries are not generated for every combination.
For example, it does not make sense to generate STPP with 2 lifted predicates and 10 constraints. For
N lifted predicates, the number of constraints varies between N − 1 and 2N . The rationale of this is
that, if the number of constraints is less than N − 1, then the constraint network can not be complete
(i.e. some predicates are not referenced within constraints). On the other hand, having more than 2N

constraints increases the probability of contradicting constraints. For every experimental setting, 100
random queries are evaluated and the average run time is recorded.

A query with 3 lifted predicates and 2 constraints, for example, looks like:

query thousand feed
filter[.
stpattern[a: passmbool(mb5),
b: passmbool(mb13),
c: passmbool(mb3);

stconstraint("b", "a", later),
stconstraint("b", "c", vec("abab") ]]

count

where query thousand feed streams the thousand relation, which contains 1000 tuples. For every
tuple, the STPP stpattern is evaluated. Note that the predicate does not depend on the tuples. That is, the
same predicate is executed 1000 times in the query. This is to minimize the effect of the time taken by
SECONDO to prepare for query execution. The lifted predicates are all in the form of passmbool(X),
where X is one of the 30 stored random mbool objects.

The constraints are generated so that the constraint graph is complete. We start by initializing a set
called connected having one randomly selected alias. For every constraint, the two aliases are randomly
chosen from the set of aliases in the query, so that at least one of them belongs to the set connected. The
other alias is added to the set connected if it was not already a member. After the required number of
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constraints is generated, we check the completeness of the graph. If it is not complete, the process is
repeated till we get a connected graph. The temporal connector for every constraint is randomly chosen
from a set containing 31 temporal connectors namely, the 26 simple temporal connectors in Table 1 and
5 vector temporal connectors (later, follows, immediately, meanwhile, and then) (shown in Appendix A).

Before running the queries, we query for the 30 mbool objects so that they are loaded into the
database buffer. The measured run times should, hence, show the overhead of evaluating the STPP
in SECONDO because other costs are made negligible.

9.1.3 Results

The results are shown in Figure 2. The number of lifted predicates is denoted as N . Increasing the
number of lifted predicates and constraints in the STPP does not have a great effect on the run time. This
is a direct result of the early pruning strategy in the Solve Pattern algorithm. The results show that the
evaluation of STPP is efficient in terms of run time.
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Figure 2: The overhead of evaluating STPPs

9.2 STPP with Optimization

The second experiment is intended to evaluate the run time of STP queries. It also evaluates the effect
of the proposed optimization. Unlike the first experiment, the STPPs in this experiment contain lifted
predicates. We generate 10 random queries for every experimental setting and record the average run
time. Every query is run twice; without being optimized, and after optimization.

9.2.1 Preparing the Data

The queries use the Trains20 relation. It is generated by replicating the tuples of the Trains relation in
the berlintest database 20 times. The Trains relation was created by simulating the underground trains
of the city Berlin. The simulation is based on the real train schedules and the real underground network
of Berlin. The simulated period is about 4 hours in one day. The schema of Trains20 is similar to Trains
with the additional attribute Serial:

Trains20[Serial: int , Id: int , Line: int , Up: bool , Trip: mpoint]
where Trip is an mpoint representing the trajectory of the train. The relation contains 11240 tuples and
has a disk size of 158 MB. To evaluate the optimizer, a spatial R-tree index called Trains20 Trip sptuni
is built on the units of the Trip attribute. A set of 300 points is also created to be used in the queries. The
points represent geometries of the top 300 tuples in the Restaurants relation in the berlintest database.

19



9.2.2 Generating the Queries

The queries are generated in the same way as in the first experiment. In this experiment, however, we
use actual lifted predicates instead of passmbool. Every lifted predicate in the STPP is randomly chosen
from

1. distance(trip, randomPoint) < randomDistance.

2. speed(trip) > randomSpeed.

where randomPoint is a point object selected randomly from the 300 restaurant points, randomDistance
ranges between 0 and 50, and randomSpeed ranges between 0 and 30. The distance(., .) < . is a sample
for the lifted predicates that can be mapped into index access, so that we can evaluate the optimizer.
While the queries in the first experiment are created directly in the SECONDO executable language, they
are created here in SECONDO SQL. It is an SQL-like syntax that looks similar to the standard SQL, but
obeys Prolog rules. The main differences are that everything is written in lower case, and lists are placed
within square brackets.

Here is one query example from the generated queries:

SELECT count(*)
FROM trains20
WHERE pattern([ distance(trip, point170) < 18.0 as a,

speed(trip) > 11.0 as b],
[stconstraint("a", "b", vec("b.ba.a"))])

where pattern is the SQL operator equivalent to stpattern in the executable language. The rewritten
version of the query as generated by the rewriting module of the SECONDO optimizer is:

SELECT count(*)
FROM trains20
WHERE [ pattern([ distance(trip, point170) < 18.0 as a,

speed(trip) > 11.0 as b],
[stconstraint("a", "b", vec("b.ba.a"))]),

sometimes(distance(trip, point170) < 18.0),
sometimes(speed(trip) > 11.0)]

Finally, the optimal execution plan is:

Trains20 Trip sptuni
windowintersectsS[ enlargeRect(bbox(point170), 18.0, 18.0)]
sort rdup Trains20 gettuples

filter[sometimes((distance(.Trip,point170) < 18.0))]
{0.00480288, 1.69712}
project[Trip]
filter[. stpattern[ a: (distance(.Trip, point170) < 18.0),

b: (speed(.Trip) > 11.0);
stconstraint("a", "b", vec("b.ba.a"))]]

{0.00480288, 1.49038}
filter[sometimes((speed(.Trip) > 11.0))]
{0.883731, 1.48077}

count

where the predicates are placed within the filter[] operator, which means that they belong to the where
clause in SQL. The rewriter generates for the two lifted predicates in the original query two standard
sometimes predicates. The predicate sometimes( distance(., .) < .) is handled by the optimizer as a
special kind of range predicate. Since the optimizer can find the spatial R-tree index that we created, it
is used. The index access part in the query is:
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Trains20 Trip sptuni windowintersectsS[enlargeRect(., ., .)]

This part expands the minimum bounding box of point170 by the distance threshold value 18.0. The
enlarged box is intersected with the R-tree to get the candidate tuple id’s. The rest of the query retrieves
the data of the candidate tuples and performs the query. The pairs of numbers between the curly brackets
do not affect the semantics of the query. They are estimated predicate selectivities and run time statistics
used to help estimate the query execution progress.

9.2.3 Results

In Figure 3, the chart to the left shows the average run times of the non-optimized STP queries. The chart
to the right shows the average run times of their optimized counterparts. The N is again the number of
lifted predicates. The run times of the optimized STPP are very promising.
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Figure 3: The run times for STP queries on the Trains20 relation

The high peak in the optimized queries chart at N = 2 and Number of Constraints = 2 is be-
cause it happened that five of the ten generated queries have only speed(.) < . predicates. Since the
sometimes(speed(.) < .) predicate does not map into index access, the average run time for this experi-
mental setting is close to the non-optimized version.

10 Application Examples

To illustrate the expressive power of the proposed approach, we present in the following two subsections
more examples for STP queries. Section 10.1 demonstrates a scenario called Finding Ali. It is about a
kid called Ali, who moves on the street network of Cairo (the capital of Egypt). He makes several trips
riding in several cars. We want to query for these cars using their movement profiles.

In Section 10.2, we demonstrate example queries that the reader can try himself/herself in SECONDO.
The queries are based on the berlintest database, that is available with the SECONDO distribution. Unlike
the first application, the queries are not linked to a single scenario. Hence we can demonstrate STP
queries that involve moving points, moving regions, and many kinds of lifted operations.

10.1 Finding Ali

We assume that the road network of Cairo is observed for one month and that the complete trajectories
of the cars are stored in the database. The queries assume the following schema:

• Car[PlatesNumber: string , Trip: mpoint] where Trip is the complete trajectory of the car for the
whole observation period.
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• Landmark[Name: string , Type: string , Location: point]

• Heliopolis: A region object marking the boundary of the district Heliopolis where Ali lives.

• AliHome: A point object marking Ali’s home.

• FamilyHome: A point object marking the house of the father’s family.

• SportsClub: A region object marking the boundary of the sports club in which Ali is a member.

10.1.1 The Go-to-school Trips With the School Bus

The bus starts at the school at 6:00 am - 6:30 am, enters the district Heliopolis at 6:45 am - 7:00 am,
stops near Ali’s home, picks Ali, exits Heliopolis at 7:45 am - 8:00 am, then goes back to school.

This query can be written without a spatiotemporal pattern predicate. The spatiotemporal window of
every predicate is known. It can be expressed as a conjunction of 5 spatiotemporal range predicates (Bus
inside School at the time interval [6:00, 6:30] AND Bus inside Heliopolis at the time interval [6:45, 7] ...).
We include this as an example of spatiotemporal pattern queries that can be expressed without STPP.

10.1.2 The Evening Trips With Grandfather

Starting from Ali’s home, the grandfather drives Ali to the sports club. They stop at the sports club for at
least two hours. After the club they go by car to buy some bread, then back home.

SELECT c.PlatesNumber
FROM Car c, Landmark l
WHERE l.Type like("%Bakery%") and

patternex([distance(c.Trip, AliHome) < 20.0 as AtHome,
c.Trip inside SportsClub as AtClub,
distance(c.Trip, l.Location) < 20.0 as AtBakery,
distance(c.Trip, AliHome) < 20.0 as BackHome],

[AtHome later AtClub,
AtClub later AtBakery,
AtBakery later BackHome],

end("AtClub") - start("AtClub") >= 2.0 and
daypart(AtHome) = daypart(BackHome))

In this query, the extended STPP is used to state that they stayed at least two hours in the sports
club and that the whole pattern occurred in one day. Another note is that the query uses the predicate
distance(c.Trip, AliHome) < 20.0 twice with two different aliases. The two aliases are
needed to write the constraints. It is the responsability of the query optimizer to detect this common
predicate (i.e. using common sub-expression optimization techniques) and evaluate it only once.

10.1.3 The Weekend Trips With Mother

The mother starts from Ali’s home, drives only in main roads, stops near a shopping mall for at most
4 hours then back home. The trip to the mall takes more than 1.5 times the estimated time because the
mother uses only main roads. In Cairo it is easier to drive in main roads but they have high traffic.

SELECT c.PlatesNumber
FROM Car c, Landmark l
WHERE l.Type like("%Mall%") and

patternex([distance(c.Trip, AliHome) < 20.0 as AtHome,
distance(c.Trip, l.Location) < 40.0 as AtMall,
distance(c.Trip, AliHome) < 20.0 as BackHome],

[AtHome later AtMall,
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AtMall later BackHome],
end("AtMall") - start("AtMall") <= 4.0 and
(start("AtMall") - end("AtHome") >
1.5 * EstimatedDriveTime(l.location, AliHome) ))

where we assume for simplicity that EstimatedDriveTime is a function that computes the normal period
that a drive between two places takes. It may do so by finding the shortest path and multiply by the
average driving speed.

10.2 The Berlintest Example

In this example, we use the database berlintest, more specifically, the Trains relation and three newly
added relations with the following schemas:

SnowStorms[Serial: int , Storm: mregion]
TrainsMeet[Line: int , Uptrip: mpoint , Downtrip: mpoint , Stations: points]
TrainsDelay[Id: int , Line: int , Actual: mpoint , Schedule: mpoint]
The SnowStorms relation contains 72 tuples, each of which contains a moving region, representing a

snow storm that moves over Berlin. The TrainsMeet relation is generated from the Trains relation. The
tuples contain all possible combinations of two trains that belong to the same line and move in opposite
directions. The Stations attribute represents the train stations of the associated line. The TrainsDelay re-
lation is also generated from the Trains relation. Each tuple contains the original Trip attribute (renamed
into Schedule), and a delayed copy of it with delays of around 30 minutes. The scripts for creating the
three relation and for executing the example queries are available for download as will be explained in
Appendix D.

Table 3 lists the lifted operations used within the queries. We have designed the queries so that they
illustrate the expressive power of our approach by using various lifted operations to compose complex
pattern queries. The table shows only the operator signatures that are used in the queries. The complete
list of valid signatures is in [16].

10.2.1 Find the snow storms that passed over the train station mehringdamm with speed greater
than 40 km/h.

SELECT *
FROM snowstorms
WHERE pattern([not(isempty(storm at mehringdamm)) as pred1,

speed(rough_center(storm)) > 40.0 as pred2],
[stconstraint("pred1","pred2", together)])

where together is a vector temporal connector that yields true if the two predicates happen simultane-
ously.

10.2.2 Find the snow storms that could increase their area over 1/4 square km during the first
traversed 5 km.

SELECT *
FROM snowstorms
WHERE pattern(

[distancetraversed(rough_center(storm)) <= 5000.0 as pred1,
area(storm) > 250000.0 as pred2],

[stconstraint("pred1","pred2", meanwhile)])
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10.2.3 Find the trains whose up and down trips meet inside one of the train stations.

SELECT *
FROM trainsmeet
WHERE pattern(

[not(isempty(intersection(uptrip, downtrip))) as pred1,
uptrip inside stations as pred2 ],

[stconstraint("pred1","pred2", together)])
ORDERBY line

10.2.4 Find the trains that encountered a delay of more than 30 minutes after passing through
the snow storm msnow.

SELECT *
FROM trainsdelay
WHERE pattern([not(delay(actual, schedule) > 1800.0) as pred1,

Table 3: Lifted Operations
Operation Signature Type Meaning

at mregion× point → mpoint topological opera-
tion

computes a moving point that
exist whenever the point argu-
ment is inside the moving re-
gion argument.

isempty mpoint→ mbool set operation true whenever the argument is
defined.

not mbool→ mbool boolean operation logical negation.
rough center mregion → mpoint aggregation aggregates the moving region

into a moving point that repre-
sents its center of gravity.

speed mpoint → mreal metric property the metric speed of the moving
point.

distancetraversed mpoint → mreal metric property the distance that the moving
point traversed since the start
of its definition time.

area mregion → mreal metric property the area of the moving region.
intersection mpoint × mpoint → mpoint set operation computes the common parts of

the two arguments.

inside
mpoint × mregion → mbool spatial range predi-

cate
true whenever the mpoint is
contained in the mregion ,

mpoint × points → mbool or passes some of the points .
delay mpoint × mpoint → mreal metric operation considers the first argument

actual, and the second sched-
ule movement and computes
the delay of the actual move-
ment in seconds.

= mpoint × point → mbool spatial range predi-
cate

true whenever the moving
point passes the point.

xangle mpoint → mreal direction the angle (in degrees) between
x-axis and the tangent of the
moving point.

and mbool × mbool → mbool boolean operation logical and.
<, <=, >, >= mreal × real → mbool left/right range

predicate
true in the time intervals
during which the comparison
holds.
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actual inside msnow as pred2,
delay(actual, schedule) > 1800.0 as pred3 ],

[stconstraint("pred1", "pred2", vec("abab", "aba.b", "abba")),
stconstraint("pred2", "pred3",

vec("abab", "aba.b", "abba", "aa.bb", "aabb"))])

10.2.5 Find the trains that are always heading north-west after passing mehringdamm.

SELECT *
FROM trains
WHERE patternex([trip = mehringdamm as pred1,

ndefunit(((xangle(trip) >= 90.0) and
(xangle(trip) <=180.0)), int2bool(1)) as pred2],

[stconstraint("pred1","pred2",then)],
(((start("pred2")- end("pred1")) < create_duration(0, 120000))
and
((inst(final(trip)) - end("pred2")) < create_duration(0, 15000))))

where we use the ndefunit operator in this query to replace the undefined periods within the mbool by
true units. This is because the xangle 1 operator yields undefined during the train stops in the stations.
In other words, pred2 is true whenever the train is not heading other than north-west. The query restricts
the results to the trains which started heading north at most 2 minutes after passing mehringdamm and
remained so till at least 15 seconds before the end of the trip. These time margins are used to cut out
small noisy parts in the data, so that the query yields results.

11 System Use and Experimental Repeatability

The implementation of the described approach is made available as a Plugin for the SECONDO system.
It can be downloaded from the Plugin web site [1]. The User Manual (also available on the Plugin we
site) describes how to install and run the Plugin. We have also made available the scripts for running the
experiments and the Berlintest application example so that the results are repeatable.

Before running the scripts of the experiments, you need to install:

1. The SECONDO system version 2.9.1 or later 2. A brief installation guide is given in the Plugin
User Manual on [1], and a detailed guide is given in the SECONDO User Manual [3].

2. The Spatiotemporal Pattern Queries Plugin (STPatterns) as described in [1].

11.1 Repeating the First Experiment

During the installation of the STPattern Plugin, two files are copied to the SECONDO bin directory
$SECONDO BUILD DIR/ bin. These two files Expr1Script.sec and STPQExpr1Query.csv (described
in Appendix A) automate the repeatability of the first experiment in this paper. The experiment can then
be run as follows:

1. Run SecondoTTYNT (i.e. in a shell, go to $SECONDO BUILD DIR/bin and write SecondoTTYNT).

2. Make sure that the berlintest database is restored (i.e. at the SECONDO prompt, write list
databases and make sure that berlintest database is in the list). Otherwise, restore it by writing

1The xangle operator is a corrected copy of the SECONDO mdirection operator. It is presented only for the sake of this
example. In the SECONDO versions newer than 2.9.1, the mdirection operator works fine.

2Since our optimizer extension wraps around the standard optimizer implementation, you may get different optimization
results in later SECONDO versions. The described results in this paper are obtained from version 2.9.1
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restore database berlintest from berlintest

at the SECONDO prompt (press <return> twice).

3. Execute the script by writing @Expr1Script.sec at the SECONDO prompt. The script creates
the required database objects and executes the experiment queries. This may take half an hour
depending on your machine.

Executing the script creates a SECONDO relation STPQExpr1Result in the berlintest database, which
stores the experimental results. Its schema is shown in Table 4.

Table 4: The schema of the STPQExpr1Result relation
Attribute Meaning Example

no A serial number for the query. 0
queryText The query text. thousand feed

filter [.stpattern[
a:passmbool(mb10),
b:passmbool(mb30);
stconstraint("a", "b",
vec("aa.b.b"))]] count

numPreds The number of the lifted predicates in the
STPP.

2

numConstraints The number of the constraints in the STPP. 1
ElapsedTimeReal The measured response time, in seconds,

for this query.
0.171932

ElapsedTimeCPU The measured CPU time, in seconds, for
this query

0.16

The experimental results are also saved to a comma separated file STPQExpr1Result.csv in the SEC-
ONDO bin directory. The file has a similar structure as the table STPQExpr1Result.

11.2 Repeating the Second Experiment

Repeating the second experiments is also automated by script files that are copied to the SECONDO

directories during the installation of the STPattern Plugin. For the second experiment, two script files are
used; the $SECONDO BUILD DIR/ bin/ Expr2Script.sec file creates the necessary database objects, and
the $SECONDO BUILD DIR/ Optimizer/ expr2Queries.pl executes the queries. The Expr2Script.sec
file is described in Appendix B, and the expr2Queries.pl in Appendix C. The experiment is repeated as
follows:

1. Run SecondoTTYNT.

2. Make sure that the berlintest database is restored, otherwise, restore it.

3. Execute the Expr2Script.sec by writing @Expr2Script.sec at the SECONDO prompt. This
creates the necessary database objects.

4. Quit SecondoTTYNT (i.e. write quit at the SECONDO prompt), go to the SECONDO optimizer
folder $SECONDO BUILD DIR/ Optimizer and write SecondoPL. This starts the SECONDO

optimizer user interface in the single user mode.

5. Write consult(expr2Queries). to let Prolog interpret the script file expr2Queries.pl.

6. Open the berlintest database (i.e. write open database berlintest.).
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7. Write runSTPQExpr2DisableOptimization. to run the queries without enabling the op-
timization of the STPP, or runSTPQExpr2EnableOptimization. to run the queries with
the optimization of the STPP being enabled. This can take more than an hour.

The results are saved to the comma separated files Expr2StatsDO.csv and Expr2QueriesDO.csv in
the SECONDO optimizer folder if the STPP optimization is disabled. If it is enabled, the results are saved
to the files Expr2StatsEO.csv and Expr2QueriesEO.csv.

The files Expr2StatsDO.csv and Expr2StatsEO.csv show the run times. They include the columns
described in Table 5.

Table 5: The schemas of the Expr2StatsDO.csv and Expr2StatsEO.csv files
Attribute Meaning Example

NumberOfPredicates The number of the lifted predicates in the STPP. 2
NumberOfConstraints The number of the constraints in the STPP. 1
Serial A serial for the query in the range [0,9]. The serial is repeated

with every experimental setup
1

ExecTime The measured response time, in milliseconds, for this query. 443

The files Expr2QueriesDO.csv and Expr2QueriesEO.csv have a similar structure. They exclude the
ExecTime attribute and have two more attributes; the SQL attribute which stores the SQL-like query, and
the ExecutablePlan which stores the execution plan generated by the Optimizer.

12 Conclusions

We propose a novel approach for spatiotemporal pattern queries. It combines efficiency, expressiveness
and a clean concept. It builds on other moving objects database concepts. Therefore, it is convenient
in the context of spatiotemporal DBMSs. Unlike the previous approaches, it is integrated with query
optimizers. We also propose an algorithm for evaluating the constraint satisfaction problems, that is
customized to fit the efficient evaluation of the spatiotemporal pattern predicates. In the paper, we
demonstrate two application examples to emphasize the expressive power of our approach. Our work
is completely implemented in the SECONDO platform. The implementation and the scripts for experi-
mental repeatability are available on the Web. The experimental evaluation shows that the run times are
reasonable. As future work, we intend to support spatiotemporal patterns that involve repetitions and
alternations.
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A The Expr1Script.sec File

This is a commented version of the Expr1Script.sec script.
The script runs the first experiment with minimal user interaction. The experiment, as described

in Section 9.1, is intended to evaluate the execution overhead of the STPP. This script first creates the
required database objects, then executes the queries and logs the run times.

close database;
open database berlintest;

let mb1 = randommbool(now());
...
let mb30 = randommbool(now());

The commands open the database berlintest and creates 30 random mbool objects with the names
mb1... mb30. These objects are needed for the queries. The randommbool operator works as described
in Section 9.1.1.

let later = vec("aabb", "a.abb", "aab.b", "a.ab.b");
let follows = vec("aa.bb", "a.a.bb", "aa.b.b", "a.a.b.b");
let immediately = vec("a.bab", "a.bba", ...
let meanwhile = vec( ...
let then = vec( ...

The five vector temporal connectors are used in the queries as examples for vector temporal connec-
tors. They are used together with the 26 simple temporal connectors to generate the queries.

let STPQExpr1Query=
[const rel(tuple([no:int, queryText: text,
numPreds: int, numConstraints: int])) value ()]

csvimport[’STPQExpr1Query.csv’, 0, "", "$"] consume;

The query imports the experiment queries from the comma separated file STPQExpr1Query.csv and
stores them in a SECONDO relation called STPQExpr1Query. The [const . value .] operator tells the
cvsimport operator the schema of the relation, which is shown in Table 6.

Table 6: The schemas of the STPQExpr1Query.csv file and the STPQExpr1Query table
Attribute Meaning

no A serial for the query in the range [0, 4899].
queryText The query statement written in SECONDO executable language.
numPreds The number of the lifted predicates in the STPP.
numConstraints The number of the constraints in the STPP.

The file contains 4900 queries that were randomly generated as described in Section 9.1.2. The
queries represent 49 experimental settings, each of which have 100 queries. The following query executes
them and logs the results in the relation STPQExpr1Result:

let STPQExpr1Result =
STPQExpr1Query feed
loopjoin[fun(queryTuple: TUPLE)
evaluate(attr(queryTuple, queryText))

project[ElapsedTimeReal, ElapsedTimeCPU]]
consume;
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This query can take half an hour depending on your machine. You can query the results relation
in any of the SECONDO user interfaces [3] and create aggregations for the charts. Additionally, the
following query exports the relation to the comma separated file STPQExpr1Result.csv in the SECONDO

bin directory.

query STPQExpr1Result feed
projectextend[; Serial: .no,
NumberOfPredicates: .numPreds,
NumberOfConstraints: .numConstraints,
ResponseTime: .ElapsedTimeReal,
CPUTime: .ElapsedTimeCPU]

csvexport[’STPQExpr1Result.csv’, FALSE, TRUE]
count

NOTE: We encourage the reader to get information about the SECONDO operators by using the built-in
operator descriptions. For example, to get help on the operator csvimport, write the following query
at the SECONDO prompt:

query SEC2OPERATORINFO feed
filter[.Name contains "csvimport"]

consume

B The Expr2Script.sec File

This is a commented version for the Expr2Script.sec script.
The script is used to generate the data required for running the second experiment in this paper without
executing the queries. The queries need to be executed in the SecondoPL environment afterwards.

close database;
open database berlintest;

let RestaurantsNumbered =
Restaurants feed addcounter[no, 1] head[300] consume;

let point1 =
RestaurantsNumbered feed filter[.no = 1] extract[geoData];

...
let point300 =

RestaurantsNumbered feed filter[.no = 300] extract[geoData];
delete RestaurantsNumbered;

First, the commands open the database berlintest. The geometries of the first 300 restaurants in the
Restaurants table are then copied to point objects (point1... point300) to be used in the queries.

let later = vec("aabb", "a.abb", "aab.b", "a.ab.b");
let follows = vec("aa.bb", "a.a.bb", "aa.b.b", "a.a.b.b");
let immediately = vec("a.bab", "a.bba", ...
let meanwhile = vec( ...
let then = vec( ...

The five vector temporal connectors, that are also created in Expr1Script.sec, are included here so
that the two experiments can be run independently.

let Trains20 = thousand feed head[20] Trains feed product consume;

This query creates the Trains20 relation by replicating the tuples of the Trains relation 20 times. In
the following query, we create an index on the Trains20 relation to test the proposed STPP optimization.
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The index is a spatial R-tree on the units of the Trip attribute. Instead of indexing the complete movement,
the index is built on the units (i.e. a bounding box is computed for every unit in the Trip). This is done
so that the bounding boxes better approximate the moving point.

let Trains20 Trip sptuni =
Trains20 feed
projectextend[Trip; TID: tupleid(.)]
projectextendstream[TID; MBR: units(.Trip)
use[fun(U: upoint) bbox2d(U) ]]

sortby[MBR asc]
bulkloadrtree[MBR];

C The expr2Queries.pl File

This Prolog file is used to run the queries of the second experiment and log the execution times. It defines
four prolog predicates:

1. runSTPQExpr2DisableOptimization/0: switches off STPP optimization by setting the optimizer
options, and executes the queries.

2. runSTPQExpr2EnableOptimization/0: switches on STPP optimization, and executes the queries.

3. executeSQL/4: helper predicate for executing queries.

4. runSTPQExpr2/4: the facts table that stores the queries. The file contains 490 such facts, 10
queries for each of the 49 experimental settings. The queries are randomly generated as described
in Section 9.2.2. For every query, the fact also stores its serial, number of lifted predicates, and
number of constraints.

D Running the Berlintest Application Example

To execute the queries in the berlintest example, you need first to run the script BerlintestScript.sec from
the SecondoTTYNT prompt. The script is installed within the STPattern Plugin. You also need to have
the berlintest database restored in your system. The script file creates the required database objects but it
doesn’t execute the queries. It first defines some temporal connectors:

close database;
open database berlintest;
let later= vec("aabb", "a.abb", "aab.b", "a.ab.b");
let follows= vec(...
let immediately= vec(...
let meanwhile= vec(...
let then= vec(...
let together= vec(...

Then it restores the SnowStorms relation from the SnowStorms file in the SECONDO/bin directory,
which is installed with the Plugin.

restore SnowStorms from SnowStorms;

The following command creates the relation TrainsMeet, that is used in the example in Section 10.2.3.
Every tuple in the relation is a different combination of an up train, down train of the same line, and the
stations where the train line stops.
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let TrainsMeet =
Trains feedproject[Line, Trip, Up] {t2} filter[.Up_t2 = FALSE]
Trains feedproject[Line, Trip, Up] {t1} filter[.Up_t1 = TRUE]
hashjoin[Line_t2 , Line_t1 , 99997]
extend[Line: .Line_t1, Uptrip: .Trip_t1, Downtrip: .Trip_t2,
Stations: ((breakpoints(.Trip_t1, create_duration(0,5000) )
union val(initial(.Trip_t1)))
union val(final(.Trip_t1)))]

project[Line, Uptrip, Downtrip, Stations]
consume;

Next we create the relation TrainsDelay, used in the example in Section 10.2.4. Every tuple has a
schedule and an actual moving point. The schedule movement is a copy from the Trip attribute in the
Trains relation. The actual movement should have delays of about half an hour. We shift the Trip 1795
seconds forward, and apply a random positive or negative delay up to 10 seconds to the result. This
creates actual movements with random delays between 29:45 and 30:05 minutes.

let TrainsDelay=
Trains feed
extend[Schedule: .Trip,
Actual: randomdelay(
.Trip translate[create_duration(0, 1795000) , 0.0, 0.0],
create_duration(0,10000) ) ]

project[Id, Line, Actual, Schedule]
consume;

After running the BerlintestScript.sec script, use the Javagui to execute the queries. It is the graphical
user interface for SECONDO. To launch it:

1. Start the SECONDO kernel in server mode, the optimizer server, and the GUI:
In a new shell, go to $SECONDO BUILD DIR/bin, and type SecondoMonitor -s.
In a new shell, go to $SECONDO BUILD DIR/Optimizer, and type StartOptServer.
In a new shell, go to $SECONDO BUILD DIR/Javagui, and type sgui. The Javagui will start
and connect to both the kernel and the optimization server.

2. Open the database. In the Javagui type:
open database berlintest.

3. Set the optimizer options. The SECONDO optimizer maintains a list of options that controls the
optimization. The examples in this paper require the options improvedcosts, determinePredSig,
autoSamples, rewriteInference, rtreeIndexRules, and autosave. To set each of these options, type
in the Javagui:
optimizer setOption(option)

4. View the underlying network. Type:
select * from ubahn to display the underground trains network.
select * from trains to display the moving trains. Use the slider to view the results.
Select the last query in the top-right panel and press hide to hide the trains.
select * from snowstorms to display the moving snow storms.
hide the snow storms.

5. Type the example queries as in Section 10.2, and make sure to type everything in lower case.
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