
INFORMATIK
BERICHTE

364 – 05/2012

Book Chapter:
Trajectory Databases

Ralf Hartmut Güting, Thomas Behr,
Christian Düntgen

Fakultät für Mathematik und Informatik
Postfach 940
D-58084 Hagen

3

Trajectory Databases
Ralf Hartmut Güting, Thomas Behr, Christian Düntgen

Fernuniversität Hagen, Germany
{rhg, thomas.behr, christian.duentgen}@fernuni-hagen.de

In this chapter, we consider the problem of modeling and representing

trajectories in the context of database systems. It is certainly possible to

store a trajectory somehow in a standard database, e.g. as a relational ta-

ble containing tuples with observations of the form (id, x, y, t). However,

we are interested in a more abstract model that views a trajectory as

a conceptual entity and preferably includes operations for querying. As

this is not available in standard databases, we now focus on extensions

of database systems that on the one hand provide a simple, adequate

model of trajectories together with powerful querying facilities, and on

the other hand an efficient implementation of such a query language.

Section 3.1 introduces such a data model based on abstract data types.

In Section 3.2 we describe a prototypical database system, Secondo,

implementing this model. Section 3.3 discusses alternative representa-

tions of sets of trajectories in the context of this model. Important top-

ics in the implementation are indexing and join techniques; these are

addressed in Sections 3.4 and 3.5, respectively. Sections 3.6 and 3.7 give

brief introductons to special querying facilities such as nearest neigh-

bor queries and spatiotemporal pattern queries, respectively. Section 3.8

is devoted to the BerlinMOD benchmark for trajectory databases. Sec-

tion 3.9 briefly introduces Hermes, another system implermenting the

model of Section 3.1. The chapter closes with bibliographic notes in

Section 3.10.

3.1 An Abstract Data Type Model for Trajectories

The approach taken is to consider a trajectory as an abstract data type

called moving point. The meaning of such a type, or its semantics, is

2

given by the domain of the type (the set of possible values). The values

of type moving point are simply functions from time into point values

which could be represented as

f : instant → point

where type instant represents a continuous domain of time and type

point represents (x, y) positions in the Euclidean plane.1 These are par-

tial functions, i.e., they are defined only for a part of the time domain

and may have gaps in their definition time. Values of type moving point

(denoted mpoint) may be visualized as continuous functions in a three-

dimensional (x, y, t) space as shown in Figure 3.1.

x

y

t

Figure 3.1 A value of type moving point (mpoint) and a value of type
moving region (mregion)

We now have an abstract data type to represent time dependent loca-

tions in the plane. This is a simple and clean model to represent moving

entities such as people, animals or vehicles. It is obvious that a physical

entity can only be in one location at any given time; hence the model

of a position as a function of time is adequate. Note that the model as-

sumes we have complete knowledge about the movement (history) of an

entity and there is no interest in representing how this knowledge was

collected. In other words, this model does not care about observations

of a moving object nor does it take uncertainty into account.

Geometrically, we have time dependent points in the plane, or a time

dependent version of the spatial data type point . Clearly other time

dependent geometries may be interesting as well, and the model also

contains data types such as moving line or moving region. A moving

region (mregion) value is a function from time into region values, also

illustrated in Figure 3.1.

The data types can be embedded as attribute types into a DBMS data

model, e.g. an object-relational model. The following example relation

1 We denote data types in italics underlined font.

Trajectory Databases 3

describes underground trains moving according to schedule on a certain

day in the city of Berlin:2

Trains(Id: int, Line: int, Up: bool, Trip: mpoint)

Each tuple describes one train by its identifier, the number of the train

line to which it belongs, in which direction along the route it was going,

and the complete movement description in attribute Trip.

Together with the data types a suitable set of operations is provided,

for example:

trajectory: mpoint → line
deftime: mpoint → periods
passes: mpoint ×region → bool
intersection: mpoint ×mregion → mpoint
distance: mpoint ×point → mreal
<: mreal ×real → mbool
sometimes: mbool → bool
isempty: periods → bool

These operations use further data types. The issue of systematically

designing the type system and the operations is discussed below; here we

briefly explain the example operations. Trajectory projects a moving

point into the Euclidean plane, result is a value of the line spatial data

type. Deftime projects on the time axis; result is a set of disjoint time

intervals representable in type periods. Passes is a predicate checking

whether the moving point ever goes through a given region. Intersec-

tion computes the time dependent result of the intersection between a

point and a region which is a point whenever the moving point is inside

the region; hence the result is an mpoint again. The distance between

a moving point and a static point is a time dependent real number of

a type mreal . The less than operator provides the time dependent com-

parison of two real numbers; result is a time dependent boolean value

of type mbool . Sometimes returns true if the argument mbool ever as-

sumes the value true, and isempty checks whether a periods value does

not have any time interval.

Given such operations, we can formulate queries. Let us assume that

our example database contains the following objects of the respective

types:

train7: mpoint
msnow: mregion

2 Such a relation is available within the Secondo system described in Section 3.2
in an example database called berlintest

4

mehringdamm: point
tiergarten: region

Query 1: How many trains passed through tiergarten ?

select count(*) from Trains where Trip passes tiergarten

Query 2: Find trains that got within 500 meters of location mehring-

damm.

select * from Trains
where sometimes(distance(Trip, mehringdamm) < 500)

Query 3: For each train that ever was within the moving snow area

msnow, determine the locations when it was inside.

select Id, trajectory(intersection(Trip, msnow)) as InSnow
from Trains
where not(isempty(deftime(intersection(Trip, msnow))))

3.1.1 Design of Types and Operations

The basic idea of the approach should now be clear. The question arises

what exactly should be the types and operations. The goal is to set up

a system of types and operations that is closed, simple, and powerful.

To achieve this, the following design guidelines are observed.

• Closed: under application of type constructors, in particular:

a. For all base types of interest, there are corresponding time depen-

dent (moving) types.

b. Definitions of static and moving types should be consistent.

c. For each time dependent type, there are types to represent the

projection to the domain and range of the respective function.

• Simple:

d. The type system has many types - to avoid a proliferation of oper-

ations, one should use generic operations as much as possible.

e. The space of possible operations should be explored systematically.

f. Operations on static and moving types should be consistent.

Trajectory Databases 5

int
real
bool
string

point
points
line
region

moving(int)
moving(real)
moving(bool)
moving(string)

moving(point)
moving(points)
moving(line)
moving(region)

range(int)
range(real)
range(bool)
range(string)

points
line
region

instant

periods

all tempo-

ral types

for these

all pro-

jections

to range

all projections to

domain

Figure 3.2 Type system

3.1.2 Type System

The type system used is shown in Figure 3.2.

It starts from the set of standard types int , real , bool and string , and

spatial types point , points, line and region. A point value is a single

point in the plane; points has a finite set of points. A line value is a

finite set of continuous curves in the plane. A region is a closed subset of

the plane; in general it consists of a finite set of faces (a face contains a

connected subset of the plane) each of which may have 0 or more holes.

The spatial types are illustrated in Figure 3.3.

point points line region

Figure 3.3 Spatial data types

The moving type constructor returns for a given static type α the type

whose values are partial functions from the time domain into α. More

formally, let Aα denote the domain of type α, i.e., the set of possible

values of type α. Then the domain for type moving(α) is

Amoving(α) := {f |f : Ainstant → Aα is a partial function}

One can observe that design rules (a) and (b) are fulfilled. The range

type constructor provides for a given type α, which must have a total

order, the type whose values are finite sets of intervals over the domain

of α. So range(int) is a set of integer intervals, range(real) a set of

real-valued intervals and so forth. Hence the projection into the range,

6

e.g. for a moving(int) can be represented by the range(int) type. This

holds for all standard types. One can also show that the projections into

the plane of a moving(point), moving(line), or moving(region) can be

represented by the given types points, line, and region. The values of all

types moving(α) (also called temporal types) can be projected on the

time axis resulting in a periods value (periods is in fact another name

for range(instant)). Hence design rule (c) is fulfilled.

3.1.3 Operations

The design of operations proceeds in three steps:

1. Define carefully a set of operations on the static types.

2. By a technique called lifting, make these operations time dependent.

3. Add some specific operations for the temporal types.

Step 1. For the static types, several classes of operations are introduced

which are summarized in Table 3.1.

Class Operations

Predicates isempty
=, 6=, intersects, inside
<,≤,≥, >, before

Set Operations union, intersection, minus
crossings, touch points, common border

Aggregation min, max, avg, center, single

Numeric no components, size, perimeter, duration,
length, area

Distance and Direction distance, direction

Base Type Specific and, or, not

Table 3.1 Operations on static types

For lack of space we cannot explain all these operations here in detail,

refer to the original literature (see Section 3.10). Operations are defined

in a generic way ranging over all types for which they make sense.

Trajectory Databases 7

Step 2. Lifting means to make a static operation time dependent by

allowing any (combination) of its arguments to be time dependent. Ob-

viously the result will be time dependent as well. Consider an operation

op with signature

op: α1 × α2 × ...× αn → β

Lifting means that the signatures

op: moving(α1)× α2 × ...× αn → moving(β)
op: α1 ×moving(α2)× ...× αn → moving(β)
...
op: moving(α1)×moving(α2)× ...× αn → moving(β)
...
op: moving(α1)×moving(α2)× ...×moving(αn) → moving(β)

are available as well. The semantics of the static operation is transferred

by requiring that the result of the lifted operation for any given instant

of time is the same as that of the static operation evaluated on the

arguments, evaluated at that instant. This ensures that design rule (f)

is fulfilled.

For example, consider the static operations < on reals and intersec-

tion between a point and a region. By lifting, the signatures

< : real ×real →bool intersection : point ×region →point
real ×mreal →mbool mpoint ×region →mpoint
mreal ×real →mbool point ×mregion →mpoint
mreal ×mreal →mbool mpoint ×mregion →mpoint

are available3 some of which occur in the introductory example. Lifting

is applied to all operations of Table 3.1; hence they can all be used as

time dependent operations.

Step 3. Finally, several classes of special operations on time dependent

types are introduced, shown in Table 3.2.

In the first class, deftime and trajectory have already been ex-

plained. Rangevalues projects time dependent standard types to the

respective range types, e.g. moving(int) to range(int). Locations pro-

vides the projection of a stepwise constant moving(point) as a points

value; similarly routes gives the projection of a discretely changing

moving(line) as a line value. In contrast, traversed yields the pro-

jection of a continuously changing moving(line) or moving(region) as a

region value. Inst and val are explained below.

In the second class, the interaction of functions with values in their

3 We generally abbreviate the formally defined notation moving(α) by mα.

8

Class Operations

Projection to Domain / deftime, rangevalues, locations, trajectory,
Range routes, traversed, inst, val

Interaction with atinstant, atperiods, initial, final, present
Domain / Range at, atmin, atmax, passes

Rate of Change derivative, speed, turn, velocity

Table 3.2 Operations on time dependent types

domain (time) or the respective range is considered.Atinstant evaluates

a moving(α) at a given instant , returning the result as a pair (i, v)

with i an instant and v ∈ Aα (such pairs belong to a type intime(α)

not yet mentioned). Operations inst and val can be used to access the

components of such a pair. Initial and final return the first and last

such pair for a given moving(α). Atperiods reduces a moving object

to be defined only at the times of some periods value. Present is a

predicate checking whether an object is (ever) defined at a given instant

or periods value.

Operations at, atmin, atmax, passes handle interaction with values

in the range of functions. At reduces a moving(α) to the times when its

value is equal to or belongs to the value of some argument of type α.4

Atmin and atmax reduce to the times with minimal or maximal value

for a totally ordered type α. Passes is a predicate checking whether an

argument value of a type related to α is ever assumed by a moving(α).

The last group addresses range of change. For example, one can get

the derivative of a moving(real) or the speed of a moving(point) as a

moving(real).

One can observe that operations are defined in a generic way and that

the space of possible operations is structured in a somewhat systematic

manner (design rules (d) and (e)).

The design of types and operations allows one to combine operations

in very flexible ways so that a quite expressive query language results.

More query examples are shown in later subsections.

4 more precisely ...

Trajectory Databases 9

3.1.4 Abstract and Discrete Model

In the model described so far, the semantics of time dependent types,

i.e., of types moving(α), have been simply defined as partial functions,

disregarding completely the issue of how such functions can be repre-

sented. A function f : Ainstant → Aα is simply an infinite set of pairs

from Ainstant ×Aα.

We call a model where it is allowed to define the semantics of types

just in terms of infinite sets, an abstract model. An abstract model is

conceptually simple and elegant, but it is not directly implementable,

as computers cannot use infinite resources. To implement an abstract

model, we have to provide a discrete model for it. In a discrete model,

all the infinite sets of the abstract model have to be described in terms

of finite representations.

3.1.5 The Discrete Model

The discrete model for the design above uses essentially the well known

programming language representations for standard types such as int ,

real , bool , string and it uses linear representations for the spatial types

(i.e., polylines, polygons, etc.). For the time dependent types, the so-

called sliced representation is introduced. That means, to represent a

function of time, the time domain is cut into disjoint time intervals

(slices) such that within each slice the development can be represented

by some simple function of time. “Simple” actually means finitely rep-

resentable. In other words, the function for a slice can be described by a

few parameters rather than an infinite set of pairs. Figure 3.4 illustrates

the sliced representation for a moving(real) and a moving(point).

t

v

x

y

t

Figure 3.4 Sliced representations formoving(real) andmoving(point)

The representation of a single slice, consisting of the time interval and

the function description, is called a unit. In the discrete model it makes

sense to introduce explicit data types for units, e.g. upoint , ureal , ubool .

Such types are available in the Secondo system described below.

10

The representations of functions within a slice (called unit functions)

are chosen to support as many operations of the abstract model as pos-

sible in a consistent way. For a moving(point) a linear function of time is

used, similarly for moving(line), moving(region) linearly moving bound-

ary lines. The motivation is to have simple geometries in the 3D (x, y, t)

space that can be easily handled in algorithms for the operations. For

moving(real), unit functions are quadratic polynomials of time or square

roots thereof. This allows one to represent the time dependent distances

between moving objects, or the development of the perimeters or sizes

of moving regions correctly.

3.2 Secondo: An Extensible DBMS

The types and operations described can be implemented within an ex-

tension module (data blade, cartridge, extender, etc.) to a DBMS. The

model has been (partially) implemented in at least two DBMS proto-

types, Hermes and Secondo. In this section we describe the Secondo

environment.

3.2.1 Overview

Secondo is a DBMS prototype developed since about 1995 at Univer-

sity of Hagen. The focus in this project has been on an extensible and

modular architecture, and support for spatial and later spatio-temporal

applications. Secondo was intended to be a platform for the implemen-

tation of different DBMS data models, for example, relational, object-

relational, sequence-oriented, graph- or network-oriented data models,

and has the following features:

• It does not have a fixed data model. Instead, it provides a system frame

that can be filled with implementations of different data models. A

formalism called second-order signature provides an interface between

system frame and contents.

• The system frame contains the data model independent parts of a

DBMS, for example, a storage manager, a generic query processor, a

generic command interface, etc.

• The data model dependent parts are implemented within so-called

algebra modules. Each algebra module provides a collection of data

types (type constructors, to be precise) and operations. Note that

Trajectory Databases 11

algebra modules encompass all parts of a data model implementation.

Hence there are algebra modules with types for relations and tuples

and query processing operations such as join methods, and there are

algebra modules with types for indexes such as a B-tree or R-tree with

the respective search operations.

• Secondo provides query languages at two levels, called the descriptive

and the executable language.

• The descriptive language is an SQL dialect. The query optimizer trans-

lates queries in this language to the executable language.

• The executable language consists of some generic commands and the

operations of all algebras available in the system. A query in the exe-

cutable language is an algebra term built from database objects, con-

stants, and operators. It is in fact a precise query plan where each

operator has associated a fixed algorithm. Hence, the executable lan-

guage does not have a join operator, but instead has operators like

hashjoin, sortmergejoin, loopjoin and so forth.

To our knowledge it is a unique feature of Secondo that the user or

application can formulate queries at the query plan level directly. Any

plan that the optimizer can generate, the user can also type in. Queries

at the executable level are completely type-checked before execution.

This capability is crucial in providing quick extensibility, because a new

query processing operator can be implemented and used directly, with-

out a need to integrate it into SQL and query optimization. It is also

highly useful for experimenting with query processing strategies and al-

gorithms, as one has full control of composing a query plan.

Secondo consist of three major components, namely, the kernel, the

optimizer, and the graphical user interface (GUI). These are written in

different programming languages and can run as cooperating processes.

They are described in the following subsections.

3.2.2 Second-Order Signature

Second-order signature (SOS) is a framework that allows one to define

a DBMS data model and query language (e.g. a relational model with

relation algebra) at the descriptive level, or a representation model with

query processing operations at the executable level. Currently it is used

within Secondo to describe the executable level.

The basic idea is to use two coupled signatures. A signature in general

has sorts and operators and defines a set of terms. Here the first signature

12

is used to define a type system; its sorts are called kinds and its operators

are type constructors. The following signature defines a relational model.
kinds IDENT, DATA, TUPLE, REL

type constructors

→ DATA int , real , bool , string

(IDENT ×DATA)+ → TUPLE tuple

TUPLE → REL rel

A kind is essentially a collection of types. Here int , real , bool , string are

constant type constructors (i.e., type constructors without arguments)

with result types in the kind DATA. The tuple constructor takes a non-

empty list of pairs where the first element is an identifier (an attribute

name) and the second a type in DATA; it returns a tuple type. The

rel constructor takes a tuple type (from kind TUPLE) and returns a

corresponding relation type. The terms of this signature are precisely

the available types of the type system. The term

rel(tuple([Name: string , Age: int]))

belongs to kind REL and denotes a relation type, equivalent to a

relation schema in standard database terminology.

The second signature introduces operations over the types defined by

the first signature. At the executable level, these are query processing

operations. The following are a few example operations.

operators

∀ data in DATA.

data ×data → bool =, <,> _ # _

∀ tuple: tuple(list) in TUPLE, attrname in IDENT,

member((attrname, attrtype), list).

tuple ×attrname → attrtype attr # (_ , _)

∀ tuple: tuple(list) in TUPLE.

rel(tuple) → stream(tuple) feed _ #

stream(tuple) ×(tuple → bool)

→stream(tuple) filter _ # [_]

stream(tuple) →rel(tuple) consume _ #

Here we use quantification over kinds to define generic operator sig-

natures. Hence data is a type variable ranging over types in kind DATA,

and three comparison operators are defined to be applicable to equal

types, e.g. <: int × int → bool . Attr is an operator to access an at-

tribute value within a tuple. At the executable level, query processing

operators usually work in a pipelined fashion; this is provided by a special

type constructor stream. Operator feed scans a relation and provides a

stream of tuples of the given tuple type of the relation. Operator filter

Trajectory Databases 13

implements a selection on a stream of tuples, checking each tuple with

the predicate given as a second argument. Operator consume collects a

stream of tuples back into a relation. The notations on the right define

the operator syntax, where # represents the operator and _ an argument.

With the given operators, one can formulate the following simple query

plan. Let us assume a relation People with the type/schema shown above

exists in the database, and Person is the type of tuples of People.

People feed filter[fun(t: Person) attr(t, Age) > 20] consume

All the mentioned operators are in fact implemented in Secondo

and one can type this plan exactly in the form shown. Moreover, some

abbreviations are provided so that one can write:

People feed filter[.Age > 20] consume

The complete query with the function argument shown above is de-

rived from this user query.

The SOS framework includes a small set of generic (i.e., data model

independent) commands for data definition and data manipulation. A

database is a pair (T,O) where T is a set of named types and O a set

of named objects. The seven basic commands shown in Table 3.4 are

available. Here type expression denotes any term built from database

types and type constructors of the available algebras, and value expres-

sion any term built from database objects (or constants) and operators

of the available algebras.

3.2.3 Secondo Kernel

The kernel implements specific data models and is extensible by algebra

modules. It provides query processing over the implemented algebras. It

uses an underlying storage manager (BerkeleyDB) to provide stable stor-

age at the level of files and records, including transaction management,

locking and recovery. The kernel is written in C++.

Secondo implements the generic commands of the SOS framework and

a few more, shown in Table 3.3.

Note that any implemented type constructor must provide methods

to convert between the internal representation of a value of the type

and an external nested list format (similar to lists in Lisp or Prolog).

This makes it possible to have generic commands to save any object, or

an entire database, into an editable text file format. This format is also

used for exchanging data between Secondo components, e.g. the kernel

and the GUI.

14

Basic Commands Inquiries

type <ident> = <type expression> list type constructors
delete type <ident> list operators
create <ident>: <type expression> list algebras
update <ident> := <value expression> list algebra <ident>
let <ident> = <value expression> list databases
delete <ident> list types
query <value expression> list objects

Databases Transactions

create database <ident> begin transaction
delete database <ident> commit transaction
open database <ident> abort transaction
close database

Import and Export

save database to <file>
restore database <ident> from <file>
save <ident> to <file>
restore <ident> from <file>

Table 3.3 Secondo kernel generic commands

3.2.4 Query Optimizer

The query optimizer is a large and important component of the system,

but we do not have space in this chapter to present it in any detail. We

can just mention a few properties:

• The optimizer performs conjunctive query optimization, i.e., takes a

set of relations and a set of selection or join predicates, and computes

an execution plan for them in the Secondo executable language. This

initial plan yields a stream of tuples to which further query processing

operations are applied according to the SQL query (e.g. for grouping,

aggregation, projection).

• The optimizer considers all possible plans according to the given rules

for translating selections and joins. The complexity for this is expo-

nential, but it works fine (i.e., within a second) for up to about 9

or 10 predicates. The resulting plan is optimal if cost functions and

selectivity estimates are precise, and predicates are not correlated.

• The operations of the implemented algebras on attribute types (atomic

operations from the point of view of the relational model) can be used

Trajectory Databases 15

directly in theWHERE-clause and the SELECT-clause. All operations

of the model of Section 3.1 are atomic in this sense.

• The optimizer determines selectivities of predicates by evaluating each

predicate individually on a materialized sample, or two samples for

join predicates. Note that this is the only technique that works in a

complex application context as this one, where histogram support for

all operations is impossible to obtain.

• The optimizer is extensible by translation rules (specifying how selec-

tion or join predicates can be implemented by executable operations,

including index accesses) and by cost functions for query processing

operations.

3.2.5 Executable Language vs. SQL

There are two language levels available for querying in Secondo; hence

a discussion is appropriate what are the advantages or disadvantages of

using either of these levels.

Using SQL and the optimizer has the following advantages:

• The structure of SQL is well known and the query is easy to formulate

if just atomic operations of the data model are needed.

• The user does not need to learn or remember individual query pro-

cessing operations such as specialized join methods or index access

methods.

• For a complex query, there are many alternatives and the optimizer

can make a good choice based on cost estimation. In contrast, the user

can only guess or rely on experience to construct a good plan.

However, using the executable level directly also has some advantages:

• The SQL level is restricted to the relational model and the structure

of an SQL query is quite rigid. Any extension to the SQL language has

to happen in an ad-hoc manner (e.g. adding new keywords, clauses).

In contrast, the executable level is entirely free in choosing the data

model. Currently there are, for example, nested relations and network

structures that go beyond the relational model, also streams of values,

arrays of relations (suitable for parallel processing) and so forth.

• Similarly, query processing operations can be chosen and added freely.

For example, there are Secondo operations to convert a stream of ob-

servations into a moving(point), to compute derived attributes from

an expression over attributes in two adjacent tuples in a tuple stream,

16

to import data from Shape files, to send a stream of tuples to an-

other computer via TCP/IP, to read/write tuple streams from/to files,

etc. Some example queries involving special operations for continuous

nearest neighbor queries are shown in Section 3.6. It is completely

unclear how such queries could be expressed in SQL.

• In many application cases, a query for the analysis of moving objects

involves some complex processing steps, but it is not complex in terms

of a large number of joins. In such cases, the advantages of using the

query optimizer disappear.

• System development generally proceeds from the executable level to

the level of SQL and query optimization. One can quickly add a query

processing operator to the system and use it, much faster than figuring

out how SQL extensions, optimization rules, and cost estimates can be

done. As soon as the executable operator is available, one can already

run the query and solve the application problem.

In summary, using the executable level is harder in formulating the

query, but at the same time much more flexible and expressive than

using the SQL level. In fact, the executable level is a kind of specialized

programming language, intermediate in complexity between a genuine

programming language such as C++, and SQL.

3.2.6 The Graphical User Interface

Secondo comes with a graphical user interface. It is written in Java

and communicates with the Secondo-Kernel via TCP/IP. Thereby, the

Secondo server and the user interface can be installed on different

computers.

In Figure 3.5, a screenshot of the GUI is shown. It consists of three

main components, the command panel (top left), the object manager

(top right), and the currently active viewer (bottom; here, the Hoese-

Viewer). The command panel gets commands from the user and executes

them. The commands can be divided into three groups: Secondo com-

mands, GUI commands, and SQL commands. A GUI command controls

the GUI. For example, a new viewer can be added at runtime using

the command “gui addViewer <Name>”. An SQL command is sent

to the optimizer server. The server returns the command translated to

executable level. This command is treated as if the user entered the

command directly as a Secondo command. A Secondo command is

sent to the Secondo server. The server returns the result as a nested

Trajectory Databases 17

Figure 3.5 GUI screenshot

list. The list is wrapped into a so-called SecondoObject, consisting of an

ID, a name (currently the command itself), and a nested list describing

the value of the object. This object is given to the object manager for

further processing. The object manager in turn, first adds the object

to the list of available objects. After that, a viewer is selected following

certain rules and the object is passed on to this viewer.

Secondo can be extended with new data types. Because it is unpre-

dictable which extensions are implemented in the future, the GUI must

also be extensible. This is realized by so-called viewers. Each viewer is

a component which can handle a certain set of data types. A type may

be handled by more than one viewer. Some of the currently available

viewers are themselves extensible.

The HoeseViewer

The currently most powerful viewer is the HoeseViewer, named by its

first author. This viewer is able to display simple objects (int , string ,

...), spatial objects (point , line, region), and spatio-temporal objects.

All objects can also be embedded in a relation. Spatio-temporal objects

are displayed as an animation. If an animation is started, a ticker is

activated. At each tick, each object’s shape and position at the instant

18

to display are called and then plotted. Other temporal objects (mbool ,

mreal) are displayed as 2D function graphs within a separate frame.

The appearance of objects is controlled by so-called categories, for

example, the color, line width and label can be configured. Some of the

parameters can be set to be dependent on an attribute value. Thus, for

example, the color of a moving point can represent its speed stored in

another attribute.

If spatial objects are given in geographic coordinates (longitude/latitude),

maps can be used as a background. The HoeseViewer provides a set of

preconfigured map servers but can also use other servers.

3.3 Representations for Sets of Trajectories

Storing and analyzing trajectories relies on methods to represent tra-

jectory data within a database. In this section, we show how trajectory

data can be loaded and represented in Secondo. The DB commands

are presented in the Secondo executable language.

In Section 3.1 the Trains example relation was introduced with schema:

Trains(Id: int, Line: int, Up: bool, Trip: mpoint)

Let us assume we do not rely on time tables anymore and now capture

the real positions of metro trains in Berlin. The vehicles are equipped

with sensors and periodically send messages

(Id: int, Line: int, Up: bool, Time: instant,
PosX: real, PosY: real)

to a DB server. Besides the attributes explained above, Time is the mes-

sage’s timestamp, and the geographic position at the associated times-

tamp is given as Gauss-Krueger projected geocoordinates: PosX is the

easting, PosY the northing coordinate. Each incoming message is in-

serted into a CSV table

TrajCSV(Id: int, Line: int, Up: bool, Time: instant,
PosX: real, PosY: real)

Due to the natural injectivity of the mapping of time to a Line number,

an Up flag setting and a Position for each physical object, {Id, Time}
is a key for TrajCSV .

Trajectory Databases 19

3.3.1 Loading Data

First, we show how the “raw” trajectory data from a given CSV text

file Traj.csv can be imported to a Secondo database.5 The text file

provides the five column table TrajCSV as described before.

let TrainsRaw = [const rel(tuple([Id: int, Line: int, Up: bool,
Time: instant, PosX: real, PosY: real])) value ()]

csvimport[’Traj.csv’, 0, "", ","]
projectextend[Id, Line, Up, Time; Pos: makepoint(.PosX, .PosY)]
consume;

This creates a relation

TrainsRaw(Id: int, Line: int, Up: bool, Time: instant, Pos: point)

where attribute Pos contains the position data as a point (easting, nor-

thing). In the following, we briefly investigate two different ways to

represent trajectories more effectively according to the data model of

Section 3.1 within Secondo: the compact representation and the unit

representation.

3.3.2 Compact Representation

In TrainsRaw the information on a vehicle is distributed among many

tuples. Using the model of spatio-temporal data types, we now express

the same data in a relation with only a single tuple per vehicle. The data

type mpoint is used to capture the temporal development of attribute

Pos. We achieve this by grouping TrainsRaw by Id and applying the

approximate operator to each group. Using Time as the least signif-

icant sorting criterion prior to grouping guarantees that the messages

for each train enter the approximate operator in increasing temporal

order:

let Trains = TrainsRaw feed
sortby[Id, Line, Up, Time]
groupby[Id, Line, Up; Trip: group feed approximate[Time, Pos]]
consume;

The result is the relation Trains with the schema shown earlier. This

is what we call the compact representation of moving object data. It

is easy to apply many different kinds of temporal and spatio-temporal

operations as introduced in Section 3.1 to the temporal attribute.

5 It is also possible to import NMEA recordings using an operator mneaimport.

20

3.3.3 Unit Representation

A second way to represent moving object data is to employ the respective

unit types. Several operations allow one to transform a moving type

object to a stream of unit type objects and vice versa, so it is easy to

translate between say an mpoint and a set of upoints and to use both

kinds of data types together. A upoint represents a single time interval

and a linear movement of a single object during this time. Let us create

the unit representation for relation Trains:

let UnitTrains = Trains feed
projectextendstream[Id, Line, Up; UTrip: units(.Trip)]
addcounter[No, 0] consume;

The result is a relation

UnitTrains(Id: int, Line: int, Up: bool, UTrip: upoint, No: int)

For each vehicle identifier, UnitTrains contains a set of tuples, each of

which contains one of the temporally disjoint units whose union forms

the train’s complete trajectory:

The units operator converts each mpoint to a stream of upoints,

and projectextendstream performs a specialized loopjoin. The ad-

dcounter operator extends the tuples with a counter attribute called

No (an int key, starting with value 0 for the first tuple, then being in-

cremented for each following tuple). Because this unit representation, as

we call it, replicates attributes Id, Line and Up, it is less space efficient.

However, it has a higher degree of organisation than TrainsRaw, and

will show quite useful when creating indexes supporting certain query

types (like temporal/spatial/spatio-temporal window queries and near-

est neighbor queries, see Sections 3.4 and 3.6).

3.3.4 Object-Based vs. Trip-Based Representation

If the complete trajectory data on an object (using any one of the three

representations) can be referenced within a representation, we call this

object-based, or a raw trajectory. Often, such a raw trajectory is de-

composed into several “meaningful” parts — semantic trajectories —

like a series of trips. In Secondo, the sim trips operator identifies the

boundaries of such parts — other suitable methods (not shown here)

may divide raw trajectories into other forms of semantic trajectories.

Given a full trajectory (an mpoint) and a minimum pause duration, it

splits the mpoint into a series of trips. As an example, we decompose

Trajectory Databases 21

the trajectories Trip within relation Trains. Whenever a train stops for

at least 10 seconds (10,000 milliseconds), its trajectory is split:

let TrainTrips = Trains feed
projectextendstream[Id, Line, Up; PartialTrip: .Trip
sim_trips[create_duration(0, 10000)]]

addcounter[PartialTripId, 0]
consume;

The result is a relation

TrainTrips(Id: int, Line: int, Up: bool, PartialTrip: mpoint,
PartialTripId: int).

We call it a trip-based representation, because it allows one to refer to

single trips of vehicles (using the added key attribute PartialTripId)

rather than to a vehicle’s complete trajectory.

3.4 Indexing

Secondo contains several algebra modules providing indexes for differ-

ent purposes. For indexing simple data types, B-trees or hash tables are

used while for spatial and spatio-temporal objects, R-trees are applied. A

variant, the TB-tree, is also available in Secondo. For indexing current

positions of moving points, the SETI-structure has been implemented.

For indexing moving objects in networks, the MON-Tree-Algebra pro-

vides appropriate data structures. Further implemented index structures

are the X-tree and the M-tree. Whereas a B-tree-search yields the final

result directly, spatial or spatio-temporal indexes (like the R-tree) return

a candidate set and then the real intersection must be checked in a fur-

ther step6. The candidate set contains all results fulfilling the condition

(true hits) but may contain also elements where the condition fails (false

hits).

When indexing moving points by R-trees, different granularities can

be chosen. The roughest one is to index the mpoint as a whole. If an

mpoint was observed over a long period, its bounding box may be very

large, leading to a lot of dead space within the index. The index will

contain only a few entries, but its selectivity is bad; this means the

resulting candidate set will contain a lot of false hits. The other extreme

is to index single units of the mpoint . Here, compared with indexing of

the whole mpoint , less dead space is produced. But the complete mpoint

6 This is the so-called filter-and-refine strategy known from the literature

22

is distributed over many index entries. Thus, depending on the query,

duplicates must be removed or the result entries must be merged. A

third way is indexing groups of connected units. All three possibilities

are available in Secondo.

x

t

Figure 3.6 Indexing whole mpoints and upoints

Another differentiation can be made in the indexed dimensions. It is

possible to use separate indexes for the spatial and for the time dimen-

sion or to use a 3D-R-tree to index the three dimensions together. The

former is suitable for pure spatial and temporal searches, respectively.

For example, the spatial index is the best choice if asking which moving

points have passed a certain area. If another condition restricts the time

when the mpoint passed the area, an index over all dimensions is useful.

In Secondo, an R-tree can be created using the operators creatertree

and bulkloadrtree, respectively. Both variants get a tuple stream ex-

tended by the tuple’s id and the name of the attribute to index. For

the bulkloadrtree operator, the tuples must first be sorted by the bound-

ing box according to the z-order, but this operator is much faster than

creatertree. For example,

let UnitTrains_UTrip = UnitTrains feed addid
extend[B: bbox2d(.UTrip)] sortby[B] bulkloadrtree[B]

creates an index over the spatial dimension of the units of underground

trains stored in the UTrip attribute of the relation UnitTrains. By typing

the query:

query UnitTrains_UTrip UnitTrains
windowintersects[bbox(thecenter)]
filter[trajectory(.UTrip) intersects thecenter] consume

we can determine which units of the relation UnitsTrains intersect the

region named thecenter.

Trajectory Databases 23

3.5 Spatial Join

The operator spatialjoin takes two tuple streams each having a spatial

or spatio-temporal attribute a1 and a2, respectively. It joins such tuples

of the streams where the bounding boxes of a1 and a2 intersect.

The operator works in two main steps. In the first step, the tuples are

distributed over a regular grid according to the attribute. More precisely,

each tuple is inserted into all grid cells intersected by the attribute. The

grid is chosen in such way that within each cell, the number of objects is

small enough to handle all objects in main memory. After that, an R-tree

based spatial join is performed for each cell. Here, first a main memory

R-tree for the elements a1 of the first tuple stream is built. Then, the

second tuple stream is scanned and, for each tuple, a search on the R-tree

is performed. Matching tuples are concatenated and returned.

Some tuples may have intersecting boxes in different cells. To avoid

creating duplicate answers, a test is made whether the smallest intersec-

tion point of the two overlapping boxes actually lies in the current cell.

In this way duplicates can be eliminated without an expensive sorting

step.

The operator obviously needs a definition of the grid, i.e., the total

space covered by the grid, and the cell dimensions. To determine this,

before performing the two steps mentioned above, the operator in a first

pass reads both streams completely, buffering them in memory if possible

and otherwise writing them to disk. The cell size is then determined

based on the total number of objects and the average object sizes.

A usage example of the spatialjoin operator is:

query UnitTrains feed extend[B: bbox(.UTrip)] a
UnitTrains feed extend[B: bbox(.UTrip)] b
spatialjoin[B_a, B_b]
filter[.Id_a < .Id_b]
filter[intersection(.UTrip_a, .UTrip_b) count >0]
consume

With this query, we find all pairs of units from UnitsTrains meeting

each other. In a first step, we feed the relation UnitTrains into two tuple

streams. We extend both streams by the 3D-bounding box of the unit.

To avoid name conflicts, attributes are renamed by appending a and

b, respectively, to the name of each attribute. Then, the spatialjoin

operator concatenates the pairs of tuples having intersecting bounding

boxes as the candidate set. From this stream, these tuples are selected

24

t

dist

Figure 3.7 Two nearest neighbors

whose upoint values actually meet. The resulting stream is collected into

a relation.

Because each cell can be handled separately, this operation can be

distributed to several computers for parallel processing.

3.6 Nearest Neighbor Queries

Finding the k nearest neighbors to a query object is an important func-

tion. For example, a car driver may request the next three gas stations

from his current position. As the car is moving, the result set will change

in time.

Nearest neighbor queries are well studied for (static) spatial objects.

Usually, a distance scan on an R-tree is performed to compute the result.

Here, we solve the most complex case, which is finding the k nearest

neighbors to an mpoint q within a set of mpoints. It is obvious that the

result set also may change in time. The complete algorithm is wrapped

in an operator knearest, which gets an mpoint and receives a stream of

tuples containing the units of the objects among which the nearest neigh-

bors are to be be found. These tuples must arrive ordered by starting

time of the units. Besides this, the attribute name of the unit attribute

and the number k is given. Now, a plane sweep is performed to find in-

tersections of distance functions from the units to the query mpoint . As

we only want to compare the distances, the computation of the square

root to get the exact distance is unnecessary and therefore omitted. For

this reason, the distance functions are polynomials of degree two. Fig-

ure 3.7 shows the distance functions of four units and the two nearest

neighbors.

The plane sweep algorithm is a variant of the well-known line segment

intersection algorithm by Bentley and Ottmann. Due to space limita-

Trajectory Databases 25

tions, further details are omitted here. The knearest operator returns

all (parts of) units belonging to the k moving points closest to p in its

output stream.

An example query for the operator is:

[htbp]
query UnitTrains feed sortby[UTrip] knearest[UTrip, train7, 3] consume

This will return the three nearest neighbors to train7 during the com-

plete lifetime of train7 as a relation containing upoints.

The computation of the nearest neighbors is complex and if many

objects are inside the query set, a lot of distance computations must be

performed. To reduce the complexity, another operator is implemented

in Secondo acting as a filter for the knearest operator. It removes

such tuples from the input stream which cannot contribute to the final

result. After that, the knearest-operator is applied on the reduced data

set.

The basic idea is to use an R-tree over the units to prune units far

away from the query moving point q. In the following, we give a sketch

of the algorithm. We store the units into a 3D-R-tree. We can prune

a node p in the R-tree, if for the time interval i covered by this node,

there are other nodes N closer than p to the query object containing

more than k units. For example in Figure 3.8, the node p can be pruned

for k = 2 because the node n is closer to q and has more than two units

during the complete lifespan of p.

q

p

x

y

z

n

Figure 3.8 Prune a node

The closeness condition is fulfilled, if the minimum distance from p

to q is greater than the maximum distance of n (from N) to q. To

find out whether the set N contains at least k units during i, another

26

precomputed relation is used. In principle, this relation contains for each

node of the R-tree a moving integer describing the number of units

present at each instant of time. We call this number coverage number.

Unfortunately, this number may have many units. The condition that

enough units must be present must hold for the complete time interval

covered by the node. If we would use the exact numbers, this check

would be expensive due to the large numbers of units. For this reason,

we coarsen the coverage number to have a maximum of three units. The

coarsened number value is at most the original one for all instants to

avoid to pruning nodes still needed.

The tree is then traversed, using the precomputed coverage numbers

to prune irrelevant subtrees. More details can be found in the original

literature.

An example query for this operation is:

query UTOrdered rtree UTOrdered Numbers btree Numbers
knearestfilter[UTrip, train7, 3] knearest[UTrip, train7, 3]
consume

Here, UTOrdered corresponds to UnitTrains sorted by UTrip and

Numbers contains the coverage numbers for the nodes of UTOrdered rtree,

an R-tree built over this relation. Numbers btree is a B-tree index cre-

ated over the Numbers relation to speed up finding the coverage number

for a certain node.

3.7 Spatiotemporal Pattern Queries

Secondo recently provides a querying facility to find trajectories match-

ing so-called spatio-temporal pattern predicates. Such a predicate speci-

fies several time dependent conditions together with restrictions on the

fulfillment time intervals of these conditions. Time dependent predicates

may be, for example:

• The speed is higher than 120 km/h.

• The car is in a forest

• The altitude of an air plane is less than 500 meters.

For time dependent conditions A, B, C, constraints on fulfillment times

may be:

• A then B then C

• A before B; A and B during C

Trajectory Databases 27

In the model of Section 3.1, time dependent conditions are expressed

as lifted predicates, i.e., predicates evaluating to mbool . Many such

predicates can be expressed in the Secondo implementation. A spatio-

temporal pattern query can be expressed using an stpattern operator.

For example:

query Trains feed filter[
. stpattern[

insnow: .Trip inside msnow,
isclose: distance(.Trip, mehringdamm) < 10.0;
stconstraint("insnow","isclose", vec("aabb"))]]

consume

This query finds trains that are in the snow area msnow before their

distance to mehringdamm is smaller than 10 meters. The time interval

constraint is expressed by a kind of graphical notation (“aabb” expresses

that time interval a precedes time interval b).

A more detailed explanation of spatio-temporal pattern predicates can

be found in Chapter ... on Air Traffic Analysis where it is employed to

find flights exhibiting particular behaviours.

3.8 BerlinMOD

BerlinMOD is a benchmark for trajectory database systems. It com-

prizes a parametrizable data generator and a set of queries as a well-

defined workload. Benchmarks are an accepted method to compare the

efficiency of database systems. More than this, they are helpful to users

and researchers in

1. evaluating a database system’s overall performance

2. identifying a system’s specific advantages and disadvantages

3. testing its optimization strategies

4. providing a standardized testing platform for new algorithms and

index structures

5. comparing different trajectory/data representations

3.8.1 Data Generator

Benchmarking requires a well-defined dataset to which queries can be

applied. One basic problem with trajectory databases is, that while large

datasets are continually collected all over the world, few of them are

made publicly available, usually due to economic interests and privacy

28

concerns. To tackle this problem, data generators have long been used to

create synthetic data. However, there are more considerations regarding

data for a benchmark:

1. The data must be scalable with regards to the number of observed

objects and the observation time. While real data can only be re-

stricted, synthetic data may be generated in accordance with the

user’s requirements.

2. The data should be representative, i.e. it should either be real or

at least resemble the properties of real data, so that results can be

transferred to typical real-world use cases.

3. The data set should be well-defined, so that experiments using it are

repeatable. If real data is used, it must be made available in total,

if a data generator is used, it should create the same data each time

the same parameters are used.

4. Trajectory data should be augmented with standard data (e.g. int ,

string , bool etc.).

5. When using a data generator, it should be widely parametrizable,

since many people are interested in using data adapted to some con-

crete situation, e.g. trajectories within their own city.

Respecting these points, generators can be an accepted alternative or

supplement to native data collections. The BerlinMOD data generator

addresses these needs. It uses real world parameters — the road network

of Berlin and statistical data on local population and employer distribu-

tions — together with a well-defined algorithm to simulate the car trips

of an arbitrary number of “persons”. Each person is assigned a home

location and a work location using distributions defined by the road net-

work or the statistical data. Some additional standard type attributes

(licence plate number, car manufacturer and car type) are associated

with each person. The simulator then creates trips between these pairs

of locations (commuting trips) on each working day. For weekends and

in the person’s leisure time, additional round trips starting at the home

location and visiting several intermediate locations on the network are

created. These round trips tend to be local, so that visited locations

are more likely in the vicinity of a person’s home. The simulation re-

spects the geometry of the roads and the network (speed limits, curve

angles, different types of crossings) and adds according acceleration, de-

celeration and stop events. Interactions between simulated persons are

neglected, since otherwise the goal to achieve scalability would be en-

dangered.

Trajectory Databases 29

Besides the trajectory data, also sets of points, regions, observation

periods, instants, and person’s identities are created. These datasets are

used by the workload queries to define query points and windows. Usu-

ally, the generated data are mapped to the road network, but optionally,

noise can be added to the position data. This simulates small random

errors, which are typical for positioning devices.

The following relations representing the generated trajectories are cre-

ated:

dataScar(Licence: string, Model: string, Type: string,
Trip: mpoint)

dataMcar(Licence: string, Model: string, Type: string)
dataMtrip(Licence: string, Trip: mpoint)

dataScar is a relation with one tuple per created person, using the

compact representation and the object-based approach. The other two

relations represent the same data, also using the compact representation,

but following the trip based approach, i.e. dataMcar contains one tuple

with the standard attributes for each person, while dataMtrip contains

several tuples with a trip for each person. {Licence} is a key for dataScar

and dataMcar — and an external key of dataMtrip.

QueryPoints(Id: int, Pos: point)
QueryRegions(Id: int, Region: region)
QueryInstants(Id: int, Instant: instant)
QueryPeriods(Id: int, Period: periods)
QueryLicences(Id: int, Licence: string)

These five relations provide data to generate meaningful queries.

3.8.2 Workload

Besides the data generator, BerlinMOD comes with a workload of 16

different types of window queries (BerlinMOD/R), plus 9 different types

of nearest neighbor queries (BerlinMOD/NN). The queries operate on

the relations listed before. For BerlinMOD/R, the queries are provided

in SQL (augmented with the operations for spatio-temporal data types).

For the BerlinMOD/NN queries, formalized SQL statements are not yet

available, and we will focus on BerlinMOD/R in the remainder of this

section.

The benchmark queries have been carefully selected in order to cover

all significant types of queries. There are queries with and without aggre-

gations, point- and various (temporal, spatial, different kinds of spatio-

30

temporal) window queries, but also queries regarding the standard type

attributes.

As an example, we show a slight variation of Query 10: “When and

where did the vehicles with licence plate numbers from QueryLicences

meet other vehicles (distance lt 3m) and what are the latters’ licences?”:

SELECT V1.Licence AS QueryLicence, V2.Licence AS OtherLicence,
(V1.Trip atperiods (deftime(
(distance(V1.Trip, V2.Trip) <= 3.0) at TRUE))) AS Pos

FROM dataScar V1, dataScar V2, QueryLicences LL
WHERE V1.Licence = LL.Licence

AND V2.Licence <> V1.Licence
AND sometimes(distance(V1.Trip, V2.Trip) <= 3.0);

In order to achieve a good performance for queries, index support is

required for selections, especially on the spatial and/or temporal dimen-

sion (at scale factor 1.0, BerlinMOD uses 19 GB of data, representing

observations of 2,000 persons over 28 days). It is in the responsibility

of the benchmark user to provide required indexes. He or she can then

translate the queries into the data base system’s executable language —

either by himself or herself or using the system’s query optimizer.

For example, given that a B-tree index dataScar Licence btree in-

dexing dataScar by Licence is available, a valid manual translation of

Query 10 into a Secondo executable query plan is:

query QueryLicences feed head[10]
loopsel[dataScar_Licence_btree dataScar exactmatch[.Licence]
project[Licence, Trip] V1

]
dataSCcar feed project[Licence, Trip] V2
symmjoin[.Licence_V1 # ..Licence_V2]
filter[(everNearerThan(.Trip_V1, .Trip_V2, 3.0))]
projectextend[; QueryLicence: .Licence_V1,
OtherLicence: .Licence_V2,
Pos: .Trip_V1 atperiods

deftime((distance(.Trip_V1, .Trip_V2) <= 3.0) at TRUE)
]
filter[not(isempty(deftime(.Pos)))]
project[QueryLicence, OtherLicence, Pos]
consume;

The meaning of this plan is that first the trajectories belonging to

vehicles listed in QueryLicences are selected using the B-tree, then the

result is joined with all other vehicles (.Licence V 1 # ..Licence V 2,

since {Licence} is a key for dataScar). The result is filtered using a

predicate with operator everNearerThan which performs a parallel

scan over both of its mpoint arguments and immediately returns TRUE

Trajectory Databases 31

when bothmpoints ever get closer to each other than the given threshold.

Passing pairs are extended with anmpoint attribute Pos, which contains

the restriction of the query vehicle’s trajectory (Trip V 1) to the periods

(and hence also to the locations) where it is nearer than 3 meters to

its join partner’s trajectory (Trip V 2). The last filter makes sure that

tuples with empty instances of Pos are rejected.

The Secondo optimizer accepts SQL queries in a syntax slightly

adapted to PROLOG:

select [v1:licence as querylicence, v2:licence as otherlicence,
v1:trip atperiods(deftime(
(distance(v1:trip,v2:trip) <= 3.0) at testtrue)) as pos]

from [datasccar as v1, datasccar as v2, querylicences as ll]
where [v1:licence = ll:licence, not(v2:licence = v1:licence),

sometimes(distance(v1:trip, v2:trip) <= 3.0)]

The optimizers recommended plan is:

query dataScar feedproject[Trip, Licence] v2
QueryLicences feedproject[Licence] ll
loopjoin[dataScar_Licence_btree dataScar exactmatch[.Licence_ll]
project[Trip, Licence] v1]

symmjoin[not((.Licence_v2 = ..Licence_v1))]
filter[sometimes((distance(.Trip_v1,.Trip_v2) <= 3.0))]
extend[Querylicence: .Licence_v1, Otherlicence: .Licence_v2,
Pos: (.Trip_v1 atperiods

deftime(((distance(.Trip_v1,.Trip_v2) <= 3.0) at testtrue)))]
project[Querylicence, Otherlicence, Pos]
consume;

This is — neglecting the reversed, insignificant order of arguments to

the symmjoin — almost the same as the man-made plan. To be honest,

the recommendation is the result after applying the BerlinMOD bench-

mark to Secondo and enhancing the optimizer’s cost functions. The

first plan did not perfom an unequality join on Licence, but directly ap-

plied the distance criterion when joining the trajectories. Scanning pairs

of mpoints is likely to be more expensive than testing two strings for

equality. Investigations in the optimizer resulted in a refinement of the

cost function for the symmjoin and allowed to generate better plans.

But there is still some potential for further optimization, since the opti-

mizer could be instructed to also use operator everNearerThan(x, y, z)

instead of the expression sometimes(distance(x, y) ≤ z), which is

forced to always (1) compute the complete distance function (an mreal)

and from this (2) the lifted comparison (an mbool). This is only one sim-

ple example on how using a benchmark may help to improve a database

system.

32

3.9 Hermes

Another system dealing with moving objects is Hermes [13]. It is imple-

mented on top of the Oracle 10g database system using PL/SQL as a

programming language. Beside the core system of Hermes, there is an

implementation of a web based query builder and viewer. Hermes does

not implement own data structures for spatial objects, rather it uses the

spatial objects of the underlying system.

Because Hermes implements the same data model as Secondo does,

the data types and operations on them are quite similar. Additionally

to the types provided by Secondo, Hermes has implementations for

moving circles, moving rectangles, and moving collections (sets of moving

objects of different types).

As Secondo, Hermes uses the sliced representation for representing

moving objects. Units belonging to a moving object are stored within a

nested table.

Besides the moving data types, Hermes contains a TB-tree implemen-

tation. This structure supports the standard operations for this index

(point query and range query), but also k-NN and similarity queries.

Hermes’ query language is SQL extend by spatio-temporal operations.

Although SQL is familiar to the most database systems users, formulat-

ing complex temporal queries in SQL is a hard task and queries tend to

degenerate to deeply nested function calls.

3.10 Bibliographic Notes

The data model of Section 3.1 was developed in a series of papers

[4, 8, 5, 10]. Whereas [4] describes the approach, in [8] type system

and operations are carefully designed. The discrete model is defined in

[5] and algorithms for the operations are presented in [10]. The model

was extended to a network-based representation of moving objects (or

trajectories) in [9].

The conceptual framework underlying the Secondo system, second-

order signature, is given in [6]. The system is freely available for down-

load from the web site [15] where a lot of further documentation can be

found. The Hermes system which also partially implements the model

of Section 3.1 is decribed in [12].

The spatial join algorithm described in Section 3.5 is roughly based on

[11]. The algorithm for continuous nearest neighbor queries of Section

Trajectory Databases 33

3.6 is presented in detail in [7]. The algorithm for line segment inter-

section mentioned in that section is due to Bentley and Ottmann [1].

Spatiotemporal pattern queries are described in [14]; see also Chapter

[Air Traffic Analysis].

Finally, the BerlinMOD benchmark is presented in [3]. A web site pro-

viding scripts and further documentation on the BerlinMOD benchmark

is [2].

References

[1] Jon Louis Bentley and Thomas Ottmann. Algorithms for reporting and
counting geometric intersections. IEEE Trans. Computers, 28(9):643–
647, 1979.

[2] BerlinMOD Web Site. http://dna.fernuni-hagen.de/Secondo.html/Ber-
linMOD/BerlinMOD.html.

[3] Christian Düntgen, Thomas Behr, and Ralf Hartmut Güting. Berlin-
MOD: a benchmark for moving object databases. VLDB J., 18(6):1335–
1368, 2009.

[4] Martin Erwig, Ralf Hartmut Güting, Markus Schneider, and Michalis
Vazirgiannis. Spatio-temporal data types: An approach to modeling and
querying moving objects in databases. GeoInformatica, 3(3):269–296,
1999.

[5] Luca Forlizzi, Ralf Hartmut Güting, Enrico Nardelli, and Markus Schnei-
der. A data model and data structures for moving objects databases. In
SIGMOD Conference, pages 319–330, 2000.

[6] Ralf Hartmut Güting. Second-order signature: A tool for specifying data
models, query processing, and optimization. In SIGMOD Conference,
pages 277–286, 1993.

[7] Ralf Hartmut Güting, Thomas Behr, and Jianqiu Xu. Efficient k-nearest
neighbor search on moving object trajectories. VLDB J., 19(5):687–714,
2010.

[8] Ralf Hartmut Güting, Michael H. Böhlen, Martin Erwig, Christian S.
Jensen, Nikos A. Lorentzos, Markus Schneider, and Michalis Vazirgiannis.
A foundation for representing and querying moving objects. ACM Trans.
Database Syst., 25(1):1–42, 2000.

[9] Ralf Hartmut Güting, Victor Teixeira de Almeida, and Zhiming Ding.
Modeling and querying moving objects in networks. VLDB J., 15(2):165–
190, 2006.

[10] José Antonio Cotelo Lema, Luca Forlizzi, Ralf Hartmut Güting, En-
rico Nardelli, and Markus Schneider. Algorithms for moving objects
databases. Comput. J., 46(6):680–712, 2003.

[11] Jignesh M. Patel and David J. DeWitt. Partition based spatial-merge
join. In SIGMOD Conference, pages 259–270, 1996.

References 35

[12] Nikos Pelekis, Elias Frentzos, Nikos Giatrakos, and Yannis Theodoridis.
HERMES: aggregative LBS via a trajectory DB engine. In SIGMOD
Conference, pages 1255–1258, 2008.

[13] Nikos Pelekis and Yannis Theodoridis. An oracle data cartridge for mov-
ing objects. Technical report, University of Peraeus, 2005.

[14] Mahmoud Attia Sakr and Ralf Hartmut Güting. Spatiotemporal pattern
queries. GeoInformatica, 15(3):497–540, 2011.

[15] Secondo Web Site. http://dna.fernuni-hagen.de/Secondo.html/.

Verzeichnis der zuletzt erschienenen Informatik-Berichte

[347] Fechner, B.:

Dynamische Fehlererkennungs- und –behebungsmechanismen für verlässliche
Mikroprozessoren

[348] Brattka, V., Dillhage, R., Grubba, T., Klutsch, A.:
 CCA 2008 - Fifth International Conference on Computability and Complexity in
 Analysis
[349] Osterloh, A.:
 A Lower Bound for Oblivious Dimensional Routing
[350] Osterloh, A., Keller, J.:
 Das GCA-Modell im Vergleich zum PRAM-Modell
[351] Fechner, B.:

GPUs for Dependability
[352] Güting, R. H., Behr, T., Xu, J.:
 Efficient k-Nearest Neighbor Search on Moving Object Trajectories
[353] Bauer, A., Dillhage, R., Hertling, P., Ko K.I., Rettinger, R.:
 CCA 2009 Sixth International Conference on Computability and Complexity in
 Analysis
[354] Beierle, C., Kern-Isberner, G.:
 Relational Approaches to Knowledge Representation and Learning
[355] Sakr, M.A., Güting, R.H.:
 Spatiotemporal Pattern Queries
[356] Güting, R. H., Behr, T., Düntgen, C.:
 SECONDO: A Platform for Moving Objects Database Research and for Publishing

and Integrating Research Implementations
[357] Düntgen, C., Behr, T., Güting, R.H.:
 Assessing Representations for Moving Object Histories
[358] Sakr, M.A., Güting, R.H.:
 Group Spatiotemporal Pattern Queries
[359] Hartrumpf, S., Helbig, H., vor der Brück, T. , Eichhorn, C.:
 SemDupl: Semantic Based Duplicate Identification
[360] Xu, J., Güting, R.H.:
 A Generic Data Model for Moving Objects
[361] Beierle, C., Kern-Isberner, G.:

Evolving Knowledge in Theory and Application: 3rd Workshop on Dynamics of
Knowledge and Belief, DKB 2011

[362] Xu, J., Güting, R.H.:
GMOBench: A Benchmark for Generic Moving Objects

[363] Finthammer, M.:
A Generalized Iterative Scaling Algorithm for Maximum Entropy Reasoning in
Relational Probabilistic Conditional Logic Under Aggregation Semantics

	Deckblatt364
	paper 364
	Verzeichnis364

