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Abstract

Lately, the amount of mobility data recorded by GPS-enabled (and other) devices has
increased drastically, entailing the necessity of efficient processing and analysis methods. In
many cases, not only the geographic position, but also additional time-dependent informa-
tion are traced and/or generated, according to the purpose of the evaluation. For example,
in the field of animal behavior research, besides the position of the monitored animal, biol-
ogists are interested in further data like the altitude or the temperature at every measuring
point. Other application domains comprise the names of streets, places of interest, or trans-
portation modes that can be recorded along with the geographic position of a person. In
this paper, we present in detail a framework for analyzing datasets with arbitrarily many
time-dependent attributes. This can be considered as a major extension of our previous
work, a comprehensive framework for pattern matching on symbolic trajectories with index
support. For an efficient processing of different data types, a variable number of indexes
of four different types that correspond to the data types of the attributes are applied. We
demonstrate the expressiveness and efficiency of our approach by querying a real dataset
representing taxi trips in Rome and, particularly, with a broad series of experiments using
trajectories generated by BerlinMOD combined with geological raster data.

1 Introduction

Since position recording devices like smart phones, tablets, automotive navigation systems, or
other GPS sensors are applied abundantly for economic, scientific, private, or other purposes, an
overwhelming amount of movement data is generated every day. As a consequence, researchers
strive to enhance methods for storing, administrating, and querying such data. The sequence
of timestamped geographic positions obtained from the device represents the movement of an
entity, e.g., the trajectory of a person, a vehicle, or an animal, during a certain period of time.
More abstractly, the recorded data can be considered as a continuous function from time into
two-dimensional space, denoted as moving point [14].

A symbolic representation of the movement, in most cases shorter than the raw trajectory
and often derived from it, enables more convenient and more efficient querying [16]. However, for
many applications, more time-dependent values than the mere movement data are helpful or even
necessary. For example, the observation of animals is definitely more effective if not only their
position but also additional data like the temperature or the altitude are available. Besides
research fields like animal behavior analysis, possible application domains include economics
(e.g., logistical optimization, customer behavior analysis, targeted advertising) as well as urban
planning, healthcare, private use, and criminal investigation.

Usually, a symbolic representation of a movement is given as a sequence of labels, for example,
street names, transportation modes, names of places of interest, districts, or cells inside a cellular
network, along with some temporal information and in chronological order. Therefore, it seems
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natural to develop an expressive pattern language for querying such trajectories that allows for
regular expressions and employs a nondeterministic finite automaton for the matching algorithm.
However, if the user desires to define more complex patterns including variables and conditions,
more sophisticated techniques with possibly high computation cost are required. In order to keep
the pattern matching efficient, the use of an index structure for all the labels in the trajectory
collection is mandatory, so the corresponding matching algorithm does not have to scan all the
trajectories. Starting from this stage of development, we decided to extend our work in order
to meet the requirements described in the previous paragraph.

In this paper, we introduce a framework for analyzing sets of tuples having an arbitrary
number of time-dependent attributes of different data types. As the major contribution of this
paper, we developed and implemented a suitable pattern matching algorithm that filters a set of
tuples according to a user-specified pattern. The pattern language established in [16] and revised
in [33] has been further extended, so that the user can query all the time-dependent attributes
of the tuple at the same time. For an efficient processing, we apply a flexible combination of
well-known index structures. The combined index structure comprises a variable number of
heterogeneous indexes, corresponding to the number and the data types of the time-dependent
attributes, and is constructed efficiently from the tuple collection.

In the first phase of the pattern matching algorithm, we prune the tuples for which the
multi-index does not yield any results related to certain components of the pattern. The exact
pattern matching is then performed on the reduced dataset. While executing the NFA transition
function generated from the pattern, information about the matching as well as multi-index
retrievals are held and updated inside specialized efficient data structures. Note that without
index support, every time-dependent value inside each tuple in general would have to be scanned
completely for a matching decision. The index-supported approach detailed in this paper reduces
the computation cost by one or even two orders of magnitude, for which one reason is the lower
influence of the size of the time-dependent values on the runtime. We apply the presented data
structures and algorithms by means of a continuous example. For a comprehensive experimental
evaluation, we created collections of geographic trajectories having different properties with the
help of the moving objects databases benchmark BerlinMOD [12]. These trajectories were
combined with geological elevation data of Berlin from the U.S. Geological Survey.

In the subsequent list, we summarize the contributions of this paper:

• We provide a framework for analyzing sets of tuples that have any number of time-
dependent values.

• The corresponding pattern matching algorithm is fully implemented.

• We detail an extension of the existing pattern language that was only suitable for symbolic
trajectories previously.

• We introduce a flexible multi-index for all time-dependent attributes.

• We apply sophisticated data structures for efficient processing.

• An application example based on a real dataset is presented.

• We compare our approach to a baseline algorithm without index support.

The remainder of the paper is organized as follows: The subsequent section is dedicated to
related work. After Section 3 introduces time-dependent values and the corresponding pattern
language, in Section 4 we discuss the multi-index for sets of tuples of time-dependent values and
further auxiliary data structures. Section 5 presents the algorithms that are applied during the
preprocessing and the pattern matching. An application example with a real dataset is detailed
in Section 6. We provide the experimental evaluation in Section 7, before Section 8 concludes
the paper.

2



2 Related Work

In the last 15 years, the research field of moving objects databases has been highly active
[15, 43]. A conceptual trajectory model, based on the key concepts of stop and move, is first
defined in [30], followed by generalized variants [1, 26, 40] of this model. However, since they
focus on the conceptual level, issues of data management remain unsolved. A comprehensive
framework for the generalized representation of movement in a symbolic space is introduced in
[16]. It is fully integrated into the data model of [14], available for moving objects database
systems such as Secondo [13, 8] or Hermes [27]. The framework is also embedded into the
Secondo implementation of the model of [14]. It includes four data types for different kinds
of symbolic trajectories and an expressive and fully implemented pattern matching language.
Demonstrations applying a set of private trajectories of a person and the Microsoft GeoLife
dataset [21] are provided in [32] and [6], respectively. Another publication [7] illustrates the
application potential of symbolic trajectories.

A symbolic trajectory corresponds to a sequence of strings (or sets of strings), so the use
of regular expressions for a pattern language and thus finite automata [19, 22] for pattern
matching algorithms on symbolic trajectories seems logical. In [10, 11], a pattern language for
trajectories defined in a discrete symbolic space and a pattern matching algorithm based on a
nondeterministic finite automaton (NFA) are presented. An object’s trajectory is defined as a
sequence of symbols denoting the successive zones the considered object visited. The drawback
of the proposed language is the lack of precise temporal specifications or conditions on variables.
The authors of [36, 37, 38] provide an expressive pattern language for geometric trajectories
that allows variables and conditions. However, their approach is limited to symbolic trajectories
containing names of areas inside a partitioned space. In [18], a precursor to their work, more
general geometries are considered, not just partitions of the plane into regions. On the other
hand, this approach focuses on range and nearest-neighbor queries, does not introduce any
symbolic representation, and does not allow for variables or regular expressions. The model of
[42] does not include time at all and otherwise is a sequence of timestamped locations annotated
with a semantic label, where timestamps are instants of time, not time intervals. The detection
of frequent sequential patterns (i.e., temporally bounded transitions from one or more places to
another group of places) from a set of semantic trajectories is supported by [41], where similar
places (regarding spatial, semantic, and temporal aspects) are grouped together.

The application of index structures is appropriate for realizing efficient search queries and
pattern matching algorithms on trajectories. Hence, index structures for spatial trajectories are
explored in several publications, e.g., the 3D R-tree [35], the TB-tree [28], or the TMN-tree [4].
The authors of [24] give an overview of indexes for spatio-temporal data of several categories. An
index structure for discovering similar multidimensional trajectories is detailed in [39]. In [33],
we presented a twofold index structure for symbolic trajectories and a new matching algorithm,
extending the framework [16] and allowing efficient pattern matching queries whose runtime
does not depend on the trajectories’ length anymore.

Recently, the index structure IRWI for efficiently quering annotated geometric trajectories
has been presented [20]. However, the approach does not include an expressive query language,
and it is restricted to the special case of a spatial trajectory with annotations. In contrast, the
pattern matching approach presented in this paper is more general. It processes any kind of
time-dependent or movement-related data and provides an expressive pattern language including
variables, conditions, and regular expression structures. The matching algorithm is based on
indexes for all of the available time-dependent attributes. Due to the diversity of supported
data types, four different types of indexes are applied. We also developed an expressive pattern
language that enables users to query all time-dependent attributes of a relation at the same time.
Moreover, all attributes of the relation (time-dependent and constant) can be directly accessed
inside conditions. In [34], a related demonstration with a dataset from the field of animal
behavior analysis is performed. To our knowledge, by now there is no further publication on
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an index-supported pattern matching algorithm on tuples of arbitrarily many time-dependent
attributes of different data types.

3 Preliminaries

In this section, we mention basic notations before giving an introduction to symbolic trajectories,
reviewing some of the results of [16], and other time-dependent values, and we describe the
extensions that the new pattern language offers. Finally, a pattern is defined which we use as a
continuous example for illustrating the employed data structures and algorithms.

3.1 Basic Notations

Each of the tuples in a collection/relation is assumed to have a unique identifier that we need for
indexing the contents of the respective attributes. Since we later use a tuple id for a fast access
to a certain array slot, and since the tuple ids are not necessarily consecutive in general, we first
map them onto a set {1, . . . , n} for the whole computation (the tuple id 0 does not exist; the
value 0 is used otherwise). The result of the main algorithm is a list containing the tuple ids of
the successfully matched tuples, so we have to map them back to the original tuple ids. In the
remainder of this paper, we refer to a tuple id as if they were in consecutive order, beginning with
1. In contrast to tuple ids, the components of a pattern and of the time-dependent attributes
start at position 0.

3.2 Symbolic Trajectories and Pattern Matching

First, we provide a short example for a symbolic trajectory, describing the sequence of streets
that a person has passed during her/his trip through Beverly Hills, California:

[2015-12-16-19:09:09, 2015-12-16-19:11:58) Wilshire Blvd
[2015-12-16-19:11:58, 2015-12-16-20:01:22) Santa Monica Blvd
[2015-12-16-20:01:27, 2015-12-16-20:07:41) Rodeo Dr
[2015-12-16-20:07:41, 2015-12-16-22:49:09) Sunset Blvd

It consists of four so-called units, each of which is a pair of a time interval and a label. The
brackets and parentheses indicate whether or not a time interval is leftclosed and/or rightclosed.
Note that the time intervals have to be disjoint but not necessarily continuous. In the database
system Secondo, its data type is moving(label), or mlabel , for short. An object of the data
type mlabel represents a time-dependent label , i.e., a character string that changes its values
over time.

Database systems with support for this or similar data types offer many possibilities for
querying such a symbolic trajectory, e.g., in Secondo operations like passes or atinstant

can be applied to find out whether or not certain predicates are fulfilled. However, for more
complex requests, a corresponding query is often hardly expressible and/or inefficiently executed.
Therefore, we developed a highly expressive but rather simple pattern language and an algorithm
that determines whether a symbolic trajectory M is matched by a pattern p. Such a pattern
consists of pattern atoms that can match either a sequence of units of M or precisely one unit
u, if the given specifications in that atom a match u. The latter “match” means – in the basic
version – that the time interval t(u) of u is completely covered by the temporal period t(a)
specified in a, i.e., t(u) ⊂ t(a), and that every label in u also occurs in a, that is, l(u) ⊂ l(a).
Other set relations than ’subset’ can be chosen, the alternatives are ’disjoint’, ’superset’, ’equal’,
and ’intersect’. The order of the atoms in p has to correspond to the order of matched units in
M . For example, the pattern
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X (wednesday "Wilshire Blvd") Y [* ( "Sunset Blvd")]

// get duration(X.time) < get duration(Y.time)

matches the abovementioned trajectory, since the latter starts at Wilshire Blvd on a Wednesday,
ends at Sunset Blvd without further temporal constraint, and has arbitrarily many units between
them (the * represents a wildcard). The condition after the double slash compares the temporal
durations of the unit bound to X and the unit sequence bound to Y , respectively. It is fulfilled,
since the person spent less time on Wilshere Blvd than during the remaining trajectory. The
square brackets indicate that Y is associated to all atoms between them. The atom in parentheses
can match exactly one trajectory unit. Such an atom consists of two or more (the precise
number depends on the applied dataset) so-called atom values. Any number of conditions may
be specified (separated by commas), and every operator of the underlying database system can
be used; note that get duration is not a part of the pattern language, but a Secondo operator.
This pattern language for querying a set of symbolic trajectories is detailed in [16] and slightly
enhanced in [33].

3.3 Pattern Language Extension

While our previous work only allows for querying (sets of) symbolic trajectories, in this paper
we focus on tuples of numerous time-depending attributes. Similar to the data types mlabel (one
label per unit) and mlabels (arbitrarily many labels per unit), the remaining time-dependent
values are realized as sequences of time intervals with an information that belongs to a certain
domain. In other words, they can be considered as functions from time into a specific range
of values. The time-dependent data types especially supported by our framework are listed in
Table 1. Note that a unit of an mpoint or mregion represents the linear movement of an entity.
Curved paths can be approximated by a sufficient number of short units. For more theoretical
background, consider [16] (for the data types mlabel and mlabels) and, particularly, [14].

Table 1: Supported time-dependent data types

Data type Value domain for each time interval

mlabel label ; a character string of arbitrary length
mlabels labels ; a set of arbitrarily many label s
mpoint a linear movement from one point to another
mregion a region ’s linear movement
mbool a boolean value
mint an integer value
mreal a quadratic function of real s, or its square root
mstring string ; a string of at most 48 characters

Previously, a pattern atom was limited to contain temporal information as well as a set of
labels. We extended this concept so that constraints can be defined for every time-dependent
attribute (having one of the data types from Table 1). Since the length and number of the units
is in general different for the time-dependent attributes of a tuple, the user has to determine
a so-called main attribute that is essential for the matching. Let m be the number of time-
dependent attributes from the tuple description. Hence, analogously to the primary pattern
language, every pattern atom a consists of m + 1 components a0, . . . , am, where a0 refers to
the temporal data of the main attribute and a1, . . . , am apply to the time-dependent attributes
in the same order as they occur in the tuple description. For example, if a0 equals june at
the beginning of the pattern, the main attribute has to start in June for a match, whereas it
means no constraint for the remaining attributes that may start earlier. As before, the use of an
underscore means that the attribute at the corresponding position is unconstrained. In Table 2
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we detail how the components of a pattern atom may be specified for every time-dependent data
type.

Table 2: Pattern atom specification options

Data type Specification alternatives

mlabel (s), mstring name of a DB object of label(s) type
character string

mpoint , mregion name of a DB object of a spatial type
mbool name of a DB object of boolean type

boolean value
mint , mreal name of a DB object of a numeric type

integer or real value
interval of the form 〈a b lc rc〉

Note that the spatial data types are point , points , line, region , and rect , while int and real
are considered as numeric types. In the interval representation, a and b are the left and right
limits (real values), and lc and rc indicate whether the interval is leftclosed and/or rightclosed.

Regarding the use of conditions, the previous version was limited to certain information of
the respective part of the symbolic trajectory, e.g., the start time, or the set of labels, that could
be combined with Secondo operators. In the pattern defined in Section 3.2, the terms X.time
and Y.time refer to the time periods of the sequence of units bound to X and Y , respectively
(data type periods). We extended this concept, so the user may address any of the attributes
of the tuple with a term of the form var.attrname, in combination with any operator of the
Secondo database system. The binding of variables to sequences of units now refers to units
of the main attribute. For example, if Y is bound to [1, 3] as in the mentioned example, and
assuming another attribute A with a different fragmentation into units, to evaluate the term Y.A
we retrieve the time period of the main attribute corresponding to the units [1, 3] and restrict
A to this period. As described in our previous work, we distinguish between easy and complex
conditions. While the former refer to only one unit and can be evaluated immediately during the
matching process (e.g., day of(X.end) = 16), the latter involve a sequence of units and/or more
than one variable and can therefore be verified only at the end of the matching, which holds for
the condition from Section 3.2. The other rules of the pattern language remain unchanged and
can be obtained from [16] and [33].

3.4 The Continuous Example

In the following, we define a set of two tuples that will serve as a continuous example throughout
this paper. Note that the data set is very small for the sake of brevity. Let t be a tuple (id
1) whose first attribute is the symbolic trajectory from Section 3.2. The second attribute of
t is an mpoint representing the movement of the person, at the same time of day as the first
attribute, i.e., from 19:09:09 until 22:49:09, but with a new unit for every second. Hence, it has
not only 4, but 220∗60 = 13,200 units. In addition, there is an mint attribute containing the
speed limit of the respective street and therefore having 4 units (value 35 for Wilshire Blvd,
30 for Santa Monica Blvd, 25 for Rodeo Dr, and 30 for Sunset Blvd). We denote the three
attributes as Street, Trip, and SpeedLimit. Let t′ be another tuple (id 2) that is equal to t
except for the time intervals that are all postponed by one month, i.e., the identical movement
occurs on January 16, 2016, between 19:09:09 and 22:49:09. We decide to determine Street as
main attribute. Finally, let both tuples have an attribute for the person’s Name (“John” for t
and “Jane” for t′) which is not indexed since it is not time-dependent. In addition, let p0 be the
following pattern:
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X [ [( "Camden Dr" ) | ( beverlyhills 35)]

* (2015 "Sunset Blvd" <25.0 30.0 t t>)]

// sometimes(speed(X.Trip, wgs1984) > X.SpeedLimit)

First, note that p0 consists of 4 atoms: two in the alternative that is limited by the inner
brackets, one wildcard atom and another atom. The outer brackets indicate that the range
of the variable X is the whole pattern. Note that beverlyhills is a database object of type
region representing the borders of Beverly Hills, and wgs1984 is a geoid used for computations
with geographic coordinates. Semantically, p0 finds all tuples where the trip starts either at
Camden Dr or at any street in Beverly Hills with a speed limit of 35 mph. The trip has to end
in 2015 at a segment of Sunset Blvd with a speed limit between 25 and 30 mph, and according
to the condition, the velocity must exceed the respective limit at least once. In other words,
the pattern finds speeders with a certain movement profile. The speed operator converts an
mpoint into an mreal , the comparison with an mint yields an mbool , and sometimes is true if
and only if the mbool is true in at least one unit.

4 Data Structures

The purpose of this section is, first of all, to detail the components of the new index structure
for tuples of time-dependent values. In addition, we present auxiliary data structures for the
storage of index results and for the course of the exact matching.

4.1 The Multi-Index

The multi-index is created by the Secondo operator bulkloadtupleindex, taking a database
relation and an attribute name, where the type must be time-dependent (cf. Table 1). When
the operator is executed, the time-dependent attributes of the relation are processed one after
another. We assume that the tuples have m+ c attributes, of which m are time-dependent and
c are constant ones. Before the operator starts to process the relation, a new index has to be
created for each of the m relevant attributes. The type of the new index depends on the data
type of the attribute as shown in Table 3.

Table 3: Time-dependent attributes and corresponding index types

Time-dependent data type Appropriate index type

mlabel , mlabels , mstring trie (inverted file) [9]
mpoint , mregion 2-dimensional R-tree [17]
mreal , main attribute’s time intervals 1-dimensional R-tree
mint B+-tree [2, 5]

Every created index is stored in an array, and a mapping that indicates the corresponding
index for each attribute, and vice versa, is set up, before the tuples can be processed. For each of
the time-dependent attributes, a temporary vector is created, and for each unit of the attribute,
the respective value and the exact position (i.e., the tuple identifier and the position of the unit)
are appended to the vector.

If the attribute type is mlabel or mstring , the label/string from each unit is considered. For
an mlabels attribute, all labels from a unit are inserted. Now we focus on an attribute having the
type mpoint . From the linear movement inside each unit, we derive the bounding box (i.e., the
smallest rectangle completely covering the movement trajectory whose lateral lines are parallel
to the coordinate axes) and add it to the vector for the attribute. In case of an mreal attribute,
for each unit the minimum and maximum value of the continuous real function are computed.
We insert the corresponding interval of real numbers into the respective vector. The units of an
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mint have constant integer values that can be held in the vector. For the main attribute, also
the time interval is inserted for each unit (in a separate vector). More precisely, the limits of a
time interval (data type instant) are transformed into real numbers.

When an attribute is completely processed, the vector is sorted by the value, e.g., by alpha-
betical order of the labels for an mlabel , or by x- and y-coordinates for an mpoint . Subsequently,
all values from the vector are inserted into the appropriate tree, as listed in Table 3. For each
of the different index types, this operation is efficient due to the correct order of the inserted
values. Finally, after all time-dependent attributes are processed as described, the multi-index
is stored as a persistent database object, having the data type tupleindex .

Now we demonstrate how the information from our continuous example from Section 3.4
is inserted into a new multi-index. First, four indexes are created: a trie for the attribute
Street, a 2-dimensional R-tree for the geographic position, a B+-tree for the speed limit, and
a 1-dimensional R-tree for the temporal information of the first attribute. Then the attribute
Street from tuple t is processed. More precisely, the four street names are inserted into a vector,
along with the position of the label, e.g., the pair (1,2) for Rodeo Dr, meaning tuple id 1, unit
position 2. We also process the Street attribute from the second tuple, appending the values
and positions of the four units (for example, (“Sunset Blvd”, 2, 3)) to the vector. Then the
vector is sorted by the label (and then by tuple id and by unit position), i.e., its first entry is
then (“Rodeo Dr”, 1, 2) and its last one is (“Wilshere Blvd”, 2, 0). After that, we iterate over
the vector and insert all values into the empty trie.

Since Street is the main attribute, the eight time intervals are stored in a vector (after
the conversion into intervals of real numbers) and afterwards inserted into the prepared 1-
dimensional R-tree. This procedure is more expensive for the attribute Trip for which 26,400
units have to be processed. Their bounding boxes are sorted by x- and y-coordinates and finally
stored in the 2-dimensional R-tree. The eight values of the SpeedLimit attribute are inserted
into the B+-tree.

4.2 A Container for Index Results

One possibility of working with an index (or a multi-index, in our case) is to access it every
time when it is required. However, as we use an NFA with possible repetitions for the pattern
matching algorithm, it is likely that the index is often queried with the same contents, yielding
large amounts of repeated results. In addition, in the course of the algorithm, more and more
tuples do not have to be considered anymore, due to a successful or unsuccessful matching
decision. Hence, an increasing number of results from the multi-index are useless and would
cause unnecessary computation cost.

For these reasons, we developed a data structure where all index results are stored, so the
multi-index has to be queried only once per atom value. Everytime an atom a is considered
for the first time, we store the results for every tuple that is active (what exactly this means
is detailed later) in a slot of an array R. Each slot id of R contains the set of unit positions
found in the multi-index for the tuple id id. In addition, there are two integer values pred and
succ pointing to the previous and successive tuple id that is active and has index results for the
contents of this atom. Note that 0 is not a valid tuple id, so we use the slot R[0] to indicate
the first active position R[0].succ. For every considered atom a (no matter whether this occurs
during the preprocessing or during the exact matching), the array R is computed once and
stored into another array indexResult at the position indexResult[a]. This structure allows us
to insert, retrieve and deactivate contents in constant runtime. Moreover, an iteration over all
components with the help of the pred and succ pointers comprises only the relevant (active)
ones. If a tuple id i is deactivated during the computation, we have to ensure that an iteration
over one of the arrays indexResult[a] ignores the slot indexResult[a][id]. Hence, for each atom
a, we set the reference indexResult[a][indexResult[a][id].pred].succ of the predecessor of id to
its successor indexResult[a][id].succ, and vice versa.
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Now we explain how the values are written into the slots. Consider an atom a of the form
(a0 a1 . . . am). Remember that a0 represents constraints for the temporal component of the
main attribute, while a1, . . . , am refer to the time-dependent attributes (in the same order as in
the tuple description). We loop over all specifications ai, i = 0, . . . ,m. For each ai, the index
results, i.e., a set of pairs of tuple ID and unit position, are collected. These unit positions are
subsequently transformed into periods values with the help of the corresponding time-depending
attribute. In constrast to [33] it is necessary to use temporal information for the index results,
since the miscellaneous time-dependent attributes may have different temporal distributions, like
in our continuous example. As an advantage, instead of numerous unit positions, only one periods
value is required per tuple. Hence, an index result I(ai) for ai has the form {(t1, p1), . . . , (tk, pk)}
where k is the number of tuples having an index result for ai. Then we compute the intersection
I(a) =

⋂m
i=0

I(ai) that also has the mentioned form, since periods values are stable with respect
to set operations. The result I(a) represents all time periods in which the constraints inside a
are fulfilled. Next, we detail how the sets I(ai) are determined. In general, a specification ai has
the form r{ai1, . . . , ail} where l is the number of components and r is the specified set relation
(either omitted for the standard case or superset, intersect, disjoint, equal)1. For each aij , the
index results I(aij) are retrieved. According to the set relation, these are either intersected or
united (and inverted, if disjoint is chosen), yielding the intermediate result I(ai). Finally, the
set I(a) of index results is transformed into the form {(t1, U1), . . . , (tk, Uk)}, where Ui is the set
of units of the main attribute during which the specifications from a hold for the tuple ti.

4.3 A Structure for the Exact Matching

In order to efficiently file and access the data required for the matching process, we created
the IndexMatchInfo data structure, which we call IMI from now on. An IMI instance contains
an integer next (for the position of the unit inside the main attribute that is supposed to be
matched in the following step), a boolean named range (indicating whether the last considered
atom for this IMI instance was a wildcard; if it is true, next or any of its successors may
be matched by an atom in the subsequent step; otherwise, next is the only possible match), a
mapping binding from a string to a pair of integers (representing the current binding of variables
to a sequence of units of the main attribute in case of a pattern with conditions), and a string
prevV ar (representing the variable considered in the previous update for this IMI instance)2.

The set of IMI instances for one tuple is stored in an array slot whose number represents
the tuple id. Again, we apply two references pred and succ for a fast access to every active
slot. Since each of these arrays of IMI sets depends on the current NFA state, they are held in
an array indexMatching, or iM , for short, where the positon represents the NFA state. In the
subsequent section, we give a visual example for this structure (Figure 2).

5 Algorithms

In this section, we introduce the algorithms that are applied to determine the results of the
index-supported pattern matching for a pattern p and a set T of tuples with time-dependent
values. The suitable Secondo operator tmatches expects a relation, an attribute name (for
the main attribute), a pattern, and a multi-index as input parameters. Its output is the stream
of tuples that successfully matched the pattern. The matching process is divided into two main
steps: First, the tuple collection is filtered according to the index results, before the exact
matching is performed on the remaining candidates. At the end of the section, we consider
computation cost issues.

1The concept of user-defined set relations was introduced in our previous work, please refer to [33] for details.
2Note that in the implementation, variables are represented as integer values for the sake of efficiency. For a

better understanding, we chose to use strings in this document.
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5.1 Preprocessing

The purpose of this step is to reduce the number of tuples that have to be processed in the main
phase.

5.1.1 Crucial Transitions

As described in Section 6.1 of [16], a pattern is converted into an NFA, where the trigger of a
transition represents an atom. We denote the source and target state and the triggering atom
of a transition tr by tr.source, tr.target, and tr.trigger, respectively. Moreover, δ(s) is defined
as the set of transitions outgoing from a state s.

In order to apply the multi-index for the preprocessing, we first identify the transitions
that are mandatory for the automaton to arrive at any of its final states, denoted as crucial
transitions. The multi-index is queried with the contents of the atoms corresponding to the
crucial transitions, and only the tuples whose ids occur in the index results for all crucial
transitions/atoms are passed to the exact matching phase. Please refer to [33], Section 4.1.1,
for details concerning the determination of the crucial transitions of a pattern. In simple terms,
the crucial atoms of a pattern are the non-wildcard atoms that are not located in the branch of
a logical alternative.

0 1 2
0, 1

2
3

Figure 1: The NFA computed from p0

The NFA corresponding to the pattern p0 is depicted in Figure 1. Only atom 3 is crucial.
This can easily be derived from the illustration, since the other transitions are either involved
in a logical alternative (0 or 1) or in a loop induced by a wildcard (2).

5.1.2 Filtering the Set of Tuples

Subsequently, we iterate over the set of crucial atoms and apply the indexes. That is, for
each non-empty crucial atom a, the array indexResult[a] is filled according to Section 4.2. At
the same time, we update an array active of booleans indicating which tuples are active. For
example, if a tuple has index results for a but not for another crucial atom a′, the tuple id
is removed from the structure indexResult, and the value active[id] remains false. The slot
active[id] is set to true only if there are index results for every crucial atom. In this phase,
false positives cannot be avoided, since no exact matching is performed. However, this method
ensures that in the main phase, only tuples whose id occurs in the index results for the crucial
pattern atoms are processed, so it remarkably reduces the dataset.

In this step, we only have to consider the final atom of p0. For the year 2015, the 1-
dimensional R-tree yields the result set {(1, 0), (1, 1), (1, 2), (1, 3)}. The search for Sunset Blvd
in the corresponding trie produces the results {(1, 3), (2, 3)} (i.e., tuple id 1, unit 3, and tuple
id 2, unit 3), and the B+-tree returns {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)} when it is queried
with the specified real interval. After the transformation into time periods (which could be
omitted in this case, but not in general), their intersection, and the backwards transformation
into unit positions, we store the unit 3 into the slot indexResult[3][1]. Also the pred and succ
members are set, e.g., indexResult[3][0].succ equals 1, but indexResult[3][1].succ points to 0,
indicating that there is no further active tuple. Finally, active[1] is set to true.

The array indexResult[3] containing the index results induced by the only crucial atom of
p0 is listed in Table 4:
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Table 4: Index result for the continuous example

slot / tuple id 0 1 2

pred 0 0 -
succ 1 0 -
units ∅ {3} ∅

Note that due to the pred and succ variable structure, inactive slots like for the tuple id 2
in the above table are never accessed anymore.

5.2 Exact Matching

As stated before, our main challenge was to extend the index-supported pattern matching from
accepting only symbolic trajectories to a framework for tuples of several time-dependent values
of different data types. Since regular expressions are allowed in the pattern, the number of
different paths from the initial NFA state to one of the final states is not limited to the number
of final states but may be infinite. Moreover, if the pattern contains conditions, the bindings
of variables to unit positions have to be stored, and the underlying database system is used for
evaluating the corresponding queries.

The matching of a pattern p with a set T of tuples requires a parallel traversal of a path
from the start state to a final state of the NFA for p and of the sequence of units of every
time-dependent attribute tij of every tuple ti, i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}. Without loss of
generality, let ti1 be the main attribute of every tuple ti. However, this traversal is not unique,
since the NFA may offer arbitrarily many paths, depending on the pattern and the matching
success. Hence, during the process, we always hold the set of active NFA states and have read
(conceptually, not physically) an initial subsequence si1 of the units of each main attribute ti1.
This sequence can be transferred to all other attributes with the help of the corresponding time
period. Such a state of scanning ti1 is exactly represented by an IMI instance, which expresses
si1 in terms of the next unit that is to be matched. If the preceding NFA transition was triggered
by a wildcard atom, the next unit information is only a lower bound (range = true in this case).

For each tuple, several ways of matching p may exist. Therefore, at any NFA state, for each
tuple possibly many IMI objects have to be maintained, each of them representing one possible
matching path. Initially, the only active NFA state is 0, and for every tuple ti that is active
after the preprocessing, si1 is empty, so the unit to be matched in the next step is 0.

5.2.1 Initialization

For every tuple ti that passes the preprocessing, an instance of the structure IMI is created and
inserted into the array slot iM [0][i]. Remember that in the two-dimensional structure, the first
position refers to the NFA state, which is 0 at the beginning. The IMI members are initialized
as follows: next is set to 0, range equals false, binding remains empty, as well as the string
prevV ar (since there is no matching history yet). In case that only wildcard transitions are
available at the beginning (e.g., if the pattern starts with a *), range is set to true.

Simultaneously, for each tuple, the global integer value numActive (number of active tuples;
initially set to 0) is incremented. This variable is essential for the later matching, since it is
decremented for each deactivated tuple, and the algorithm ends as soon as it equals 0. There is
also an initially empty list res, where the matching tuple ids will be inserted. The initial state
of the structure iM for the continuous example is depicted in Figure 2. The variable numActive
is set to 1.

11



0

1

2

0 1 2
pred

imis

0
1

∅

succ

N
F
A

 s
ta

te
s

0 0
0 0

∅
0

true
∅
""

{ {
next
range
binding
prevVar

tuple id

Figure 2: The initial state of the data structure iM

5.2.2 Traversing the NFA

At the beginning of Algorithm 1, the set of active NFA states is initialized with the initial
state 0. Note that for the NFA states as well as for the iM structure, two versions are required;
the older ones (iM and S, respectively) are read-only, while new values are stored in the new
versions (iM ′ and S′, respectively). At the start of the while loop (lines 5-8), the old versions are
replaced by the new ones, and the new versions are cleared. The algorithm collects all available
transitions outgoing from any currently active state and stores them in the variable δS (line 9).
If the set of possible transitions is empty, the computation is aborted and the current result list
is returned, since no further matches can be obtained without transitions. Otherwise, a loop
over the available transitions is performed, as long as there are still tuples that have not been
completely processed.

In contrast to approaches without index support, the time-dependent values are not scanned
in a linear way. Instead, Algorithm 1 iterates over the automaton and applies its transitions if
the corresponding index results fit the previously saved matching information from iM . The
framework of the algorithm is similar to the concept described in [33], however, the inner function
atomMatch is completely new.

For each active state s ∈ S, Algorithm 1 tries to apply every existing transition from all
transitions δ(s) that originate from the state s and whose target state is inactive (for p0, there
are two transitions available at the state 0). In detail, a transition tr ∈ δ(s) can be executed if
and only if the corresponding pattern atom tr.trigger matches at least one of the IMI instances
inside iM [s]. This is verified in the function atomMatch that is invoked in line 14. The
algorithm stops as soon as there are no active tuples anymore, returning the list with the ids of
the successfully matched tuples. If atomMatch returns true, the target state of the transition
tr is inserted into the new set S′ of active states.

The purpose of the data structure presented in Section 4.3 is to provide all necessary in-
formation for each of the possible matching paths. Specifically due to regular expressions that
allow steps backwards in the NFA, it is mandatory to enable multiple IMI instances for every
NFA state and every active tuple. The structure is crucial for the matching decision in the
following way: The tuple t with id id matches the pattern p while a final state s is active if and
only if there exists a newly created IMI object which is finished, i.e., whose range value is true
or where next equals |ti1|, the number of units of the main attribute of t; in other words, where
the main attribute is conceptually completely traversed. Finally, we call an instance exhausted
if next equals |ti1| during a non-final state, meaning that a match (based on this IMI) is not
possible anymore. When the exact matching process deactivates a tuple id id, we set active[id]
to false and apply the strategy detailed in Section 4.2.

In this paragraph, we assume that the considered pattern does not have complex conditions;
the other case is detailed in Section 5.2.3. Now we examine the atomMatch function. Note
that the function is invoked with (references to) the arguments iM and iM ′, i.e., the old and
the new version of the structure holding the IMI instances. The old version is used for verifying
the matching, and the newly created IMI instances (in the positive case) are inserted into the
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Algorithm 1: Apply NFA

Input: a pattern p with an NFA including a set Γ of final states;
an non-negative integer numActive;
an array active of boolean values;
iM , see Section 4.3;

Output: a list res of tuple ids, initially empty;
1 S ← {0};
2 S′ ← {0};
3 iM ′ ← iM ;
4 while numActive > 0 do

5 S ← S′;
6 S′ ← ∅;
7 iM ← iM ′;
8 clear iM ′;
9 δS ←

⋃
s∈S δ(s) ; // collect possible transitions

10 if δS = ∅ then // abort if no transitions are available

11 return res;

12 foreach tr ∈ δS do // loop over transitions

13 if tr.target /∈ S then

14 if atomMatch(iM, iM ′, tr, numActive, active, res) then

15 S′ ← S′ ∪ {tr.target};

16 return res;

new version, iM ′. The transition parameter tr is important for the access to the correct IMI
instances as well as the pattern atom (tr.source and tr.trigger). The number numActive of
active tuples and the list res are passed for manipulation. Inside the function, we distinguish
between three types of triggering pattern atoms:

An atom with contents. For example, any atom of p0 except the wildcard atom *. If the
index result for p0 has not been determined yet, this must be done now. We iterate over the array
indexResult[tr.source], skipping the inactive tuple ids with the help of the succ member in each
slot. For each resulting position (tuple id id and unit u) that is found, it is verified whether there
exists a suitable IMI instance in the slot iM ′[tr.source][id]. Remember that an IMI instance is
suitable if its next member equals u (in case range is false) or next ≤ u holds. If there is no
suitable instance, we continue with the next index result. Otherwise, and if the attributes at
the respective positions are matched by the atom specifications and the easy conditions for the
atom are fulfilled (if existing), we create a new IMI instance with next = u + 1 and range =
false (since the current atom is not a wildcard).

Note that a positive index result does not necessarily produce a match in any case. For
example, for an mpoint attribute, the multi-index yields all unit positions where the bounding
box of the movement intersects some specification from an atom, possibly a region object.
However, the linear movement itself, without the rectangular box, may have no intersection
with the region at all. Such expensive verifications have to be performed for each atom with
contents, hence for efficiency reasons, we store the respective results in a separate structure for
later access, in order to avoid repeated verifications.

An empty atom. That is, () or ( ... ). Accessing indexResult is useless, and we have to
loop over the array iM [tr.source], considering all active tuple ids with all existing IMI instances.
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For each of these instances imi, if the corresponding easy conditions hold, a new instance having
next = imi.next+ 1 and range = imi.range is created.

A wildcard atom. That is, + or *. Again, we cannot access the index results, and all IMI
instances from the active tuples inside iM [tr.source] have to be considered. For each existing
instance imi, a new one with next = imi.next+ 1 and range = true is generated.

In any of the three cases, after the creation of a new IMI instance, we have to determine
whether it is finished or exhausted. The former means that the tuple with id id matches the
pattern, so we deactivate the tuple id (i.e., it is removed from the structures described in the
Sections 4.2 and 4.3, and the variable numActive is decremented) and append it to the list res.
The finished IMI instance is ignored. An exhausted IMI object is also neglected. If none of
these two states holds, the new instance is inserted into the set iM ′[tr.target][id]. Hence, we
deduce that Algorithm 1 terminates after no more than max{|ti1| | 1 ≤ i ≤ n} iterations of the
while loop, where |ti1| equals the number of units of ti1. However, this worst-case bound only
has a theoretical meaning and is realized in very exceptional cases. For the sake of efficiency,
the iteration in line 12 is conducted in reverse order, that is, starting with the highest available
target state. Causing an earlier decrementation of the value numActive, this technique increases
the probability of a faster matching decision.

Regarding our example, the first invocation of atomMatch for tr = (0, 1, 1) (meaning the
current state 0, atom 1, transition target state 1) queries the indexes with the specifications
from atom 1. The index query for atom 1 returns the position (1, 0) (remember that the tuple
with id 2 was deactivated), matching the IMI instance in iM [0][1].imis, where next is 0. Hence,
we create a new instance with next = 1 and range = false and insert it into iM ′[1][1].imis.
The state 1 is active now, so the transition (0, 0, 1) pointing to the same state is not considered,
and a new iteration of the while loop is started. First, we try to apply the transition (1, 3, 2),
but since we obtain only the position (1, 3) from indexResult[3], there is no match with the
IMI instance having next = 1 and range = false. In contrast, the transition (1, 2, 1) related
to the wildcard atom is successful, and a new IMI object with next = 1, range = true is
inserted into iM [1][1].imis. State 1 is still the only active state, and another while loop run
begins. The atomMatch function is invoked with the transition (1, 3, 2) again. This time, the
retrieved position (1, 3) matches the IMI instance (since range equals true), and we arrive at the
final state 2. Since next equals the 4, the number of units of the main attribute, the new IMI
instance is finished, so we have a match. Hence, the tuple id 1 is appended to res, numActive
is decremented to 0, active[1] is set to false, and res is returned.

5.2.3 Condition Processing

If the pattern entails conditions, the current binding of variables has to be kept in each instance of
the class IMI. The attribute binding is required for the evaluation of the conditions in Secondo

(see Section 6.3.3 of [16] for details), while prevV ar keeps track of the binding variable that
was changed most recently, in order to extend the binding correctly. Everytime a new IMI
instance is created (except for the initialization step), the attribute binding is copied from the
source instance and then updated, depending on the variable curV ar of the current atom and
on prevV ar. We consider the following two (non-exclusive) cases:

• If curV ar and prevV ar have the same non-empty value, the binding of prevV ar is extended
until next− 1, which is the last unit that was matched.

• Now assume curV ar 6= prevV ar. Unless prevV ar is empty, we extend the binding of
prevV ar to next − 2 (one unit before the most recently matched one). Moreover, if
curV ar exists (meaning no contradiction to the previous case), the mapping position
binding(curV ar) is assigned the pair (next− 1, next− 1).
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In any case, the attribute prevV ar in the new IMI object is assigned the variable of the
current pattern atom. If the IMI object is finished and belongs to a final state (i.e., a match
in the version without conditions), the current binding is passed to the condition evaluation.
If it fulfills each of the conditions, the IMI instance and the tuple id are processed like in the
condition-free version. Otherwise, the IMI object is ignored. For the evaluation, from the
binding of variables to intervals of units of the main attribute, we first compute a binding of
variables to time intervals. These are required for verifying the conditions that refer to other
time-dependent attributes.

The first IMI instance created in the continuous example gets the binding X 7→ [0, 0], while
prevV ar is set to X. For the IMI instance emerging from the wildcard transition, the binding
remains unchanged. Subsequently, the transition (1, 3, 2) causes the creation of an IMI instance
with next = 4, so the binding of X is extended to [0, 3], since the considered variable is the
same as before. Having arrived at a final state with a finished IMI instance, we proceed to the
condition evaluation. Assuming that John’s highspeed at Rodeo Dr was actually 45 mph, the
evaluation yields true. Hence, the tuple id 1 is appended to res, and numActive is decremented
to 0, so the algorithm terminates.

5.3 Runtime Considerations

Due to the initialization cost for the arrays active, indexResult, iM , and iM ′, the total com-
putation cost for preparing the pattern matching algorithm is certainly linear in the number
of tuples and in the number of pattern atoms. The former could theoretically be avoided by
using flexible structures instead of fixed-size ones, but the smaller initialization cost would be
overcompensated by numerous memory allocations, particularly if the indexes return results for
many different tuples. As mentioned before, the maximal number of units of the main attribute
is the worst case limit for the number of outer iterations in Algorithm 1. However, instead of
more iterations, in most cases the effect of more units in the time-dependent values is that the
indexes yield more results that have to be collected and processed. Other influences on the
runtime are the selectivity of the pattern, the number, and complexity of conditions (easy or
complex, number of applied variables, runtimes of involved operators) as well as the number
of time-dependent values in the tuples (and in the pattern). In any case, a certain knowledge
about the queried data is helpful to achieve convenient runtimes.

The computation cost for creating the multi-index is in O(uT log uT ), where uT is the total
number of units in the tuple collection, due to the required sorting of the temporary vectors,
as discussed in Section 4.1. The fact that for huge tuple collections, the vector(s) can possibly
not be sorted in the main memory but only on the hard disk may slow down the procedure
remarkably.

6 Application Example

This section is dedicated to the analysis of a real dataset, in order to demonstrate the expres-
siveness of our pattern language. The applied dataset contains the mobility traces of 320 taxis
in Rome, whose GPS coordinates have been collected for over 30 days [3]. We imported these
data into the DBMS Secondo and obtained 10,278 tuples each of which contains a driver id
and an attribute Trip of the data type mpoint , representing the geometric trajectory of a driver
during one shift, usually having a duration of about 8 hours.

For the geometric trips, we first computed a speed profile and stored it as a new attribute
Speed (type mreal ). Next, we derived the corresponding road names from the OpenStreetMap
[25] data of Rome by map matching [29, 23]. In other words, the geometric movement data was
matched onto the road network generated from the OpenStreetMap data, resulting in a new
attribute Roadname of the type mlabel containing the sequence of names of the traversed roads
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for each of the trips. Note that compared to the raw movement data, the space consumption of
this representation is only 14%. Finally, with the help of elevation raster data from the Shuttle
Radar Topography Mission of the U.S. Geological Survey [31], we created altitude profiles for
each of the trips as an mint attribute named Altitude. Hence, the complete relation for our
analysis has the schema

Trip mpoint , Roadname mlabel , Speed mreal , Altitude mint .
As a whole, the relation contains 42.4 million units. The multi-index for all these data was

successfully created after approximately 7 minutes.
We now search for all trips that match the following pattern:

X * ( "Via Giuseppe Zanardelli" ) Y *

(2014-02-07-22~2014-02-07 "Lungotevere dei Sangallo" ) Z *

// maximum(Z.Altitude) > 100, Y.Trip passes fontanaditrevi,

sometimes(Z.Speed > 30.0)

A trip matches it if it passed the street Lungotevere dei Sangallo between 10 pm and midnight
on February 7, 2014, after having traversed Via Giuseppe Zanardelli and if the highest altitude
experienced after Via Giuseppe Zanardelli exceeded 100 meters, the Trevi Fountain3 was passed
between the two street traversals, and the speed was higher than 67 mph4 at least once after
Via Giuseppe Zanardelli.

The pattern is matched by seven tuples from the relation, being computed in 0.31 seconds
by our implemented approach. A small section of the taxi trajectories around the Colosseum is
depicted in Figure 3, which is a screenshot taken from the Secondo GUI. Note that the same
problem is solved in 33 seconds without index support.

Figure 3: The trajectories of the matching trips around the Colosseum are depicted on the map.
The complete query with the pattern is shown in the top left area. The bottom left window
shows the sequence of road names for one of the trajectories.

3The database object fontanaditrevi is a small rectangle around the Trevi Fountain.
4
Secondo considers the speed of an object in meters per second; 30 m/sec approximately equal 67 mph.
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7 Experimental Evaluation

In this section, we present the evaluation of our proposed model by means of a dataset based
upon the BerlinMOD [12] data generator as well as geological data and several patterns. As a
baseline for comparison, we apply the pattern matching algorithm without index support. All
experiments were carried out on an AMD Phenom II X6 3.3 GHz processor with 8 GBytes of
main memory, running openSUSE 13.2. From this environment, Secondo was assigned one
processor core and half of the available memory. All runtimes were determined by executing the
respective query (operator tmatches) five times and taking the median of the last four values,
so the duration of the initial loading from the hard disk was ignored.

7.1 Dataset Generation and Properties

In order to provide a comprehensive evaluation of our work, we had to create a representatively
large and scalable dataset. Therefore, we chose to apply the BerlinMOD generator with a scale
factor of 1.0, yielding approximately 145,000 non-stationary raw trajectories (a relation with an
mpoint attribute in Secondo). In another attribute (type mlabel ), we added the street name
corresponding to the movement with the help of a relation containing the streets of Berlin and
a suitable R-tree. Note that the nearest street was determined for every unit of the mpoint .
However, as consecutive units with the same label are merged into one unit (with an extended
time interval), the symbolic representation is very efficient; in this case, the number of units
for the Street attribute is reduced by more than 96% compared to the geometric data. For the
third attribute, we first obtained elevation data for Berlin in raster format from the Shuttle
Radar Topography Mission of the U.S. Geological Survey [31]. Since Secondo supports raster
data, the data import was straightforward. We combined the imported elevation data with the
geographic trajectories, resulting in a time-dependent integer value for each of the latter. Hence,
the relation for our experiments has the attributes

Pos mpoint , Street mlabel , Altitude mint .
The geographic trajectories have 56 million units, and with the two remaining attributes, the
total number of units in our dataset amounts to 81 million. Hence, the average number of units
per tuple is 557. The size of the complete dataset is 17.4 GBytes.

For this evaluation, we created subrelations of the main relation having different numbers
of tuples and different numbers of units per tuple. The runtimes for the creation of the cor-
responding multi-indexes ranges from one minute for 25.000 tuples to ten minutes for 125.000
tuples.

We applied the following patterns for the evaluation:

p1 = ( "Buckower Damm" <44.0 46.0 t t>) *

p2 = * ( "Am Tierpark" ) *

X [( potsdamerplatz ) | (12∼24 brandenburgertor )] *

// sometimes(X.Altitude > 40)

p3 = X * (2007-06-04∼2007-06-13 "Leibnizstr." ) Y *

// maximum(X.Altitude) <= maximum(Y.Altitude)

The pattern p1 finds all tuples starting at the street “Buckower Damm” with an altitude
between 44 and 46 meters. For the second pattern, we defined two rectangles potsdamerplatz
and brandenburgertor for the respective places of interest in Berlin. Hence, the pattern p2
matches the tuples that, after visiting the street “Am Tierpark”, pass either Potsdamer Platz
or Brandenburger Tor, the latter only between noon and midnight, while the altitude has to
exceed 40 meters at least once in both cases. Finally, the third pattern finds the tuples passing
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Leibnizstr. between June 4 and June 13, 2007, where the maximum altitude experienced be-
fore Leibnizstr. does not exceed the maximum altitude afterwards. Note that p2 has an easy
condition and p3 has a complex condition.

7.2 Evaluation Results

The experiments focus on the effects of an increasing number of queried tuples as well as of a
growing trajectory size. The corresponding selectivities and the resulting query runtimes are
listed in Table 5 and Table 6, respectively.

Table 5: Selectivities and runtimes for a growing trajectory collection

Selectivity / Runtime (sec.) / Runtime, baseline (sec.)
# tuples p1 p2 p3

0 – 0.008 0.009 – 0.017 0.01 – 0.015 0.01
25,000 0.11% 0.336 3.732 0.11% 0.228 34.66 0.23% 0.735 18.14
50,000 0.08% 0.67 7.313 0.07% 0.408 66.67 0.27% 1.485 36.39
75,000 0.12% 1.008 10.092 0.05% 1.009 111.88 0.24% 2.244 54.09

100,000 0.12% 1.338 15.462 0.12% 1.453 150.51 0.21% 3.069 74.41
125,000 0.12% 1.669 19.321 0.08% 1.733 187.88 0.24% 3.921 93.42

Table 6: Selectivities and runtimes for different trajectory sizes

avg. Selectivity / Runtime (sec.) / Runtime, baseline (sec.)
# units p1 p2 p3

1 0 0.009 0.009 0 0.074 0.518 0 0.069 0.437
200 0.08% 0.182 2.918 0.07% 0.121 26.448 0.23% 0.353 14.375
400 0.13% 0.339 2.919 0.16% 0.233 31.555 0.13% 0.573 16.177
600 0.12% 0.425 2.813 0.08% 0.195 35.986 0.52% 0.781 17.662
800 0.06% 0.5 2.81 0.23% 0.345 39.251 0.2% 0.938 20.912

1000 0.12% 0.561 2.878 0.39% 0.451 42.72 0.14% 1.038 21.697

7.2.1 Growing Tuple Collection Sizes

For the first series of experiments, we created six subrelations having between 0 and 125,000
tuples that were chosen randomly from the original relation. The number of units per tuple is
approximately the same for each dataset. The graphs related to the runtimes of the tmatches

operator executions with and without index support are depicted in Figure 4.
As expected, the diagram shows that the computation cost for the index-supported approach

is linear in the number of tuples. This is inevitable due to the initialization cost for the arrays
indexResult, iM , etc., even for patterns with a small selectivity. Also for the version without
index support, the runtime is linear. We observe that the index-supported approach outperforms
the baseline technique by one or two orders of magnitude, depending on the applied pattern.

The pattern p1 has no condition, thus no bindings have to be kept and no Secondo queries
need to be evaluated. However, there are up to 2.32 million index results for the interval of
altitudes, so that the initialization is expensive for the index-supported version. In contrast,
the crucial atom of p2 causes only up to 3,000 index results, but the subsequent effort is much
higher. For the third pattern, we have as much as 46,000 index occurrences for the crucial atom,
with the consequence that almost half of the tuples have to be considered for the exact matching
algorithm. In addition, p3 contains a complex condition, so its runtime is above the two others.
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Figure 4: Runtimes related to a growing number of tuples; index-supported (left) vs. non-index-
supported (right)

Regarding the baseline version without index support, we first observe that the runtimes
are between one and two orders of magnitude above the presented approach. The pattern p1
perfectly suits the non-index-supported approach, since the linear scan ends after the first unit
in case of a mismatch, which happens for approximately 99.9% of the tuples. In contrast, for
the other two patterns, more units have to be scanned. The geometric specifications inside p2
require a spatial operation, i.e., a check whether a segment of a geometric trajectory is enclosed
by a rectangle, for a high number of units, thus p2 causes the highest computation cost.

7.2.2 Different Trajectory Sizes

For the second part of the evaluation, we derived six further subrelations. This time, each of
these has a constant number of 20,000 tuples, while the average number of units uavg per tuple
ranges from 1 to 1,000. The resulting runtime graphs for the index-supported approach as well
as for the baseline version without index support are depicted in Figure 5.

1 200 400 600 800 1,000

0.5

1

average number of units per tuple

ru
n
ti
m
e
(s
ec
on

d
s) p1

p2
p3

1 200 400 600 800 1,000
0

20

40

average number of units per tuple

ru
n
ti
m
e
(s
ec
on

d
s) p1
p2
p3

Figure 5: Runtimes related to different trajectory sizes; index-supported (left) vs. non-index-
supported (right)

We immediately observe that the computation cost for the index-supported method is –
apparently, in a sublinear way – related to uavg , although there is no algorithmic reason for
this connection. This is because in general, the number of index results increases with a higher
number of units per tuple. In addition, there are more different ways of matching a tuple if a
value has more occurrences in it, which is more likely for a higher number of units. Note that
this does not necessarily result in a higher selectivity. As a whole, the result is similar to the
left part of Figure 4.

For the baseline version, first it is obvious that the runtime for processing p1 is constant,
since the computation in most cases ends after processing the first unit. The graphs for p2
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and p3 have a linear curve (considered from uavg = 200). Again, the index-supported approach
outperforms the baseline algorithm by 1-2 orders of magnitude.

8 Conclusion and Future Work

Our previous work [16] introduced a comprehensive framework for a general representation of
movement in a symbolic space, including an expressive pattern language for symbolic trajectories
and a pattern matching algorithm. Subsequently, we proposed a more efficient version of the
algorithm based on an index for symbolic trajectories [33].

In this paper, we present a new framework for an efficient pattern matching algorithm
on tuples of numerous time-dependent values. The framework has been fully implemented
in Secondo. As a major extension of our abovementioned work, we provide an enhanced
pattern language according to the new functionality as well as a data structure consisting of
heterogeneous indexes whose number and types depend on the attributes in the set of tuples.
With the new language, it is possible to define a pattern for matching not only a set of trajectories
but collections of complete tuples of time-dependent values. The corresponding pattern matching
algorithm exploits the multi-index and avoids a linear scan of the attributes. Besides detailing
the involved data structures and algorithms, we also provide an application example with a real
dataset and a comprehensive experimental evaluation of our approach, including a comparison
with a baseline algorithm without index support.

Future research will create and analyze different distance functions for symbolic trajecto-
ries and/or other time-dependent attributes, in order to find similarities and clusters inside
movement data. In addition to that, we will consider privacy issues, that is, to what extent
a geographic trajectory can be restored from a symbolic one, depending on the type of labels
(e.g., street names, activities, transportation modes).
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