
Representation of Periodic Moving Objects in Databases

Thomas Behr
thomas.behr@fernuni-

hagen.de

Victor Teixeira de
Almeida

victor.almeida@fernuni-
hagen.de

Ralf Hartmut Güting
rhg@fernuni-hagen.de

FernUniversität in Hagen
Faculty of Mathematics and Computer Science

Database Systems for New Applications
D-58084 Hagen, Germany

ABSTRACT
In the real world, lots of objects with changing position can
be found. Some of them repeat the same movement sev-
eral times, called periodic movements. Examples include
airplanes, trains, planets, and marine turtles. This paper
describes a model for representing the periodic movements
to be stored in a database system, exploiting the informa-
tion about the repetitions. The model is generic enough
to represent any kind of movement, not being restricted to
objects with repetitions in their movement. We present al-
gorithms to detect the repetitions and to convert to the pe-
riodic representation as well as the implementation of some
operations on such representation. We claim that the data
volume can be drastically reduced when repetitions in move-
ments occur. Moreover, some operations can take advantage
on the data representation and therefore have their perfor-
mance improved. We show, in an experimental evaluation
against the so-called flat representation, that the approach
presented in this paper significantly improves the perfor-
mance of query processing in a database system when deal-
ing with objects with some periodic movement. We also
show that, for the worst case where the objects do not follow
any periodic movement at all, our approach still performs
acceptably.

1. INTRODUCTION
Commercial database management systems (DBMS) offer

the possibility to handle more than standard data types like
integers, real numbers, and short strings. They can also
store complex types like pictures, videos, XML files, spatial
data, and spatio-temporal data. Examples include Oracle
interMedia, Oracle Spatial, IBM DB2 XML Extender, IBM
DB2 Spatial Extender, Full-Text Search of Microsoft SQL
Server, etc. Independently of the technique for including a
new data type into an DBMS, a model must be designed.

.

Such a model is developed in this paper for periodic moving
objects.

In the real world, we can see that many objects change
their properties in a periodic way. As an example a (german)
traffic light has the state ‘green’ for a given time, then it
switches to the states ‘yellow’, ‘red’, and ‘red/yellow’. This
sequence is repeated many times per day. During the night,
the traffic light may be switched off. We can model each
lamp of the traffic light as a periodically changing boolean
value, or all the lamps together as a periodically changing
integer value, where each lamp has a bit in the integer num-
ber value. Another example is a ticker in a shop window.
Such devices can be seen as periodically changing strings.

The main application field of the model developed here is
for periodic moving objects. These are objects which change
their positions continuously and periodically over time. Ex-
amples include planets, trains, aircrafts as well as all other
public transportation vehicles using a time table. All these
objects can be represented as periodic moving points within
our model.

In [13, 14, 15], a model for describing continuously chang-
ing spatial data in databases is presented. This model stores
the current state of an object together with its motion vec-
tor for describing the object properties at the current time
and in the near future. This approach reduces the num-
ber of necessary updates drastically. An update is required
when the difference of the actual position and the expected
position of this object exceeds a certain threshold. By a
user query, the expected position of the object is computed
using the motion vector. Because repetitions can be only
detected when the history of an object is known, this model
is inappropriate for storing periodic moving objects.

A data model capturing complete histories of continuous
movement together with a related query language was de-
veloped in [8, 6, 3]. An algebra is provided with data types
such as moving point and moving region together with a
comprehensive set of operations. This model is capable to
store periodic movement, but is not able to take advantage
from the fact that repetitions exist. Since our work is com-
pared against this data representation, we review the main
concepts of this spatio-temporal data model in Section 2.

In [10], cyclic changes of objects are discussed, where
cyclic intervals are introduced as well as relations between
them using a binary matrix. However, nested repetitions,
which arise frequently in practice, are not allowed. Spa-
tial objects are not handled, and therefore the proposed ap-

proach does not seem to be appropriate for defining periodic
moving objects.

An approach for modeling changing n-dimensional rectan-
gles is described in [2]. Each coordinate of such a rectangle
is defined by a function of time. The functions of all coor-
dinates as well as an interval build a unit of a parametric
rectangle. A set of such units represents the complete move-
ment. Because the functions are not restricted to be linear,
the changes of the rectangles are very flexible. The period-
icity is stored on every unit allowing periodic movements of
parametric rectangles. However, nesting of periodic move-
ments is not allowed, restricting the movement to simple
periodic movements. The periodic movement example used
in Section 3 cannot be represented using periodic parametric
rectangles.

Periodic rectangles are extended to support acyclic move-
ments in the data model called periodic spatiotemporal ob-
jects (PSO) databases in [11, 12]. An acycle periodic move-
ment is the composition of a cycle periodic and a linear
movement, i.e. is a function f(t) = g(t) + h(t), where g(t)
is a cyclic function and h(t) is a linear function. Compared
to the parametric rectangle representation, cyclic functions
are stored instead of the combination of simple functions
and the periodicity. Again, the PSO model is not able to
represent complex movements with nested periodicities such
as the simple example in Section 3. Acyclic functions are not
handled in our approach and are subject to future work.

In [1] the author introduces a model for the representation
of periodic events. By defining temporal relations between
events it is possible to represent the order of events and
periodic repetitions of them. Here, also nested repetitions
are representable. Unfortunately, this model does not al-
low continuous movement, which is a basic requirement for
representing moving objects.

In this paper, we describe a model for representing the
periodic movements. The main focus is to be able to store
and efficiently query such movements in a database system,
exploiting the information about the repetitions. The model
presented is generic enough to represent any kind of move-
ment, not being restricted to objects with repetitions in their
movement. Moreover complex repetitions are allowed with
the notion of nested repetitions.

We present algorithms to detect the repetitions from his-
torical data sets and to convert from what we call the flat
representation to the periodic representation. Algorithms
for the implementation of some operations on such new rep-
resentation are also provided.

We claim that the data volume can be drastically reduced
when repetitions in movements occur. Moreover, some op-
erations can take advantage on the data representation and
therefore have their performance improved. We show, in an
experimental evaluation against the flat representation that
the approach presented in this paper significantly improves
the performance of query processing in a database system
when dealing with objects with some periodic movement.
We also show that, for the worst case where the objects do
not follow any periodic movement at all, our approach still
performs acceptably.

This paper is organized as follows: Section 2 reviews the
spatio-temporal model (flat representation) presented in [8,
6, 3]. In Section 3 we introduce the representation of the
periodic movements together with algorithms to detect the
repetitions from historical data sets and to convert from

them to the periodic representation. Algorithms of some of
the operations on periodic moving objects are also addressed
in this section. Section 4 addresses some implementation
issues in the Secondo extensible database system ([4, 7,
9]), while in Section 5 we evaluate our approach using data
sets with some and without any periodicity. Finally, Section
6 concludes the paper pointing out some future work.

2. MOVING OBJECTS REPRESENTATION
In this section we review the system for representing mov-

ing objects presented in [8, 6, 3]. The core of this system are
the abstractions moving point and moving region, describ-
ing objects with time-dependent position such as vehicles
and mobile-phone users, and objects where the shape and
extent are also time dependent, such as hurricanes and oil
spills. These abstract data types (and their discrete repre-
sentations described in [6]) may be embedded as attribute
types into OO- or ORDBMS, or implemented as extension
packages into extensible DBMS.

Temporal types use the sliced representation, which rep-
resents a time-dependent value as a sequence of slices (tem-
poral units) such that within each slice, the development of
the value can be represented by a “simple” function, the so-
called temporal function ι. As an example, for values that
can only change discretely (e.g. int and bool) a constant
function is applied. For the moving real (mreal), the func-
tion is a quadratic polynomial or square root of such (Figure
1(a)). Points move linearly inside each slice in the moving
point (mpoint) representation (Figure 1(b)).

v

t

t

x

y

(a) (b)

Figure 1: Sliced representation of (a) a moving real
and (b) a moving point

For moving regions (mregion), vertices of regions also move
linearly inside each slice, with several restrictions applied to
ensure that, for every time instant inside the slice, a valid
region is defined by the temporal function. More details
about the representation of the moving object data types
can be found in [8].

Over these data types, a large set of operations is defined
in [3]. First, generic operations on non-temporal data types
are provided including predicates, set operations, aggregate
operations, etc. Examples are:

point × region → bool inside
region × region → region union
line → real length
point × point → real distance

where inside checks whether a point is inside a region,
union returns the region which is the union of the two ar-
gument regions, length returns the total length of a line,
and distance computes the (Euclidean) distance between
two points.

Then, by an approach called lifting, all operations defined
in this first step are available for the corresponding temporal
types. For example, the inside operator can be applied in
the following ways

mpoint × region → mbool inside
point ×mregion → mbool
mpoint ×mregion → mbool

where the arguments as well as the return value are lifted
to their temporal counterparts.

Finally, special operators for temporal types are offered
with projections into time and range of values, intersections
with values or sets of values from time and range of values,
and results that determine rate of change. Examples of such
operators are:

mpoint → line trajectory
mpoint × periods → bool present
mpoint × instant → bool present
mpoint → periods deftime
mpoint × region → mpoint at
mpoint × region → bool passes
mpoint × instant → ipoint atinstant
ipoint → instant inst
ipoint → point val

Here trajectory projects the moving point to the 2-d
plane as a line value; atperiods restricts the movement to
some period of time; present checks whether the moving
object exists at a predefined period or instant of time; and
deftime projects the movement to the time dimension. Op-
eration at restricts a moving point to the times when it is
inside a region, passes checks whether it is ever inside a re-
gion or at a point. Finally, atinstant evaluates the moving
point at given instant of time, returning a pair consisting
of the instant and a point, a value of type ipoint , for which
inst and val return the components. Efficient algorithms
for the operations are presented in [3].

3. PERIODIC MOVEMENT REPRESENTA-
TION

In this section we present the model for representing pe-
riodic movements. Section 3.1 discusses the representation
of time, while Section 3.2 presents the representation of the
periodic movements. Finally, algorithms to detect repeti-
tions and to convert from the flat representation to the one
presented in Section 3.2 are given in Section 3.3.

The following simple example is used throughout this sec-
tion for ease of understanding the concepts and algorithms.
Assume an underground train starts at 8:00 AM moving
from station A to station B within 10 minutes. Afterwards
it goes to station C in 13 minutes. Then it comes back to
station A using the same trajectory and times. At every
station, the train stops for 1 minute. This is repeated until
4:20 PM. The train runs from Monday to Friday. At the
weekend it stays at station A. The first run of this train was
at January, 1st. 2000 and its lifetime is 10 years.

For simplicity, we assume that the rails between the sta-
tions can be modeled as a single line segment and the train
goes with a constant speed. Furthermore, we exclude any
maintenance work in the train. The location of every station
S ∈ {A, B, C} is (xS, yS), but for simplicity we use just the
abbreviation S in our example.

3.1 Representation of Time
In this paper we use two data types for representing time,

namely instant and duration . An instant value represents a
point in time, also called a timestamp.

An instant can just be viewed as an element of IR as in
[6]. Unfortunately IR is an infinite set and cannot be com-
pletely covered in a computer. For this reason we decided to
use a discrete representation of time. Any two consecutive
instants have the same distance and we have selected one
millisecond as the value for this distance. Besides the nu-
merical robustness, we can define an adjacency relation be-
tween two instances. An instant value is adjacent to another
one iff their absolute distance is exactly one (millisecond).

Therefore, the instant type is modeled just by an integer
value. In fact, in the actual implementation of the instant
type we use two integer values, because the range of a single
integer value in a resolution of one millisecond only allows
one to represent a range of about 50 days, which is too short
for practical applications.

To get a human readable date time value (given in a year-
month-day-hour:minute:second.milliseconds format), we in-
terpret the value of this integer as the distance in millisec-
onds to an anchor date and convert the instant into the
Gregorian format with additional time information. We de-
cided to use as the anchor date “2000-01-03-00:00:00.0000”.
A Monday is selected in order to facilitate the computation
of weekdays.

A value of type duration describes a directed distance be-
tween two instant values. Negative values are allowed en-
suring closure of operations. A duration value is also rep-
resented using integers holding the count of milliseconds of
the duration.

Arithmetic operations are allowed using these data types,
which are shown below:

instant × instant → duration −
duration × duration → duration −
instant × duration → instant −
instant × duration → instant +
duration × duration → duration +
duration × int → duration ∗
duration × real → duration ∗
duration × duration → int /
duration × duration → duration %

One can create a duration value by calculating the differ-
ence between two instant values. One can add or subtract
a duration value from an instant to move the timestamp to
the future or to the past direction, respectively. Arithmetic
operations on duration values are also provided.

Usually, an interval is described by its two end points with
additional flags whether it is open or closed in the respective
end point. This interval representation describes a fixed
(also called anchored) period of time.

For modeling repetitions, is should be possible to reuse a
time interval at different times. Therefore in this model we
move to relative time intervals. We still keep the flags about
open or closed end points. The representation of a relative
time interval is

RelInterval = {(l, lc, rc)| l ∈ duration , lc, rc ∈ bool}

Similar to [6] we define for each data type α its domain
of possible values, called its carrier set, Dα. Hence for type
relinterval we have

Drelinterval = RelInterval

To fix such an interval in time, we assign an instant as an
anchor to it, which represents the start time of the interval.
Note that the anchor is not a part of the interval itself. The
assignment of an anchor t to an interval I is denoted as
(I ← t). This corresponds to a conversion from a relative
interval into a fixed interval as follows.

(t, t + l, lc, rc) = ((l, lc, rc)← t)

where (t, t+l, lc, rc) ∈ Interval(instant), (l, lc, rc) ∈ RelInterval,
and t ∈ instant .

We define some operations between relative intervals which
are required in the remainder of this paper.

relinterval × duration → bool contains
relinterval × real → relinterval ∗
relinterval × duration → real fraction

Their respective semantics are

contains(I, d) :=

8

>

>

<

>

>

:

false if d < 0 ∨ d > I.l
true if 0 < d < I.l
I.lc if d = 0
I.rc if d = I.l

(l, lc, rc) * f := (l ∗ f , lc, rc)

fraction((l , lc, rc), d) :=

8

>

>

<

>

>

:

d/l if 0 < d < l
0 if l = 0 ∧ d = 0 ∧ lc
1 if l = d ∧ rc
⊥ otherwise

In particular contains checks if the interval contains a
certain duration, the ∗ operator increases the duration of a
relative interval by a given factor, and the fraction opera-
tion returns the factor which decreases a relative interval to
a given duration, or undefined (⊥) if the given duration is
not contained in the interval.

3.2 Representation of Movements
In Section 2 we have already mentioned the sliced rep-

resentation presented in [8]. The movement of an object is
divided into small slices where, in each slice, a simple tempo-
ral function is applied. The whole movement is represented
by an (ordered) set of disjoint slices in the time dimension.
This is what we call the flat representation.

For the representation of the periodic movements we pro-
pose to reuse units that belong to some repetition, in order
to avoid repeting the units in the representation. Compared
to the flat representation, the periodic movement represen-
tation is a tree containing nodes of the following types: ba-
sic, composite, and repetition nodes, which represent three
different kinds of movements that are explained in Sections
3.2.1, 3.2.2, and 3.2.3, respectively. Additionally, a root
node is provided for the complete movement in Section 3.2.4.

3.2.1 Basic Movement
A basic movement corresponds to a unit similar to the

one in [8], but using a relative interval. The general unit
representation is the following:

Unit(S) = RelInterval × S
where S is a set whose values are discrete representations of
unit functions.

An instantiation of this generic temporal unit must pro-
vide a set Sα. The unit function represented by a value of
Sα is given by the temporal evaluation function

ια : Sα ×Dduration → Dα

which must also be provided as part of the instantiation.
Note that the temporal function ι accepts now a duration
value instead of an instant .

These definitions will become clearer when we instantiate
Sα and ια for the different data types. For discretely chang-
ing objects, e.g. α = bool , int , or string , the representation
of a unit is

Duα = RelInterval ×Dα

i.e. a relative interval and a value of type α. One should note
that now we allow a unit to contain an undefined value of
α. The need for this will be clearer in the following sections,
but what we can briefly comment here is that, since we use
relative intervals and only one anchor for the whole object,
one needs to fill the gaps where no movement exists with
units containing empty values. Units must exist in these
gaps because otherwise it would not be possible to compute
the absolute times for the rest of the movement.

The temporal function is

For (i, v) ∈ Duα, p ∈ Dduration

ια((i, v), p) =

v if i contains p
⊥ otherwise

For the real data type, a non-constant and non-linear
function is used. It contains a function representing a quadratic
polynomial or a square root of such (see [6]). Within the
unit, only the coefficients of the polynomial and a boolean
flag indicating the use of the square root are stored.

Most of the movements of objects are representable by
a linear approximation. The advantage is that continuous
change can be approximately modeled together with a sim-
ple implementation. We will use units with a linear function
for the representation of the movements of spatial objects,
moving objects for short.

We represent a function describing linear movement inside
an unit just by the state of the moving object at the begining
and the end of the interval. When a value within the interval
is needed, linear interpolation between these values is used.
A unit for moving points is modeled as

Dupoint = RelInterval ×Dpoint ×Dpoint

The ιpoint function is then

For (i, (x1, y1), (x2, y2)) ∈ Dupoint , p ∈ Dduration

ιpoint ((i, (x1, y1), (x2, y2)), p)

=

(xr, yr) if p ∈ i
⊥ otherwise

where
xr = x1 + fraction(i, p)(x2 − x1)
yr = y1 + fraction(i, p)(y2 − y1).
All units are stored together in an array structure (see

Section 4) without any temporal order. In our example, the
units are

Index Unit Remark
0 ((600 F T) A B) going from A to B
1 ((60 F T) B B) staying at B
2 ((780 F T) B C) going from B to C
3 ((60 F T) C C) staying at C
4 ((780 F T) C B) going from C to B
5 ((600 F T) B A) going from B to A
6 ((60 F T) A A) staying at A
7 ((56400 F T) A A) staying at A (night)
8 ((142800 F T) A A) staying at A (weekend)
Here the durations in the relintervals are given in seconds

rather than milliseconds for better readability.
The basic node of the unit index 0 is shown in Figure 2.

It contains the node type ‘L’, which stands for link, and the
index of the unit. One should note that this kind of node
is present just at the conceptual level, and does not exist
in the implementation. A father node pointing to a simple
node actually points directly to the unit of the simple node
(stored in the array).

L 0

Figure 2: A basic movement node

3.2.2 Periodic Movement
A periodic movement describes a repetition of a single

movement, which can be a basic or a composite movement
(Section 3.2.3). The number of repetitions is stored in the
periodic movement node and must be at least two. If there
is no repetition, then a periodic movement is not necessary.

Since a periodic movement contains only a single sub-
movement, we do not allow this sub-movement to be pe-
riodic too, because in this case both nodes could be merged
into only one with their numbers of repetitions multiplied.

In our implementation, additional (redundant) informa-
tion, e.g. the total duration of the movement, is stored to
speed up some operations.

Let I = (l, lc, rc) be the complete interval of the sub-
movement. We require that lc and rc are different, or for-
mally, lc ⊕ rc. This is due to the fact that conceptually
the sub-movements are concatenated r times to form the
complete movement, where r is the number of repetitions of
the periodic movement, and to be able to concatenate them,
their interval boundaries should not match.

The node of the periodic movement for a daily trip of the
train in our example is shown in Figure 3. It contains the
node type ‘R’, which stands for repetition, the number of
repetitions, and a pointer to its son node, represented here
by an arrow. Every two-way trip takes 50 minutes and the
train makes 10 two-way trips per day.

R 10

C

L 0 L 1 L 2 L 3 L 4 L 1 L 5 L 6

Figure 3: A periodic movement node

3.2.3 Composite Movement
A composite movement summarizes two or more other

movements. It can be viewed as a list of sub-movements
where each one is a basic or periodic movement. It is not
allowed for a sub-movement itself to be a composite one, in
order to avoid chains of composite movements. This does
not reduce the power of this model because we can just
include the sub-movements of a composite node directly into
the father composite node.

Within a composite movement, the order of the contained
sub-movements determines the temporal order of the move-
ments. Hence, by using relative intervals, holes in the def-
inition time of a moving object are represented by units
containing undefined values.

For two consecutive sub-movements Si and Sj , j = i + 1,
with relative intervals Ii = (li, lci, rci) and Ij = (lj , lcj , rcj),
respectively, the following conditions must hold:

• rci ⊕ lcj

• summarize(Si, Sj) = ⊥ (explained below)

The first condition ensures connected intervals and the
second one ensures a unique representation of a composite
movement.

The summarize function tries to connect two movements
into only one. Three cases can occur depending on the types
of the sub-movements:

• Si and Sj are basic movements. The summarize func-
tion in this case tries to extend the interval of the sec-
ond argument with the interval of the first argument
if the temporal function is able to represent both units
together.

More formally, we have

For ui = ((li, lci, rci), fi) ∈ Duα,
uj = ((lj , lcj , rcj), fj) ∈ Duα,

summarize(ui, uj)

=

((li + lj , lci, rcj), fi) if * holds
⊥ otherwise

where
∗ : rci ⊕ lcj ∧ ∀x ∈ [0, lj] : ια(ui, li + x) = ια(uj , x)

• Si is a basic movement and Sj is a periodic movement
and vice-versa. Let rj be the number of repetitions
in Sj . If Sj is a repetition of the basic movement Si,
then the result of the summarize function is a periodic
movement of the basic movement Si with the number
of repetitions equal to rj + 1. Otherwise an undefined
movement (⊥) is returned.

• Si and Sj are both periodic movements. Let S′

i and S′

j

be the movements that are repeated in Si and Sj , and
let ri and rj be the number of repetitions, respectively.
If S′

i and S′

j are equal movements, then the result of
the summarize function is a periodic movement of the
movement S′

i (or S′

j) with the number of repetitions
equal to ri + rj . Otherwise an undefined movement
(⊥) is returned.

The total duration of a composite move is the sum of the
durations of the intervals of its components. As done for

the periodic movement, this value is stored in the composite
movement node to speed up computations.

The node of the composite move for a one-way trip of the
train in our example is shown in Figure 4. It contains the
node type ‘C’, which stands for composite, and pointers to
its son nodes, represented here by arrows.

C

L 0 L 1 L 2 L 3 L 4 L 1 L 5 L 6

Figure 4: A composite movement node

3.2.4 The Complete Representation
Until now, all presented movements use relative intervals.

This means by combining basic, composite, and periodic
movements, we can define complete movements free in time.
The complete movement is a node that defines a global an-
chor for its sub-move. Thereby anchors for all involved sub-
movements are implicitly defined. We treat the movement
tree in depth-first manner, i.e. the first movement starts
at the global anchor, and any next movement starts at the
end of its previous movement, i.e. the start of the previous
movement plus its duration. The complete representation
of our example is shown in Figure 5.

T 2000-1-1-8:00

R 520

C

R 5

C

R 10

C

L 0 L 1 L 2 L 3 L 4 L 1 L 5 L 6

L 7

L 8

Figure 5: The complete (tree) representation of the
train example.

This example illustrates the advantage of the model pre-
sented in this paper in comparison with the flat represen-
tation with fixed intervals. When we expand this tree in
Figure 5 to the flat representation, we have to store more
than 200,000 units. In the tree representation we have only
17 nodes and only 10 units.

3.3 Conversion from a Flat Representation
When the data set is created from a timetable, it is straight-

forward to detect the movement repetitions. But in some

cases, the data come from observations, for example loca-
tions of moving objects determined by GPS devices. In these
cases, data come in the flat representation. In this section,
we provide an algorithm for detecting periods in a flat rep-
resentation, i.e. to create the tree representation from data
in the flat representation.

Instead of using a customized algorithm for each data
type, we have developed an algorithm to find repetitions
in a list of integer numbers. The algorithm therefore is per-
formed in three steps:

1. Creation of an array of integers from the flat represen-
tation of a moving object (Section 3.3.1).

2. Detection of repetitions within the array of integers
(Section 3.3.2).

3. Construction of a periodic moving object tree rep-
resentation from the result of the last step (Section
3.3.3).

3.3.1 Converting a Moving Object into an Array of
Integers

The algorithm used for constructing an integer array from
a flat representation is shown in Algorithm 1. It tries to find
holes in the temporal dimension and fills them with units
with relative intervals with undefined values. For every unit,
it tries to find equal ones in the result array of units U and
if so, an equal integer number is added into the resulting
array of integers R. In fact, the index of the unit in U is
used as such integer number.

Algorithm 1 Algorithm ConstructIntegerArray

INPUT: a moving object o in the flat representation
OUTPUT: an array of integers R, an array of units U
1: for every unit ui ∈ o do
2: if there is a hole between ui and the last unit ui−1

then
3: let u′ be the unit filling the temporal hole with an

undefined value
4: if u′ /∈ U then
5: insert u′ into U
6: end if
7: insert into R the index of u′ in the array U
8: end if
9: if ui /∈ U then

10: insert ui into U
11: end if
12: insert into R the index of ui in the array U
13: end for

Given that hash tables are used for searching equal units,
this algorithm performs in O(n) steps, where n is the number
of units in the flat representation.

The problem with this algorithm is that, in some cases, no
equality of units exists. A good example for that behaviour
is when trying to convert the data of the train in our example
that is captured using a GPS receiver. No periodicity can
be found because of small differences in time with respect
to the time table and by measurement errors of the GPS
system. In this case, we propose to change the value of the
measured time to a raster grid. For the spatial information
we also use a grid with the cells dividing the railway lines.
By changing the size of these raster grids, we can control the
accuracy of the algorithm and the number of periods found.

3.3.2 Detecting Repetitions within an Integer Array
This algorithm is shown in Algorithm 2. It receives an

integer array and constructs a structure very similar to the
representation of periodic changing objects. This means, the
result of the algorithm is a tree consisting of basic, composite,
and periodic nodes.

Algorithm 2 Algorithm DetectRepetitions

INPUT: an array of integers I
OUTPUT: a tree of integers T
1: Let T be a composite node containing as sons basic

nodes with all integer values of I
2: len ← 1
3: while len < (# of sons of T)/2 do
4: Let N be the first son of T
5: while N is not the last son of T do
6: Find the repetitions of length len from node N
7: if there are any repetitions then
8: Let C be a compositive node with len sons con-

taining the node N and the len−1 following ones,
i.e. the pattern that is repeated

9: Assign a unique identifier to the node C . If a
node C ′ equal to C was already created, just re-
use the identifier of C ′. Otherwise generate a new
unique identifier and assign it to C .

10: Let P be a periodic node with only son C and
containing the number of repetitions calculated
before

11: Assign a unique identifier to the node P in the
same way as done for the node C

12: Replace all nodes in T belonging to the repetition
by the node P

13: Let N be the next node after node P
14: else
15: Let N be the next node
16: end if
17: end while
18: if the tree rooted by T has changed then
19: len ← 1
20: else
21: len ← len + 1
22: end if
23: end while

Each node contains an integer number which is unique for
the represented subtree. Nodes of type simple have no sons,
nodes with type periodic have exactly one son, and com-
posite nodes have at least two sons. Besides the identifier,
a periodic node contains a further integer representing the
number of occurrences of the pattern.

The algorithm searches for repeated cycles of growing
length. Whenever a repetition is detected, all involved nodes
are replaced by an appropriate sub-tree with a periodic node
as root.

If a scan changes the current tree when a repetition is
found, the length is set back to one, to be able to de-
tect nested repetitions. The complexity of this algorithm
is O(n3) in the worst case where no repetition of any length
is found.

In the following, we try to clarify the algorithm using the
sequence “0-1-2-3-2-3-2-3-1-2-3-2-3-2-3” as an example. In
the initial step, a composite node containing nodes with
these numbers as sons is created. During the first scan, the

algorithm is not able to find any repetition of length one.
In the next step, it finds the three-time repetition of the
two element sequence “2-3” at two places. These repeti-
tions are replaced by appropriate periodic nodes having the
same identifier (5) because they represent equal sub-trees.
The resulting tree is shown in Figure 6(a). Each node is
labeled with its identifier. Nodes representing repetitions
are rectangular and its label is extended by the number of
repetitions.

-1

0 1 5:3

4

2 3

1 5:3

4

2 3

-1

0 7:2

6

1 5:3

4

2 3

(a) (b)

Figure 6: First change of the tree (a) and result of
algorithm DetectRepetitions applied to the example
sequence(b).

After this change, the algorithm searches for repetitions
of length one again. Because this search gives no result,
repeated sequences of length two are searched. We find ex-
actly one repetition of the sequence “1-5”. This is replaced
by a new composite node with identifier 6 (Figure 6(b)) and
the algorithm starts again searching for repetitions of length
one. Because no further repeated sequences of any length
are found, this replacement is the final result of the algo-
rithm.

3.3.3 Converting the Repetition Tree into a Periodic
Moving Object Representation

The structure of the repetition tree is equivalent to the
one of the periodic moving tree. So, the time required for
the creation of the periodic moving object is linear in the size
of the repetition tree. This can be easily done by copying
the structure of the tree got in step two into the nodes of
the tree of the moving object. During the copy process, we
can also compute additional information like node MBRs or
total duration of intervals of composite and periodic moves.

3.4 Conversion into the Flat Representation
Sometimes it is necessary to convert from the periodic tree

representation back to the flat represation, for example, for
displaying a moving object on the screen. The algorithm for
that is straightforward and will be omitted here because of
space constraints. It basically traverses the tree in a depth-
first manner expanding the repetition nodes and appending
units to the result, converting the relative intervals into fixed
ones. The units with undefined values are not inserted into
the result.

4. IMPLEMENTATION ISSUES
In this section we point out some implementation issues.

The approach presented in the previous sections is imple-
mented inside a database system. Section 5 experimentally
evaluates the approach and its implementation comparing
periodic moving (point) objects to non-periodic ones.

4.1 Programming Environment
For implementing this model, we have used Secondo ([4,

7, 9]), an extensible open source database system. Sec-

ondo can be extended by algebra modules implementing
new data types together with some operations. This is not
performed at the application level. Rather, a new algebra
module (written in C/C++) is linked to the system kernel
directly. Besides the system kernel, the following existing
algebras are used:

StandardAlgebra: containing standard data types like bool ,
integer , real , and string .

RelationAlgebra: including implementations for relations
and tuple streams.

DateTimeAlgebra: providing the instant and duration data
types.

SpatialAlgebra: making the 2-dimensional spatial types
point , points , line, and region available.

TemporalAlgebra: implementing the flat representation
for moving objects.

Dependencies to these algebras (excluding the Relation-
Algebra) result from the fact that types defined in these
algebras are used as arguments or result of implemented op-
erators. The RelationalAlgebra is required to be able to use
periodic moving objects as attributes in relations. Because
a periodic moving object can be used as an attribute of a
relation, we can handle a large set of such objects.

4.2 Data Structures and Representation
For a database system, the storing of pointer structures

is very hard. This must be done by serialization of the
data. To avoid a complex time consuming algorithm for con-
verting a tree structure into serial data, we embed the tree
into a fixed set of arrays. Pointers are emulated by a pair
(arraynumber , arrayindex). Instead of using main memory
based arrays, we use so called DBArrays, a sophisticated
persistent data type providing the functionality of an array
on top of FLOBS (see [5]).

The data structure for periodic moving objects is shown in
Figure 7. It consists of a storage block, called the root record,
containing a few fields of fixed size and some references to
database arrays. The fields are the anchor time, the total
duration of the movement, and a field topmove providing
a logical pointer to the top node of the tree. Beyond that,
there are four database arrays to represent the various types
of nodes of the tree. Hence the field topmove contains an
array identifier together with an index into that array.

Composite movements are in fact represented by the two
database arrays C and S where the sons s1 . . . sn of a node
c are represented as a subrange S [i] . . . S [i + n − 1] of the
array S . Hence a field of array C contains the two indices
defining this subrange.

A field of array S contains a logical pointer to some other
node (like topmove). Furthermore it contains a duration

field storing the sum of the durations of its left neighbors
within the same subrange. This information allows a binary
search for a (relative) point in time within the sons of a
composite node (see Algorithm 3 in Section 5).

Array B contains the unit representations for the basic
movements.

A field of array P contains a logical pointer to some other
node, the number of repetitions, and the total duration for
this subtree.

root record

anchor
duration
topmove

Basic Moves B

Periodic Moves P
Composite Moves C

Composite Submoves S

separately stored arrays

Figure 7: Data Structure for Periodic Moving Ob-
jects

By the separation between the root records and the differ-
ent kinds of arrays, we have the possibility to partially load
data. This means data from an array is only loaded from
disk when it is accessed. So, we can retrieve the anchor time
instant, the total duration of the movement, or whatever is
stored in the root record without accessing the actual data
of the periodic moving object. Furthermore, we can scan
the units without loading data from the other arrays.

4.3 Implemented Data Types
The approach proposed here can be used to model peri-

odic (or non-periodic) changes of any data type. Some of
them are implemented in a Secondo algebra module called
PeriodicAlgebra. The selection is made to cover a broad
range of different kinds of possible types.

The implemented data types are:

• pmbool. This data type represents a periodic moving
booleal value. This is a candidate for a data type with
only discrete changes where, in each unit, the value is
constant.

• pmreal. A value of type pmreal models periodic changes
of a value in IR. Changes within a unit are described
by a set of parameters for a fixed polynomial function.

• pmpoint. A pmpoint value describes a point moving
freely in space. The nodes of the repetition tree are
extended by the bounding box of the appropriate sub-
tree. Within a single unit the point moves linearly. It
is sufficient to store the relative interval, the location
at the start of the unit and the location at the and of
the unit to describe a linear change of such a point.

5. EXPERIMENTAL EVALUATION
In this section we perform an experimental evaluation in

order to show the good properties of the periodic moving

objects representation. We compare our approach with the
flat representation using moving point (mpoint) data sets.

We use in this evaluation two data sets: a generated data
set with periodicity and a real data set without any period-
icity.

The first data set consists of a train line in the Berlin city.
We expanded a schedule of such a train to a 2-dimensional
data set with the help of the train railway (a line value).
It is a relation containing 13 tuples where the trains with
even identifiers stop on weekends and the trains with odd
identifiers run on weekends in the same way as on working
days. The total duration of the data set used is half a year.

Every day, the first train leaves the starting station at
6:03 AM and the time difference between two trains is 6
minutes, i.e. the second train leaves the starting station
at 6:09 AM. The duration of the whole one-way trip is 40
minutes. The trains stop at every station for 10 seconds and
between two stations the trains move with constant speed.
Every train does 11 two-way trips, and the last train arrives
at the starting station at 10:01 PM. The trains stop for the
night and start again on the next day.

The second data set is a real one consisting of 47 tuples
with GPS traces of several different trips from our group of
research. It contains trips inside Hagen, trips from Dort-
mund to Hagen, and trips from Hagen to Gardelegen. No
periodicity exists in this data set. The 4 relations are de-
scribed as follows:

trains(no: int , trip: mpoint)
traces(name: string , trip: mpoint)
ptrains(no: int , trip: pmpoint)
ptraces(name: string , trip: pmpoint)

where the relations named with “p” as prefix use the periodic
representations.

Table 1 shows the sizes of both data sets in terms of space
used in MBytes and in terms of units. It can be seen in this
table that the periodic representation is much more compact
than the corresponding flat representation, in the trains data
set, because many duplications of units are avoided in the
repetitions.

Table 1: The two data sets.
Data set Trains GPS Traces

Size in the flat 429.56 35.58
representation (Mbytes)
Size in the periodic 0.37 39.43
representation (MBytes)

of units
in the flat 4,021,626 301,440
representation
of nodes
in the periodic 3,037 301,487
representation

of basic nodes 2,958 301,440
of periodic nodes 33 0
of composite nodes 33 47

In order to evaluate the algorithm to detect periodicity
presented in Section 3.3 we measured the time spent to con-
vert the whole relation from the flat representation to the
periodic representation using both data sets. Table 2 shows
these results. The second data set represents the worst case

of this algorithm, i.e. the case where no repetition is found
and the result is a composite node with all units from the
flat representation. We think that 223 seconds, which is al-
most 4 minutes to convert 47 tuples of approximately 6,414
units per tupleis reasonable.

Table 2: Time spent to convert from the flat to the
periodic representation.

Data set Time (s)
Trains 117
GPS Traces 223

Finally, we use two operations to evaluate the execution
of queries in the periodic representation, namely atinstant
and trajectory. The atinstant operation reduces the move-
ment to the time instant passed as argument. The algorithm
for that is presented in Algorithm 3. The algorithm simply
traverses the tree until it finds the basic node with the unit
that contains the argument time instant.

Algorithm 3 Algorithm atinstant

INPUT: a periodic moving point object o, an instant t
OUTPUT: a ipoint (t, p) (i.e. a pair consisting of instant

t and point p)
1: if the time instant t is contained inside the interval

[o.anchor , o.anchor + o.duration] then
2: Let R be the root node of o
3: Return (t, atinstantRec(R, t− o.anchor))
4: else
5: Return (t, ⊥)
6: end if

Algorithm 4 Algorithm atinstantRec

INPUT: a node of a periodic moving point object R, a
duration d

OUTPUT: a point p
1: if the node R is a basic node then
2: Compute the state of the unit at duration d calling

the ι temporal function. Return ⊥ for units with un-
defined values.

3: else if the node R is a composite node then
4: Determine the correct sub-movement S with binary

search
5: Return atinstantRec(S, d−

P

S′<S∈R
S ′.duration)

6: else if the node R is a periodic node then
7: Let S be the only son of R
8: Return atinstantRec(S, d− bd/S.durationc)
9: end if

Table 3 shows the result of the time spent in seconds on
the following query

SELECT val(atinstant(trip, t)) FROM R

where R can be any of the four relations and t some time
instant.

We can see in this table that the atinstant operator takes
advantage of the periodic representation for the data with

Table 3: Time spent on queries with the atinstant
operator.

Data set Trains GPS Traces
Flat representation 6.7 0.58
Periodic representation 0.0023 0.33

periodicity. For the data without periodicity, the results are
similar.

The trajectory operation computes the 2-dimensional
line that represents the movement of the point object. This
operation is even simpler, it just scans the array containing
the units, because the complete spatial information of the
movement is contained in this array. Table 4 shows the time
spent to perform the following query with the trajectory
operator:

SELECT trajectory(trip) FROM R

This is another operation that takes advantage of the com-
pact representation proposed in this paper for data with pe-
riodicity. Again, for the data set without periodicity, the
performance of both approaches is still similar.

Table 4: Time spent on queries with the trajectory
operator.

Data set Trains GPS Traces
Flat representation 149.00 11.4
Periodic representation 0.25 11.2

6. CONCLUSIONS
In this paper we have proposed an approach for repre-

senting periodically changing objects. The model is able to
handle both nested periods and linearly changing objects.
The model is independent of the underlying data type. An
implementation of this model within the Secondo frame-
work was also described. We have presented an algorithm
for detecting periods within linear data. It was shown that
the size of the data which must be stored in a database or
must be sent to a database client can be reduced drastically
by exploiting periodic properties of changing objects. We
have also shown that some operators can be implemented
more efficiently than in a linear model.

7. REFERENCES
[1] L. Anselma. Recursive representation of periodicity

and temporal reasoning. In Proc. of the 11th Intl.
Symp. on Temporal Representation and Reasoning
(TIME), pages 52–59, 2004.

[2] M. Cai, D. Keshwani, and P. Z. Revesz. Parametric
rectangles: A model for querying and animation of
spatiotemporal databases. In Proc. of the 7th Intl.
Conf. on Extending Database Technology (EDBT),
pages 430–444, 2000.

[3] J. A. Cotelo Lema, L. Forlizzi, R. H. Güting,
E. Nardelli, and M. Schneider. Algorithms for moving
objects databases. The Computer Journal,
46(6):680–712, 2003.

[4] S. Dieker and R. H. Güting. Plug and Play with
Query Algebras: Secondo-A Generic DBMS
Development Environment. In Proc. of the Intl. Symp.
on Database Engineering & Applications (IDEAS),
pages 380–392, 2000.

[5] S. Dieker, R. H. Güting, and M. R. Luaces. A tool for
nesting and clustering large objects. In Proc. of the
12th Intl. Conf. on Scientific and Statistical Database
Management (SSDBM), pages 169–181, 2000.

[6] L. Forlizzi, R. H. Güting, E. Nardelli, and
M. Schneider. A data model and data structures for
moving objects databases. In Proc. of the ACM
SIGMOD Intl. Conf. on Management of Data, pages
319–330, 2000.

[7] R. H. Güting, T. Behr, V. T. Almeida, Z. Ding,
F. Hoffmann, and M. Spiekermann. Secondo: An
extensible DBMS architecture and prototype.
Technical Report 313, Fernuniversität Hagen,
Fachbereich Informatik, 2004. Available at
http://www.informatik.fernuni-
hagen.de/import/pi4/papers/Secondo04.pdf.

[8] R. H. Güting, M. H. Böhlen, M. Erwig, C. S. Jensen,
N. A. Lorentzos, M. Schneider, and M. Vazirgiannis.
A foundation for representing and querying moving
objects. ACM Transactions on Database Systems
(TODS), 25(1):1–42, 2000.

[9] R. H. Güting, V. T. de Almeida, D. Ansorge, T. Behr,
Z. Ding, T. Höse, F. Hoffmann, M. Spiekermann, and
U. Telle. Secondo: An extensible dbms platform for
research prototyping and teaching. In Proc. of the 21st
Intl. Conf. on Data Engineering (ICDE), pages
1115–1116, 2005.

[10] K. Hornsby, M. J. Egenhofer, and P. J. Hayes.
Modeling cyclic change. In Proc. of the 1st. Intl.
Workshop on Evolution and Change in Data
Management (ECDM), pages 98–109, 1999.

[11] P. Z. Revesz and M. Cai. Efficient querying of periodic
spatiotemporal objects. In Proc. of the 6th Intl. Conf.
on Principles and Practice of Constraint Programming
(CP), pages 396–410, 2000.

[12] P. Z. Revesz and M. Cai. Efficient querying and
animation of periodic spatio-temporal databases. Ann.
Math. Artif. Intell., 36(4):437–457, 2002.

[13] A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao.
Modeling and querying moving objects. In Proceedings
of the 14th Intl. Conf. on Data Engineering (ICDE),
pages 422–432, 1997.

[14] O. Wolfson, S. Chamberlain, S. Dao, L. Jiang, and
G. Mendez. Cost and imprecision in modeling the
position of moving objects. In Proceedings of the 14th
Intl. Conf. on Data Engineering (ICDE), pages
588–596, 1998.

[15] O. Wolfson, B. Xu, S. Chamberlain, and L. Jiang.
Moving objects databases: Issues and solutions. In
Proc. of the 10th Intl. Conf. on Scientific and
Statistical Database Management (SSDBM), pages
111–122, 1998.

