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Abstract
Traditional indexing techniques are not well suited for complex data types such as spatial,

spatio-temporal, and multimedia data types, where an instance is a composite of multiple
components. In this paper we propose two indexing techniques that allow the parts of
a composite object to be indexed separately, called multiple entry indexing and double
indexing. We present the implementation of these approaches in the Secondo extensible
database system. The improvements in terms of performance of both approaches presented
in this paper shown in an experimental evaluation.

1 Introduction

Non-conventional database systems support complex data types such as spatial, spatio-temporal,
and multimedia data types such as lines, regions, moving objects, texts, images, audio data, etc.
One common property of such data types is that they have variable length size, but their size
is unpredictable, it can be very small, e.g. a 16 colors 16x16 pixels icon, or very big, e.g. a high
resolution satellite image. Another important property of these data types is that sometimes
they contain multiple components. A line is composed by a set of segments, a moving object
by a set of units with linear movement, an audio by a set of tracks, etc.

Indexing mechanisms are crucial for efficient query processing coping with these complex
data types. Approximations are used to index such attributes, e.g. minimum bounding rect-
angles (MBR) for spatial data types. We will use spatial and spatio-temporal data types as
examples in the rest of this section. The MBR of an object is the minimum rectangle aligned
with the coordinate axes that totally encloses the object.

Figure 1: The Minimum Bounding Rectangle (MBR) of Germany.

Figure 1 shows the region of Germany and its MBR. The dark color represents the so-called
dead space, which is the difference between the area of the MBR and the object area. It is well
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known that the amount of dead space in a data set deteriorates the performance of a query on
such indexes.

(a) (b)

(c)

Figure 2: The MBRs of (a) France, (b) Russia, and (c) USA.

In some cases, the amount of dead space can be unacceptable. Figure 2 shows some of these
cases using a data set containing the world countries as regions, which we call the world data
set. The regions of France, Russia, and the USA contain several components and a huge dead
space is introduced by their MBRs, shown in Figure 2(a), 2(b), and 2(c), respectively.

The data set contains 239 tuples and the MBR of France has intersection with 207 other
MBRs, but the region of France just intersects 15 other regions. The following query: ”Return
the neighbor countries of France” can use a spatial index to improve its efficiency, i.e. before
checking the intersection between the real representation of the countries, a search in the spatial
index is done to retrieve the entries that have MBR intersection with France’s MBR. However,
in this case, this step is not very restrictive, given that it returns 86,61% of the data set.

The dead space would be significantly reduced if every component is considered separately
by the index, which means every component of a country is separately indexed. We call this
approach multiple entry indexing, because every tuple in the data set may contain several entries
in the index. Figure 3 shows the MBRs of each component of (a) France, (b) the USA, and
(c) Russia.The margins of each figure represent the MBR of the whole country. One can see in
these examples on the one hand that the dead space reduction is very significant in these cases,
whereas, on the other hand the number of entries in the index increases.

Table 1 shows the improvement achieved to answer the query: “Find the countries that
intersect country X” where we used France, USA, and Russia as X. The first column presents the
number of MBR intersections using the whole country MBRs, the second and third ones present
the number of MBR intersections using component MBRs without and with an additional step
to remove duplicates, respectively. The fourth column shows the expected result of the query,
i.e. the number of intersections using the real representation of the objects. We can see that
the number of computations of intersections using the real representation of the countries is
reduced by approximately a factor of 12 for France, 27.5 for the USA, and 2.5 for Russia using
the multiple entry indexing approach with duplicate removal.

With multiple entry indexing it is possible, for these composite data types, to perform queries
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Figure 3: The MBRs of each component of (a) France, (b) Russia, and (c) USA.

Table 1: Intersections between all countries and France, USA, and Russia.

Country MBR Component MBR Component MBR Real
intersections intersections intersections intersections

(with duplicates) (without duplicates)
France 207 21 17 15
Russia 110 42 4 2
USA 60 33 25 13

more efficiently. Obviously, not in every case multiple entry indexing is better than traditional
approaches, because it needs an additional duplicate removal step after the execution of the
query in the index. The more selective the query the bigger the gain we achieve with multiple
entry indexing.

Multiple entry indexing is similar to partial indexes ( [9, 10]) in the PostgreSQL DBMS.
However, with partial indexes it is possible to restrict the tuples in the relation to be indexed
to a subset with the help of a SQL query but it is not allowed that the index contains multiple
entries for each tuple of the corresponding relation.

However, there is still place for optimization. In traditional query processing with indexes,
every leaf entry in the index points to the corresponding tuple of that entry and, once the entry’s
approximation satisfies the query predicate, the object inside the tuple is retrieved and then
the query predicate is applied to it. In our case, where objects can contain several components,
we also want to avoid reading the whole object, but only the components of the object that
satisfied the query predicate. With this approach the gains are twofold: we do not read the
whole object (I/O), which can span into several disk pages, and we do perform the predicate in
complex objects only containing the components that satisfied the approximation test (CPU).

The technique is then the following: when inserting an entry for a component into the index
we carry additional information about the position of that component in the composite object.
We decided to keep this information as simple as possible because it consumes valuable space in
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the index leaf entries. To achieve this goal, an interval is stored together with the leaf entries in
the index. This interval stores the starting and ending position of the component in the whole
object. In query processing, after performing the query in the index, the result is then sorted
by tuple identifiers and by the intervals. In order to retrieve the tuples, the set of intervals of
the same tuple is used to retrieve only a restricted portion of the complex object. We call this
approach double indexing.

In our example of the world data set, if we check whether the USA and Russia intersect
each other using the double indexing approach dividing the regions by component, only a few
islands of the USA MBRs intersect the MBR of the bigger component of Russia (Figure 4).
In this case, only a few pages will be read for the USA components (maybe only one) and the
complexity of the intersection predicate is lowered given that the representation of the reduced
USA instance is much smaller.

Figure 4: MBR intersection between the components of the USA and Russia.

In this introduction, we used a spatial data set to demonstrate the motivation to our work.
However, this approach is general and is not limited to spatial databases. Every composite data
type can be indexed using the two approaches presented in this paper. As an example, the
works in [7, 8] present an approach to splitting a moving object trajectory into pieces before
indexing it, without considering that this is not possible using traditional indexing approaches.

In this paper we present an integrated approach in the Secondo extensible database sys-
tem implementing both multiple entry indexing and double indexing. The paper is organized
as follows: Section 2 presents a brief overview of Secondo. Section 3 presents the operators
for both indexing approaches in the paper. In Section 4 we present an experimental evalua-
tion comparing the techniques presented in this paper against traditional indexing approaches.
Finally, Section 5 concludes the paper presenting an overview of future work.

2 Secondo Overview

In order to explain the implementation of our indexing approach proposed in this paper, we first
need to present a brief overview of the Secondo extensible database system, which is done in
this section. The goal of Secondo is to provide a “generic” database system frame that can be
filled with implementations of various DBMS data models. For example, it should be possible
to implement relational, object-oriented, temporal, or XML models and to accommodate data
types for spatial data, moving objects, chemical formulas, etc.

Secondo has been demonstrated at some conferences, such as ICDE’05 ( [1,6]) and MDM’06
( [2]).

The Secondo system consists of three major components shown in Figure 5:

• The Secondo kernel implements specific data models, is extensible by algebra modules,
and provides query processing over the implemented algebras. It is written in C++.

• The optimizer provides as its core capability conjunctive query optimization, currently for
a relational environment, and also implements the essential part of SQL-like languages.
It is written in Prolog.
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Figure 5: The Secondo architecture.

• The graphical user interface (GUI) is an extensible interface for an extensible DBMS such
as Secondo, where new data types or models can provide their own viewers or extend
an existing viewer by display methods. It is written in Java.

2.1 The Kernel

A very rough description of the architecture of the Secondo kernel is shown in the bottom
of Figure 5. A data model is implemented as a set of data types and operations. These are
grouped into algebras. For example, there is an algebra called Relational Algebra with tuples
and relations as data types and operations like projection or hashjoin. Traditional indexing
techniques are supported on Secondo with algebras for B-trees and R-Trees.

The kernel can evaluate a query plan, also called an executable query, or a query at the exe-
cutable level, which is just a term of the implemented algebras. Query processing is performed
as follows: the Command Manager receives an executable query, parses it and passes the result
to the Query Processor. The Query Processor then evaluates the query by building an operator
tree and then traversing it, calling operator implementations from the algebras. More details
about this process can be found in [3]. Secondo objects are stored (and retrieved) by the
Storage Manager into a database and managed by the Catalog.

A collection of algebras is available in the Secondo Kernel, such as the Standard Algebra
containing standard data types like bool , int , real , and string ; the Relational Algebra containing
the data types for tuples (tuple) and relations (rel); the BTree Algebra and the RTree Algebra
containing implementation of B-Trees and R-Trees indexes, respectively; the DateTime Algebra
with the implementation of the instant and duration data types; the Spatial Algebra containing
2-dimensional data types like point , line, and region; the Temporal Algebra providing moving
object data types (e.g. moving(point)).

An important feature of Secondo is that it offers a specific concept for the implementation
of persistent attribute data types, where they are represented as a root record and can contain
some database arrays. Database arrays are basically persistent arrays of elements with fixed size,
and are implemented on top of a concept called FLOB (Faked Large Object) described in [4],
which means that they are automatically either represented inline with the tuple representation,
or outside in a separate list of pages, depending on their sizes. FLOBs are read paged from disk.
As an example, the line data type could contain some aggregate information in the root record
such as its length, its MBR, the number of disconnected components, etc. and a database array
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of line segments.

2.2 The Optimizer

The optimizer provides as its core functionality cost-based optimization of conjunctive queries.
That is, it receives a set of relations together with a collection of selection and join predicates,
and produces a plan. It employs a novel algorithm for query optimization described in detail
in [5], based on shortest path search through a predicate order graph. It is written in Prolog,
using the SWI-Prolog system.

On top of the conjunctive query optimizer, the essential parts of an SQL-like language have
been implemented. The SQL notation was slightly adapted so that queries can be written
directly as PROLOG terms. Since Secondo is extensible by algebras, some of them containing
complex data types, we have the following requirements:

• Selectivity estimation must work for complex data types and an extremely large set of
operations. The traditional histogram-based approach does not scale to this case.

• Operations can be expensive; hence expensive predicates must be supported in optimiza-
tion.

Secondo provides selectivity estimation by sampling; for each relation a small materialized
sample is kept. Unknown selectivities are determined in advance by sending selectivity queries
to the kernel before starting the proper optimization process; they are then stored for later use.

The cost for expensive predicates is determined as well in the execution of the selectivity
queries on samples by measuring the actual execution time, subtracting overhead.

The beauty of this scheme is that optimization works to a large extent automatically without
manual work when a new algebra with non-standard types is added. What has to be provided
manually are optimization rules for adding specialized indexes, and possibly syntax rules for
operations (the latter is very easy).

2.3 The User Interface

A visualization of query results is possible in the graphical user interface called Javagui of the
Secondo system. Javagui communicates with the system kernel and the optimizer via TCP/IP.
It can be extended by viewers. Each viewer can display a set of different data types. In this
way, Javagui is able to display each data type implemented in the system kernel.

The user interface consists of three major parts (see Figure 6), namely the command area
(top-left), the object manager (top-right), and an area containing the current viewer (bottom).

In the command area, the user can input queries and commands controlling Javagui. Javagui
recognizes whether a query is given at the executable level or in the syntax of the optimizer. If
the query is in optimizer syntax, Javagui sends it to the optimizer and receives a plan at the
executable level. This plan is sent to the system kernel. The result of a query is delivered in a
generic format based on nested list structures to the object-manager. It stores the result of the
query, selects a viewer able to display the result, and finally it transfers the query result to this
viewer for further processing.

The HoeseViewer (named by its author) is a fairly sophisticated viewer for spatial and
spatio-temporal data. This viewer can be extended for displaying further data types using
display classes.

3 Indexing

In this section, we give detailed information about the implementation of the indexing approach
presented in this paper. As said in the previous sections, Secondo already has algebras for
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Figure 6: The Secondo graphical user interface.

indices such as B-trees and R-trees. These algebras contain data types for such indices and
some operators mainly for creating the index and querying it. We focus this paper on the
R-tree indexing, since we use spatio-temporal data sets in our experiments. Everything that
is presented here can be, and actually is, extended to indexing of standard data types with
B-trees.

During the operators syntax description, we will follow our discussion with some examples in
order to clarify the explanations. In the examples, we use the Berlin data set, graphically seen in
Figure 6, which contains several relations with spatial objects in the city of Berlin, Germany —
such as streets, underground train lines, green and water areas, sightseeing spots, restaurants,
etc. — and a relation containing several lines of underground trains as moving points. This
relation containing moving points is the one that will be mainly used in our examples and is
described as

Trains( Id: int, Line: int, Up: bool, Trip: mpoint )

where Id is a numeric identifier (primary key), Line contains the line number of the train, Up
identifies the direction of the movement of the train in the line, and Trip contains the moving
point object.

The presentation of the operators is divided into three steps containing the operators to
create and query standard indexes, the operators for multiple entry indexing, and finally the
operators for double indexing.

3.1 Operators for Traditional Indexing

A traditional query processing with the help of an index runs in the following steps:

7



1. Send the query condition to an index and receive some result candidates

2. Retrieve the tuples pointed to by the candidates from their respective relations

3. Apply the query condition to these tuples and return the result (this step is needed if the
index search cannot decide the predicate, as in filter and refine techniques).

Indices are directly connected to relations and every tuple of the relation has a corresponding
entry in the index. Otherwise, the query processing will not work.

The operator called creatertree which performs the index creation needs a relation as one
of the arguments and the attribute on that relation that needs to be indexed as the second
argument. In the case of our examples, the attribute must be of a spatial type, e.g. point ,
points, line, or region, or of a spatio-temporal type, e.g. mpoint (mpoint is the abbreviation of
moving(point) which is the data type for moving points). MBR approximations of the values of
this attribute are indexed in the R-Tree. Here is the description of the creatertree operator:

rel(tuple(X)) × attrname → rtree(tuple(X) attrtype Std) creatertree

One should note that this operator creates a standard R-tree, which can be seen in the third
parameter in the R-tree data type description (Std).

Using the Trains relation we can then create a standard R-tree index using the following
command:

let trains Trip =

Trains creatertree[Trip];

This operation creates a 3D R-Tree indexing the 3D MBRs (2D MBR + time) of the attribute
Trip of the Trains relation.

The following operation, called windowintersects, is available for querying:

rtree(tuple(X) attrtype Std) × rel(tuple(X)) × rect<dim>
→ stream(tuple(X)) windowintersects

This operator receives an R-Tree, a relation and a <dim>-dimensional query rectangle (win-
dow) as arguments — where dim is the dimensionality of the indexed attribute type —, searches
in the R-Tree all entries that intersect the query rectangle and retrieves the corresponding tu-
ples in the relation, returning them as a stream. Streams of tuples are used internally in the
Secondo system in order to pipeline the operators of the relational algebra.

The windowintersects operator only performs the steps (1) and (2) of the query processing
scheme for retrieving the tuples given the approximation in the index. Step (3) of performing the
query predicate on the candidate tuples must be executed later. The following query example
counts the MBRs that intersect the MBR of the Mehringdamm Station (object mehringdamm):

query trains Trip Trains
windowintersects[ bbox(mehringdamm) ]

count;

If we want to retrieve the objects that really pass the Mehringdamm Station, the predicate
filter needs to be added after the index query.

query trains Trip Trains
windowintersects[ bbox(mehringdamm) ]
filter[ .Trip passes mehringdamm ]

count;

This query completely represents all steps (1), (2), and (3) of traditional query processing
scheme stated in the beginning of this sub-section.

8



3.2 Operators for Multiple Entry Indexing

To support multiple entries in the index we must get rid of the relation argument in the
creatertree operator and allow a stream of tuples as input. This stream of tuples must contain
one and only one attribute of type tid , which stores tuple identifiers.

stream(tuple([X, id: tid ])) × attrname
→ rtree( tuple(X) attrtype Std ) creatertree

The type of this R-Tree created is the same as the one created in Section 3.1 (Std). The
following command creates the same R-Tree as in the previous example.

let trains Trip =

Trains feed addid creatertree[Trip];

Here we make use of the feed and addid operators. feed converts a relation into a stream
of tuples and addid extends the tuple with its tuple identifier, an internal number that uniquely
identifies a tuple in the relation.

With this new way of creating an R-tree index we have much more flexibility. The following
example creates an index only for those objects that pass the Mehringdamm Station, which is
not possible to be done with the traditional R-Tree creation operator.

let trains Trip =
Trains feed addid
filter[ .Trip passes mehringdamm ]

creatertree[Trip];

The following operator, called windowintersectsS (’S’ comes from stream), allows us to
query a multiple entry index without directly specifying the relation, from which the tuples
should be retrieved. The result is a stream of tuples containing only one attribute of tid type
containing the tuple identifiers of the entries in the index that satisfy the query condition.

rtree(tuple(X) attrtype Std) × rect<dim>
→ stream(tuple([id : tid ])) windowintersectsS

In order to later retrieve the tuples from the corresponding relation, the gettuples operator
is provided. This operator receives a stream of tuples containing an attribute of type tid with
tuple identifiers and a relation, and retrieves the tuples from the argument relation appending
their attributes (Y) to the end of the tuple received as argument (X). The attribute with the
tuple identifiers is removed from the resulting tuple type. The result of this operator is still a
stream of tuples.

stream(tuple([X, id : tid ])) × rel(tuple(Y))
→ stream(tuple([X, Y])) gettuples

As an example, with this new query operator, to simply count the number of MBR inter-
sections we have between the trips and the Mehringdamm Station, we do not need to load the
tuples from the Trains relation as follows:

query trains Trip
windowintersectsS[ bbox(mehringdamm) ]

count;

If we want to know the trips that really passed the Mehringdamm Station, the query is then

query trains Trip windowintersectsS[ bbox(mehringdamm) ]
Trains gettuples
filter[ .Trip passes mehringdamm ]

count;

However, this query does the same as the standard one. The power of this approach comes
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from the fact that we have more flexibility on indexing and retrieving tuples.
As an example of this flexibility we will now create an R-tree containing entries for every

piece of movement of the trips in the Trains relation. One should note that now we (possibly)
have multiple entries for the same tuple of the Trains relation in the index.

let trains Trip unit =
Trains feed addid
extendstream[Unit: units(.Trip)]

creatertree[Unit];

For this query, we make use of the operators extendstream and units. The units operator
takes a moving object, a mpoint in this example, and returns a stream of temporal units, which
are the linear pieces of the movement, in this case of type upoint . The operator extendstream
combines the tuples coming from the outer stream with the ones coming from the inner stream.
With the combination of these two operators we expand the units inside the temporal data
type, indexing them into the resulting R-tree.

Now, the query to find the trips that passed the Mehringdamm Station is

query trains Trip unit
windowintersectsS[ bbox(mehringdamm) ]
sort rdup
Trains gettuples
filter[ .Trip passes Mehringdamm ]

count;

Note that we added a duplicate removal after the index query (step (2) in the new query
processing scheme below), with the usage of the sort and rdup operators, to eliminate possible
duplicate results for the same tuple. The query processing scheme can now be stated as

1. Send the query condition to the index and receive some result candidates

2. Remove duplicates

3. Retrieve the tuples pointed to by the candidates from their respective relations

4. Apply the query condition to these tuples and return the result (this step is needed if the
index search cannot decide the predicate, as in filter and refine techniques).

3.3 Operators for Double Indexing

In the last sub-section, we showed how to change the traditional query processing with the help
of an index to allow multiple entries in the index. However, there is still place for optimization,
because we still need to retrieve the entire tuples in order to perform the last query condition
check.

It would be perfect if we could load only the parts of the tuples that conform with the query
condition in the index retrieval. This is done with our last approach called double indexing.
With double indexing, we are not only able to store multiple entries in the index but also to store
an interval for every entry in order to, when retrieving the tuples, restrict the object loading
only to the components that are of interest for the query, i.e. to retrieve only the components
that satisfy the query predicate in the index retrieval.

In order to achieve this, the creatertree operator is again modified to receive the low and
high attributes in the stream of tuples, which represent the interval.

stream(tuple([X, id : tid , low : int , high: int ] )) × attrname
→ rtree( tuple(X) attrtype Dbl) creatertree

One should note that the R-Tree index description is now different, i.e. of type Dbl (from
double).
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Following our examples using the Berlin data set, we can create an R-tree index with one
entry for every piece of movement of the trips in the Trains relation.

let trains Trip unit =
Trains feed addid
filter[seqinit(0)]
extendstream[Unit: units(.Trip)]
extend[Box: bbox(.Unit), Low: seqnext()]
extend[High: .Low]
project[Box, TID, Low, High]

creatertree[Box];

In this first index, the values of high and low are always the same, informing to the index
that there is only one entry indexed by this value in the trip. The operator seqinit initializes
a counter to its argument’s value and return ’TRUE’, while the operator seqnext returns the
counter’s current value and post-increment it.

The next example indexes every group of 5 units of the trips in the Trains relation. We
are not going to explain every detail on this example since it uses complex operators (with
parameter functions) of the Relational Algebra. We ask the reader to believe that this query
below does index every group of 5 units and setting the intervals to [0, 4], [5, 9], ...

let trains Trip group5 =
Trains feed addid
filter[seqinit(0)]
projectextendstream[TID; Unit: units(.Trip)]
extend[Grp: seqnext() div 5, Box: bbox(.Unit)]
groupby[TID, Grp; LargeBox: group feed aggregateB[Box; fun( r1:rect3, r2:rect3 ) r1

union r2; [const rect3 value undef]], N: group count]
extend[Low: .Grp * 5]
extend[High: .Low + .N - 1]
project[LargeBox, TID, Low, High]

creatertree[LargeBox];

The same windowintersectsS operator as for multiple indexing is available, but it returns
not only the tuple identifier, but also the low and high values for every entry in the candidate
result.

rtree(tuple(X) attrtype Dbl) × rect<dim>
→ stream(tuple([id : tid , low : int , high: int ] )) windowintersectsS

To later retrieve the tuples, a new version of the gettuples operator is provided, called
gettuplesdbl. This operator expects a tuple in the format that is returned from the latter
operator, but it also expects that the tuples are sorted by tid, low, and high in ascending order.

The operator combines all intervals of the same tuple identifier into a set of intervals. Then it
retrieves the tuple corresponding to the tuple identifier, but restricts the reading of the attribute
named by the operator’s third argument to only those components given by this set of intervals
mentioned above.

stream(tuple([X, id : tid , low : int , high: int ]))
× rel(tuple(Y)) × attrname
→ stream(tuple([X, Y])) gettuplesdbl

The query that counts the number of objects that pass through the Mehringdamm Station
can then be now re-written as

query trains Trip unit (or trains Trip group5)
windowintersectsS[ bbox(mehringdamm) ] sort
Trains gettuplesdbl[Trip]
filter[ .Trip passes Mehringdamm ]

11



count;

The tuples retrieved by the gettuplesdbl are restricted to the components that satisfy the
query predicate in the index. This approach improves the performance of the query processing
in two ways. First, it allows one to retrieve only parts of the object, which means it reduces
the number of disk accesses. Second, as far as the object passed to the last filtering condition is
(possibly) reduced, the filtering condition step can also be performed faster, which means less
CPU time.

The query processing scheme of the last two sub-sections can now be stated as

1. Send the query condition to the index and receive some result candidates

2. Sort the entries on the candidate set by id, low, and high attributes

3. Retrieve the tuples pointed to by the candidates from their respective relations, restricting
the query attribute to only those parts in the intervals represented by the low and high
values.

4. Apply the query condition to these tuples and return the result (this step is needed if the
index search cannot decide the predicate, as in filter and refine techniques).

4 Experimental Evaluation

In this section we aim to show the advantages of both multiple entry and double indexing
approaches. We use two data sets for this purpose:

• TrainsL. We translated the Berlin database explained in Section 3 five times in all direc-
tions: x, y, and time. We then have a database that is 125 times larger than the Berlin
database. The translated Trains relation we call TrainsL, where ’L’ comes from large.
This relation contains a relatively large number of tuples with moving objects (TripL
attribute) of small trajectories, consequently of small size.

• U1lin. This data set is similar to Trains relation in the Berlin data set explained in Section
3. The U1lin relation contains only one train line (U1 ) with 13 trains performing 11 two-
way trips per day for 6 months. The trains with even identifiers stop on weekends and the
ones with odd identifiers run on weekends as they do on weekdays. This relation contains
a small number of tuples with moving objects (TripL attribute) with large trajectories.

Some statistics about both data sets are provided in the Table 2.

Table 2: Statistics about the data sets.

TrainsL U1lin
Size in MBytes 673.80 429.56
# of tuples 70,250 13
Avg. # of units per tuple 82.025 309,355
Avg # of pages per tuple 3 8594

For creating the indexes we have the following variables:

• dimensionality: spatial (dS), temporal (dT), or spatio-temporal (dST)

• entry type: one entry per object (eObj), one entry per temporal unit (eUnt)
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• index type: standard (iStd) and double index (iDbl)

Let us use one of the combinations to show how we name the indexes in the rest of this
section. The spatio-temporal double index with one entry per unit for the relation TrainsL, at-
tribute TripL, is called trainsl TripL dST eUnt iDbl. One should note that not all combinations
make sense, e.g. double indexing with one entry per object. We call simply trainsl the approach
that sequentially scans the whole relation directly applying the query predicates, bypassing the
index filtering step.

4.1 Temporal queries

For temporal queries we used the atinstant operator receiving a moving point (mpoint) and
an instant i as arguments. This operator restricts the movement to the position at time instant
i. We performed the following query with five different values of i: the first instant of the data
set, the last instant, the first and third quartiles, and the middle instant.

The query in SQL-like format is written below. We use a SQL-like format to write the query
to avoid presenting all queries for all approaches in the Secondo executable format.

select val(trip atinstant i) as pos
from trainsl

where trip present i;

We added the predicate with the operator present in the where clause in order to use the
index in the query. The present is the corresponding predicate to the atinstant operator.

Tables 3 and 4 present the results of the temporal query for the various approaches in terms
of number of disk accesses for the U1lin and TrainsL data sets, respectively. Both present and
atinstant operators perform a binary search in the movement. In the U1lin data set, since
we have 8,594 pages per tuple in average we could expect to have 13 reads per tuple, which is
log2(8594), which gives us 169 reads for the query without using an index. We achieve numbers
similar to this analytical expectation.

When using standard indexing approaches, only for the queries with lower selectivies, the
number of disk accesses is reduced. For the times in the middle of the data set, all tuples return
in the query. However, with double indexing, we could reduce considerably the number of disk
accesses also for the non-selective queries, given the fact that the selectivity inside the complex
object is high, which means that the size of the returned object is considerably smaller than
the original one.

Table 3: Performance of the temporal queries for the U1lin data set.

Selectivity (# of tuples returned) 1 13 13 13 1
Disk accesses

u1lin 173 173 167 168 180
u1lin TripL dT eObj iStd 13 174 168 169 14
u1lin TripL dT eUnt iStd 19 179 175 187 20
u1lin TripL dT eUnt iDbl 7 19 21 33 7

For the TrainsL data set we have a higher selectivity even for the query time instants in the
middle of the data set. In this case, even the traditional indexing approach reduces considerably
the number of disk accesses. With the double indexing approach we could reduce the number
of disk access by a factor close to 2.
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Table 4: Performance of the temporal queries for the TrainsL data set.

Selectivity (# of tuples returned) 100 2,250 2,400 2,400 50
Disk accesses

trainsl 106,787 118,232 131,333 144,286 155,978
trainsl TripL dT eObj iStd 108 4,237 4,646 4,593 154
trainsl TripL dT eUnt iStd 110 4,246 4,644 4,598 156
trainsl TripL dT eUnt iDbl 110 2,412 2,568 2,566 57

4.2 Spatial queries

For spatial queries we used the at operator receiving a moving point and a point p as argument.
We performed the following query with different values of p, which correspond to some positions
at the five values of i chosen in the last sub-section.

select val(trip at p) as pos
from trains

where trip passes p;

As done before, we added the passes operator in the where clause, since it is the corre-
sponding predicate for the at operator.

Tables 5 and 6 present the results of the spatial query for the various approaches in terms
of number of disk accesses for the U1lin and TrainsL data sets, respectively.

Table 5: Performance of the spatial queries for the U1lin data set.

Selectivity (# of tuples returned) 13 13 13 13 13
Disk accesses

u1lin 110,466 110,466 110,466 110,466 110,466
u1lin TripL dS eObj iStd 110,467 110,467 110,467 110,467 110,467
u1lin TripL dS eUnt iStd 111,803 111,803 114,281 111,803 111,803
u1lin TripL dS eUnt iDbl 19,752 19,752 35,251 19,752 19,752

Table 6: Performance of the spatial queries for the TrainsL data set.

Selectivity (# of tuples returned) 505 290 290 290 400
Disk accesses

trainsl 203,192 203,192 203,192 203,192 203,192
trainsl TripL dS eObj iStd 4,682 3,176 3,176 3,176 2,008
trainsl TripL dS eUnt iStd 2,073 1,171 1,171 1,171 2,008
trainsl TripL dS eUnt iDbl 685 312 312 310 428

For the U1lin data set, all queries are non-selective and standard indexing techniques cannot
improve the performance of the queries, just adding extra overhead in the query processing.
This non-selectivity occurs because all the trains pass through the Mehringdamm Station lots
of times during their journeys. The double index approach could reduce the number of disk
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accesses by a factor of 5, because only a portion of the movement must be read from disk.
For the TrainsL data set, the query is selective and the index approaches give a good

improvement. But even in these cases, the double indexing is still perform at least 3 or 4 times
better.

4.3 Spatio-temporal queries

For spatio-temporal queries we combine a spatial and a temporal predicate. Internally, a spatio-
temporal index is used under such combination. We performed the following query with different
values of p and i, corresponding to the ones from the two last sub-sections.

select val(trip atinstant i) as pos
from trains

where (val(trip atinstant i) = p)

Tables 7 and 8 present the results of the spatio-temporal query for the various approaches
in terms of number of disk accesses for the U1lin and TrainsL data sets, respectively.

Table 7: Performance of the spatio-temporal queries for the U1lin data set.

Selectivity (# of tuples returned) 1 13 13 13 1
Disk accesses

u1lin 173 185 205 181 181
u1lin TripL dST eObj iStd 13 187 206 182 15
u1lin TripL dST eUnt iStd 19 198 146 114 21
u1lin TripL dST eUnt iDbl 9 26 112 20 9

For these queries performed in the U1lin data set, their selectivity in terms of number of
tuples returned is the same as for the temporal queries and their selectivity in terms of the size
of the moving objects’ trajectories is similar. Therefore, these results are quite similar to the
ones achieved for the temporal queries.

Table 8: Performance of the spatio-temporal queries for the TrainsL data set.

Selectivity (# of tuples returned) 1 10 12 12 2
Disk accesses

trainsl 106885 122051 135199 148258 156076
trainsl TripL dST eObj iStd 9 157 162 177 13
trainsl TripL dST eUnt iStd 9 11 11 12 13
trainsl TripL dST eUnt iDbl 9 9 9 9 9

Given the high selectivity of these queries in the TrainsL data set, the standard index
approaches are enough, reducing considerably the number of disk accesses. However, the double
indexing approach still gives an improvement in performance of 20% in some cases.

It is important to note that the double indexing approach was never worse than the standard
indexing approaches.
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5 Conclusions

In this paper, we aimed to show the need for the multiple entry and the double indexing
approaches. The operators in Secondo that allow one to create and query such indexes are
presented. Following the presentation of the operators, examples on how to use them are also
provided. Finally, an experimental evaluation of the proposed approaches is done in order to
show their improvements in terms of efficiency with some spatial, temporal, and spatio-temporal
queries. The double indexing approach showed the best overall performance in this comparison.
Moreover, in our experiments the double indexing approach was never worse than any of the
other ones.

As future work, we plan to provide optimization rules that take into consideration not only
the selectivity in terms of the number of tuples, but also the selectivity in terms of the tuple
size. These rules would enable the optimizer to better decide when to use the multiple entry
and the double indexes present in the database.
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