
Indexing the Trajectories of Moving Objects in Networks
(Extended Abstract)

Victor Teixeira de Almeida Ralf Hartmut Güting
Praktische Informatik IV

Fernuniversität Hagen, D-58084 Hagen, Germany
{victor.almeida, rhg}@fernuni-hagen.de

Abstract

The management of moving objects has been inten-
sively studied in recent years. A wide and increasing
range of database applications has to deal with spatial ob-
jects whose position changes continuously over time. The
main interest of these applications is to efficiently store
and query the positions of these objects. To achieve this
goal, index structures are required. Most of the propos-
als of index structures for moving objects deal with un-
constrained 2-dimensional movement. The constrained
movement is a special and a very important case of object
movement. In this paper we propose a new index struc-
ture for moving objects in networks, the MON-Tree. We
tested our proposal in an experimental evaluation with
generated data sets. TheMON-Tree showed good scalabil-
ity when increasing the number of objects and time units
in the index structure, and the query window and time in-
terval in querying.

1. Introduction

The management of moving objects has been inten-
sively studied in recent years. A wide and increasing
range of database applications has to deal with spa-
tial objects whose position changes over time, such as
cars, trains, air planes, and many more examples. The
main interest of these applications is to store and effi-
ciently query the positions of continuously moving ob-
jects.

Indexing techniques have been used since the advent
of relational database management systems with suc-
cess. Indexing is even more important when the data
is more complex and, for spatial databases systems,
due to high performance requirements, access meth-
ods should be used on every relation for supporting
queries efficiently. Following these ideas, for moving ob-
jects databases, which is a spatio-temporal application,

and consequently more complex, the need of good in-
dexing techniques is even more important.

There is a large number of proposals in the litera-
ture to index the trajectories of moving objects, e.g.,
[3, 4, 8, 11–14]. These works assume free movement of
the objects in the 2-dimensional space. Sometimes, the
movement of the objects is constrained to networks,
e.g. cars and trains. The indexing approaches can take
advantage of this knowledge. Recently, two index struc-
tures for indexing the trajectories of moving objects in
networks have been proposed in [5, 9]. Both use the
same idea of converting a 3-dimensional problem into
two sub-problems with lower dimensions. The main dis-
advantage of these approaches is the model of network
used, where each edge in the network can represent only
a single line segment. This model leads to a high num-
ber of entries and lots of updates in the index struc-
ture, because distinct entries are needed for every line
segment the object traverses.

In this paper we propose a new index structure, the
Moving Objects in Networks Tree (MON-Tree) to ef-
ficiently store and retrieve the trajectories of objects
moving in networks. We use two different network mod-
els that can be indexed by the MON-Tree. The first
model is edge oriented, i.e., the network is composed
by edges and nodes and each edge has an associated
polyline. The second one is route oriented, i.e., the net-
work is composed by routes and a set of junctions be-
tween these routes. We test our proposal in an exper-
imental evaluation with generated data sets using as
underlying networks the roads and railroads of Ger-
many.

The structure of this paper is as follows: Section 3
proposes the MON-Tree index structure and the insert
and search algorithms. Section 4 experimentally eval-
uates our proposed index structure, and finally, Sec-
tion 5 concludes the paper. A full version of this paper
can be found in [1].



2. The Network Models

In this section we describe in more detail the two
different network models that can be indexed by the
MON-Tree.

In the first model, a network is a graph G = (N,E)
where N is a set of nodes and E = N × N is a
set of edges. A node n ∈ N has an associated point
pn = (x, y) in the 2-dimensional space and an edge
e ∈ E connects two nodes n1e and n2e and has an
associated polyline le = p1, . . . , pk, where pi are 2-
dimensional points, 1 ≤ i ≤ k, k is the size of the
edge, p1 = pn1 , and pk = pn2 . A position epos inside
an edge e is represented by a real number between 0
and 1, where 0 means that the position lies on the node
n1e and 1 means that the position lies on the node n2e

of the edge. The domain of a moving object position in-
side a graph G is D(G) = E×pos. The time is given by
a time domain T isomorphic to real numbers. A mov-
ing object then, is a partial function f : T → D(G). As
an example of the usage of this model, we can cite [10].

This first model is simple and straightforward, but
not the best one to represent transportation networks.
In [6] we extended the framework in [7] to handle net-
work constrained movement, where a route oriented
model is used. In this model, the network is repre-
sented in terms of routes and junctions between the
routes, i.e., a network G′ = (R, J), where R is a set
of routes and J is a set of junctions. A route r ∈ R
has an associated polyline lr = p1, . . . , pk, where pi are
2-dimensional points, 1 ≤ i ≤ k, and k is the size of the
route. A position rpos inside a route r is represented by
a real number between 0 and 1, where 0 means that the
position lies on the point p1 and 1 means that the posi-
tion lies on the point pk of the route. A junction j ∈ J is
represented by two routes r1 and r2 and two route posi-
tions rposr1 and rposr2 . The domain of a moving object
position inside a graph G′ is D′(G′) = R × rpos. The
time domain T is the same and then, a moving object in
this second model is a partial function f : T → D′(G′).

A detailed discussion about why using the route ori-
ented model is given in [6], but the most practical rea-
son to use the route oriented model instead of the edge
oriented one, taking indexing techniques into consider-
ation, is that the representation of a moving object be-
comes much smaller in this way.

3. The MON-Tree

In this section we propose a new index structure
to efficiently store and retrieve past states of objects
moving in networks, the MON-Tree. The Section 3.1
presents the index structure, and the insertion and

search algorithms are presented in Section 3.2 and 3.3,
respectively.

3.1. Index Structure

The index structure proposed in this paper assumes
that objects move along polylines, which can belong
to edges, for the first network model, or to routes, for
the second network model. The index structure is com-
posed by a 2D R-Tree (the top R-Tree) indexing poly-
line bounding boxes and a set of 2D R-Trees (the bot-
tom R-Trees) indexing objects’ movements along the
polylines.

We also use a hash structure in the top level contain-
ing entries of the form 〈polyid, bottreept〉, where polyid
is the polyline identification and bottreept is a pointer
to the corresponding bottom R-Tree. The hash struc-
ture is organized by polyid.

Hence, we have two top level index structures: an
R-Tree and a hash structure; pointing to bottom level
R-Trees. The need for these two top level index struc-
tures is as follows: on the one hand, the insertion al-
gorithm of moving objects takes a polyline identifica-
tion as an argument, and then uses the top level hash
structure to find the bottom level R-Tree into which
the movement should be inserted. On the other hand,
the search algorithm takes a spatio-temporal window
as an argument and starts the search on the top R-Tree,
which contains the polylines’ bounding boxes.

Figure 1. Example of the MON-Tree index struc-
ture.

An example of the MON-Tree index structure can
be seen in Figure 1. In the top R-Tree, the polylines
are indexed using a MBB approximation. In this way,
the leaves of this tree contain the information 〈mbb,
polypt, treept〉, where mbb is the MBB of the polyline,
polypt points to the real representation of the polyline,
and treept points to the corresponding bottom R-Tree
of that polyline. Internal nodes have the following in-
formation 〈mbb, childpt〉, where mbb is the MBB that



contains all MBBs of the entries in the child node, and
childpt is a pointer to the child node.

The bottom R-Tree indexes the movement of the ob-
jects inside a polyline. The movement is represented by
the position interval (p1, p2) and a time interval (t1, t2),
where 0 ≤ p1, p2 ≤ 1. These two values p1 and p2 store
the relative position of the objects inside the polyline
at times t1 and t2 respectively.

3.2. Insertion

In this index structure we allow two different kinds
of insertion: polyline insertion and movement insertion.
A polyline insertion is needed to construct the basis
network. The moving object insertion is necessary ev-
ery time an object is created or it changes its motion
vector, i.e., its speed and/or direction. It is also neces-
sary to perform a moving object insertion every time
an object changes from one polyline to another.

Polyline Insertion. The algorithm for polyline in-
sertion is very simple: just insert the polyline identifi-
cation with a null pointer in the hash structure. The
insertion of the polyline in the top R-Tree is postponed
to the insertion of the first moving object traversing it.
The reason for this approach is to avoid having poly-
lines without moving objects in the top R-Tree, while
they do not participate in queries. In this way, we keep
the top R-Tree as small as possible.

Movement Insertion. The movement insertion
algorithm takes as arguments the moving object iden-
tification moid, the polyline identification polyid, the
position interval p = (p1, p2) where the object moved
along the polyline, and the corresponding movement
time interval t = (t1, t2). The algorithm starts looking
in the top hash structure to find the associated poly-
line, i.e., the polyline which has identification number
equal to polyid. If the polyline does not have an asso-
ciated bottom R-Tree yet, then a new one is created
and the polyline’s MBB is inserted on the top R-Tree.
The pointer to this newly created bottom R-Tree is up-
dated in the top hash structure. Now, given the associ-
ated bottom R-Tree, the rectangle (p1, p2, t1, t2) is in-
serted into it using the insert algorithm of the R-Tree.

3.3. Search

Given a spatio-temporal query window w = (x1, x2,
y1, y2, t1, t2), the query of the form: “find all objects
that have lied within the area r = (x1, x2, y1, y2), dur-
ing the time interval t = (t1, t2)” are expected to be
the most common ones addressed by spatio-temporal
database management system users. This query is com-
monly called range query in the literature. A variant of

this query is to find only the pieces of the objects’ move-
ments that intersect the query window w. We call this
a window query. The main functionality of the MON-
Tree index is to answer these two kinds of query.

For the window query, the algorithm receives a
spatio-temporal query window w and proceeds in three
steps. In the first step, a search in the top R-Tree is per-
formed to find the polylines’ MBBs that intersect the
query spatial window r. Then, in the second step, the
intervals where the polyline intersects the spatial query
window r are found using the real polyline represen-
tation. It is important to note that this procedure is
done in main memory and the result is a set of win-
dows w′ = {(p11, p12, t1, t2), . . ., (pn1, pn2, t1, t2)},
where n is the set size, n ≥ 1, and the interval (t1,
t2) is the query time interval t. Moreover, the windows
are disjoint and ordered, i.e., pi1 ≤ pi2 ∧ pi2 < p(i+1)1,
1 ≤ i ≤ n − 1. An example of the result of this proce-
dure can be seen in Figure 2.

Figure 2. Example of the interval set determina-
tion in the search algorithm.

Given this set of windows w′, in the third step, the
bottom R-Trees are searched using a modified algo-
rithm for searching a set of windows, instead of only
one. The set of query windows w′ is passed as an argu-
ment to the search algorithm and the R-Tree search al-
gorithm is modified to handle multiple query windows
(see [1] for details).

For the range query processing, we need an addi-
tional step after the third step of the window query to
remove duplicates and return only the objects’ identi-
fication. This step can be done in memory, i.e., the ob-
jects’ identifications found in the third step of the win-
dow query can be stored in a main memory structure
(an array for example) and after its completion, a du-
plicate removal is done.

4. Experimental Evaluation

In order to examine the performance of our pro-
posed index structure, the MON-Tree, we did an ex-
perimental evaluation. We implemented the FNR-Tree



and compared to our results. In all our experiments, we
used the network-based moving objects generator pro-
posed in [2]. We used two networks, the roads and the
railroads of Germany downloaded from the Geo Com-
munity web site1.

In order to show the good scalability of the pro-
posed index structure, we varied the number of ob-
jects, the number of time units, and the disk page size
in the data sets and index construction. We also var-
ied the size of the query window, the size of the query
time interval, and the cache size in query processing.
The complete set of experiments can be found in [1].
The MON-Tree clearly outperformed the FNR-Tree in
all tests, and the MON-Tree indexing the route ori-
ented model showed the best results.

Unfortunately, we slightly misunderstood the struc-
ture of the FNR-Tree in our experimental evaluation
in [1], which was recently pointed out to us by its au-
thors. Preliminary experiments showed that the struc-
ture we tested was somewhat less efficient than the real
FNR-Tree described in [5], but that the MON-Tree still
has a considerably better performance than the real
FNR-Tree. We plan to redo all the experiments in the
near future and to revise our paper [1] accordingly.

5. Conclusions

In this paper we proposed a new index structure
for moving objects on networks, the MON-Tree. The
MON-Tree stores the complete trajectories of the ob-
jects moving in networks. There are two network mod-
els that can be indexed by the MON-Tree: an edge ori-
ented model and a route oriented one. The MON-Tree
is capable of answering two kinds of query: the range
query and the window query, both on past states of
the data. We have experimentally evaluated our pro-
posed index structure with generated data sets. The
MON-Tree showed good scalability and outperformed
the concurrent in all our tests.

Acknowledgments

This work was partially supported by a grant Gu
293/8-1 from the Deutsche Forschungsgemeinschaft
(DFG), project “Datenbanken für bewegte Objecte”
(Databases for Moving Objects). The authors would
like to thank Prof. Dr. Thomas Brinkhoff for provid-
ing the network-based data generator and especially for
providing some direct support.

1 http://data.geocomm.com/catalog/GM/group103.html

References

[1] V. T. Almeida and R. H. Güting. Indexing the tra-
jectories of moving objects in networks. Technical
Report 309, Fernuniversität Hagen, Fachbereich Infor-
matik, 2004.

[2] T.Brinkhoff. Aframework forgeneratingnetwork-based
moving objects. GeoInformatica, 6(2):153–180, 2002.

[3] H.D.Chon, D. Agrawal, andA.E.Abbadi. Using space-
time grid for efficient management of moving objects. In
2ndACMIntl.Workshop onDataEngineering forWire-
less and Mobile Access (MobiDE), pages 59–65, 2001.

[4] H. D. Chon, D. Agrawal, and A. E. Abbadi. Query pro-
cessing for moving objects with space-time grid storage
model. In Proc. of the 3rd Intl. Conf. on Mobile Data
Management (MDM), pages 121–, 2002.

[5] E. Frentzos. Indexing objects moving on fixed networks.
In Proc. of the 8th Intl. Symp. on Spatial and Temporal
Databases (SSTD), pages 289–305, 2003.

[6] R. H. Güting, V. T. Almeida, and Z. Ding. Modeling
and querying moving objects in networks. Technical
Report 308, Fernuniversität Hagen, Fachbereich Infor-
matik, 2004.

[7] R. H. Güting, M. H. Böhlen, M. Erwig, C. S. Jensen,
N. A. Lorentzos, M. Schneider, and M. Vazirgiannis. A
foundation for representing and querying moving ob-
jects. ACMTransactions onDatabase Systems (TODS),
25(1):1–42, 2000.

[8] M. Hadjieleftheriou, G. Kollios, V. J. Tsotras, and
G. Gunopoulos. Efficient indexing of spatiotemporal
objects. In Proc. of the 8th Intl. Conf. on Extending
Database Technology (EDBT), pages 251–268, 2002.

[9] C. S. Jensen and D. Pfoser. Indexing of network con-
strained moving objects. In Proc. of the 11th Intl. Symp.
onAdvances inGeographic Information Systems (ACM-
GIS), 2003.

[10] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. Query
processing in spatial network databases. In Proc. of 29th
Intl. Conf. on Very Large Data Bases (VLDB), pages
802–813, 2003.

[11] D. Pfoser and C. S. Jensen. Capturing the uncertainty
of moving-object representations. In Proc. of Advances
in Spatial Databases, 6th Intl. Symp. (SSD), pages 111–
132, 1999.

[12] K. Portkaew, I. Lazaridis, and S. Mehrotra. Querying
mobile objects in spatio-temporal databases. In Proc. of
the 7th Intl. Symp. on Spatial and Temporal Databases
(SSTD), pages 59–78, 2001.

[13] Z. Song and N. Roussopoulos. Hashing moving objects.
In Proc. of the 2nd Intl. Conf. on Mobile Data Manage-
ment (MDM), pages 161–172, 2001.

[14] Z. Song and N. Roussopoulos. SEB-tree: An approach
to index continuouslymoving objects. In Proc. of the 4th
Intl. Conf. on Mobile Data Management (MDM), pages
340–344, 2003.


