
RefaFlex: Safer Refactorings for Reflective Java Programs

Andreas Thies
Lehrgebiet Programmiersysteme

Fernunversität in Hagen
Hagen, Germany

andreas.thies@fernuni-hagen.de

Eric Bodden
Secure Software Engineering Group

EC SPRIDE, Technische Universität Darmstadt
Darmstadt, Germany
bodden@acm.org

ABSTRACT
If programs access types and members through reflection,
refactoring tools cannot guarantee that refactorings on those
programs are behavior preserving. Refactoring approaches
for highly reflective languages like Smalltalk therefore check
behavior preservation using regression testing.

In this paper we propose RefaFlex, a novel and more de-
fensive approach towards the refactoring of reflective (Java)
programs. RefaFlex uses a dynamic program analysis to
log reflective calls during test runs and then uses this in-
formation to proactively prevent the programmer from exe-
cuting refactorings that could otherwise alter the program’s
behavior. This makes re-running test cases obsolete: when
a refactoring is permitted, tests passing originally are guar-
anteed to pass for the refactored program as well. In some
cases, we further re-write reflective calls, permitting refac-
torings that would otherwise have to be rejected.

We have implemented RefaFlex as an open source
Eclipse plugin and offer extensions for six Eclipse refactor-
ing tools addressing naming, typing, and accessibility issues.
Our evaluation with 21,524 refactoring runs on three open
source programs shows that our tool successfully prevents
1,358 non-behaviour-preserving refactorings which the plain
Eclipse refactorings would have incorrectly permitted.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Mainte-
nance, and Enhancement—Restructuring, reverse engineer-
ing, and reengineering ; D.3.4 [Programming Languages]:
Processors; F.3.2 [Logics and Meanings of Programs]:
Semantics of Programming Languages—Program analysis

General Terms
Languages, Reliability

Keywords
Refactoring, reflection, testing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’12, July 15–20, 2012, Minneapolis, MN, USA
Copyright 12 ACM 978-1-4503-1454-1/12/07 ...$15.00.

1. INTRODUCTION
A refactoring is a behavior-preserving program transfor-

mation, typically aimed at improving the program’s de-
sign [19, 26]. In this paper, we call a transformation a non-
refactoring if it is intended to preserve the program’s behav-
ior but actually does not. Deciding manually whether or not
a transformation is a refactoring is hard. Programmers need
to take into account many semantic constraints to assure
that the transformation, when being applied to a particular
program, is indeed behavior preserving [20, 31, 32, 36, 37].
Researchers have therefore developed a range of tools that
statically analyze a program’s code to proactively prevent
the programmer from applying non-refactorings.

Static code analysis must be conservative, however, if the
program accesses program elements through reflection. In
this paper, we consider refactoring reflective programs in
statically typed languages such as Java. Reflection is abun-
dant in Java programs. In previous work [13, 14], we inves-
tigated 22 diverse Java programs (drawn from the DaCapo
benchmark suite [12] and other sources), all of which turned
out to use reflection, ranging from as few as 12 reflective call
sites (avrora) to as many as 2809 (tradebeans). In this work
we show that reflective calls are a threat to the validity of
refactorings. Existing Java refactoring tools ignore reflec-
tion entirely, and thus falsely flag non-refactorings as valid
refactorings in many cases (1,358 cases out of 21,524 in our
benchmark set).

Our approach draws inspiration from the refactoring sup-
port for the highly reflective programming language Small-
talk [18]. In this setting, because Smalltalk programs typi-
cally use reflection extensively [15], tools like the Refactor-
ing Browser use regression testing to assure that refactorings
indeed do not alter the program’s behavior [28]. When the
refactoring browser discovers, at runtime, a reflective call to
a type or member that was previously moved or renamed by
a refactoring then this call is rerouted to the new target.

For the setting of Java we propose RefaFlex, a novel
approach tuned towards safer refactorings of reflective Java
programs. RefaFlex first instruments the program’s code
base such that the program logs calls to the Java reflec-
tion interface during test runs. RefaFlex uses the logged
data to generate constraints that express the conditions the
refactoring has to obey to preserve the program’s behavior.
RefaFlex then passes the generated constraints to a satis-
fiability solver. If the constraint system can be solved, the
code transformation is permitted. In this case, re-running
test cases becomes obsolete; all test cases passing before
transformation are guaranteed to still pass after the transfor-

mation was successfully applied. In case of an unsolved con-
straint system, there are unfulfilled conditions and the refac-
toring must not be performed. In some cases, RefaFlex
even goes one step further: it uses the constraint system
to enhance the refactoring on the fly, re-writing arguments
to reflective calls such that the refactoring becomes valid,
i.e., such that the enhanced refactoring will preserve the
program’s behavior although the original refactoring would
not have. Interestingly, though, we found and describe cases
where behavior preservation may actually be unintended. In
those cases, RefaFlex warns the programmer but allows
the behavior changes, as they probably reflect the program-
mer’s intention when invoking the refactoring.

Our implementation of RefaFlex seamlessly integrates
with the Eclipse IDE [4]. RefaFlex is implemented as
a pair of Eclipse plugins that extend six refactoring tools
for Eclipse to correctly handle class and member accesses
through Java’s reflection API. The tools address naming
as well as typing and accessibility issues in Java. Our
implementation builds on the RefaCola [35], a domain-
specific language that allows researchers to formally define
constraint generation rules. From those rules, a compiler
automatically generates a ready-to-use constraint generator
and solver to be used in refactoring tools such as ours.

Current approaches for refactoring tool implementations
can guarantee that refactorings will not break existing test
cases for programs that do not use reflection. With Refa-
Flex, programmers obtain the same guarantee also for re-
flective Java programs. This is because a refactoring, if be-
havior modification can be ruled out, is limited to changing a
program’s structure, and reflection is the only way in which
the program’s behavior can depend on this structure.

To validate our approach, we applied RefaFlex to three
publicly available open-source programs known to make
use of Java’s reflection API. By comparing the results of
our reflection-aware precondition checks with the results
of the original Eclipse refactoring tools we found that, in
our benchmark set, our extensions successfully prevent 1,358
transformations (out of 21,524 in total) that otherwise would
have changed program behavior due to reflection.

To summarize, this paper presents the following original
contributions:

• a translation of uses of Java’s reflection API to equiv-
alent RefaCola constraint generation rules,

• a mechanism preventing non-refactorings caused by re-
flective accesses to classes and members,

• a constraint-based resolution mechanism to make
refactorings valid that would otherwise have to be
rejected, and

• a full open-source implementation, along with an eval-
uation that shows that our approach successfully works
on real world programs.

Our implementation, all our RefaCola rules, along with
all raw experimental data, and explanations of interesting
corner cases are available online at: http://www.feu.de/
ps/prjs/rf/.

2. EXAMPLE
We next give a general overview of Java’s reflection facili-

ties. Then we explain in more detail the problems that may
arise when refactoring programs that use Java reflection.

1 public class C {
2 public String i = ... }
3
4 public class Reflection {
5 public void m() throws Exception {
6 Class c = Class.forName("C");
7 Field f = c.getField("i");
8 }
9 }

Listing 1: Example program

2.1 Java Reflection
Java allows programmers to query the structure of a

running program through a reflection API [24]. The en-
try points to the reflection API are objects of the class
java.lang.Class. The programmer can retrieve such a class
object, e.g., an object fooClass representing a class Foo,
either through a static method call Class.forName("Foo") or
through the class constant Foo.class.

The programmer can then query Foo’s members by us-
ing various methods of the class object. The API distin-
guishes between members declared in the class itself and
members that the class inherits from its super classes or
interfaces. For instance, calling fooClass.getMethods() re-
turns objects representing all public methods declared in
Foo itself or inherited from one of its super types. A call
to fooClass.getDeclaredMethods(), on the other hand, only
returns those methods that Foo itself declares. However, in
contrast to getMethods(), getDeclaredMethods() also returns
methods that are private, protected and package-visible.
Once a member, let’s say a method object barMethod rep-
resenting a method bar(), has been retrieved that way, the
programmer can interact with that member. For instance,
the programmer may call barMethod.invoke(o) to invoke the
method o.bar() on a receiver object o. For methods with pa-
rameters, the invoke method allows a variable number of ad-
ditional arguments that again may be obtained through re-
flection. In case bar() is private, a call to barMethod.invoke(o)

will typically fail with an IllegalAccessException. Depend-
ing on the security settings of the running virtual machine, a
programmer can obtain invocation rights to private methods
by calling barMethod.setAccessible(true). Besides method
accesses, the reflection API also supports constructor and
field accesses in analogous ways. For the latter, the following
section will give an example.

2.2 Refactoring Reflective Java Programs
As we explained above, programmers can use reflection to

query their program’s structure. A refactoring can change
this structure, hence invalidating those queries if no special
care is taken. For instance, consider the example program
in Listing 1. In this example, the class Reflection accesses
the field C.i through reflection.

One of the most common invariants for behavior preserv-
ing program transformations is to guarantee that name bind-
ings within the program do not change when the program is
executed [32] (up to some well-controlled changes that actu-
ally make up the intended transformation). Let us assume
that the programmer applies a refactoring renaming C.i to
C.j. In the program from Listing 1, if C.i were accessed
through a direct field reference in the source code, the refac-

1 public class Super {
2 public int j = ... }
3
4 public class C extends Super {
5 public int i = ... }
6
7 public class Reflection {
8 public void m() throws Exception {
9 Class c = Class.forName("C");

10 Field j = c.getField("j");
11 C o = (C) c.newInstance();
12 j.set(o, 42);
13 }
14 }

Listing 2: Example program with class hierarchy

toring would have one of two options to make sure that name
bindings do not break: (1) reject the refactoring, leaving the
source code untouched, or, more likely to be chosen, (2) re-
name any references to C.i such that they refer to C.j after
the refactoring has completed.

When programs access classes or members through reflec-
tion, such as in Listing 1, things are not quite as simple. By
just considering the source code of the given program it is
not straightforward to determine that it accesses C.i, since
those accesses happen through a combination of multiple
method calls (lines 6–7). In the example, the situation is
not hopeless, though, because the strings used to compute
the field reference C.i are present in the program’s code.
In such situations, static string analyses can be effective in
determining the target of a reflective method call [17, 23].
In many cases, however, the parameters used in calls to
the reflection API are not string constants but rather are
loaded from configuration files unknown to the refactoring
tool [14,29]. Without additional domain specific knowledge,
this makes it virtually impossible for a refactoring tool to
update those values automatically.

The current state of the art in refactoring Java programs
is that reflective calls are ignored. For the example in List-
ing 1 this means that the rename-field refactoring would
complete without warning, and simply ignore the reflective
field access. When the resulting program then executes, this
will cause a NoSuchFieldException to be thrown. Thus, such a
transformation, although allowed by current tools, is clearly
not behavior preserving.

2.2.1 Altered Bindings through Inheritance
In the above case, the transformed program at least fails

with an exception, making the programmer aware of the bro-
ken name binding at runtime. It is easy to construct exam-
ples, though, where the transformed program executes with-
out exception but nevertheless not as originally intended.

Consider the program in Listing 2. Here the program
accessed the field Super.j through a reflective access on
the type C. This look-up succeeds because the method
getField(..), just as getMethod(..), searches the receiver’s
complete type hierarchy until a field is found that matches
the arguments passed to the getField(..) call.

Next, consider the rename-field refactoring as before, re-
naming C.i to C.j. In the hierarchy resulting from applying
this refactoring, the same field look-up of C.j will now bind
to the renamed field C.j, not Super.j. Such an unintention-

ally modified binding may change the program’s behavior
and, because it goes without any runtime exception, may
well lead to subtle bugs.

2.2.2 Visibility Changes
Not only can altered name bindings break reflection code,

the same is true for refactorings that modify the visibility of
a class or member. The reflective field assignment in line 12
of Listing 2 succeeds (in the original, un-refactored program)
only because the field Super.j and its declaring type are pub-
lic. Next, consider a refactoring that removes Super’s public

modifier, e.g., in the context of an Extract Interface
refactoring. In the resulting program, the set-call at line 12
would fail with an IllegalAcccessException. In this case, the
problem would be minor, though. The programmer could
alter the program, adding a call j.setAccessible(true) just
before line 12. This will cause the reflection API to disregard
access restrictions on the field, allowing the field assignment
to succeed. (Whether or not setAccessible may be called
depends on the security settings of the running virtual ma-
chine. Such calls are allowed by default.)

Calls to setAccessible do not, however, alter the seman-
tics of method calls such as c.getField(). The getField

method will return only such fields that are declared as
public. While a call setAccessible(true) makes a field ac-
cessible, it does not change its modifier to public, and
hence the call to c.getField("j") in line 10 will fail with a
NoSuchFieldException if a refactoring would remove the public

modifier of j. In this case, the programmer could rectify the
problem by instead using Super.class.getDeclaredField("j").
Opposed to getField, the method getDeclaredField also re-
turns such fields not declared as public. However, unlike
getField, it does not search the type hierarchy.

2.3 Discussion
As the reader may have noticed, the possible effects of

refactorings on reflective Java programs are anything but
trivial to foresee. Many code transformations may need
to be disallowed because reflective calls would cause these
transformations to be not behavior preserving. In some
cases, however, one can design additional code transfor-
mations on the reflective code itself that, when combined
with the refactoring transformation, will cause the combined
transformation to preserve the program’s behavior after all.

In the remainder of this paper we propose a solution that
(1) records information about how a program uses reflec-
tion at runtime, (2) uses refactoring constraints based on
this information to prevent semantics-changing code trans-
formations, and in some cases (3) allows the rewriting of
code that uses the reflection API such that the rewritten
code will exhibit the same behavior as the original program
for the given test cases.

3. GENERATING REFLECTION USAGE
CONSTRAINTS

Traditional refactoring specifications usually consist of
two parts, a set of preconditions and a specification of the
mechanics, i.e., an algorithmic part describing the necessary
code transformations [19]. The preconditions are checked
before the refactoring, such that the mechanics may assume
the preconditions to guarantee valid output.

Constraint-based refactoring [37] is a way to implement
refactoring tools that softens the strict distinction of pre-

condition checking and mechanics by combining both in a
single constraint-solving pass in which the preconditions are
formulated as constraints connected with each other through
shared variables. The variables themselves represent the
changes the refactoring plans to perform. The variables’ do-
mains match the allowed changes the refactoring tool might
perform. Once the constraints are generated, a constraint
solver attempts to fulfill the constraints by assigning proper
values to the variables.

To give an example: From a constraint-based view, re-
naming a method limits the domain of possible names for
this method to what the user specified as the method’s new
name. The fact that the new name must be propagated
to all the method’s references is expressed in terms of con-
straints, forcing the references to be named as the method.
Hence, the constraint solver will try to rename the refer-
ences as well. Doing this, further constraints may apply,
e.g., that a reference must not be renamed if it will then
bind to another (overloading) method. Depending on the
existence of such overloading methods, the constraints are
either solvable or not. If a constraint system turns out to
be unsolvable, the corresponding refactoring must not be
performed. For a solvable constraint system, each solution
directly holds instructions for the necessary code transfor-
mations. Likewise, for constraint systems with multiple so-
lutions, there are multiple code transformations that solve
the corresponding refactoring problem. Usually, in this case
a user would prefer the refactoring resulting in the smallest
number of changes in total. (Finding an optimal refactoring
among a set of possible solutions is an interesting research
problem but out of the scope of this paper.)

We base our notation and implementation of RefaFlex
on this constrained-based approach for reasons of flexibility.
Reflection may affect almost all kinds of Java refactorings.
A constraint-based approach promises to be very generic
because its formulation is independent of a specific refactor-
ing problem. A concrete refactoring is encoded as a set of
constraint variables and our approach works as long as the
set of offered variables is expressive enough to encode the
refactoring’s parameters.

3.1 Constraint Variables
The usefulness of a constraint-based approach directly re-

lates to what kinds of constraint variables are considered.
We incorporate variables for all program properties typi-
cally modified by standard refactorings, such as identifiers,
accessibility modifiers, types, and locations. Figure 1 lists
all variables we consider, including their domains.

Given the different variables from Figure 1, it becomes
clear that even very small programs may be equipped
with a manifold set of constraint variables. Take for ex-
ample Listing 1, which induces more than a dozen of
variables. Both type declarations, that of class C and
class Reflection have associated variables identifier(C) and
identifier(Reflection). A Rename type refactoring can then
be formulated by changing the value of one of these variables.
Both types further have associated variables package(C) and
package(Reflection), representing their current enclosing
package (the default package in the given example) as well
as variables accessibility(C) and accessibility(Reflection)
representing their accessibility (which is currently public).
Changing one of their values will represent a Move type
refactoring or a change of accessibility, respectively.

Same as the type declarations, also the field and method
declarations of Listing 1 are equipped with variables rep-
resenting their names, parameter types, and host types to
represent various other refactorings such as Pull up field
or Change method signature.

For calls r ∈ R to the reflection API, Figure 1 defines four
additional constraint variables. For line 12 of Listing 2, for
example, package(j.set(o,42)) and type(j.set(o,42)) specify
the package and type in which the reflective call resides.
This permits not only refactorings modifying reflectively-
referenced declarations but also refactorings that move the
reflective code itself. The variable isAccessible(j.set(o,42))
denotes the state of the receiver j’s isAccessible flag at this
call site. At line 12 our dynamic analysis infers that this
value is false (by evaluating j.isAccessible()).

Finally, for the call at line 10 of Listing 2, the variable
stringArg(c.getField("j")) refers to the string argument
passed to the reflective method. Our dynamic analysis in-
fers the variable’s current value "j", no matter whether it is
evident from the source code or computed by an arbitrary
expression. In case a call to the reflection API is invoked
more than once during program execution (with potential
differing arguments) RefaFlex generates one variable for
each reflective invocation.

3.2 Constraint Rules
While constraint variables express the potential degrees of

freedom for a certain refactoring, the constraints are their
counterpart guarding over all necessary restrictions a refac-
toring has to obey. Constraints are generated from patterns,
the so called constraint generation rules.

Our constraint rules for correct handling of reflection are
inferred from the Java API specification [1]. Due to space
restrictions, this paper can only outline the set of constraint
rules required to refactor reflective code. For the interested
reader, we have made a full specification of all reflection
rules publicly available at our project website.

Our constraint rules use the following syntax:
program query

constraint
where program query represents a Datalog-like [16] pro-
gram query and the constraint shows a pattern according to
which constraints are generated for each variable assignment
matched by the query. Queries are evaluated based on both
dynamic log files and the program’s static structure.

3.2.1 Naming
When renaming declarations, one must consider calls to

the reflection API expecting or returning the declaration’s
name. As outlined above, renaming the field C.i in Listing 1
without considering the reflective access in line 7 results in
a NoSuchFieldException. The following constraint generation
rule avoids this problem:

holdsName(r, d)
stringArg(r) = identifier(d)

where holdsName(r, d) indicates that the reflective call r re-
ceives or returns the name of declaration d as a string. For
the reflective access in line 7 (Lst. 1) this rule produces:

stringArg(c.getField("i")) = identifier(C.i)

assuring that the passed string will match the declaration’s
name past the refactoring. Note, that a change of the right-
hand side of the constraint (a rename of C.i) not necessarily

Variables:

identifier(d) ∈ String the identifier of d
accessibility(a) ∈ Acc the access modifier of a
package(t) ∈ P the declaring package of t
type(m) ∈ T the declaring type of m
parameters(m) ∈ Tnm m’s nm formal parameter types
stringArg(r) ∈ String the string passed or received by r
isAccessible(r) ∈ boolean r’s isAccessible() value
package(r) ∈ P the package in which r resides
type(r) ∈ T the type in which r resides

with d ∈ D, t ∈ T , m ∈M , a ∈ A and r ∈ R

Domains:

P the set of declared packages
T the set of declared types
M the set of decl. methods,

fields and constructors
D = P ∪ T ∪M
A = T ∪M
Acc {private, package,

protected, public}
R the set of calls to the

reflection API

Figure 1: Constraint variables and their domains

leads to an unsolvable constraint system. As we will see in
Section 4, we can also offer program transformations rewrit-
ing reflective statements. This allows the constraint solver
to also solve constraints of this kind.

3.2.2 Scoping
When moving declarations during a refactoring, one must

take care not to move a referenced declaration outside the
scope through which it is referenced: the invocation of
Class.getField in line 10 of Listing 2 will only return the
field j as long as it is declared in C or one of its super types.
The following rule assures that j remains in scope:

Class#get*(r,m)
receiver(r) ≤T type(m)

Here, the query Class#get*(r,m) expresses that r is of type
Class.getField, getMethod or getConstructor, and r accesses
the member or constructor m. We obtain results for this
query by evaluating it against the collected runtime infor-
mation. The function receiver(r) evaluates to the class on
which the method was invoked and ≤T refers to the subtype
relationship.

3.2.3 Accessibility
Many methods within the Java reflection API take into

account accessibility restrictions. Reflection API calls such
as Class.getField only return members declared public. The
according rule can be formulated easily as follows.

Class#get*(r,m)
accessibility(m) = public

This rule demands that elements previously accessed
through Class.getField, getMethod or getConstructor (as evi-
dent by the collected runtime information) remain publicly
accessible. A more sophisticated rule is required for methods
such as Field.get/set and Method.invoke, the reflective coun-
terpart for field accesses and method invocations. These
accesses require either the setAccessible-flag of the refer-
enced declaration to be set to true or require both the
accessed declaration and it’s enclosing class to be accessible.
We can express this as:

accesses(r,m)
(accessibility(m) ≥A minAcc(type(r), type(m))

∧ accessibility(type(m)) ≥A minAcc(type(r), type(m)))
∨ isAccessible(r) = true

where we define a helper function minAcc(t1, t2) as

minAcc(t1, t2) =


private if t1 = t2
package else, if package(t1) = package(t2)

public else

to calculate whether a declaration in t2 is reflectively ac-
cessible from t1. Note how this function differs from its
equivalent for regular accesses [33]:

α(t1, t2) =


private if topleveltype(t1) = topleveltype(t2)

package else if package(t1) = package(t2)

protected else if ∃t ∈ T : type(t1) ≤N t <T type(t2)

public otherwise

While – for regular accesses – the accessibility of private
members depends on their outermost (top-level) type, the
reflection API only considers the innermost enclosing type.
Also, Java reflection does not at all consider protected ac-
cessibility or nested types (expressed by ≤N).

3.2.4 Hiding
Things become even more interesting when hiding comes

into play. In Figure 2, we showed an example in which
renaming a declaration would change a reflective binding
due to hiding. The following rule forbids such changes:

Class#get*(r,m),member(m′)
identifier(m) 6= identifier(m′) ∨ type(m) <T type(m′)
∨ type(m′) <T receiver(r) ∨ accessibility(m′) <A public

∨ parameters(m) 6= parameters(m′)

When accessing a member m, there must not be any other
competing member m′ in the type hierarchy of m with
matching name, matching parameter types, and sufficient
accessibility to which the access r could accidentally bind
past a refactoring.

Note how the declarative formulation of this constraint
rule not only allows to prevent accidental hiding but also
gives a constraint solver the opportunity to solve the con-
straint by changing other variable’s values. For the example
from Figure 2, a rename of C.i to j remains feasible by lower-
ing the accessibility of i. Likewise, when a member is moved
to a class where it henceforth will hide another declaration,
the constraints still allow renaming the moved declaration.
Upcoming ripple effects due to this renaming are handled
by other constraints as well. Wherever a reference points to
the renamed declaration, the name in the reference will be
updated thanks to the above naming rule.

Once the constraints for a specific refactoring problem
have been generated, RefaFlex passes them to a satisfia-
bility solver. The solver’s outcome is either the information
that the refactoring cannot be performed due to unsatisfi-
able preconditions/constraints, or it is a set of changed vari-

ables, each representing a single change in the program. In
many cases, a constraint system might have more than one
solution, which means that there are multiple code trans-
formations meeting all conditions. Often, this might be due
to a spare setAccessible(true) invocation (see below) where
a declaration is already accessible. We currently just use
the first solution found by the constraint solver, which is
typically the solution with the fewest changed variables.

4. REFACTORING CALLS TO THE
REFLECTION API ITSELF

As all variables belong to Java declarations, RefaFlex
can transform the code in a straightforward fashion. For ex-
ample, if a variable identifier(d) representing a declaration’s
name changes its value, RefaFlex will rename d to the
value of identifier(d). Similarly, a change of accessibility(d)
means that the accessibility of d must be set to the new
value of accessibility(d) by replacement, insertion or dele-
tion of access modifiers.

It is less obvious, however, how to perform necessary
changes to reflective API calls. Figure 1 defines four differ-
ent kinds of variables for a reflective invocation r. type(r)
and package(r) specify the location of r in terms of its en-
closing type and package. Both change their value if and
only if an enclosing declaration is moved, such that these
changes are performed implicitly along with the movement
of the parent container. Changes to isAccessible(r), how-
ever, referring to the setAccessible flag for a reflective in-
vocation, and stringArg(r), expressing a declaration’s name
used inside a reflective call, induce explicit code changes.

Given an invocation of Field#get(Object)

... <expression>.get(<parameter>);

for which the constraint solver requires the setAccessible flag
set to true (e.g., because the field referenced by <expression>

gets inaccessible due to a“move”refactoring) the setAccessible

flag can be set by modifying the code according to the fol-
lowing pattern:

Field <freshName> = <expression>;
<freshName>.setAccessible(true);
... <freshName>.get(<parameter>);

Here, <freshName> represents a fresh local variable intro-
duced to avoid side effects caused by multiple invocations of
<expression>. In rare cases, additional effort has to be taken.
For instance, we have to generate a helper method when the
reflective invocation resides inside a super-constructor invo-
cation, as this invocation must remain the first statement
inside the constructor’s body.

If the constraint solver assigns a new value to a variable
identifier(r), i.e., a name change in a reflective invocation r
(because the referenced declaration was renamed), we dis-
tinguish two cases, depending on whether the changed name
flowed into the reflection API call as a parameter or was re-
turned from a reflection API call. In the case of parameters,
to guarantee that an invocation of such a method still re-
turns the same declaration after renaming, the passed string
must be replaced. In general, however, that string might be
computed by an arbitrary expression, e.g., loading the string
from a file, which precludes us from replacing the string’s
value in the expression itself. Nevertheless, we can perform
changes to the code to make it pass the given test cases:

String <freshName> = <expression>;

// TODO: consider renaming of <old name>
// to <new name> in <expression>
if(<freshName>.equals("<old name>")

<freshName> = "<new name>";
... Class.forName(<freshName>)

That way, the refactoring fixes the problem for the tested
inputs. Through the included TODO comment, we remind
the programmer to propagate the renaming inside the
<expression> manually.

Intentionally granted modifications of behavior.
For reflective invocations returning a declaration’s name,
we decided not to provide automatic code transformations.
Even though the pattern above could have been adopted eas-
ily, we noticed that API calls such as Method#toGenericString()
or Field#getName() are commonly used for debugging, dis-
play and logging purposes. In this case, it makes little sense
to still refer to an old name past a refactoring. By ignoring
such calls to the reflection API, the resulting transformation
will not be strictly behavior preserving in the sense that it
will display or log the changed names after the transforma-
tion. However, it will be behavior preserving in that the
resulting program will remain to correctly display or log the
(changed) name of the same program element. Hence, in
this case RefaFlex just provides appropriate warnings.

5. IMPLEMENTATION
Section 3 and 4 described in abstract terms how to de-

termine and fulfill reflection constraints, i.e., the constraints
that a refactoring must obey to ensure a behavior-preserving
transformation in the presence of reflective calls. In this sec-
tion, we report on our concrete implementation, an exten-
sion to six refactoring tools for Java. Our prototype Refa-
Flex is integrated into the Eclipse IDE, as a pair of Eclipse
plugins, one RefaCola plugin taking care of the refactor-
ing support and one TamiFlex plugin for gathering infor-
mation about calls to Java’s reflection API. In combination,
both plugins seamlessly integrate the RefaFlex methodol-
ogy into the Eclipse IDE: When programmers test-run their
programs within the IDE, RefaFlex gathers runtime in-
formation about reflective calls. When programmers then
invoke a refactoring, RefaFlex causes the reflection rules
from Sections 3 and 4 to be instantiated, with queries be-
ing evaluated based on the gathered information. In result,
RefaFlex guarantees that the same test runs executed ini-
tially will succeed also past refactoring.

In previous work, the second author developed the Tami-
Flex tool chain [13, 14] to improve the static analysis of
Java programs that use reflection. TamiFlex consists of
three components, but for this work we only use one of
them: the Play-out Agent, a Java agent that instruments
Java’s reflection API at load time, such that any calls to this
API will be logged into a file on disk, in our case into the
Eclipse workspace. The instrumentation occurs within the
Java runtime library itself, which makes the instrumenta-
tion both lightweight and generic: TamiFlex logs all calls to
the reflection API, including such that are themselves issued
through reflection. The Eclipse plugin for TamiFlex allows
users to run their application in a special run mode (similar
to run/debug) that runs the application or JUnit test cases
with the Play-out Agent attached. By default, TamiFlex
writes log files in an accumulative manner: when the user
triggers multiple different test runs then the log is expanded

with the data of each run. In previous work we could show
that this process will usually result in stable log files if the
test cases cover all of the program’s features. In particular,
fine-grained path coverage is typically not required. At any
time, the plugin exposes a list of log files gathered for the
benefit of other plugins, such as the RefaCola plugin in
our case.

For the implementation of the reflection constraints we
made use of the RefaCola [35], a domain specific lan-
guage for the formal specification of constraint rules. The
RefaCola comes with a compiler that automatically trans-
lates refactoring specifications into a ready-to-use constraint
generator and solver, which can easily be used within
refactoring-tool implementations for various IDEs such as
Eclipse. Besides that, RefaCola offers solutions for most of
the technical problems of constraint-based refactoring, e.g.,
by providing techniques to only generate those constraints
actually necessary for the intended refactoring [35].

We implemented our refactoring engine as an extension
to traditional refactoring tools, which use a static analysis
for their precondition checks but are blind for reflective be-
havior. Clients are allowed to register their desired changes
to this extension using pairs of variables (as defined in Fig-
ure 1) and their desired values. The diversity of the of-
fered variables currently allows us to express most standard
refactorings that rename, move and hide declarations and
that change declared types. Based on this, we extended six
refactoring tools of the Java Development Tools (JDT) [5],
namely Rename Field, Rename Method, Rename Type,
Rename Package, Move Type, and Change Method
Signature.

This subset of six out of approximately 30 refactoring tools
in Eclipse is not chosen at random, but for technical reasons.
Eclipse currently does not offer extension points for other
than these six tools,1 making it impossible to participate in
the refactoring process through the official API. If such ex-
tension points were present, our approach could be applied
to a much broader range of refactorings moving or introduc-
ing program elements such as Pull up field or Extract
method, since RefaFlex’s constraint-based formulation is
independent of a specific refactoring problem.

Limitations. Our approach and implementation have
some limitations which we next discuss to allow for an unbi-
ased presentation, and to allow other researchers and prac-
titioners to build on top of our approach and implementa-
tion. We believe that those limitations are not nearly severe
enough to prevent RefaFlex from being useful in practice.

Even though we offer program transformations to fix ac-
cessibility and naming issues, there are cases in which the
constraint system will remain unsolved. This can happen
when a refactoring were to pull a declaration outside the
scope from which it is referenced. Also, RefaFlex can-
not offer appropriate program transformations if a reflective
access comes from a non-editable library. JUnit, for exam-
ple, collects test methods through reflection. Moving such
a method will cause RefaFlex to show an error message
pointing the user to the reflective access. The library call
within JUnit cannot be rewritten.

Our approach shares an inherent limitation with other
refactoring tools based on dynamic analysis, like the Small-
talk Refactoring Browser [28]: the approach can guarantee

1See Eclipse bugs 86438 and 89422

refactoring correctness only with respect to the reflective
method calls that were dynamically recorded. While a true
limitation, we do not believe that it prevents the approach
from being useful in practice. Many Java developers not only
develop but also test-run their applications in integrated de-
velopment environments (IDEs) like Eclipse, and our solu-
tion integrates with Eclipse, which allows those developers to
collect log files without any additional effort. Furthermore,
it is hard to conceive any general solution to the problem of
reflection. Reflective method calls can draw their parame-
ter values from any kind of program inputs. While current
IDEs do offer support for recognizing (and even refactoring)
a restricted set of identifiers for a restricted set of types of
configuration files, this approach also can never be a gen-
eral solution, as file types may generally vary greatly. Our
approach is a pragmatic, partial, best-effort solution that
means to complement existing tool support.

RefaFlex can replace existing refactoring support for
configuration files to some extent but not entirely. When
a configuration file defines a string value which then ends
up being used in a reflective method call, RefaFlex will
pick up that string value during runtime, and hence will suc-
cessfully prevent the call’s target from being renamed. On
the other hand, RefaFlex has no way to trace the string
back to its origin, and therefore cannot offer the program-
mer a refactoring that would rename the string at its point
of definition. As we showed in Section 4, RefaFlex will pro-
vide a hint to the user in such situations, in the form of a
TODO comment. RefaFlex truly excels when being combined
with other existing refactoring tools. Since RefaFlex inte-
grates with all the refactoring tools implemented in Eclipse,
programmers can easily make use of those synergies.

A further limitation of RefaFlex is that, as a generic ap-
proach, it is not aware of any program or framework specific
restrictions. In the case of JUnit, for example, it will be un-
problematic to rename a method from testFoo to testBar, as
JUnit treats all methods with the prefix test equally. Refa-
Flex, however, does not have this information, and hence
would prevent such a rename refactoring. This is safe but
not as flexible as one may wish.

One minor limitation of RefaFlex is that it only treats
situations in which a reflective method call succeeds before
refactoring, and would break after. The inverse is, at least
in theory, also imaginable. A program may contain an un-
successful reflective method call. RefaFlex currently does
not monitor such calls. A refactoring could, however, just by
chance, happen to rename a type or member in exactly such
a way that the reflective call successfully binds to this type
or member after the renaming has been applied. RefaFlex
could be extended to treat such cases as well, by monitor-
ing and treating successful and unsuccessful calls separately,
however we believe the general problem to be rather theo-
retic and hence did not implement this solution.

A final minor limitation is that those code transformations
of ours that introduce setAccessible(true) will only work for
programs that either have no security manager installed, or
in which the security manager allows accessibility rights to
be granted. This could be rectified by having RefaFlex
probe the security manager when log data is collected at
runtime.

6. EVALUATION
Our evaluation addresses the following research questions:

RQ1 (Necessity): What fraction of refactorings would al-
ter program behavior due to reflection if reflection were
ignored in the refactoring process?

RQ2 (Flexibility): What additional flexibility does one
obtain by allowing rewrites of reflective call sites?

RQ3 (Correctness): Does RefaFlex manage to treat all
the above cases correctly?

RQ4 (Efficiency): What additional runtime cost does the
approach impose on the development cycle?

The following subsections address those questions sepa-
rately. Section 6.5 discusses threats to the validity of our
experiments.

6.1 RQ1: Necessity
To indicate whether our approach gives solution to a rele-

vant problem, we conducted a series of experiments in which
we applied a total of 21,524 refactorings systematically to
three benchmark projects known to use reflection within a
total of more than 1,200 classes: Play, Joda and JCC. All
projects are publicly available [2, 7, 8].

We chose those subject programs because their source
code is easily accessible and because all projects come with
a decent set of test cases. As explained earlier, test cases
are necessary for our approach. For each project, we first
used the RefaFlex Eclipse plugins to execute the respec-
tive test case, yielding a log file filled with information on all
reflective accesses occurring on those test runs. The projects
and test cases are available on our website, along with our
implementation (in source) and detailed documentation on
how to produce our results.

Next, we attempted to apply the six refactorings Rename
Field, Rename Method, Rename Type, Rename Pack-
age, Move Type and Change Method Signature sys-
tematically to all program locations at which they could po-
tentially be applied. As input parameters for the Rename
refactorings we have chosen fresh names currently unused in
the given project, for Move Type we used arbitrary (but al-
ready existing) packages as destinations. Change Method
Signature was instructed to declare a method as private

if it was at least package accessible and to make it public

if it were declared private. Our implementation can handle
other changes to method signatures as well. Including those
additional degrees of freedom in our evaluation would have
allowed too many possible refactorings, though, to be able
to finish the evaluation in a reasonable time frame. More-
over, our handling of type correctness and name binding is
already validated through the other refactorings.

We repeated each refactoring attempt three times, using
different configurations. Table 1 summarizes the results of
our evaluation. The first column states the name of the
benchmark project used. Then, for each refactoring there
follow four columns that summarize our empirical results
for applying this refactoring to the respective project.

First, we give the total number of refactoring attempts
conducted in each of the three configurations, “total”. Since

we applied the refactorings at every place they could be ap-
plied, the “total” numbers for the various Rename refactor-
ings and Change Signature also express how many dec-
larations of these kinds reside in the benchmark programs.
The “total” numbers for Rename Type differ from those for
Move Type because Eclipse does support the renaming but
not the moving of inner nested types.

As stated above, we attempted each refactoring in three
configurations of the refactoring tools. In this section we fo-
cus on the first two configurations. First we applied the JDT
refactorings as they are. The column labeled E shows how
many refactorings Eclipse rejected execution due to precon-
ditions that were unfulfilled even without taking reflection
into account. In a second run, we activated RefaFlex with
the additional RefaFlex precondition checks to handle re-
flection but did not allow it to make changes to reflective
invocations. In column R, we show the number of refac-
torings for which the preconditions failed with RefaFlex’s
constraint checker enabled.

As our results show, for each refactoring there are a num-
ber of cases (calculated by subtracting column E from R,
1,358 cases in total), in which Eclipse would have falsely
allowed a code transformation to be executed, although it
would move or rename a type or member that is actively
referenced by a reflective method call. Test-running any of
those transformed programs results in an altered program
state immediately after the reflective access, a “weak” mu-
tation [25], potentially propagating through the whole pro-
gram up to the program’s output. We observed failing tests
in many such cases.

6.2 RQ2: Flexibility
The R+ columns in Table 1 show the results of applying

the refactoring with our third configuration, in which we un-
leashed our approach’s full power by also enabling rewrites
to reflective invocations by allowing the constraint solver to
change values of isAccessible and identifier variables of re-
flective invocations as described in Section 4.

As our results show, for Rename Field and Rename
Method there are a total of 178 cases in which reflective
statements were successfully rewritten to make a refactoring
behavior preserving, whereas the original refactoring would
have been forbidden by RefaFlex, as it would have changed
the program’s behavior. (Subtract column R+ from R.) In
the remaining cases, RefaFlex oftentimes failed to offer ad-
ditional changes, usually because the reflective invocations
originate from within binary libraries. We believe that this
reflects what can be expected in practice. Reflective code of-
ten comes in terms of libraries, e.g., in the context of test- or
dependency injections frameworks. The strength of Refa-
Flex then results from its error messages, notifying the pro-
grammer that, for instance, a testing framework might treat
a renamed method different past refactoring. We conclude
that there is a significant number of cases in which our re-
flection rewriting rules are useful.

6.3 RQ3: Correctness
In the previous sections we claimed that RefaFlex would

give programmers the guarantee that test cases executed be-
fore refactoring will still pass after refactoring, even if reflec-
tion is involved. To validate this claim, we first checked that
all program variants produced by applying RefaFlex still
compile, and for a limited set of variants (about 10% of the

Table 1: Quantitative evaluation for our six refactorings
Rename Field Rename Method Rename Type Rename Pkg Move Type Change Signature

Program total E R R+ total E R R+ total E R R+ total E R R+ total E R R+ total E R R+
Play [8] 1014 8 15 14 2875 457 485 482 521 0 11 11 43 0 9 9 280 0 11 11 2875 878 907 907
Joda [2] 58 0 0 0 236 28 109 107 67 0 2 2 6 0 1 1 36 0 2 2 236 75 163 163
JCC [7] 878 34 36 34 5661 1358 2193 2023 645 5 5 5 7 0 0 0 425 5 6 6 5661 2525 2776 2776
Σ 1950 42 51 48 8772 1843 2787 2612 1233 5 18 18 56 0 10 10 741 5 19 19 8772 3478 3846 3846

total = number of refactorings, E = rejected by Eclipse,
R = rejected by RefaFlex, R+ = rejected even under possible rewriting

total 21,524 cases) we also re-ran the test cases that came
with the respective project. We calculated that running the
test harness for all 21,524 cases would take more than 10
days, which was more time than we had available at our
disposal. While running the first few hundred refactorings
together with their tests indeed helped us to uncover some
incorrect or incomplete refactoring rules, eventually our ap-
proach produced no observable abnormalities any longer.
We therefore have reason to believe that our current pro-
totype indeed does provide the above guarantee.

6.4 RQ4: Efficiency
An approach like RefaFlex is only useful if it does not

unduly disrupt the software development process. As ex-
plained before, RefaFlex integrates with Eclipse in a seam-
less fashion, adding virtually no additional burden to the
programmer. In previous work, we found that the runtime
overhead during log-file recording is virtually not perceiv-
able [14], except for one pathological program run, trades-
oap, which executes 684,486 reflective calls in under one sec-
ond. But even in this case the overhead is about 160% and
thus not necessarily prohibitive. Nevertheless, our Eclipse
plugin gives the programmer the explicit choice to execute
a run configuration with or without RefaFlex attached.

We tried to measure the execution time of the refactor-
ing applications but due to many influencing factors in the
Eclipse IDE the variance was too high to obtain reliable re-
sults. Nevertheless, RefaFlex appears to add no noticeable
delay to Eclipse’s respective built-in refactorings.

To summarize, we have shown that our approach is neces-
sary, offers added flexibility by rewriting reflective call sites,
is correct to a reasonable degree, and is efficient enough to
allow seamless use in modern IDEs.

6.5 Threats to Validity
As any empirical study, the external validity of our exper-

iments is limited by the choice of study subjects. We have
chosen programs for which source code and test cases were
available, and of which we knew that they used reflection
to some degree. Especially given our previous work [14], we
believe those programs to be representative of a large class
of Java programs. Nevertheless, we cannot claim that Refa-
Flex would perform equally well when applied to subjects
outside our study.

The internal validity is threatened by the fact that we are
unable to reliably determine whether or not a refactoring
actually is behavior preserving. While we did run test cases,
those test cases are certainly incomplete, and do not cover all
aspects of behavior preservation. On the other hand, while
total correctness is our goal, we only claim that RefaFlex
guarantees the passing of test cases that also passed before

refactoring, which is indeed the case for all test cases we
executed.

7. RELATED WORK
We discuss research on refactoring for reflective programs,

research on reflection and static analysis, as well as state-of-
the-art refactoring support in current IDEs.

7.1 Refactoring for Reflective Programs
The only other approach to date that explicitly combines

refactoring and reflection is the Refactoring Browser [28] for
Smalltalk. As Smalltalk is an inherently reflective program-
ming language, virtually all Smalltalk programs use reflec-
tion [18]. The Refactoring Browser thus follows a test-driven
approach in which test cases are used to assure the pro-
gram’s correctness after refactoring. In some cases, Refac-
toring Browser even goes one step further: after renaming
a method, for example, if the Refactoring Browser detects a
call to the original method during the execution of the (ap-
parently insufficiently) refactored program, the tool rewrites
the source code causing that call at runtime [27].

While RefaFlex draws inspiration from Refactoring
Browser, it intentionally differs in several respects. First,
RefaFlex rewrites source code only at refactoring time, not
at runtime. We feel that it is an important invariant to pre-
serve for Java programmers that programs do not have their
source code rewritten during their own execution. Second,
RefaFlex is based on constraint solving, which provides an
automatic and holistic solution to the refactoring problem.
If a solution is possible, the constraint solver is guaranteed
to find it, and will find this solution automatically. This
is different from Refactoring Browser and other tools not
based on constraint solving, which must instead hard-code
a fixed set of rules directly in their implementation. Last
but not least, an important difference between RefaFlex
and Refactoring Browser is rooted in the reflection APIs
that they deal with. Both APIs differ substantially. The
rules derived for RefaFlex could not directly be applied
to Smalltalk, and would likely also require at least slight
adjustments for other languages similar to Java.

7.2 Static Analysis and Reflection
To enable static analysis in the presence of reflection,

Livshits, Whaley and Lam [23] present a static-analysis ap-
proach that infers additional information about reflective
call sites directly from program code. The analysis attempts
to use information stored in string constants to resolve reflec-
tive calls statically. For call sites for which this information
is insufficient, their approach allows programmers to provide
additional information through manual hints. Christensen
et al. present a general-purpose static string analysis [17].

As we observed in previous work [14], many reflective calls
are resolved not using string constants but using informa-
tion from the environment or configuration files, limiting the
utility of such approaches. Our findings are backed up by a
study by Sawin and Rountev, who show that in their bench-
mark set a static string analysis only succeeds in about 28%
of all reflective call sites [29]. Nevertheless, such static ap-
proaches could be used to generate a subset of RefaFlex’s
constraints even if no program runs were recorded.

As Sawin and Rountev further show, for any given system
one can statically resolve up to 74% of the same reflective
call sites by including information about the values of envi-
ronment variables in that system. As in our case, this infor-
mation is gathered through a dynamic analysis [29]. Those
results reconfirm our design decision to base RefaFlex on
dynamically gathered execution information. By recording
the parameters to all calls to the reflection API, RefaFlex’s
log files comprise information about relevant environment
variables as well.

Sawin and Rountev further propose a classifications of
(generally not conservative but often reasonable) assump-
tions that a call-graph construction algorithm can make
about dynamic features such as reflection [30]. As the
authors show, those assumptions can lead to significantly
smaller (and hence more precise) call graphs compared to a
fully conservative variant.

Hirzel et al. [21,22] present an online version of Andersen’s
points-to analysis [11] that executes alongside the program,
as an extension to the Jikes RVM (formerly Jalapeño) [10],
an open-source Java Research Virtual Machine. As an online
algorithm, the approach can exploit runtime information; for
instance, it can observe reflective calls as they execute.

7.3 Refactoring of Non-code Artifacts
Modern IDEs have realized the maintenance problems

caused by textual references to classes and their members
in non-code artifacts such as configuration files. Without
further support, programmers could easily break the link
between the code and those artifacts, just through simple
renaming operations. Therefore many modern IDEs have
extended their refactoring support to include non-code ar-
tifacts as well. The Plugin-Development Environment [9]
in Eclipse, for example, recognizes references to classes
that occur in plugin configuration files (plugin.xml and
MANIFEST.MF). When the programmer invokes a rename
refactoring on the class, the class is renamed consistently
both in the code and in those files. Eclipse furthermore
supports a general mechanism that identifies fully qualified
class names in any kind of text file. When invoking a refac-
toring renaming an identifier, such as Rename Class, the
user can choose whether to rename fully qualified references
in text files as well.

Eclipse [4], as well as the NetBeans IDE [3] have special
refactoring support for Spring beans configuration files. The
IDEs support renaming such references in those files along
with the referenced class/method definitions as part of a
refactoring. The Spring refactoring support contributes ref-
erences from beans configuration files to this view, hence
warning the user when attempting to delete a class that the
files still refer to. JBoss, the company behind the Hibernate
persistence framework [6] provides similar support in Eclipse
for Hibernate Console Configuration files.

As the presence of the specialized support for all those dif-
ferent file types shows, the problem of external references to
classes and members is a real problem in Java. RefaFlex
complements this support as follows. In cases where pro-
grammers use configuration files that an IDE is not aware
of, RefaFlex will successfully prevent renamings through
refactorings in cases where recorded test runs use informa-
tion from those files as parameters to reflective method calls.
This support is generic and does not need to be adapted to
the specific file format. On the other hand, RefaFlex lacks
support for renaming reflective references in non-code arti-
facts. In those situations the fact that RefaFlex seamlessly
integrates with existing refactoring support becomes impor-
tant; the user gets the best of both worlds.

Sridharan et al. propose a domain specific language for
specifying the (potentially reflective) behavior of web appli-
cation frameworks [34], with the goal to improve static taint
analysis for applications built on top of those frameworks.
While these specifications considerably enrich the scope of
static taint analysis, it is no option for the purpose of refac-
toring tools. While the approach works well with reusable
frameworks, in the general case one cannot expect to have
a behavior specification given for each project.

8. CONCLUSION
We have presented RefaFlex, a novel approach and tool

to providing safer refactorings for reflective Java programs.
RefaFlex uses runtime information from test runs to gen-
erate constraints and then considers these constraints when
computing a refactoring’s preconditions and transformation.
It thereby guarantees that the refactoring cannot break the
recorded test runs, even if they use Java’s reflection API.

Our paper also highlights some interesting corner cases in
which the semantics of Java’s reflection API deviates from
the semantics of the Java language. For example, acces-
sibility checks in the reflection API do not at all consider
the protected modifier. We show other interesting cases, in
which behavior preservation may be unintended.

Through an empirical evaluation, we showed that our
approach is correct, efficient, and can prevent transforma-
tions from being applied in all 1,358 out of 21,524 cases in
which Eclipse would have incorrectly conducted the non-
refactoring due to use of reflection. In 178 of those cases,
RefaFlex is able to use an extended set of refactoring rules
that do permit the refactoring after all, by refactoring the
reflective calls themselves.

A general solution to statically resolving reflective calls
does not exist. RefaFlex presents a partial but pragmatic
solution to the problem. Our concepts are not restricted to
Java. They could in principle be applied to other program-
ming languages as well, given that their reflection API has
a well-defined semantics.

9. ACKNOWLEDGEMENTS
We wish to thank Marcus Frenkel, Mira Mezini, Andreas

Sewe, Jan Sinschek, and Friedrich Steimann for their com-
ments, which greatly helped us improve an initial draft of
this paper. This work was supported by the German Fed-
eral Ministry of Education and Research (BMBF) within
EC SPRIDE, by the Hessian LOEWE excellence initiative
within CASED, and the Deutsche Forschungsgemeinschaft
(DFG) under grant STE 906/4-1.

10. REFERENCES

[1] Java Platform, Standard Edition 6 API Specification.
http://download.oracle.com/javase/6/docs/api/
java/lang/reflect/package-summary.html/.

[2] Joda Convert 1.1:
https://github.com/jodaorg/joda-convert.

[3] Netbeans IDE: http://www.netbeans.org/.

[4] The Eclipse IDE: http://www.eclipse.org/.

[5] The Eclipse Java Development Tools:
http://www.eclipse.org/jdt/.

[6] The Hibernate Persistance Framework:
http://www.hibernate.org/.

[7] The Jakarta Commons Collections 4.01: http:
//sourceforge.net/projects/collections/files/.

[8] The Play Framework 1.1.2:
http://www.playframework.org/code.

[9] The Plug-in Development Environment:
http://www.eclipse.org/pde/.

[10] B. Alpern, C. Attanasio, J. Barton, M. Burke,
P. Cheng, J.-D. Choi, A. Cocchi, S. Fink, D. Grove,
M. Hind, S. Hummel, D. Lieber, V. Litvinov,
M. Mergen, T. Ngo, V. Russell, J.and Sarkar,
M. Serrano, J. Shepherd, S. Smith, V. Sreedhar,
H. Srinivasan, and J. Whaley. The Jalapeño virtual
machine. IBM Systems Journal, 39(1):211–238, 2000.

[11] L. Andersen. Program Analysis and Specialization for
the C Programming Language. PhD thesis, University
of Copenhagen, 1994. DIKU report 94/19.

[12] S. Blackburn, R. Garner, C. Hoffmann, A. Khang,
K. McKinley, R. Bentzur, A. Diwan, D. Feinberg,
D. Frampton, S. Guyer, M. Hirzel, A. Hosking,
M. Jump, H. Lee, E. Moss, A. Phansalkar,
D. Stefanović, T. VanDrunen, D. von Dincklage, and
B. Wiedermann. The DaCapo benchmarks: Java
benchmarking development and analysis. In OOPSLA,
pages 169–190. ACM, 2006.

[13] E. Bodden, A. Sewe, J. Sinschek, and M. Mezini.
Taming reflection: Static analysis in the presence of
reflection and custom class loaders. Technical Report
TUD-CS-2010-0066, CASED, March 2010.

[14] E. Bodden, A. Sewe, J. Sinschek, H. Oueslati, and
M. Mezini. Taming reflection: Aiding static analysis in
the presence of reflection and custom class loaders. In
ICSE, pages 241–250, 2011.

[15] Oscar Callaú, Romain Robbes, Éric Tanter, and David
Röthlisberger. How developers use the dynamic
features of programming languages: the case of
smalltalk. In MSR, MSR ’11, pages 23–32, New York,
NY, USA, 2011. ACM.

[16] S. Ceri, G. Gottlob, and L. Tanca. What you always
wanted to know about datalog (and never dared to
ask). IEEE Transactions on Knowledge and Data
Engineering, 1:146–166, March 1989.

[17] A. Christensen, A. Møller, and M. Schwartzbach.
Precise analysis of string expressions. In Proc. 10th

International Static Analysis Symposium, SAS ’03,
volume 2694 of LNCS, pages 1–18. Springer, 2003.

[18] B. Foote and R. Johnson. Reflective facilities in
Smalltalk-80. In OOPSLA, OOPSLA ’89, pages
327–335, New York, NY, USA, 1989. ACM.

[19] M. Fowler. Refactoring: Improving the Design of
Existing Code. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1999.

[20] R. Fuhrer, F. Tip, J. Dolby, and M. Keller. Efficiently
refactoring Java applications to use generic libraries.
In ECOOP, pages 71–96, 2005.

[21] M. Hirzel, D. von Dincklage, A. Diwan, and M. Hind.
Fast online pointer analysis. TOPLAS, 29(2):11, 2007.

[22] M. Hirzel, A. Diwan, and M Hind. Pointer analysis in
the presence of dynamic class loading. In ECOOP,
pages 96–122, 2004.

[23] B. Livshits, J. Whaley, and M. Lam. Reflection
analysis for Java. In Proc. 3rd Asian Symposium on
Programming Languages and Systems, APLAS’05,
pages 139–160, 2005.

[24] G. McCluskey. Using Java Reflection.
http://java.sun.com/developer/technicalArticles/
ALT/Reflection/, 1998.

[25] A.J. Offutt and S.D. Lee. An empirical evaluation of
weak mutation. Software Engineering, IEEE
Transactions on, 20(5):337–344, may 1994.

[26] W. Opdyke. Refactoring object-oriented frameworks.
PhD thesis, Champaign, IL, USA, 1992. UMI Order
No. GAX93-05645.

[27] D. Roberts. Practical Analysis for Refactoring. PhD
thesis, University of Illinois at Urbana-Champaign,
1999.

[28] D. Roberts, J. Brant, and R. Johnson. A refactoring
tool for Smalltalk. Theory and Practice of Object
Systems, 3:253–263, October 1997.

[29] J. Sawin and A. Rountev. Improving static resolution
of dynamic class loading in Java using dynamically
gathered environment information. International
Journal of Automated Software Engineering,
16(2):357–381, June 2009.

[30] J. Sawin and A Rountev. Assumption hierarchy for a
CHA call graph construction algorithm. In SCAM’11,
pages 35–44, 2011.

[31] M. Schäfer, J. Dolby, M. Sridharan, E. Torlak, and
F. Tip. Correct refactoring of concurrent Java code. In
ECOOP, pages 225–249, 2010.

[32] M. Schäfer, T. Ekman, and O. de Moor. Sound and
extensible renaming for Java. In OOPSLA, OOPSLA
’08, pages 277–294, New York, NY, USA, 2008. ACM.

[33] M. Schäfer, A. Thies, F. Steimann, and F. Tip. A
comprehensive approach to naming and accessibility in
refactoring Java programs. Software Engineering,
IEEE Transactions on, 99(PrePrints), 2012.

[34] M. Sridharan, S. Artzi, M. Pistoia, S. Guarnieri,
O. Tripp, and R. Berg. F4F: Taint analysis of
framework-based web applications. In OOPSLA,
OOPSLA ’11, pages 1053–1068. ACM, 2011.

[35] F. Steimann, C. Kollee, and J. von Pilgrim. A
refactoring constraint language and its application to
Eiffel. In ECOOP, pages 255–280, 2011.

[36] F. Steimann and A. Thies. From public to private to
absent: Refactoring Java programs under constrained
accessibility. In ECOOP, pages 419–443, 2009.

[37] F. Tip, R. Fuhrer, A. Kieżun, M. Ernst, I. Balaban,
and B. De Sutter. Refactoring using type constraints.
TOPLAS, 33:9:1–9:47, May 2011.

