
‣ applied RefaCola to 21,524 refactorings on 3 open-source projects

RefaFlex - Safer Refactorings for
Reflective Java Programs

http://sse.ec-‐spride.de/

Andreas Thies (Fernuni Hagen) and Eric Bodden (TU Darmstadt)

Motivation

‣ Reflection is a mechanism that allows programs to load and invoke
program components through runtime-computed strings

‣ A refactoring is a program transformation that is meant to preserve the
program’s semantics

‣ Integrated development environments (IDEs) support many
refactorings such as renaming or moving classes or members

‣ Problem: if programs use reflection, all refactorings that current IDEs
support are unsound: they are unaware of accesses through reflection

package a;

class Super {
 public int j = 23;
}

public class C extends Super {
 public int i = password();
}

public class Reflection {
 public static void main(String[] args) throws Exception {
 Class<?> c = Class.forName("a.C");
 Field f = c.getField("j");
 Object myC = c.newInstance();
 System.out.println(f.get(myC));
 }
}

j

rename
field

program that accesses field C.j through the reflection API
initially, this access returns Super.j; renaming C.i to C.j causes C.j (and

thus the password) to be returned instead

RefaFlex from a User Perspective

‣ Through instrumentation / method wrappers, RefaFlex [TB12]
monitors which classes and members the application actually accesses
through reflection on a set of given test runs executed in the Eclipse IDE

‣ The results of the dynamic analysis are stored in a set of log files

‣ The user then invokes a refactoring in the Eclipse IDE

‣ RefaFlex detects if the application of the refactoring would rename or
move classes or members that the application previously accessed
through reflection on the recorded test runs

‣ RefaFlex warns the user that the refactoring may alter the program’s
behavior if such a situation is encountered

Awarded with SIGSOFT
Distinguished Paper

Award at ISSTA 2012

Constraint-Based Refactoring

‣ RefaFlex combines two existing tools: TamiFlex [BSS+11] (for
monitoring reflective calls) and RefaCola [SKP11], the Refactoring
Constraint Language

‣ RefaCola is a definition language for contraint-based refactorings

‣ Declarative rules written in Refacola express the programming
language semantics (here Java)

‣ Concrete refactoring tool then uses these rules as patterns to generate
constraints necessary to maintain the program's semantics

‣ In RefaFlex such constraints are also generated from runtime data
about calls to the reflection API

‣ Each solution to the constraint system is a valid refactoring

constraint generation rule stating that if the program accesses
a field of some class, then the refactoring must assure that

this field remains public

Empirical Evaluation

Future Work

‣ Non-functional properties such as security, performance and
maintainability are impacted by program changes

‣ Wish to extend RefaCola with constraints that capture such properties

‣ Result: users get informed about the impact of program changes with
respect to multiple dimensions

‣ Suggest users alternative but behaviorally equivalent program changes
that are optimal with respect to non-functional properties

[TB12] RefaFlex: Safer Refactorings for Reflective Java Programs (Andreas Thies, Eric Bodden), In
International Symposium on Software Testing and Analysis (ISSTA 2012), pages 1–14, 2012

[BSS+11] Taming Reflection: Aiding Static Analysis in the Presence of Reflection and Custom
Class Loaders (Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, Mira Mezini), In
International Conference on Software Engineering (ICSE 2011), pages 241–250, ACM, 2011.

[SKP11] A refactoring constraint language and its application to Eiffel (Friedrich Steimann,
Christian Kollee, and Jens von Pilgrim), In European Conference on Object-oriented Programming
(ECOOP 2011), pages 255-280, Springer, 2011.

[RBJ97] A refactoring tool for Smalltalk (Don Roberts, John Brant, and Ralph Johnson), In
Theory and Practice of Object Systems, 3:253–263, October 1997.

0

15

30

45

60

Rename
Field

(1950)

Rename
Type

(1233)

Rename
Package

(56)

Move Type

(741)

0

1000

2000

3000

4000

Rename
Method
(8772)

Change
Signature

(8772)

rejected
by Eclipse

… and
RefaFlex

… even under
possible rewriting

(Class#getField , class, field)

accessibility(field) = public

precondition from
runtime analysis

constraint generation
pattern

‣ Results: problem is real; RefaFlex helps solve the problem, should best
be used in combination with existing tools

User Interface

Test Run Execution

Offline Refactoring

monitor calls to the
reflection API using
method wrappers

check preconditions
and compute code
transformations

