
1

Model–Based Diagnosis for Open Systems
Fault Management

F. Steimann, P. Fr¨ohlich and W. Nejdl
Institut für Rechnergestützte Wissensverarbeitung
Universiẗat Hannover
Lange Laube 3, 30159 Hannover
fsteimann, froehlich, nejdlg@kbs.uni-hannover.de

The information model chosen by the ISO for the manage-
ment of open systems is object–oriented. We provide an ef-
fective mapping from the structural and behavioural speci-
fication of the managed objects of open systems to a com-
pact logical form suitable for model–based diagnosis. Based
thereon, we present an efficient algorithm that localizes faults
by repairing logical models invalidated through system ob-
servations and show that it computes all minimal diagnoses.

Keywords: Open Systems Interconnection; fault manage-
ment; fault localization; order-sorted logic; model-based di-
agnosis; predicate completion.

1. Introduction

Open systems are characterized by the possible in-
teraction of an unlimited number of different devices,
often made by different manufacturers, coming from
different technological generations, and operated by
different owners. Any of these devices can fail, and
without the use of standardized procedures and pro-
tocols, the detection, localization, and correction of
faults remains intractable. Fault management is there-
fore a prominent functional area of open systems inter-
connection (OSI) management ([8], [14]).

In theory, model-based diagnosis delivers on the re-
quirements of fault management, fault localization es-
pecially. Based solely on a logical description of sys-
tem behaviour and a set of logical sentences represent-
ing the topology and the observations made, it isolates
potentially faulty components by simulating the sys-
tem’s correct operation and resolving the discrepancy
with the observations by assuming the behaviour of se-
lected components as abnormal [22]. In practice, how-
ever, model-based diagnosis poses two nontrivial prob-
lems that hinder its widespread utilization:

– the creation of logical descriptions of systems that
are not themselves based on logic is, at least for
non-logicians, difficult [13], and

– simulating the logical descriptions is computa-
tionally expensive.

With the work presented in this article, we address
these problems

– by defining a conceptually clean and easy to adopt
notation for causal system descriptions that is
based on a syntax standardized in the context of
OSI management (Section 3),

– by specifying an effective mapping from these de-
scriptions to a compact logical form (Section 4),
and

– by adapting our proven model repair algorithm
DRUM-II to efficiently localize faults in an open
systems environment (Section 5).

2. An example

Typical representatives of open systems areGlobal
System for Mobile communication (GSM) manage-
ment networks. Hand sets, base stations, switching
equipment, etc. are made by different manufactur-
ers and operated by different service providers. Re-
sources such as transmission lines or satellite links are
utilized by different parties, and the management of
these resources requires a coordinated approach. The
standardization of all pertinent management activities
falls under the telecommunication management net-
work (TMN) standards, which are built upon the X.700
series [14, 17, 15, 16].

For illustrative purposes, let us consider the follow-
ing scenario. In a base station system (BSS), a sub-
unit of a GSM network consisting of a number of
base stations (BSs) linked to a base station controller
(BSC), all information is conveyed via microwave
links (MLs). The BSC collects all management infor-
mation from the connected BSs and passes them on to a
superordinate instance. For economical reasons, some

AI Communications 12 (1999) 5–17
ISSN 0921-7126 / $8.00 , IOS Press

2 F. Steimann et al. / Model–Based Diagnosis for Open Systems Fault Management

base stations are not directly linked to the base station
controller, but are chained using multi-drop connec-
tors. Therefore, when a microwave link fails, depend-
ing on the actual topology one or more base stations
may become unreachable.

To achieve higher availability of individual BSs, re-
dundant links may be implemented. A simple BSS in
which every BS but bs3 has two uplinks (links that lead
in the direction of the BSC) is shown in Figure 1. In
this BSS, there exist at least two alternative paths be-
tween every BS (but bs3) and the BSC.

bs1 bs2
ml2

bs3 bs4

bsc1

ml1

ml4

ml5 ml6
ml3

ml7

Figure 1: A sample base station system

A typical fault situation in such a BSS is detectable
when the BSC receives a signal from a BS at one or
more, but not at all of its ports at which the signal
would have been expected (that is, at which paths from
the BS end). In our example, such is the case if the
BSC receives a signal from, say, bs1 at the port of ml1
or ml4, but not at both. No indication of a fault is given
if there are no signals at the BSC, because a BS does
not have to send signals. On the other hand, signals at
all ports of the BSC do not prove the absence of a fault,
since redundancy may mask the failure of one or more
distant links connecting remote BSs.

The problem of identifying the potentially abnormal
links solely from the observations made at the BSC can
be quite tricky even for small topologies; it becomes
unwieldy in larger BSS with 20–30 BSs, because the
number of available paths grows combinatorially. An-
other aspect of the problem discouragingad hocsolu-
tions is that automatic reconfiguration techniques trig-
gered by fault detection may accept diagnosed links
as broken and activate alternative ones, dynamically
changing the network configuration.

3. The OSI management view

ISO norm 7498–4 requires that, for the management
of open systems, all relevant entities be modelled as
managed objects. “A managed object is the OSI man-

agement view of a resource that is subject to manage-
ment, such as a layer entity, a connection or an item
of physical communications equipment. Thus, a man-
aged object is the abstracted view of such a resource
that represents its properties as seen by (and for the
purposes of) management.” [14] The managed objects
of our example are the network elements (NEs) com-
prising the base stations, the microwave links and the
base station controller, and the signals that are for-
warded between them. The management information
describing these objects is specified according to stan-
dardized templates called managed object class (MOC)
definitions, where a MOC is defined as a named set of
managed objects sharing the same characteristics [17].

3.1. Managed object class definitions

In our example, the MOC definitions are the
following1:

ne MANAGED OBJECT CLASS
DERIVED FROM top;
CHARACTERIZED BY

neMBDPackage PACKAGE;
;
bs MANAGED OBJECT CLASS

DERIVED FROM ne;
CHARACTERIZED BY

bsMBDPackage PACKAGE;
;
ml MANAGED OBJECT CLASS

DERIVED FROM ne;
CHARACTERIZED BY

mlMBDPackage PACKAGE;
;
bsc MANAGED OBJECT CLASS

DERIVED FROM ne;
-- BSCs have no special characteristics

;
signal MANAGED OBJECT CLASS

DERIVED FROM top;
CHARACTERIZED BY

signalMBDPackage PACKAGE;
;

The DERIVED FROMclause establishes a multi-
ple hierarchy by specifying a subclass relation among
classes. The defined class inherits the characteristic of
all its direct and indirect superclasses.Top is prede-
fined and the highest class in the MOC hierarchy.

The CHARACTERIZED BYclause associates the
class with apackage, a logical grouping of character-

1We designed our MOC definitions to suit illustrative purposes.
They correspond roughly to the MOC definitions bsc, btsSiteMan-
ager, and lapDLink provided with the GSM standard 12.20 [7].2

F. Steimann et al. / Model–Based Diagnosis for Open Systems Fault Management 3

istics that is named for possible (re)use by other MOC
definitions. The package introducesattributesand a
specification ofbehaviour(plus a few other character-
istics which are of no concern for our purposes).

Attributes associate managed objects with values or
other objects. They correspond to the fields of a record
in common programming languages. The behaviour
clause of a package is to specify, among other things,
dependencies between values of particular attributes
([15] Sect. 5.1.2.4).

We use attributes to specify the relationships among
managed objects. This includes topological data, i.e.
the interconnection of the NEs, and the association of
NEs with signals. Following the OSI management in-
formation model, attributes may be single valued (the
default) or set–valued. Special, untyped attributes such
asactive serve as binary status indicators required
in the specification of behaviour. They accord to the
standard since an attribute value assertion is itself ei-
ther true or false ([15] Sect. 3.8.8)2.

neMBDPackage PACKAGE
ATTRIBUTES

-- the next NE in the direction of
-- the BSC
uplink PERMITTED VALUES ne,
-- the signal at the port associated
-- with the uplink
signalAtUpport PERMITTED VALUES

SET OF signal
-- the signal at the port in downward
-- direction
signalAtDownport PERMITTED VALUES

SET OF signal
BEHAVIOUR

nePropagationMBDBehaviour BEHAVIOUR;
;
bsMBDPackage PACKAGE

ATTRIBUTES
uplink PERMITTED VALUES SET OF ml;
-- a BS is exclusively connected to MLs
active;
-- flag indicating whether the bs has
-- sent a signal

BEHAVIOUR
bsPropagationMBDBehaviour BEHAVIOUR;

;
mlMBDPackage PACKAGE

2Deviating from the standard notation, we omit separate at-
tribute type definitions and specify the type of an attribute inline.
Here, the class label following thepermitted values key-
word takes the place of awith attribute syntax <ASN.1
type definfition> clause, which is to specify the attribute’s
value set. If we adhered to the standard, either a distinct ASN.1 type
would have to be specified for every MOC, or the permitted value
restrictions would have to be expressed as behaviour constraints,
which is a less obvious place for such definitions.

BEHAVIOUR
bsPropagationMBDBehaviour BEHAVIOUR;

;
signalMBDPackage PACKAGE

ATTRIBUTES
sender PERMITTED VALUES bs;

BEHAVIOUR
signalGenerationMBDBehaviour BEHAVIOUR;

;

3.2. Management information base

The management information necessary to operate
a BSS can now be specified in terms of MOC defini-
tions. Each attribute value is specified in the form of an
attribute value assertion. For example, the topological
information of the BSS depicted in Figure 1 would be
expressed as:

bsc1 : bsc []
bs1 : bs [uplink = ml1, ml5]
bs2 : bs [uplink = ml2, ml3]
bs3 : bs [uplink = ml4]
bs4 : bs [uplink = ml6, ml7]
ml1 : ml [uplink = bsc1]
ml2 : ml [uplink = bs1]
ml3 : ml [uplink = bs3]
ml4 : ml [uplink = bsc1]
ml5 : ml [uplink = bs3]
ml6 : ml [uplink = bs2]
ml7 : ml [uplink = bs3]

The collection of such management information
constitutes what is referred to as the management in-
formation base (MIB). However, the above listed en-
tries of a MIB are not complete: for example, all events
(reported through notifications) are recorded in a log,
and this log is also a part of the MIB. The difference
is that the former are static or invariant over the life-
time of the network configuration, while the latter are
inherently dynamic.

3.3. Specifying behaviour

Model-based diagnosis is based on a structural and
a functional or causal description of the system to be
diagnosed. While the structural aspects of the sys-
tem description are covered by the attribute type defi-
nitions and the MIB, the behavioural aspects are natu-
rally placed in the behaviour clause of a package def-
inition. Although the standards specify all dependen-
cies between attributes using natural language ([16]
Sect. 8.9.3.1), model-based diagnosis requires that be-
haviour be specified formally. Therefore, and to alle-

4 F. Steimann et al. / Model–Based Diagnosis for Open Systems Fault Management

viate the difficulty of formalization, we introduce in
the following an intuitive syntax whose relationship to
logical system descriptions will be detailed in the next
section.

We identify four distinct patterns of causal depen-
dency in our example.

1. If an NE is connected to another NE (via the up-
link attribute), any signal that is present at its up-
port should also be present at the connected NE’s
downport. Being a typical example of the type of
behaviour commonly referred to a propagation,
this is expressed by

nePropagationMBDBehaviour BEHAVIOUR
DEFINED AS

!$ signalAtUpport
PROPAGATES TO
uplink.signalAtDownport $!

;

The logical interpretation of the dot notation and
thePROPAGATES TOoperator is subject of the
next section. Note that, althoughnePropaga-
tionBehaviour is specified for the MOCne ,
it is inherited by the classesbs , ml andbsc .

2. Base stations always pass on signals, i.e., they
propagate signals from their downports to their
upports. This is conveniently expressed by

bsPropagationMBDBehaviour BEHAVIOUR
DEFINED AS

!$ signalAtDownport
PROPAGATES TO
signalAtUpport $!;;

;

3. Microwave links are to convey signals between
BSs and the BSC. However, MLs can break down
and in this case fail to propagate signals. Thus,
their behaviour is adequately described by

mlPropagationMBDBehaviour BEHAVIOUR
DEFINED AS

!$ NORMALLY signalAtDownport
PROPAGATES TO
signalAtUpport $!;;

;

NORMALLYis to indicate that the precondition
to signal propagation is that the ML is in normal
operating state.

4. If a base station is active, it emits a signal the
sender of which is the active BS itself. To avoid
existential quantification of the signal, we place
this behaviour as the signal’s and write

signalGenerationMBDBehaviour BEHAVIOUR
DEFINED AS

!$ sender.active
IMPLIES
sender.signalAtUpport = SELF $!;

;

meaning that a signal whose sender is active will
always be found at the sender’s upport.SELF is
an implicit variable known from object–oriented
programming, denoting the current object of the
class for which the behaviour is specified. Of
course, the usual logical connectives and, or etc.
as well as parentheses are also admissible in our
syntax.

Note that the behaviour of subclasses may be spe-
cialized under the premise that the redefinition does not
contradict the inherited behaviour ([15] Sect. 5.2.2.6).
While compliance with this requirement is difficult to
check for the verbal specifications of behaviour that are
commonplace in practice, using our formal notation it
translates to testing the satisfiability of the clauses ob-
tained from the new and inherited behaviour - a decid-
able problem within the given finite domains.

4. Transition to logic

So far, we have presented a framework for the cre-
ation of system descriptions that are intuitive as well
as compatible with widely accepted standards. To per-
form model–based diagnosis in our sample BSS, how-
ever, we have to map the given description to a logical
representation.

In model-based diagnosis [22] the device un-
der consideration is described by a logical system
description3, SD, denoted as a set of clauses, and a set
of objects, calledOBJ (in our case the NEs and the
signals). The predicateab is introduced to indicate the
operational status of each objectc 2 OBJ : :ab(c)
means that the object behaves as expected, whileab(c)
means that it functions abnormally. The models ofSD
correspond to the system’s possible states. They com-
prise normal (in which all objects are operational) and
abnormal (in which one or more objects do not behave
as desired) states. The observed behaviour is character-
ized by a set of literalsOBS, which reduces the num-

3To avoid confusion, we speak of a system description and not
of a (system) model. We reserve the term model for logical models
represented by sets of atoms.

F. Steimann et al. / Model–Based Diagnosis for Open Systems Fault Management 5

ber of possible states (models) by fixing the interpreta-
tion of the observed atoms.

The usual unisorted approach to model–based diag-
nosis does not immediately capture type hierarchies.
As the standard workaround of implementing inheri-
tance through implication results in intermediate repre-
sentations that are unnecessarily big, we resort to an in-
terlingua that is at the intersection of object-orientation
and predicate calculus:order-sorted logic.

4.1. Interlingua order–sorted logic

In order–sorted logic, the universe of discourse is
partitioned into a number of overlapping subsets,S,
calledsorts. The set inclusion relationship induces a
half-order�, called thesubsortrelationship, on the
sorts which is naturally interpreted as a taxonomic
polyhierarchy. The definition of order–sorted logic we
rely on in the sequel follows the ones found in [2] and
has been adapted to suit our needs.

A signature� is given byS;C; P , where

– S is a partially ordered set of sorts with greatest
elementtop,

– C = fci : sj jsj 2 Sg is a finite set of sorted con-
stants, and

– P = fpi : si;1 � :::� si;mi
jsij 2 Sg is a set of

predicates the places of which are also sorted.

Since our signature contains no function symbols,
our termst are either sorted constantsc : s or sorted
variablesx : s. Each term has the sort of its con-
stituent. From terms, formulae are constructed as in
unisorted predicate logic, with the additional require-
ment that every atomic formulap(t1 : s1; : : : ; tn : sn)
must bewell–sorted, i.e., p : s01 � : : : � s0n and
s1 � s01; : : : ; sn � s0n.

As a prerequisite for our expansion procedure dis-
cussed later, we have to enforce Herbrand interpreta-
tions, which are no restriction to our problem domain.
This is achieved by requiring

8x : top
_

sj2S

_

ci:sj2C

x = ci : sj

and
^

c:s2C

^

c0:s02Cnfc:sg

c 6= c0

the order–sorted variants of the domain closure as-
sumption (DCA) and the uniqueness of names assump-
tion (UNA). We refer to an order–sorted theory which
includes these axioms as an order–sorted fixed domain
theory, the order–sorted equivalent of fixed domain
theories as described in [20].

4.2. Translation scheme

Managed object classes map to sorts
A MOC is an abstraction of managed objects shar-

ing the same characteristics. Each managed object rep-
resents an entity of the real world. MOCs correspond
to subsorts of the universe, as do sorts; the mapping is
therefore one–to–one.

The MOC definitions from our example map to the
following sort declarations:

ne � top
bsc � ne
bs � ne
ml � ne
signal � top

Attributes map to predicates
We declare an attribute a of classC with value

spaceV as a binary predicatea : C � V and write
a(c; v) for a single–valued attribute value assertion and
a(c; v1); : : : ; a(c; vn) for a set–valued attribute value
assertion. In conformance with the rules of inheritance
specified for the attributes’ permitted value sets ([15]
Sect. 5.2.2.3, [16] Sect. 8.3.3.1), predicate declarations
can be overloaded, restricting the value space to a sub-
set of the inherited value set. Untyped attributes have
no value space and therefore correspond to unary pred-
icates.

The predicate declarations obtained from our exam-
ple are:

uplink : ne� ne
signalAtUpport : ne� signal
signalAtDownport : ne� signal
uplink : bs�ml
active : bs
sender : signal� bs

The declaration

ab : top

is added automatically.

Behaviour clauses map to axioms
The behaviour clauses of a MOC definition ex-

press rules that apply to the instances of the involved
classes, i.e. the defining class and the classes referred
to through attribute labels. The logical equivalent of a
behaviour clause is an axiom.

The unqualified attribute value referencea translates
to the atomic formula

6 F. Steimann et al. / Model–Based Diagnosis for Open Systems Fault Management

a(i : C; v : V)

in which i (corresponding to the implicit variable
this or self in object-oriented programming lan-
guages) andv are variables for the object and its at-
tribute value, respectively. The sortsC andV are the
ones specified in the predicate declaration correspond-
ing to the classes attribute definition. Note that if we
want to enforce single–valuedness of an attribute, we
have to add an axiom expressing this; however, for rea-
sons given below in this particular example we do not.

If a is an untyped attribute, the reference translates
to

a(i : C):

A chained attribute value referencea.b translates
to the formula

a (i : C; v : V)! b (v : V;w : W) :

Likewise, a.b.c translates toa (i : C; v : V) !
(b (v : V;w : W)! c (w : W;x : X)), and so forth.

We express the propagation of a value from one
attribute to another bya=x IMPLIES b=x , which
translates to

a (i : C; x : V)! b (i : C; x : W) :

As will be seen, implication covers only one direc-
tion of propagation, (the “causal” one from origin to
destination). The reverse direction will be dealt with
below.

Because propagation is a frequent form of causal
behaviour and because the only purpose of the vari-
ablex is to force equality of the attribute values, we
allow propagation to be abbreviated asa PROPA-
GATES TO b. Another convenient abbreviation is
the expressionNORMALLY', which puts' as a con-
sequent of:ab(i), i.e.,

:ab(i)! ':

As a final step, we universally quantify each vari-
able of a formula so obtained over the greatest common
subsort of all its occurrences in that formula4. Follow-
ing this translation scheme, the behaviour clauses of
our MOC definitions produce the following four sen-
tences, which are the axioms of our system description
(A1, A3 andA4 are simplifications).

4This requires that the greatest common subsort of any two sorts
exists and is uniquely determined. In our domain, the absence of
such a sort indicates a design error and aborts translation.

A1 : 8i : ne; x : ne; s : signal
(uplink(i; x) ^ signalAtUpport(i; s))
! signalAtDownport(x; s)

A2 : 8i : bs; s : signal
signalAtDownport(i; s)
! signalAtUpport(i; s)

A3 : 8i : bs; s : signal
(:ab(i) ^ signalAtDownport (i; s))
! signalAtUpport(i; s)

A4 : 8i : signal; x : bs
(sender(i; x) ^ active(x))
! signalAtUpport(x; i)

The management information base maps to constants
and facts

No system description would be complete without
the enumeration of its objects and the topological in-
formation specifying their interconnection. These are
generated from the elements of the MIB such that each
object identifier maps to a constant of the correspond-
ing sort and each attribute value assertion maps to an
atomic formula (that is, of course, ground). In our ex-
ample, the constants are

bsc1 : bsc bs1 : bs ml1 : ml
bs2 : bs ml2 : ml
bs3 : bs ml3 : ml
bs4 : bs ml4 : ml

ml5 : ml
ml6 : ml
ml7 : ml

and the atoms are

uplink (bs1;ml1) uplink (ml1; bsc1)
uplink (bs1;ml5) uplink (ml2; bs1)
uplink (bs2;ml2) uplink (ml3; bs3)
uplink (bs2;ml3) uplink (ml4; bsc1)
uplink (bs3;ml4) uplink (ml5; bs3)
uplink (bs4;ml6) uplink (ml6; bs2)
uplink (bs4;ml7) uplink (ml7; bs3)

Because the MIB contains no instances of signal, we
add

s1 : signal s2 : signal
s3 : signal s4 : signal;

one constant for each BS. We need four constants
because the attribute sender of signal is single-valued
and we expect all BSs to emit signals. An assignment
of signals to the BSs is given by the facts

sender (s1; bs1) sender (s2; bs2)
sender (s3; bs3) sender (s4; bs4) :

F. Steimann et al. / Model–Based Diagnosis for Open Systems Fault Management 7

Not all attribute types have entries in the MIB. For
those that have, however, we subscribe to the closed
world assumption, i.e., we agree that the attribute value
assertions recorded in the MIB are true, while those
that are not are false. This implies, for example, that
the propositionuplink(ml1; bs2) is false.

Note that the single–valued attributes of our exam-
ple are all covered by the MIB, so that we do not need
axioms enforcing single–valuedness.

4.3. Reduction to propositional logic

First order predicate logic allows propositions over
variables that range over infinite domains. In techni-
cal domains, however, the sets of objects dealt with are
usually finite. In the case of OSI fault management,
all objects of interest are listed in the MIB. This cir-
cumstance is exploited to reduce the complexity of the
diagnostic task.

In an order-sorted fixed domain theory, the universal
quantification8x : s '(x) is equivalent to

^

si�s

^

c:si

' (x)[x c]

Likewise9x : s ' (x) is equivalent to
_

si�s

_

c:si

' (x)[x c] :

Because only well–sorted substitutions must be con-
sidered, the blowup effect of rolling out the quan-
tifications is greatly reduced. Note how well–sorted
substitutions elegantly account for inheritance: al-
though axiomA1 quantifies over NEs, a class that
itself does not have instances,i and x are instanti-
ated with all BSs, MLs and the BSC. To implement
inheritance in unisorted predicate logic, every axiom
must be guarded by a number of sort or type predi-
cates (one per variable) and new axioms of the form
8x subsort(x) ! supersort(x) (one per subsort re-
lationship) must be added to the system description. It
follows that the more use of inheritance is made, the
larger the size of the clause set gets. By resorting to
order–sorted logic, however, inheritance is free.

By applying quantifier expansion to all axioms of
our system description, we arrive at a propositional
representation, i.e., at a set of sentences that consist ex-
clusively of ground atomic formulae and logical con-
nectives. These are transformed into a clause set using
a standard procedure for transformation into conjunc-
tive normal form.

The size of the clause set is greatly reduced by in-
corporating the knowledge entered in the MIB. Every
occurrence of an atom that is contained in the fact base
can be replaced by true, while every atom that is known
to be false can be replaced by false. Simplification al-
lows it that every clause containing a literal evaluating
to true be dropped, and every literal evaluating to false
be removed from its clause.

4.4. Completing propagation

We set out with the objective to create a formal-
ism that allows the easy specifications of system be-
haviour. And indeed, the system behaviour specified
in our MOC definitions is straightforward and its logi-
cal translation is still fairly intuitive. Unfortunately, it
turns out that it is also incomplete.

Axiom A1 implies that if a signal is present at the
upport of a NE, then it must also be present at the
downport of the next NE in line. If, however, the an-
tecedent fails, that is, if a particular signal is not at
the upport, the implication allows anything to be at the
downport of the next NE, including the very same sig-
nal. This behaviour is partly desired, as the absence of
a signal at one upport must not impede the presence of
that signal at the connected downport (because it may
be propagated by another link). On the other hand, by
letting anything be assumed at the downport of a NE,
the network systematically gets flooded (through the
propagation expressed withA2 andA3) with assump-
tions for which there is no reason.

Axiom A1 has models that contradict our notion of
propagation. To eliminate these models, we can add

8x : ne; s : signal
signalAtDownport(x; s)
! 9y : ne
uplink(y; x) ^ signalAtUpport(y; s)

meaning that if an NE has a signal at its downport,
this signal must have been propagated from the upport
of at least one of its downward successors. This in-
cludes the case that the NE has no such element, in
which case there can be no signal at its downport.

To cover their intended meaning, axiomsA2
throughA4 can be complemented accordingly. How-
ever, because they share the same conclusion (a propo-
sition oversignalAtUpport), only one of the three
preconditions needs to hold, making a combined for-
mula for the reversal of propagation necessary. This is
precisely what is covered by predicate completion [4,
12].

8 F. Steimann et al. / Model–Based Diagnosis for Open Systems Fault Management

We have shown elsewhere that a complete formal-
ization of propagation is impossible in first order pred-
icate logic [10], a result making any attempt to com-
plete our axioms of propagation vain. However, the
objections no longer persist in the domain of propo-
sitional logic in which the clause set has been instan-
tiated against a given topology. In fact, in all acyclic
causal theories the clause set derived from the causal
axioms can be completed automatically [5, 18] to fully
cover the semantics of propagation by adding for all
atomsa which are an instance of the predicate in ques-
tion the propositional sentence

a! c1 _ : : : _ cn

in which thec1 throughcn are the remainders of all
clauses containing a in positive form, i.e., the

c1 ! a
...
cn ! a

contained in the clause set.

4.5. The results of translation

Our completed propositional clause set is the system
descriptionSD required in the framework of model–
based diagnosis. This clause set is relatively compact,
because the inflationary effect of quantifier expansion
is compensated by the simplifications resulting from
substituting the atoms covered by the fact base with
their truth values. In fact, the size ofSD is linear in
the number of NEs and the number of signals.

The set of objectsOBJ is equal to the set of con-
stants derived from the MIB.

5. Doing diagnosis: localizing faults with the
DRUM–II algorithm

The DRUM–II algorithm was motivated by Chou
and Winslett, who have implemented a system (IM-
MORTAL) for model–based belief revision [3]. It
starts with a system descriptionSD and a modelM
containing no abnormals, such thatM is a model of
SD. This model is invalidated by inserting the possi-
bly contradictory observations. DRUM–II repairs the
resulting inconsistent interpretation by an exhaustive
search procedure returning a set of models represent-
ing all minimal diagnoses.

5.1. Theoretical foundation

The behaviour clauses together with the topological
entries in the MIB compile to the propositional clause
setSD as described in the previous sections. Observa-
tionsOBS add interpretations for the atoms observed.
Computing a diagnosis is then equivalent to finding a
model ofSD of whichOBS is a subset.
Definition 1: A diagnosisof (SD;OBJ;OBS) is a
set� � OBJ such thatSD [OBS [fab (c)j c 2
� g[f:ab (c) jc 2 OBJ ��g is consistent. � is
called aminimal diagnosisif it is the minimal set (with
respect to the subset relationship) with this property.

Next we characterize the diagnosis� in terms of
the models ofSD [OBS. Given a modelM of
SD[OBS, the extension of theab predicate, denoted
by M jabj, tells us which components are considered
faulty byM . Thus, every modelM of SD[OBS cor-
responds to a (possibly non-minimal) diagnosisM jabj.
To characterize the minimal diagnoses using models,
we define an order�ab on the models, based on the
abnormal components they contain.
Definition 2: Given modelsM1 andM2, we define
M1 �ab M2 iff M1jabj � M2jabj, M1 �ab M2 iff
M1jabj = M2jabj, andM1 <ab M2, iff M1 �ab M2

and notM1 �ab M2.
The minimal diagnoses of(SD;OBJ;OBS) corre-

spond to the�ab minimal models ofSD [OBS.
Proposition 3: A set� of objects is a minimal diagno-
sis of(SD;OBJ;OBS) iff there exists a�ab minimal
modelM of SD [OBS such that� =M jabj.

The proof of this proposition is found in [9].
Obviously, there can be several models correspond-

ing to a single diagnosis. DRUM–II therefore com-
putes only one model out of every�ab equivalence
class. Such a representative set of minimal models is
called atransversal.
Definition 4: LetM be a set of models andM= �ab=
f[M] jM 2 Mg be a set of equivalence classes. A set
M0 is called a transversal ofM= �ab if M0 contains
exactly one member out of every equivalence class in
M= �ab.

The following proposition shows that computing a
transversal of the minimal models is a correct imple-
mentation of model–based diagnosis.
Proposition 5: Let M be the set of all�ab minimal
models. LetM0 be a transversal ofM= �ab. Then
fM jabj jM 2M0g is the set of all minimal diagnoses
of (SD;OBJ;OBS).

The proof of Proposition 5 can be found in [9].
While previous results on the relation of diagnosis and

F. Steimann et al. / Model–Based Diagnosis for Open Systems Fault Management 9

circumscription [1, 21] focus on formalizing stronger
forms of explanation (than provided by consistency–
based diagnosis), this proposition establishes an inter-
esting connection between consistency–based diagno-
sis and circumscription, becauseM is the set of all
models obtained by circumscribingSD [OBS in ab,
while varying all other predicates.

5.2. How DRUM–II works

DRUM–II repairs models invalidated by observa-
tions. The only way it can do this is by successively
altering the truth values of atoms that have themselves
not been observed until a new model has been found.
The efficiency of this procedure depends critically on
the choice of the next atom to flip - there is always
the chance that flipping an atom does more harm than
good. To minimize this chance, the DRUM–II algo-
rithm incorporates the following characteristics.

1. It only flips atoms that occur in invalidated
clauses.
Doing this is guaranteed to make these clauses
evaluate to true, but usually will invalidate other
clauses. This is particularly the case for clauses
implementing propagation.

2. It expands the search tree depth first.
This simple strategy focuses the search by fol-
lowing the paths of propagation: the next atom to
be flipped is from a clause that has been invali-
dated by the previous flip.

3. It considers clauses with the fewest flippable
atoms first.
This heuristic entails that branches with small
branching factors are considered first. Because it
is essential for cutting down the search space, it
overrules the depth first strategy.

4. It employs iterative deepening to find minimal di-
agnoses first.
Searching for minimal diagnoses only offers an-
other chance of pruning the search tree. Main-
taining a list of diagnoses already found, the
choice of an abnormal as the next flippable atom
is unproductive if this makes the current diagno-
sis a superset of one already found. By limiting
the cardinality of� and by successively incre-
menting this limit (a technique known as iterative
deepening [19]) it can be guaranteed that mini-
mal diagnoses are found first [11].

The kernel of the DRUM–II algorithm is imple-
mented by the following Java code:

void solve () f
if (solvenda.resolveable ()) f

Atom atom = solvenda.nextFlippable ();
flip (atom);
//locks atom & updates solvenda
if (solvenda.isEmpty ())

diagnosis.keep (); // solution found
else

solve ();
// try with the atom flipped

flip (atom);
// flip it back; remains locked
// (= not flippable)
solve ();
// with the atom’s original value,
// but not flippable
release (atom); // remove lock

g
// else no solution with current
// truth values
return;

g

Every atom maintains a lock flag, preventing it from
being selected twice on the same branch. Also, by not
unlocking the atom on flipping it back to its original
value we implement a technique known as factoriza-
tion. As can easily be verified, the search is exhaustive
with the exception that

– it does not continue a branch once a solution has
been found, since expanding such branches can
only lead to non-minimal diagnoses; and

– it does not descend into branches that cannot lead
to a solution, i.e., that contain invalidated clauses
having no more flippable atoms.

DRUM–II maintains a list of invalidated clauses,
called solvenda, which drives the algorithm. Im-
plementing the above listed characteristics, its
nextFlippable function returns the next atom to
be flipped. The solvenda also recognizes unresolv-
able inconsistencies, clauses whose number of flip-
pable atoms is zero.
Proposition 6: Given an initial model of the system
descriptionSD, the DRUM–II algorithm computes a
transversal of the�ab minimal models ofSD [OBS
and thus by Proposition 5 returns all minimal diag-
noses.

Again, the formal proof can be found in [9].

5.3. A sample trace

It is in the nature of our problem that, as long as no
observations are added, assuming all atomic proposi-
tions to be false is perfectly consistent with the system

10 F. Steimann et al. / Model–Based Diagnosis for Open Systems Fault Management

description as represented by the clause set. (The BSs
are not active so that no signals originate at their up-
ports; the MLs are not abnormal (i.e., functional), but
there are no signals at their downports they could prop-
agate, as for the BSs.) Therefore, on bootstrapping the
interpretation of all atoms is set to false.

With the first observations, however, the picture may
change. If, for example, a signal from bs2 is observed
at the upport of ml1 but not at that of ml4, i.e., if

OBS = ffsignalAtUpport(ml1; s2)g ;
f:signalAtUpport(ml4; s2)gg;

the clause

fab (ml1) ;
:signalAtUpport (ml1; s2) ;
signalAtDownport (ml1; s2)g;

introduced through the completion of axiomA3 is
invalidated, requiring the revision of the truth value of
signalAtDownport (ml1; s2) or ab(ml1). DRUM–
II chooses one of the two atoms, say the first (the other
one will be considered upon backtracking), and flips its
value to true, thereby backpropagating the signal from
the upport to the downport of ml1 as shown in Figure
2 a). This in turn invalidates another clause,

f:signalAtDownport (ml1; s2) ;
signalAtUpport (bs1; s2)g;

introduced through the completion of axiomA1,
whose repair iteratively propagates the signal back to
its source, the upport of bs2. Backpropagation termi-
nates with setting the truth value ofactive(bs2) in

f:signalAtUpport (bs2; s2) ;
signalAtDownport (bs2; s2) ;
active(bs2)g

to true, the situation of Figure 2 b). Following
the same principles, but using clauses derived from
the original (uncompleted) axioms, signal s2 is prop-
agated forward along all other paths toward the BSC.
On these paths, assuming all MLs to be functional
leads to an unresolvable conflict with the observa-
tion :signalAtUpport(ml4; s2) (Figure 2 c)), forc-
ing DRUM–II to revise some of these assumptions, as
indicated in Figure 2 d).

After backtracking has traversed all branches,
DRUM-II terminates with the diagnoses

ffml4g; fml3;ml5gg;

meaning that either ml4 is broken or, less obviously,
ml3 and ml5 are defective. Because with the given
information there is no way to decide which of the
two alternatives is the correct diagnosis, two candi-
dates (called hypotheses hereafter) are generated and
new observations are awaited.

bs1 bs2
m l 2

bs3 bs4

bsc1

m l 1

m l 4

m l 5 m l 6

m l 3

m l 7

a) s2

s2

 s2

bs1 bs2
m l 2

bs3 bs4

bsc1

m l 1

m l 4

m l 5 m l 6

m l 3

m l 7

b) s2

s2

 s2

s2s2

bs1 bs2
m l 2

bs3 bs4

bsc1

m l 1

m l 4

m l 5 m l 6

m l 3

m l 7

c) s2

s2

 s2

s2s2

s2

s2

s2

s2 s2

s2

bs1 bs2
m l 2

bs3 bs4

bsc1

m l 1

m l 4

m l 5 m l 6

m l 3

m l 7

d) s2

s2

 s2

s2s2

s2

 ?

 ?

 ?

s2

?

?

Figure 2: The propagation of signals
a) from the source of observation b) to the origin and
c) from the origin back along all other paths to the

source, where it leads to an inconsistency that can d)
only be resolved by assuming links abnormal

Different hypotheses are handled by maintaining
different models, one for each hypothesis, in which
the assumed faults, like the initial observations, are not
subject to revision. New observations are then added
to the models in parallel. Three situations may arise:

F. Steimann et al. / Model–Based Diagnosis for Open Systems Fault Management 11

1. the hypothesis and the new observations are at
unresolvable conflict, in which case the hypothe-
sis must be dropped;

2. the hypothesis and the observations are compati-
ble. In this case, the new observations either

(a) confirm the fault assumptions of the hypoth-
esis, or

(b) add new ones that are independent of the oth-
ers.

In any case, a hypothesis is proven if all its alterna-
tives have been discarded. Returning to our example,
if the next observation is

fsignalAtUpport(ml4; s3)g

the first hypothesis must be dropped, while the sec-
ond is confirmed, making the latter the only candidate
for diagnosis. The inherent advantage of our procedure
of repairing models is that it always maintains a valid
model that has all previous observations and assump-
tions of fault incorporated, so that with each new step
only the new observations need be integrated.

5.4. Handling reconfiguration

In large open systems, reconfiguration is a natural
process thatper seenjoys no special status. The fact
that the configuration has changed is, like all other
events, reported through notifications recorded in the
MIB. Ideally, a reconfiguration of the system takes
place without the whole or parts of it needing to be
restarted. If model–based diagnosis is to be integrated
seamlessly into the open system, it must react to con-
figuration changes without undue delays.

We take this into account by allowing incremental
instantiation of variables. Axioms constraining config-
uration parameters that change only seldom are com-
piled into the system description at an early stage.
Those that change more frequently but nevertheless ex-
hibit a certain persistence are compiled into the sys-
tem description at later stages and can be removed by
rolling it back to the state of an earlier instantiation.
Finally, configuration data that change regularly may
be considered as observations (completed under the
closed world assumption) and get involved only at the
model repair phase, albeit at the cost of a considerably
larger system description.

6. Discussion

The information model chosen by the ISO for OSI
management is object oriented. A class hierarchy and
associated rules of inheritance provide for the defini-
tion of standards that are easily extended (specialized)
to suit particular management, a new standard’s, or a
specific manufacturer’s/operator’s needs. It is this ease
of extension that has lead to the widespread acceptance
of the object–oriented paradigm.

Although model-based diagnosis is component
('object)–oriented in principle, the formalizations of
system descriptions in use today do not exploit the
advantages offered by an object-oriented information
model5. With our work we have defined a com-
plete transformation from an object–oriented system
description to a compact propositional clause set de-
void of the overhead usually associated with inheri-
tance. This representation allows a particularly effi-
cient computation of diagnoses through our DRUM–
II engine, which has shown excellent performance in
popular model-based diagnosis benchmarks [11].

From the technical side, DRUM–II is more efficient
than other algorithms because it continuously manipu-
lates the same one interpretation, making copies only
of the models found. This avoids the combinatorial ex-
plosion of data structures reported for ATMS systems
[9]. Furthermore, requiring no sophisticated back-
tracking or heap maintenance procedures, DRUM–II is
easily implemented as a set of portable Java classes,
which is a prerequisite for deployment to practice.

A few practical problems remain. First and fore-
most, the dynamic nature of an open system as re-
flected by continuous instance creation and deletion
is at odds with our requirement that all instances be
known prior to the generation of the system descrip-
tion. Rerunning the instantiation phase of the diagnos-
tic process however is costly and entails that all current
models (the diagnostic hypotheses) are lost.

Secondly, all observations recorded in the MIB carry
time–stamps. Because the logic on which our model–
based diagnosis is based is inherently atemporal, this
information is ignored. Also, although observations
are processed as soon as they arrive, the diagnosis

5Among the few works we are aware of that do are the EXACT
system for satellite testing [23] and an object-oriented approach to
photo copier maintenance [24]. Both seem to take a rather pragmatic
approach, but not enough detail is provided to allow a comparison
with our work. Console et al. have worked on hierarchical diagnoses
modelled by implication [6].

12 F. Steimann et al. / Model–Based Diagnosis for Open Systems Fault Management

based on all currently available observations is inde-
pendent of the order in which they were incorporated
in the models. Although this loss of information has
no consequences for our example, there are situations
conceivable in which it may lead to inferior results.

Last but not least, it should be noted that predi-
cate completion (and thus our implementation of prop-
agation) works only for acyclic structures. This how-
ever is no real restriction to open systems management,
since all cyclic connections must be resolved through
a router the formal specification of which renders the
system description acyclic, too.

7. Conclusion

The management of open systems requires effective
procedures for fault localization. We have shown that
the management information model established by the
ISO blends well with the logical framework of model–
based diagnosis. In fact, by defining an effective map-
ping from object–oriented system descriptions com-
pliant with ISO standards to compact logical clause
sets, we are able to exploit our model repair algorithm
DRUM–II to efficiently localize faulty components of
open systems in dynamic environments.

8. Acknowledgments

This work was made possible by a DFG grant
under the “Schwerpunktprogramm Mobilkommunika-
tion”. We thank our project partners Klaus Jobmann,
Hermann Wietgrefe and Klaus–Dieter Tuchs and the
people at e.plus for their cooperation.

References

[1] Philippe Besnard and Marie-Odile Cordier. Explanatory di-
agnoses and their characterization by circumscription.Annals
of Mathematics and Artificial Intelligence, 11:75–96, 1994.

[2] K. H. Bl äsius, U. Hedtst¨uck, and C. R. Rollinger, editors.
Sorts and Types in Artificial Intelligence.(Lecture Notes in
Computer Science 418). Springer, 1989.

[3] T. S-C. Chou and M. Winslett. A model–based belief revision
system.Journal of Automated Reasoning, 12:157–208, 1994.

[4] K. Clark. Negation as failure. InLogic and Databases, pages
293–322. Plenum, 1978.

[5] Luca Console, Daniele Theseider Dupr´e, and Pietro Torasso.
On the relationship between abduction and deduction.Journal
of Logic and Computation, 1(5):661–690, 1991.

[6] Luca Console, Daniele Theseider Dupr´e, and Pietro Torasso.
Towards the integration of different knowledge sources in
model-based diagnosis. In E. Ardizzone, S. Gaglio, and
F. Sorbello, editors,Trends in Artificial Intelligence. 2nd
Congress of the Italian Association for Artificial Intelligence,
pages 177–186. Springer, 1991.

[7] European Telecommunication Standards Institute.Digital
cellular telecommunications system(Phase 2); Base Station
System(BSS) Management Information(GSM 12.20), 1996.

[8] European Telecommunications Standards Institute.Digital
telecommunications system(Phase 2+); Fault Management
for the Base Station Subsystem(BSS) (GSM 12.11), 1997.

[9] P. Fröhlich. DRUM-II: Efficient Model-based Diagnosis of
Technical Systems. PhD thesis, Uni. Hannover, 1998.

[10] P. Fröhlich and W. Nejdl. Efficient diagnosis based on incom-
plete system descriptions. InWorkshop on Non-Monotonic
Reasoning, Trento, Italy, 1998.

[11] Peter Fr¨ohlich and Wolfgang Nejdl. A static model-based
engine for model-based reasoning. InProceedings of the
Fifteenth International Joint Conference on Artificial Intelli-
gence(IJCAI-97), Nagoya, Japan, August 1997.

[12] M. R. Genesereth and N. J. Nilsson.Logical Foundations of
Artificial Intelligence. Morgan Kaufmann Publishers, Inc.,
1987.

[13] W. Hamscher, L. Console, and J. de Kleer.Readings in
Model-Based Diagnosis. Morgan Kaufmann, 1992.

[14] ISO/IEC. Information Processing Systems - Open Systems In-
terconnection - Basic Reference Model - Part 4: Management
Framework, 1989. also: CCITT Recommendation X.700
(ITU).

[15] ISO/IEC. Information Technology - Open Systems Intercon-
nection - Structure of Management Information: Management
Information Model, 1993. also: CCITT Recommendation
X.720 (ITU).

[16] ISO/IEC. Information Technology - Open Systems Intercon-
nection - Structure of Management Information: Guidelines
for the Definition of Managed Objects, 1993. also: CCITT
Recommendation X.722 (ITU).

[17] ISO/IEC. Information Technology - Open Systems Intercon-
nection - Systems Management Overview, ISO/IEC 10040,
1993. also: CCITT Recommendation X.701 (ITU).

[18] Kurt Konolige. Abduction versus closure in causal theories.
Artificial Intelligence, 53:255–272, 1992.

[19] Richard E. Korf. Depth-first iterative-deepening: An optimal
admissible tree search.Artificial Intelligence, 27(1):97–109,
1985.

[20] W. Lukaszewicz. Non–monotonic reasoning: formalization
of commonsense reasoning. Ellis Horwood, 1990.

[21] Olivier Raiman. Diagnosis as trial - the alibi principle. In
International Model-Based Diagnosis Workshop, Paris, July
1989.

[22] Raymond Reiter. A theory of diagnosis from first principles.
Artificial Intelligence, 32:57–95, 1987.

[23] H. Smith-Meyer, R. Kuke, and K. Tangen. EXACT - model
based diagnosis for satellite testing. In5th Scandinavian Con-
ference on Artificial Intelligence SCAI-95, pages 453–457,
Trondheim, 1995.

[24] Y. Umeda, T. Tomiyama, and H. Yoshikawa. Model based di-
agnosis using qualitative reasoning. In F. Kimura and A. Rol-
stadas, editors,Proc. 3rd Int IFIP Conf. Computer Applica-
tions in Production and Engineering, pages 443–450, Ams-
terdam, 1989. North-Holland.

