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Abstract

The duality of objects and relationships is so deeply embedded in our thinking that almost all modelling languages
include it as a fundamental distinction. Yet there is evidence that the two are naturally complemented by a third,
equally fundamental notion: that of roles. Although definitions of the role concept abound in the literature, we
maintain that only few are truly original, and that even fewer acknowledge the intrinsic role of roles as intermediaries
between relationships and the objects that engage in them. After discussing the major families of role conceptualiza-
tions, we present our own basic definition and demonstrate how it naturally accounts for many modelling issues, in-
cluding multiple and dynamic classification, object collaboration, polymorphism, and substitutability. © 2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction

The English merchant Lodwick (1619-1694) [56] was one of the first to break with the Aris-
totelian tradition according to which the nouns of a language govern its structure and meaning
[19]. In his quest for a universal language he devised a system of action patterns populated with
roles that had to be filled with persons, things, or places. For instance, the act of a murder has
roles murderer and murdered, and these roles, which Lodwick called appellative nouns, name the
individuals involved in the act within the context of the act, but outside this context the indi-
viduals have their own proper names, such as man or beast [56]. The grammatical function of
predicates as carriers of action and their roles was later rediscovered by linguists like Biihler,
Tesniere, and Fillmore [25]: Biihler noted that every word in a sentence has slots to be filled by
others [10], and Tesnicre presented the first dependency grammar [71], a grammar formalism in
which the words of the language function as both terminal and non-terminal symbols [62]. As it
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turned out, dependency grammar is closely related to Sowa’s conceptual structures [59,61,63], a
knowledge representation formalism that has continuously gained recognition in the conceptual
modelling community [22]. However, while the predicative or relational structures had already
been embraced as central to modelling [14,17], the role concept, although equally fundamental,
has long not received the widespread attention it deserved.

In recent years, interest in roles has grown continuously. But although there appears to be a
general awareness that roles are an important modelling concept, until now no consensus has been
reached as to how roles should be represented or integrated into the established modelling
frameworks. This may partly be due to the different contexts in which roles are introduced, and
partly to the different problems one is trying to solve with them. However, the divergence of
definitions contradicts the evident generality and ubiquity of the role concept, and hampers its
general acceptance as a modelling construct.

In this paper, we identify the basic properties of the role concept and combine them into a
formal definition that fits in well with most modelling frameworks based on the classical di-
chotomy of types and relationships. For this purpose we review the characteristics that have been
associated with roles, discuss their different realizations, and define a rudimentary modelling
language named Lopwick that includes roles as a first class modelling concept. The formal-
ization of roles in Lopwick differs from others in that it clarifies their relationship to special-
izations and generalizations, and in that it regards their natural role as intermediaries or bridges
between relationships and the natural types populating their places.

The remainder of this paper is organized as follows. In Section 2, we give an informal account
of what appear to be the natural properties of roles. In Section 3, we discuss how roles have been
treated in the literature, roughly classifying the bulk of work into three major families: roles as
named places of relationships, roles as specializations and/or generalizations, and roles as adjunct
instances. The definition of Lobwick, its role concept and its evaluation against the properties
identified in Section 2 follow in Section 4. That Lopwick, although only rudimentary, is a useful
modelling language is shown by applying it to problems as diverse as the definition of design
patterns, UML collaborations, object-oriented design and implementation, and metamodelling
(Section 5). Section 6 completes the presentation by showing that Lopwick’s role definition gives
rise to a regard of polymorphism and substitutability that had formerly not been considered:
objects playing roles can be considered polymorphic in the literal sense. We conclude with noting
that Lobpwick’s definition of the role concept captures most of its semantics, while avoiding the
disadvantages of its competitors.

2. What’s in a role?

Bachman and Daya’s role data model [4,5], an extension of the network model, is commonly
credited as the first data model to have introduced an explicit notion of roles. ' It was based on the
observation that “most conventional file records and relational file n-tuples are role oriented.
These files typically deal with employees, customers, patients, or students, all of which are role

! Although Falkenberg’s object-role model [24] was published one year earlier, it appears that the roots of the role data model predate
those of the object-role model.
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types. This role orientation is in contrast with integrated database theory which has taught that
each record should represent all aspects of some one entity in the real world. This difference in
viewpoint has caused a great deal of confusion. The reason for the confusion is understood when
it is realized that neither the roles of the real world nor the entities of the real world are a subset of
the other” [4]. Unfortunately, the influence of the role data model on modelling has at best been
modest even though it works out many of the concept’s aspects that seem accepted today.

But the role data model was not only motivated by semantic considerations, it also solved a
common practical problem. Because the network model allowed the members of a set to be re-
cords of various types, large pieces of redundant code had to be written in order to address the
semantically equivalent, but syntactically distinct fields (items) of the members when iterating
through a set. By letting all the entity types involved play the same role and by defining the fields
as fields of the role, not of the types, it became possible to process all members with the same
piece of code [5]. This feature of the role data model is immediately recognized as a form of
polymorphism, another fundamental concept that pervades the literature on object-oriented
modelling.

In his seminal monograph on conceptual structures Sowa distinguished between natural types
“that relate to the essence of the entities” and role types ‘“‘that depend on an accidental rela-
tionship to some other entity” [59, p. 82]. Although this distinction is quite clear and de facto
introduces a new modelling concept, its potential effect on modelling practice is immediately
weakened by letting both natural and role types coexist in the same type hierarchy, and by
making no syntactic difference between the two besides, perhaps, calling one natural and the
other role. In subsequent work of his, Sowa asserts that role types are subtypes of natural types.
For example, the role types Child, Pet, Quotient and Food are subtypes of the natural types
Person, Animal, Number and Physical-Substance, respectively [60]. This view is intuitively ap-
pealing and shared by many authors [7,23,36]. However, it also gives rise to a number of
misconceptions, as will be seen.

In developing Sowa’s ideas further, Guarino presented an ontological distinction between role
and natural types [30]. A role, he maintained, is a concept that is founded and that lacks semantic
rigidity, i.e., for a concept to be a role, it is required that its individuals stand in relation to other
individuals, and that they can enter and leave the extent of the concept without losing their
identity. A natural type, on the other hand, is characterized by semantic rigidity and lack of
foundation: an individual of a natural type cannot drop this type without losing its identity, and
for an individual to belong to that type it is not required that it stands in relationship to others.
For example, Person is a natural type, because an individual, if a person, will always remain (and
always has been) a person, and being a person is independent of the existence of any relationships.
Student, on the other hand, is a role since to be a student enrollment in a university is required,
and finishing studies does not lead to a loss of identity. Note that Adolescent and Adult are
neither: lacking both semantic rigidity and foundation, they are states or phases of (the lifetime of)
an individual. >

2 Note that, to a certain extent, Guarino’s criteria parallel Lodwick’s definition of appelative and proper nouns: murderer and
murdered are related to each other through a murder, and they lack semantic rigidity; they are roles. Man or beast, on the other hand,
are rigid; they are natural types [65].
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Most contemporary literature on roles in object-oriented and conceptual modelling is much
more pragmatic. The following is a list of features that we have identified; note that some conflict
with others, and hence that there is no single definition of roles integrating all of them.

1. A role comes with its own properties and behaviour. This basic property suggests that roles are
types. And indeed, only few approaches do not regard roles as types; among these are the Entity—
Relationship (ER) model and some of its relatives [14,17,24,33,34].

2. Roles depend on relationships [7,15,21,30,59]. As suggested by the work of Sowa and Guarino,
a role is meaningful only in the context of a relationship. Although a fundamental characteristic,
many definitions of the role concept do not consider it, so that the states or phases of an object are
equally regarded as their roles.

3. An object may play different roles simultaneously [41,45,52,54,55,75,76]. This is one of the
most broadly accepted properties of the role concept. Because a role is usually regarded as a type
(item 1), it amounts to the multiple classification of objects.

4. An object may play the same role several times, simultaneously [41,52,55,75,76]. This is an
equally fundamental finding, a frequent example of which being an employee holding several
employments. Unlike with different roles, however, it does not correspond to multiple classifi-
cation. The main reason to distinguish multiple occurrences in the same role is that each occur-
rence of the object in a role is associated with a different state (item 10). For example, an employee
has one salary and one office address per job. (Not in [3,4,53].)

5. An object may acquire and abandon roles dynamically [3,29,41,43,49,55]. This is a dynamic
property of the role concept that comes close to object migration or dynamic (re)classification
[46,69]. However, the two are not necessarily the same; for example, Wieringa et al. [75] make an
explicit distinction between dynamic classification and role playing.

6. The sequence in which roles may be acquired and relinquished can be subject to restrictions
[52,69,75]. For example, a person can become a teaching assistant only after becoming a student.
The usual sequence specifying formalisms are in use.

7. Objects of unrelated types can play the same role [4]. Although a fundamental observation
complementing those of items 3 and 4, it is not acknowledged by all authors. From a theoretical
point of view, this feature amounts to an alternative basis for inclusion polymorphism, as will be
discussed in Section 6.

8 Roles can play roles [15,41,54,75,76]. This mirrors the condition that an employee (which is a
role of a person) can be a project leader, which is then a role of the employee (but also another
role of the person, although only indirectly). A rather technical subtlety that seems to require that
roles are themselves instances.

9. A role can be transferred from one object to another [41,76]. It may be useful to let a concrete
role dropped by one object be picked up by another, or even to specify the properties of a concrete
role without naming a particular role player. For example, the salary of an open position may be
specified independently of the person that will be employed.

10. The state of an object can be role-specific [41,52,75]. The state of an object may vary de-
pending on the role in which it is being addressed. Together with item 4, i.e., the possibility of one
object playing the same role multiply at the same time, this seems to suggest that each role played
by an object should be viewed as a separate instance of the object.

11. Features of an object can be role-specific [3,29,43,52,55]. Attributes and behaviour of an
object may be overloaded on a by-role basis, i.e., different roles may declare the same features, but
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realize them differently. If an object plays several of these roles simultaneously, it responds ac-
cording to the role in which it is being addressed.

12. Roles restrict access [29,41,52,76]. When addressed in a certain role, features of the object
itself (or of other roles of the object) remain invisible. This corresponds to an object having
different perspectives, facets, or aspects.

13. Different roles may share structure and behaviour [16,29,41,54]. This usually means that role
definitions inherit from each other [29], but sometimes also that the definitions of roles rely on
features of the objects playing them (delegation) [16,41].

14. An object and its roles share identity [3,29,41,55]. In the object-oriented world this entails
that an object and its roles are the same, a condition that has been paraphrased as “a role is a
mask that an object can wear” [8]. (Not in [75].)

15. An object and its roles have different identities [75]. This view, which is quite singular, is a
tribute to the so-called counting problem. It refers to the situation in which instances counted in
their roles yield a greater number than the same instances counted by the objects playing the roles.
For example, the number of passengers taking a certain means of transportation in one week may
be greater than the number of individual persons traveling with that means during the same
period [75].

It should be clear from this list and what has been said above that the role concept is not some
fancy modelling extra, but that it makes up for a lack in expressive power left by other modelling
concepts. As one might expect there is not one ideal way of defining such a concept, but a number
of competing approaches. Therefore, before presenting our own we take a quick tour through the
major categories of role definitions that we have identified.

3. Three common ways of representing roles

Despite the many different properties associated with roles, the number of substantially dif-
fering definitions of the concept proposed is really quite small. In fact, all more or less adhere to
one of three possible views: roles as named places of a relationship, roles as a form of general-
ization and/or specialization, and roles as separate instances joined to an object. *

3.1. Roles as named places

The simplest notion of a role is that of a named place in a relationship. Codd [17] noted that if
two or more places of a relationship in his relational model were declared to be of the same type,
then the name of this type would not suffice to distinguish these places. In such a case, role names
should serve to identify the places in question. Today it is a common practice to give every place
of a relationship a role name, which also serves as a column header in tabular printouts of the
relationship’s extent.

The ER model [14] and many of its extensions take up the practice of assigning role names to
the entity types participating in relationships. In object-oriented analysis and design languages

3 A similar distinction, namely between roles as specializations and roles as the places of a relationship, has been made by Reimer
[53]; a brief discussion of five approaches representing roles as separate instances is given by Kappel et al. [39].
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(including UML [48]) whose static models are based on the ER model, it has become common to
drop relationship names altogether and use role names instead. For example, the is-parent-of (or
is-child-of) relationship is sufficiently characterized by the role names parent and child. Note that
this convention not only delivers suitable attribute names (after all, many relationships end up as
pointer attributes), but also avoids the linguistic redundancy resulting from the circumstance that
the predicative expressions chosen as relationship names frequently repeat the predicate’s subject
role (as in is-parent-of).

The most fundamental account of roles as named places is presumably that by Falkenberg [24].
In his object-role model (ORM) objects and roles are the sole primitives from which object types,
associations (the equivalent of tuples) and association types are derived. As it turns out, ORM’s
data model, which allows nested associations (associations on associations), is very similar to the
so-called feature structures heavily employed in the unification-based branches of computational
linguistics and knowledge representation [6,13]; in fact, it is close to the linguistic roots of the role
concept noted in the introduction. However, since it defines types exclusively in terms of their
instances and the roles they play, it is purely extensional and misses the distinction between
natural and role types.

Building on the object-role model Nijssen’s information analysis method (NIAM) [33] and its
descendants [34] provide a deeper account of the linguistic role of roles: they employ so-called fact
types which are the direct equivalents of linguistic statements associating properties with and
expressing the relationships of objects, as the sole data structure. Each fact type involves a number
of roles which correspond to the places of a predicate. Hence, a role in NIAM is de facto a named
place of a relationship.

By labeling the types involved in a relationship, defining roles as named places acknowledges
that roles exist only in the context of relationships (item 2 above), and, to a certain extent, the
dynamic and multiple classification of objects via the roles they play (items 3-5, and 7). However,
it fails to account for the fact that roles come with their own properties and behaviour (item 1 and
most of the rest of the list), a deficiency that is usually resolved by regarding roles as types in their
own right (and not as mere labels of types).

3.2. Roles as specializations andlor generalizations

If roles are types, the question arises how the roles and the natural types of a model should be
related. Seemingly, a role type is more specific than the natural type of its role players and its
extent is smaller, which would make it a specialization (and hence a subtype). For instance, if
Person is a natural type, then its roles Customer and Supplier would appear as its subtypes, as
shown in Fig. 1(a).

Quite obviously, such a solution requires dynamic and multiple classification, since a person
can change its roles and play several roles simultaneously. But this is not a real problem; instance
or object migration is a well-investigated modelling concept that accounts for the dynamic change
of classification associated with role playing ([46,69]). The real problem with viewing roles as
subtypes is much subtler.

Naturally, not only persons, but also organizations like companies, etc., can be customers and
suppliers. However, declaring Customer and Supplier as subtypes of both Person and Organization
as depicted in Fig. 1(b) renders their extents subsets of the intersection of the two, which is either
very small or empty, but in any case clearly not what is intended. Rather, Customer and Supplier
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(a) (b) ()
Person Person Organization Party
Customer Supplier Customer Supplier Person Customer Supplier Organization
(d) (e)
Customer Supplier Party Agent
Person Organization Person Organization = Customer Supplier

Fig. 1. Relating roles and types through subtyping (roles are italicized).

would subset the union of Person and Organization, Party,* but this leaves us with the question
which of the subtypes of Party are natural and which are roles, and whether Party itself is a
natural type or a role. In fact, Fig. 1(c) makes Customer, Supplier, Person and Organization all
siblings, which is not only counterintuitive, but renders the type hierarchy heterogeneous: Person
and Organization make a static partition of Party (every party is either a person or an organi-
zation), while Customer and Supplier are not even restrictions thereof (any party can also be a
customer, a supplier, neither, or both).

The heart of the problem lies at the following misconception. Whereas dynamically (i.e., at any
point in time) the set of customers and the set of suppliers are indeed each a subset of the set of
parties, in principle every person and every organization can be a customer and a supplier or the
instances of these types are not equal (and hence should not be instances of the same type).
Statically, Customer and Supplier can therefore by no reasonable criterion be specified as re-
strictions of Person, Organization, or Party. In fact, it appears that viewing roles as subtypes is a
consequence of an inadmissible intermingling of the dynamic nature of the role concept with the
static properties of type hierarchies.

If roles are no subtypes, could they be supertypes? Surely, this contradicts the observation
that roles are more specific than the types of their players. But this observation is false,
anyway: a person, for example, has many properties not required of a customer or supplier —
rather, being a customer or supplier imposes its required properties on persons and organi-
zations, making the former supertypes of the latter. In fact, some authors treating roles as
named places also acknowledge that more than one type can fill one place of a relationship —
the domains of Kent [40] or the multi-ET roles of DB-Ma1nN [31] are unions or disjunctions of
types that are declared for just that purpose. However, while regarding Customer and Supplier
as supertypes of both Person and Organization (Fig. 1(d)) accounts for the fact that all per-
sons and organizations can appear in these roles, it defies the dynamic viewpoint, namely that
at any point in time only some of all persons and organizations existing at that time are
customers and/or suppliers. This characteristic distinguishes roles from generalizations which,

4 Party is a common catch-all type including the definition of Person as natural and legal entities [26].
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including their subtypes both statically and dynamically, are supertypes; roles, on the other
hand, are not. >

What we have is the paradoxical situation that, from the extensional point of view, roles are
supertypes statically, while dynamically they are subtypes. And indeed, some authors maintain
that specialization (the subtype relationship) and generalization (the supertype relationship) are
not symmetric, in fact, that they are different relationships altogether [1,34,70], thus allowing the
criticized heterogeneity of the type hierarchy of Fig. 1(c) to be eliminated. However, these authors
base their distinction on the natural relatedness of the involved types, not on the different rela-
tionships of their extensions resulting from a difference in the static and the dynamic viewpoint.
Consequently, they regard Product (which would be a role) as a generalization of House and Car
[70], and Student, which is the prototypical role, as a specialization (in the usual sense) of Person
[34]. Hence, this distinction does not add to the clarification of the relationship between roles and
types.

The solution, clearly, lies in the separation of types and roles. If the type and role hierarchy are
different hierarchies, none of the aforementioned problems related to subtyping occurs. For in-
stance, in Fig. 1(e) every customer is also an agent, and so is every supplier, independently of
whether the viewpoint is static or dynamic. What is missing, though, is a commitment to the
relationship between natural and role types. Such a relationship has been introduced as the basis
for defining roles as adjunct instances as treated in Section 3.3, and another one will be part of the
formalization of roles in Lobwick (Section 4). First, however, we continue the discussion of a
single hierarchy of types and roles.

By combining generalization, specialization, and the construction of domains for relationships
whose places can be filled with instances of more than one type, Elmasri et al. [21] have suggested
a category concept which is a subset of the union of a number of types. In the so-called entity
category relationship model all relationships are not defined on entity types, but on categories,
which seems to acknowledge the dependency of roles on relationships (item 2 above). However,
categories are not uniquely linked to places — rather, the same category can occur more than once
in the same relationship. Hence, categories are not roles in our sense.

Because of the temporal nature of the role concept, several authors investigate the possibility of
roles as temporary specializations. A straightforward definition of roles as dynamic subtypes is
that of Bock and Odell [7], which goes back to the qua-classes of KL-oNE [9] and is analogous to
the existence subclass of SDM [35] and M.E.R.O.D.E. [58]. ® According to this definition, a role is
a type comprising all and only the objects that currently engage in a certain relationship (which is
why it is also called a current type). For example, the relationship marriage between Man and
Woman defines two role types, namely Husband and Wife, whose instances are all married.
Marriage and divorce result in a dynamic reclassification of objects — the object migration
phenomenon.

5 Another criterion is that generalizations emphasize the common nature or genus of objects of different types, whereas roles
emphasize their common use or function in a given context.

® The notion of role in KL-oNE [9] is not addressed here since it is merely another term for attribute, i.e., for a binary association
as perceived from the defining concept’s perspective. Note, however, that KL-oNE’s attributes are much more elaborate than their
object-oriented variants.
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The interesting thing to note about the definition of Bock and Odell is that role types appear to
be defined in terms of relationships or, rather, in terms of the dynamic extensions of relationships.
On the other hand, the authors allow properties to be attached to role types just like they are
attached to ordinary subtypes, so that the difference between role types and subtypes collapses to
one being dynamically acquirable by instances, while the other is not. The acquisition of roles is
made explicit by Papazoglou’s approach [49,50] which allows that instances are directly assigned
to and removed from the extent of a role-defining class so that the taking up of roles is always an
explicit act and not a consequence of an instance participating in a relationship. As it turns out,
this is the essence of most other definitions of roles as dynamic specializations [1,23,45,47].

Snoeck and Dedene also distinguish between static and dynamic specializations [58]. However,
their notion of roles differs in that it extends the behaviour of a class and does not give rise to the
definition of a new (sub)class. In particular, roles add new event types and sequences to an object
type, but neither add nor refine attributes and methods. Consequently, unlike object types and
their specializations roles cannot have instances of their own. This however lets roles appear as
partial specifications of types [32] implemented as abstract supertypes in a multiple inheritance
context. We shall come back to this later.

Finally, Jungclaus et al. [36,37] revert the view of roles as the dynamic variant of specialization
by regarding specializations as special, namely static, kinds of roles. While this is a useful ap-
proach for their formalization of an object-oriented specification language integrating static and
dynamic features of objects, like other accounts of roles as specializations it ignores some of the
fundamental semantic differences between roles and (sub)types. In particular, as noted in [20], the
fact that certain roles are shared by objects of different type suggests that the role concept should
cover both dynamic specialization and generalization.

In general, representing roles as special kinds of specializations or generalizations amounts to
the dynamic and multiple classification of objects. It also entails that an object and that object in
its roles are represented by one instance, and this instance has only one state and only one
identity. While this view harmonizes with most of the features of roles listed in Section 3 (namely,
1-3, 5-7, 11-14), it seems to preclude items 4, 8, and 15. The converse notion, namely that and
object and its roles are different instances, promises to lift these restrictions; it will be considered
next.

3.3. Roles as adjunct instances

Rather than struggling with the intricacies of modelling roles as generalizations or specializa-
tions and coping with the concomitant problem of multiple and dynamic classification, many
authors prefer to realize roles as independent types the instances of which are carriers of role-
specific state and behaviour, but not identity. An object and its roles are then related by a special
played-by relation (or equivalent, with roles role and role player), and it is understood that an
object and its roles form an aggregate (also referred to as subject [41]) that appears indivisible
from the outside. The dynamic picking up of a role corresponds to the creation of a new instance
of the corresponding role type and its integration into the compound, and dropping a role means
releasing the role instance from the unit and destroying it.

This approach has several appealing implications. In particular, it appears as the natural re-
alization of the characteristics 4, 5, 8, 10, and 12 listed in Section 3. In fact, since every instance
has its own state, an object with roles automatically has many states, one per role it plays and one
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for the role-playing instance. Access restriction for the clients addressing an object in a role is but
a natural side-effect, since the clients see only the object in the role, not its player or any other
roles. For the same reason, the resolution of overloaded properties, i.e., properties that are defined
for more than one role an object plays, is no problem with this approach. Note that access re-
striction and overloading does not prevent role instances from delegating requests to the objects
they are affiliated to. In fact, in object-oriented design which has long struggled with the merits
and pitfalls of inheritance, roles are being adopted as the modelling metaphor for delegation, the
favoured alternative over subtyping [16].

Despite the uniform structure, the details from representing and object and the roles it plays
vary from author to author. Reimer devised a framework of roles to parallel the usual subtyping
and instantiation mechanisms of frame-based and object-oriented representation formalisms [53].
Two predefined relations are introduced: may-be-a, a second-order relation between classes and
role classes (roughly corresponding to is-a or specialization), and role, conceived as a relation
between an instance and a role class (corresponding to instantiation). The idea behind this
doubling of concepts is that an instance of a class can also be a role instance of all role classes
related to this class via the may-be-a relation. However, in order that this secondary role in-
stantiation does not conflict with ordinary instantiation, role classes are instantiated as usual, and
role relates the role player with role classes’ instances (with these instances being the player’s
adjuncts). Therefore, although role is interpreted as a variant of instantiation, it is de facto a
predefined first order relation that must either be heavily overloaded or declared on the most
general of all role playing and role types.

Object specialization [57] is perhaps the most radical approach to modelling roles as separate
instances. According to it, every object is represented by a hierarchy of instances. This hierarchy is
an inheritance hierarchy: instances lower in the hierarchy inherit the properties of their ancestors
(a rare case of instance-based inheritance). Each instance represents a role of the root object to
whose hierarchy it belongs. Other objects have access to an object only via one of its roles which,
due to the inheritance, represents the summary of all roles from the entry to the root of the hi-
erarchy. Although this approach, convincing by its simplicity and expressiveness, has found its
followers [38], the problem of split object identity is not addressed.

Several other approaches, although different in their basic definitions, arrive at similar results.
Pernici [52] divides the specification of an object into several sections, each called a role. On object
creation, a special role called base role plus any number of additional roles are instantiated.
Furthermore, roles can dynamically be added and dropped as long as the specified role sequence
specification is complied with. AspecTs [55] builds on an implicit compatibility of types that is
based on conformity (containment of declared signatures). An aspect of a (base) type is a separate
type explicitly declared to be just that, and instantiation of an aspect always requires an instance
of the corresponding base type to be provided. In FiBoNAcCcI, every object type is the root of a
hierarchy of roles called the role family of the type. Roles can be acquired dynamically, but only
one per role [3]. Because in FiBoNAcc1 roles specify only signatures and no implementation, the
acquisition of a role requires the specification of an implementation so that different instances of
the same type may behave differently in the same role.

Wieringa et al. [75] introduce role classes in contrast to dynamic subclasses. Every role class
declares a role-player class via a (massively overloaded) played-by relation assigning an object or
another role to each role instance. A role instance is an adjunct as in the other approaches, but
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with separate identity. This peculiarity is a tribute to the counting problem (cf. item 15 above) and
is to be seen in contrast to the dynamic subclasses covering instance migration and dynamic
classification. The ADOME system [43] is based on this approach and uses roles mainly to bridge
between a statically typed database and the rules of knowledge base.

Kristensen and Osterbye [42] present an intuitive notation for the adornment of objects with
roles. A role specifies and implements all properties that fall under one perspective of the object
[41]. Roles can be bound to objects and to other roles. They can be transferred from one object to
another, but they cannot exist on their own. The idea of transferable roles has independently been
developed for Door [76], which regards roles as bridges between role owners and role players.
The owner of a role is an object with an attribute of the role type. Properties of a role can be
specified by the owner without an object (the role player) actually being assigned to the role. These
properties are gained by an object once it assumes the role and lost once it drops it; the role is then
vacant and ready to be played by another object.

Gottlob and coworkers [29] present an extension of SMALLTALK in which role hierarchies can
be linked to the classes of the system’s class hierarchy. Instances of a so linked class or of its
subclasses can then dynamically assume and relinquish roles. A modification of SMALLTALK’S
test for identity allows role instances (as separate entities) to substitute for the objects they are a
role of. Renouf and Henderson-Sellers [54] also provide methodical support for modelling roles of
this kind and suggest an implementation pattern for EIFFEL.

A unifying conceptual approach that is independent of any implementation, but like ADOME
[43] lends itself to extending existing implementations is the entity-role-association model by Chu
and Zhang [15]. It divides the class hierarchy into a static part for the is-a classification of entity
classes and a dynamic part for the is-a classification of role classes. The static and the dynamic
part are connected via a role-of relation just like in the other approaches; however, associations
(which are themselves classes) are exclusively defined on roles, a peculiarity that had already been
suggested by Elmasri et al. [21] and that will be picked up in the definition of Lopwick in the next
section.

Returning to Fig. 1(e), modelling roles as adjunct instances corresponds to declaring a role-of
or played-by relationship between Agent and Party, which is then inherited to their subtypes.
However, since this relationship relates instances, not types, it is first order and hence, even
though it has predefined semantics, not on the same level as generalization and specialization.
Also, because Agent and Party are not the only possible pair of role and role player, the role-of
relationship must be overloaded for every other occurrence of this pattern. Nevertheless, the
modelling of roles as adjuncts remains practically appealing; in fact, it has been recognized as the
only legitimate object-oriented implementation of roles [16].

The biggest problem with viewing roles as adjunct instances is that it requires an unusual
notion of instance, namely one according to which the instances of a role type do not have their
own identity, but share it with others (“‘object schizophrenia’’). This violates a basic assumption of
object-orientation, namely that every object has its own identity, immutable and persistent,
making it distinct from all others. This is not a technical necessity, but simply an appreciation of
the understanding that every object of a model should correspond to a distinct, identifiable object
of reality. In reality, however, the role of an object is not a different object, but merely its ap-
pearance in a given context. Hence the requirement that role instances should not have distinct
identity.



94 F. Steimann | Data & Knowledge Engineering 35 (2000) 83—106

Symptomatically, almost all work suggesting roles as adjunct instances has a strong imple-
mentational bias. This is presumably due to the authors’ awareness of the concomitant conceptual
problems mentioned above: modelling objects as collections of instances (a practice that is also
referred to as object slicing [44] in object-oriented design and implementation), if not unsound, is
unorthodox at least. Consequently the only theoretically ambitious approach regarding roles as
adjuncts we are aware of is that of Wieringa et al. [75]; and this suggests that roles have separate
identity.

4. LODWICK, a role-oriented modelling language

We now come to our own definition of the role concept. Since such a definition, a formal one
especially, cannot exist in isolation, we embed it in a modelling language that is sufficiently de-
veloped to fix the semantics of roles, but that is open enough to allow its extension in different
directions. We call this language Lopwick, because Lodwick was one of the earliest proponents
of a notion of roles capturing their dependency on context and time.

4.1. Formal definition

For the specification of Lobpwick, we borrow from the logic of feature types as described in
[2,6], which is order-sorted. In order-sorted logic, the interpretation of unary predicates as as-
signing properties to objects and thus as defining types is complemented by a notion of sorts
representing explicit hierarchical type information. Order-sorted logic is therefore an ideal basis
for the specification of conceptual and object-oriented modelling languages, especially since it
allows one to inherit its formal semantics.

However, like standard logic order-sorted logic is inherently atemporal. Since the definition of
roles depends on a notion of time, LobwICK cannot be a purely static modelling language. Al-
though order-sorted logic has been extended to cover model dynamics [36,75], the definition of the
role concept does not depend on how the dynamic aspects of a model are specified, only on that
they are. Therefore, it suffices for the specification of Lobwick that a greatly simplified view of a
dynamic model is taken.

A model specification in LODWICK consists of a signature, a static model, and a dynamic model.
The signature of a model comprises:

a set of natural type symbols, N, called types for short;

an N-indexed family of pairwise disjoint sets of instance names, (I,)
a type hierarchy (N, < yy) defined by a partial order <y on N;
a set of role type symbols, R, called roles for short;

a role hierarchy (R, < gg) defined by a partial order < zg on R;

a role-filler relationship, <yg, relating the types in N to the roles in R; and

a 2R-indexed family of sets of relationship names (P,), coz.

For a € I,, we write a:n and call a an object of n. For convenience, we define I as the set of all
objects by

I = UI,,.

nenN

ey called objects for short;
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Although the set of objects can be infinite in principle, for most modelling purposes a rather small
number of prototypical instances suffices. To a certain extent, these prototypical instances sub-
stitute for variables: they serve as placeholders for other objects of their types, and they act as
coreference symbols expressing that objects in different places of a model are the same.

For n' < yyn, we call ' a subtype of n and n a supertype of n'. Likewise, for »' < zg r, we call »' a
subrole of r and r a superrole of ¥. For a pair n <y r, we say that n fills r. Informally, we also say
that a type n fills role r if there is a supertype »n’ of n that fills a subrole # of r. Note that unlike
types, roles do not have associated sets of instances; as will be seen, they recruit their objects from
the types they are filled by.

Last but not least, we require that the P, are pairwise disjoint and that P, = F for, |w| < 2, i.e.,
all relationships are at least binary and overloading is not allowed. For a relationship p € Py, .1,

we write p : i ...r,. For convenience, P is defined as the set of all relationships of a model, i.e.

P = UPW.

we2R

The relationships are indexed over sets of roles because every role occurs only once in a re-
lationship, and the order in which roles occur is insignificant. However, to be able to use standard
set notation in certain situations, a total order on the set of roles is assumed, and each occurrence
of a tupel or Cartesian product with roles at its places is assumed to obey that order, i.c., to have
arranged its elements accordingly.

Given a signature as above, a static model in Lopwick is defined as comprising all instances of
types and relationships that ever exist, independently of any dynamic or contemporaneity (such as
cardinality) constraints. Thus, a static model comprises:

o for every n € N a static extension ext(n) including all objects of n and those of its subtypes, i.¢.

ext(n) =1, U U ext(n'),

n'<ynn

so that ext(n') C ext(n) for n' < yyn;
o for every r € R, a static extension ext(r) including all objects of the types filling , i.e.

ext(r) = U ext(n)

n<Nrr < RRY

so that ext(n) C ext(r) for n <yz r and ext(r') C ext(r) for ' < grr; and
e forevery p:ry...7, with {ry,...,r,} € 2R, a static extension ext(p) including tuples of objects
of the roles declared for p, i.e.

ext(p) Cext(ry) X - -+ X ext(r,).

We write
[Fl = ay Sty eyl — Qi Sp)ip

for an element of ext(p) and call this element an association of p. Although the notation is
reminiscent of that of feature types [2,6], it stands here for an instance of a relationship
(or predicate). It follows from the definition of ext(p) that all its elements must be well typed,
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ie., a € ext(r),...,a, € ext(r,). Note that roles serve a dual purpose in the specification of
a relationship: they label the places, and they constrain the types of the objects participating in
the relationship’s associations. Also note that as far as the extensions of types and roles
are concerned, in the static model there is no difference between <y, <yz, and < zg other
than that they are defined on different sets. This, however, will be different with the dynamic
model.

A dynamic model in Lobpwick specifies all possible sequences of sets of objects and associations
between them. Each such sequence is called a possible course of the model, and each such set a
snapshot of the model at an associated time. In a way, the static model may be viewed as the
temporal projection of the dynamic model, i.e., as the union of all possible snapshots independent
of any allowable sequence.

The dynamic model specifies, for every time 7 in every possible course ¢
¢ a dynamic extension ext.,(n) for every n € N with

exte,(n) = | exte(n') C ext(n)

n' <ywn

comprising all and only those objects existing at that time in that course;
e a dynamic extension ext.,(p) for every p: ry...r, with {r,...,r,} € 2% with

ext.,(p) C (ext.,(r) x --- x ext.,(r,)) Next(p)

comprising all and only those relationship instances existing at that time in that course; and
e for every r € R a dynamic extension ext.,(r) with

ext.,(r) = {a € I\V{¥,r2,...,1m} €28 r <a'Vp: ¥y .ryJas, ... a, €1

[ —a,r— as,... .1y — ay) 1 p €ext,(p)}

comprising all and only those objects that actually participate in that role (or any superrole
thereof) in at least one relationship instance of every relationship with that role.

Note that while the static extensions of roles are defined solely in terms of the extensions of the
types filling these roles, the definition of the dynamic extensions requires that the objects engage in
relationships. Thus, while the static extensions of roles are always bigger than or equal to the ones
of their filling types, the dynamic extensions can be smaller. Hence, <,z has clearly different
properties than < yy and < zz. Also note that dropping the indices ¢ and ¢ from the definition of
the dynamic extensions of roles results in a definition equivalent to that of the static extensions if
only in some course and at some time every object of every type filling a particular role occurs in
that role in every relationship with that role. In other words: the specification of a relationship
must not preclude any objects of the specified types from participating in that relationship. This
however is only a natural condition, since otherwise the objects of the types would not be all equal
(cf. Section 3.2).

Returning to the example of Fig. 1, the combined natural and role type hierarchy in question is
specified in Lopwick by the following declarations:
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Person < yy Party
Organization < yy Party
Party <yr Customer
Party <yr Supplier
Customer < gp Agent

Supplier < pp Agent

Unlike with representing roles as adjunct instances (Section 3.3), the type and the role hier-
archies of Fig. 1(e) are linked by two instances of <y, which is a second-order relationship like
< v and < gp, relating types, not instances. Together with the above definitions the declarations
imply that any person, like any organization, can in principle be a customer and a supplier, but
that at any moment only those are that participate in a relationship with these roles declared at its
places. For instance, with the relationship deliver declared as

deliver : Customer Supplier

and

[Customer — a : Person, Supplier — b : Organization] : deliver

in the extension of deliver (static or dynamic), it follows that « and b, elements of the extensions of
the natural types Person and Organization, respectively, are also in the extensions of the roles
Customer and Supplier.

Quite clearly, the extensional specification of a model, i.e., the listing of all possible snapshots
together with the possible sequences thereof, is unfeasible. Therefore, the extensions of a model
specified in Lobwick are complemented by a set of intensions added as follows:

e for every n € N an intension int(n), specifying the properties of the type (including attributes,
behaviour, and the lifecycles of the objects);

e for every p € P an intension int(p) specifying conditions (such as the required role types and
cardinalities) on the possible associations in the relationship’s extension; and

e for every » € R an intension int(r).

The intensions of roles are divided into an absolute part, int,(7), specifying properties just like
the intensions of types, and a relative part, int,(r). The relative part refers to the fact that the role
occupies a place in the relationships declared with that role, and that for an object to belong to the
extension of the role it must engage in these relationships (the definition of the dynamic extension
of roles above).

The intension of a natural type is inherited to its subtypes so that int(n’) = int(n) for n’ < yyn.
The same holds for roles: int(#') = int(r) for ' < grr. However, while the absolute and the rel-
ative part are inherited down the <z relation, the semantics of the role-filler relation <z is
different: only int,s(r) is inherited to the types filling this role so that int(n) = int,,(r) for
n <yg r — because natural types are independent of the relationships their instances can engage in,
the inheritance of int,(r) stops at the role/type-transition. This, and the definition of the exten-
sion of roles given above allows it that statically roles are supertypes of the roles filling them,
whereas dynamically their extensions are only subsets.



98 F. Steimann | Data & Knowledge Engineering 35 (2000) 83—106

Clearly, Lopwick is only a rudimentary modelling language. In particular, while some
specification of the possible sequences of snapshots is assumed, it is not clear how these sequences
are specified or controlled — a signaling or messaging mechanisms enabling object interaction and
behaviour specification is missing. However, such mechanisms and their languages exist [36-38,58]
and are considered extensions to Lopwick, and because the choice of an appropriate formalism
has no influence on the definition of roles in Lobpwick, it will not be dealt with here.

4.2. Expressiveness

To evaluate the adequacy of Lobwick’s role concept, it is checked against the properties of
roles identified in Section 2.

1. A4 role comes with its own properties and behaviour: Yes. Roles are types, only that they cannot
be instantiated. However, since the absolute properties of a role are inherited to the types filling
them, they influence the properties of the instances playing them.

2 Roles depend on relationships: Yes. Roles occupy the places of relationships, and the relative
part of a role’s intension captures which relationships an object must participate in to be con-
sidered playing the role.

3. An object may play different roles simultaneously: Yes. An object may occur in as many
different roles within the same or different associations as allowed by the relationships’ specifi-
cations.

4. An object may play the same role several times, simultaneously: Yes. An object can occur in
the same role within different associations of the same or different relationships, as allowed by the
relationship specifications.

5. An object may acquire and abandon roles dynamically: Yes. Roles are assumed by an object as
associations with that object are added, and relinquished as associations are removed from the
dynamic extensions of relationships.

6. The sequence in which roles may be acquired and relinquished can be subject to restrictions:
Possible. The specification of sequences (of extensions, cf. item 5) lies in the responsibility of the
dynamic model.

7. Objects of unrelated types can play the same role: Yes. This is one of the cornerstones of
Lobwick’s role formalization; it follows from the definition of the role-filler relation linking the
type and the role hierarchy.

8. Roles can play roles: No. This is not possible, since roles have no instances of their own.

9. A role can be transferred from one object to another: Possible. This however would require the
introduction of variables, which would be an extension to LobDWICK.

10. The state of an object can be role-specific: Partly. The associations an object participates in
contribute to its state. These associations can be extended to capture the state that is associated
with the object as playing the role. For example, the different salaries of a person in different
employee roles may be included in the employ relationship.

11. Features of an object can be role-specific: Possible. Role are types and as such come with
their own features. Role features are inherited to the types filling the roles, but a role-sensitive
resolution mechanism (qualification) is needed if the same features are inherited from more than
one role.

12. Roles restrict access: Not applicable. Lobpwick does not have notions of accessibility or
visibility.
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13. Different roles may share structure and behaviour: Partly. As noted under item 11, the fea-
tures of role specifications are inherited down the role hierarchy to the types filling the roles. Vice
versa, properties of the types filling roles are not inherited to these roles. For instance, if the type
Person has a place Of Birth attribute, this attribute is not shared by its role Customer. This however
makes sense since not all customers are persons.

14. An object and its roles share identity: Yes. An object in a role is the object itself.

15. An object and its roles have different identities: No. This follows from item 14.

Overall, it appears that Lobpwick covers most of the features expected from roles. This may
seem a little surprising, since many of the items appeared to be bound to the representation of
roles as adjunct instances, which Lobpwick denies. Instead, an object in a role is modelled as an
object participating in a relationship in the place of that role, and as many different engagements
as feasible are allowed. The general ability of objects to play a certain role is specified by a
declaration listing all types filling that role, and by a role hierarchy that is independent of the type
hierarchy. In principle, LoDWICK’s roles are no more dynamic than its types, but just as instances
of a type can come into existence and cease to exist by adding and removing them from the
dynamic extension of their types, they can assume and drop roles by participating in associations
being added and removed from the dynamic extensions of their relationships.

5. Applications and extensions

Lobpwick as a modelling language is quite simple. This is deliberate, since one of the objectives
of our work is to show that roles are a modelling primitive and not some add-on bell or whistle.
To give evidence to this, we go through a number of examples, indicating possible extensions of
the language where in place.

5.1. Pattern specifications

Design patterns [27] are a common way of specifying recurring pieces of object-oriented designs
and implementations. Design patterns are often specified as class diagrams enhanced with in-
teraction specification where necessary. However, it has been noted that not classes, but roles are
the true structural primitives upon which most patterns rely [11], and that classes are only used
because a role modelling primitive is not yet established.

The composite pattern is a frequent pattern underlying parts explosions, directories, and
analogous recursive structures. A composite consists of components, which are either atomic or
themselves composites [27]. In LobwIck, this is expressed by a relationship consist with two
corresponding roles:

consist : Composite Component.

Note that this declaration is completely independent of what is being composed — the pattern is
instantiated only by declaring the role-filling types. For a directory structure comprised of folders
and files, the necessary declarations are

Folder <yr Composite File <yr Component Folder <yr Component.

Accordingly, for a parts explosion the role-filling types are PartsList and Part; by means of
corresponding declarations, their instances can populate the same relationship.
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However, because the declaration of Folder/File and PartsList/Part as role fillers of Compositel
Component, respectively, is not coordinated, associations of the kind

[Composite — p : PartsList, Component — f : File] : consist

are well typed and thus admissible. This is a common problem of disjunctions and requires some
kind of role coordination in the specification (the intension) of the relationship. A possible so-
lution is to overload the declaration of consist with subroles of Composite and Component

consist : PartsListComposite PartsListComponent

and

consist : DirectoryComposite DirectoryComponent,
respectively, and overloading is a possible extension of Lobwick.

5.2. Roles in UML

In the UNIFIED MODELING LANGUAGE (UML), roles serve two purposes: they label asso-
ciation ends (the UML term for places of relationships), and they act as type specifiers in the scope
of a collaboration (so-called classifier roles; the association and association end roles of UML are
not considered here) [48]. Because Lobpwick does not distinguish between the two purposes, an
inevitable clash occurs when trying to specify a UML-collaboration in LobwIck, because the
association ends’ rolenames and the classifier roles do not match. An example of this is shown in
Fig. 2.

Lobwick’s solution to this problem is simple. Since the roles Teacher and Student occur in the
places of several relationships all of which have their own roles assigned, it is assumed that
Teacher is a subrole of faculty member, lecturer, and tutor, whereas Student is a subrole of student
and participant. In fact, it seems reasonable to assume that the role of a teacher unifies the roles of
a faculty member, a lecturer and a tutor, because being a teacher requires the properties of all of
them. Note that for the classifier roles filled by the classes (natural types) Faculty and Course no
clash with the rolenames occurs since they are unnamed; nevertheless, taken course and given
course are different roles filled by Course, which is either resolved by Course <yp given course and
Course <yp taken course, or by introducing a common subrole for the two that is filled by Course
[67]. The same applies to Faculty.

faculty member tutor student
/Teacher:Person /Student:Person
* l *

1 lecturer * participant

1 faculty

* *

:Faculty :Course
given course taken course

Fig. 2. A typical UML collaboration with classifier roles shown as boxes (taken from [48]). The name after the slash is the name of the
classifier role, and the name after the colon is that of the type (class) on which the role is based. Note that : Faculty and : Course provide
no explicit role names. (See [67] for a complete discussion of roles in UML.)
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5.3. Object-oriented design and implementation

Lopwick is intended to be an exploratory language for object-oriented modelling with roles at
the conceptual level. However, conceptual or object-oriented modelling is usually only a precursor
to design and implementation, and if the role concept of LoDWICK is to be of any practical value,
it has to find its way into software reality.

Most mainstream object-oriented programming languages rely on classes as the primary
structuring construct. However, classes can be abstract, i.e., not instantiable, and as such they can
be used to specify interfaces. Interfaces comprise protocols of behaviour and specifications of
other features that are relevant for the use of a class. Since a class can implement several inter-
faces, each interface is only a partial specification of the properties associated with a class.

Now the type and role hierarchy of a model specification in Lobpwick can be mapped to the
class hierarchy of an object-oriented program as follows [66]:

e cvery type is mapped to a class and each of its subtypes to a subclass of that class;

e cvery role is mapped to an abstract class (interface) and each of its subroles to an abstract sub-
class (sub-interface) of that class (interface); and

o cvery role-filler relationship between a type and a role is mapped to a subclass relationship be-
tween the corresponding classes (an implements relationship between the corresponding class
and interface).

Note how this convention accounts for the inclusion of the static extensions of types and roles
as specified for Lobpwick in Section 4.1, and for the inheritance of properties from roles to their
subroles to the types filling the roles. However, it cannot account for the differences in the dy-
namic extensions and their connection to the extension of relationships. This is in the responsi-
bility of another convention.

Since the places of the relationships of a model usually end up as the variables (instance
variables and formal parameters) of an object-oriented program, Lopwick’s definition of the role
concept and its mapping to abstract classes or interfaces suggests that all variables should declare
abstract classes or interfaces as their types. The dynamic extension of a role could then be defined
as the set of all objects assigned to variables of the corresponding type. Even though this does not
match with the formal definition of the dynamic extension of roles given in Section 4.1, it results in
a rather intuitive notion of roles in object-oriented programs. Besides, declaring variables with
abstract types is considered good programming practice anyway [18,27,66], and LobwIck as a
modelling language is only promoting this practice.

5.4. Metamodelling

Lopwick is defined after the common object language/metalanguage pattern. The metalan-
guage has notions of sets, relations, etc., which are assumed to be pre-existing concepts. The
elements of Lobpwick as an object language have been defined as needed, but exclusively in terms
of the metalanguage. As it turns out, modelling languages (as object languages) often have the
same elements as their metalanguages. This is not only a source of continuous confusion, but also
gives rise to the conception that the metalanguage is itself the object language of a higher ranking

7 This of course requires multiple inheritance.
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meta-metalanguage, and so forth. This would obviously result in an infinite recursion if not at
some level certain ontological commitments were made, namely as to what is actually assumed as
pre-existing. Since such a commitment almost inevitably includes sets and relations, there seems
not much point in thinking about a metamodel for Lobpwick.

Except for one thing. We have contended that roles, like objects and relations, are so funda-
mental that they should be an integral part of any modelling language, and this includes the
metalanguage. And indeed, <y for example is a metalevel relationship with two roles, namely
subtype and supertype, both being filled by the set of types N. The same holds for < zr with roles
subrole and superrole and R as the role-filling type. Likewise, LoDWICK’s <y is a metalevel re-
lationship with roles filler and filled such that N <y filler and R <y filled.

The fact that the elements of an object language are easily transferred to the metalanguage is
usually a good indication that the elements are well-chosen. Trying to do this with roles as adjunct
instances, however, does not lead to satisfactory results: either we deny the existence of roles at the
metalevel, or we have to model a role like subtype as an adjunct to zype, which is hardly natural.
Note that a similar problem arises from arguing that the representation of roles as adjunct in-
stances is not a modelling primitive, but a design pattern in character, because the fact that design
pattern relate roles, not classes (cf. above), raises the question of how the roles of the role pattern,
namely role and role player, are to be represented.

6. Roles and polymorphism

Literally, polymorphic is taken to mean “having, assuming or passing through many or various
forms, stages, or the like” [72]. Typical manifestations of polymorphism are the insects of the
order Lepidoptera with forms caterpillar and butterfly, and carbon with forms coal, graphite, and
diamond. It appears that in this original sense, polymorphism is a property of an individual object
stating that this object has characteristics — simultaneously or in sequence — so different that they
would normally be attributed to different objects. However, in the computing community,
polymorphic usually denotes a property of an operator or function symbol, namely that its
meaning [28] or associated behaviour [51] is determined by its operands or parameters (rather
than the symbol alone).

Strachey, who introduced the term to the computing field [68], made a distinction between what
he called ad hoc polymorphism and parametric polymorphism. According to his definition, ad hoc
polymorphism denotes the random reuse of symbols (such as letting + denote number addition,
string concatenation, and Boolean disjunction); it is further divided into overloading and coercion.
Parametric polymorphism refers to the construction of types from a template and a number of
parameters (as in List(T), with instantiations List(Number), List(String), etc.). Cardelli and
Wegner complement parametric polymorphism with what they call inclusion or inheritance
polymorphism, which basically refers to substitutability as a consequence of the inclusion of types
in a subsumption hierarchy [12,73]. Both are special forms of what they call universal polymor-
phism, the kind of polymorphism that allows polymorphic functions to operate on an unlimited
number of types. This is to be seen in contrast with ad hoc polymorphism, whose functions will
work only on a finite (and potentially unrelated) set of types, namely on the types the overloading
or coercion are explicitly declared for.
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The polymorphism of functions and operators is a particularly appealing concept when a
family of related types is in use. For example, if the usual arithmetic operators are defined on the
family of number types (a type hierarchy including Real, Rational, Integer, and Natural in de-
scending order), each operator must make provisions to cope with the different combinations of
its operands’ types. The polymorphism of operators is pushed even further if the result or return
type of an operator is not only determined by the types of its operands, but also by their values.
For instance, the subtraction of two natural numbers can result in an integer, or in a natural
number. Last but not least, instance creation may be polymorphic, too: depending on the pa-
rameters supplied, the type of the new instance may vary [64].

All this has little to do with the encyclopedic definition of polymorphism given above: rather
than same objects having different forms, objects of different types implement the same functions.
What one would expect instead is that polymorphism is a property of single types or, rather, their
instances. Only inclusion polymorphism addresses this point to a certain extent: if the set of in-
stances of a given type includes the instances of its subtypes, then these instances differ in form so
that the type could indeed be called polymorphic. However, that an instance of a type is also an
instance of its supertypes is not a sufficient condition for its being polymorphic, since supertypes
are generally not manifestations of different form, but of different levels of abstraction. After all,
being a mammal and being a vertebrate are not different forms of a person, but different (bio-
logical) abstractions. In fact, the form imposed on the instances by their type always entails the
forms imposed by their supertypes. Thus, abstraction or generalization hierarchies do not make
instances polymorphic.

This is where roles come into play. Being a student, an employee and/or a mother are different
“forms” of a person, each with different characteristics, each specified by its own role type. An
instance is polymorphic if it can play different roles, and the different forms of the instance are
defined by the roles it can play. This corresponds to the encyclopedic definition of polymorphism
above: an object in different roles has characteristics so different that they would normally be
ascribed to different objects (the classical fallacy noted by Bachman and Daya [4]); yet it is the
same object.

On the other hand, Lopwick’s definition of roles also accounts for polymorphism a la
Cardelli and Wegner, since different types of objects may play the same role and thus imple-
ment the same functions. This includes inclusion polymorphism (in case the types are all
subtypes of a common supertype defining the functions) as well as ad hoc polymorphism (in
case the types are unrelated so that the implementation is not inherited). Thus, Lobpwick’s
role-based polymorphism is more general: it accounts for both same objects having different
forms (the encyclopedic definition) and for different objects having same form (the computa-
tional definition).

Last but not least, Lobpwick’s role concept lends itself to a redefinition of the notion of
substitutability, which is closely related to the definition of inclusion polymorphism [74]. In fact, if
every object that can play a given role guarantees to fulfill whatever the role requires of its role
players, then we have the following modified principle of substitutability: an instance of a type can
always be used in any context in which an instance playing a role filled by that type is expected. In
other words: instances of different types can substitute for each other if the types fill the same role
and if the instance required is an instance playing that role — the very definition of plugability
[16,18].
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7. Conclusion

All definitions of roles discussed here have their merits and drawbacks. For example, viewing
a role as a named place of a relationship may appear trivial but stresses that roles exist only in
context, a fact that is only too often neglected by other definitions. Roles are no subtypes, but
viewing them as supertypes poses problems, too. Last but not least, representing roles as ad-
junct instances provides a useful metaphor for modelling delegation, yet it is conceptually
questionable. In essence, it appears that the role concept is a truly original one, one that cannot
be emulated by any of the better established conceptual or object-oriented modelling constructs.
The challenge of defining a suitable role concept is to integrate it into existing modelling
frameworks causing as little redefinition as necessary, while capturing as much of its semantics
as possible. By introducing a formal definition of roles that clarifies their status with respect to
generalization and specialization, and that places roles as intermediaries between relationships
and the natural types populating their places, we believe that we have succeeded in both
respects.
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