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Abstract: Location-aware applications take into account a mobile user's current location and provide location-depend-
ent output. Often, such applications still have to deal with raw location data and specific positioning systems 
such as GPS, which lead to inflexible designs. To support developers of location-aware applications, we 
designed the Nimbus framework, which hides specific details of positioning systems and provides uniform 
output containing physical as well as semantic information. In this paper, we focus on two important opera-
tions provided by the framework, described by two questions "Where am I?" and "What is in my prox-
imity?" Our solution takes into account the requirements of clients in mobile environments. Our algorithms 
are based on a decentralized and self-organizing runtime infrastructure and are, thus, highly scalable and 
accessible for mobile users. We demonstrate the effectiveness of our approach by a number of simulations. 

1 INTRODUCTION 

Accessing information about the current location 
will be an important service in future mobile and 
ubiquitous application environments. Applications, 
which take into account the current location, are 
called location-aware applications; if we want to 
focus on networked services, often the term loca-
tion-based services is used. Typical examples for 
such applications are: 
– Find the nearest hotel, hospital, or gas station? 

How can I get there by bus or by car? 
– My personal device (e.g. PDA, cell phone) 

should remind me to check my tires when I enter 
a gas station the next time. 

– When I take a picture with my digital camera, 
the location should be stored in the picture’s 
meta data. 
 
To support developers of such applications we 

created the Nimbus framework. Nimbus provides a 
common interface to location data and abstracts the 
position capturing mechanisms. To achieve an opti-
mal flexibility, it provides physical coordinates as 

well as semantic information about the current loca-
tion. With Nimbus, mobile users can switch between 
satellite navigation systems such as GPS, positioning 
systems based on cell-phone infrastructures, or in-
door positioning systems without affecting the loca-
tion-based service. A developer can, thus, concen-
trate on the actual service function and does not have 
to deal with positioning sensors or capturing proto-
cols. 

 

Figure 1: Data flow in the Nimbus framework 

 
Fig. 1 shows the overall data flow in our frame-

work. A mobile device gets raw location data from 
one or more positioning systems. Our framework 
transforms these data and produces unique location 
data using two basic operations, the location resolu-
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tion and the proximity resolution. As these data have 
a unique format, it can easily be used as a search key 
to access databases, user registers, web services, etc. 
In this paper, we describe the Nimbus framework 
and focus on the resolution operations.  

2 RELATED WORK 

Many location-based applications and services have 
been developed over the last years. Tourist infor-
mation systems are ideal examples for such applica-
tions. The systems CYBERGUIDE (Abowd et al., 
1997) and GUIDE (Cheverst et al., 2000) offer in-
formation to tourists, taking into account their cur-
rent location. Usually, such systems are bundled 
with a general development framework, which 
allows a developer to create other location-aware 
applications. A second example for location-based 
applications is context-aware messaging. Such sys-
tems trigger actions according to a specific location. 
ComMotion (Marmasse et al., 2000) is a system 
which links personal information to locations and 
generates events (e.g. sound or message boxes), 
when a user moves to a certain location. Cybre-
Minder (Dey and Abowd, 2000) allows the user to 
define conditions under which a reminder will be 
generated (e.g. time is "9:00" and location is 
"office"). Conditions are stored in a database and 
linked to users. Whenever a condition is fulfilled, 
the system generates a message box. 

Several frameworks deal with location data and 
provide a platform for location-based applications. 
Leonhardt (1998) describes a conceptual approach to 
handle multi-sensor input from different positioning 
systems. Cooltown (Kindberg et al., 2000) is a col-
lection of location-aware applications, tools and 
development environments. As a sample application, 
the Cooltown museum offers a web page about a 
certain exhibit when a visitor is in front of it. The 
corresponding URLs are transported via infrared 
beacons. Nexus (Hohl et al., 1999) introduces so-
called augmented areas to formalize location infor-
mation. Augmented areas represent spatially limited 
areas, which may contain real as well as virtual 
objects, where the latter can only be modified 
through the Nexus system. OpenLS (Open GIS) is 
an upcoming project and provides a high-level 
framework to build location-based services. 

Location-based services will become increas-
ingly popular in the future. Especially mobile phone 
providers expect a huge market for such services 
(UMTS Forum, 2000). Typical applications respond 
to questions like "Where is the nearest hotel?" or 
"Which of my friends is in proximity?" Further 
examples are city guides or navigation systems. The 

first marketable service platforms come from the 
mobile phone providers. Services such as Night-
guide or Loco Guide (Vodafone, 2003) serve as 
location-based information portals based on WAP 
technology. Such services reach a huge number of 
users, but they have very coarse-grained tracking 
capabilities still based on the GSM cell information. 

Geographic information systems (GIS) and spa-
tial databases provide powerful mechanisms to store 
and retrieve location data (Tomlin, 1990). Such sys-
tems primarily concentrate on accessing large 
amounts of spatial data. In our intended scenarios, 
however, we have to address issues such as connec-
tivity across a network and mobility of clients, thus 
we have to use data distribution concepts, which are 
only rarely incorporated into existing GIS ap-
proaches. 

3 THE NIMBUS FRAMEWORK 

We designed the Nimbus framework to simplify the 
development of location-aware applications. Using 
this framework, developers can concentrate on the 
actual application function and can use location-
dependent services of our platform. We distinguish 
three layers (fig. 2): 

Figure 2: The Nimbus framework 

The base layer provides basic services related to 
positioning systems. The framework can use arbi-
trary positioning systems, ranging from satellite po-
sitioning systems, positioning with cell phone net-
works to indoor positioning systems, based on, for 
example, infrared or ultrasound. To achieve the 
required flexibility, we attach the positioning system 
via a driver interface. This interface allows the 
framework to switch between positioning systems at 
runtime. The location model contains a formalism to 
describe locations and a set of rules to model the 
world. Finally, the Location Server Infrastructure 
(Roth, 2003a) stores the location data and provides 
services to access these data. It mainly consists of a 
federation of so-called location servers, each storing 
a piece of the entire location model. 

The service layer provides higher-level location 
services such as the location resolution and the 
proximity resolution described in this paper. The 
application can specify requirements concerning 
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precision and costs using quality of service parame-
ters (QoS). If more than one positioning system is 
accessible at a certain location, the framework 
selects an appropriate system according to the speci-
fied parameters. A further service of this layer is the 
semantic geocast (Roth, 2003b) which extends the 
original idea of physical geocasting. Trigger services 
inform the application when a certain location was 
reached. A set of security functions protect the users 
and the framework against attacks. 

The application layer contains the actual loca-
tion-aware application or service. A communication 
middleware called Network Kernel Framework 
(Roth, 2002a) was designed for small mobile 
devices such as PDAs or cell phones and offers 
communication primitives to access the servers. To 
develop location-aware Web applications we offer a 
high-level component called PinPoint (Roth, 
2002b). As an example application, we developed a 
Web-based tourist guide with PinPoint. 

3.1 The Nimbus Location Model 

The Nimbus location model contains a formal 
specification of sets which describe locations, a set 
of rules that define the relations between these sets, 
and a set of operations that process location data. 
Even though we express the model independently of 
the later implementation, we strongly considered a 
decentralized storage. Especially the operations 
should be executed efficiently in a distributed fed-
eration of individual servers. 

Semantic Locations: The concept of semantic 
locations heavily influenced our model, thus we start 
with a brief introduction of this concept. The notion 
of semantic locations is not new (Pradhan, 2000): 
besides physical locations such as GPS coordinates 
we can consider semantic locations such as "John's 
office at the university". Physical locations usually 
can be expressed by numbers, semantic locations by 
names. 

Semantic locations are an ideal tool for a number 
of applications, sometimes in combination with 
physical locations. They have important advantages: 
first, they have a meaning to the user; in contrast, 
physical locations usually have no meaning at all to 
most people. Second, they can easily be used as a 
search key for traditional databases, tables or lists 
without the need of spatial databases. 

In this section, we want to relate semantic loca-
tions to physical locations. Let P denote the set of all 
physical locations. We call each coherent area S⊆ P 
a semantic location of P. We further call each set C 
⊆ 2P of semantic locations, a semantic coordinate 
system of P. (2P denotes the power set of P.) Note 
that we do not assume two semantic locations to be 

generally disjoint. A reasonable semantic coordinate 
system C contains semantic locations S with certain 
meanings, e.g. countries, states, cities, districts, 
streets, places, mountains, rivers, lakes, and forests. 

We further introduce a name for a semantic 
location. Let N be the set of all possible names. We 
define a function NAME: C→ N, which maps a 
semantic location to a string. We require names to 
be unique, i.e. NAME(c1) ≠ NAME(c2) for c1 ≠ c2. 
We call a semantic location with its corresponding 
name a domain. For a domain d, d.name denotes the 
domain name, d.c the semantic location. 

In principle, a semantic coordinate system C 
could be an arbitrary subset of 2P that contains 
coherent areas. Looking at real-world scenarios, 
however, we usually find hierarchical structures, 
e.g., a room is inside a building, a building is in a 
city, a city is in a country, etc. Thus, we divide C 
into hierarchies. A hierarchy contains domains with 
a similar meaning, e.g., domains of cities or domains 
of geographical items. Each hierarchy has a root 
domain and a number of subdomains; each of them 
can in turn be divided into subdomains. We call a 
top node of a subhierarchy a master of the corre-
sponding subdomains. We denote m> s for master m 
of subdomain s. Further f  denotes the reflexive and 
transitive closure of > , i.e. d1f d2 if either d1=d2 or 
d1 is a top node of a subtree which contains d2.  

We call a link between a subdomain and its 
master a relation. Relations carry information about 
containment of domains. Hierarchies are built ac-
cording to three rules: 
– The area of a subdomain has to be completely 

inside the area of its master, i.e. if d1> d2 then 
d2.c⊂ d1.c. 

– The name of a subdomain d2 extends the name of 
its master d1 according to the rule 
d2.name=<extension> + '.' + d1.name, where 
<extension> can be an arbitrary string containing 
letters, digits and some special characters. With 
the help of this rule, we can effectively check if 
d1f d2 or d1> d2 with the help of the names. 

– Root domain names of two hierarchies must be 
different. 

Figure 3: Sample hierarchies 

Fig. 3 shows an example with two hierarchies. In 
addition to relations, we use two more links: asso-
ciation and neighbourhood. 

Associations: In principle, the model is now suf-
ficiently expressive to specify realistic sets of se-
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mantic locations and their relationship among each 
other. One important question could be: "Given a 
physical location p, which semantic locations con-
tain p?" E.g., in fig. 3 point p resides in the domains 
A, x.A, y.A, and a.y.A. As a master fully encloses a 
subdomain, the results A and y.A do not carry useful 
information. A useful answer would be x.A and 
a.y.A. 

This so-called location resolution could be per-
formed by browsing through all hierarchies from the 
root down to the smallest domains covering p. This, 
however, would cause a large number of requests 
and in a real infrastructure a considerable amount of 
network traffic. Therefore, we introduce a second 
relationship between domains, the association: 

Two domains d1, d2 are associated, denoted 
d1~d2, if they share an area, i.e. d1.c∩ d2.c ≠ {} (con-
dition 1) and neither d1f d2 nor d2f d1 (condition 2). 
Condition 2 prevents from superfluously linking 
masters to their subdomains as they always share an 
area. Associated domains can be in different hierar-
chies or in the same hierarchy (see fig. 3). Using 
associations, we only need one domain d0 that con-
tains the position p. All domains d~d0 are candidates 
to additionally contain p. In turn, no more domains 
have to be checked, and thus we can avoid the time-
consuming search through all hierarchies.  

We can reduce the number of candidates even 
more because we are only interested in the most spe-
cific domains. If, in the example above, we want to 
know which domains contain the point q, we are 
only interested in the domains y.A and x.B, and not 
in A or B. Taking this into account, we can modify 
condition 1 as follows: associations only link two 
domains, if the shared area is not fully covered by 
their respective subdomains. This leads to the short 
definition d1~d2 iff ( ) ( ) {}21 ≠∆∩∆ dd , where ( )d∆  
denotes the area of d without its subdomains’ area. 

In fig. 3, the shared area of A and x.B is fully 
covered by the domain y.A, thus A and x.B are not 
associated as this link would not carry additional 
information. Starting at x.B we only have to check 
y.A. Note we cannot always reduce the number of 
queries. E.g. starting at y.A we have to check x.B 
and B as there is an area of y.A∩B outside of x.B. 

Neighbourhood: In order to find locations in the 
proximity of a mobile node, an additional type of 
relationship is needed. If a mobile node leaves a 
domain d1, its semantic location changes to a differ-
ent domain d2. Then, d2 is called a neighbour of d1. 
This means that either the areas of the two domains 
overlap but d1 does not contain d2 or the areas have a 
section of the boundary in common. Neighbourhood 
links connect a domain and a subset of its neigh-
bours. The link is unidirectional. In the figures, we 
indicate the direction of links by a dot: if d1 refers to 

a neighbour d2, the dot is shown at the line termina-
tion of d2. 

Two domains are either related or associated, if 
they overlap. In case of an association, no 
neighbourhood link is necessary as they would carry 
the same information. If the domains are related, the 
subdomain is located inside the area of the master 
domain; then, the subdomain can have a neighbour-
hood link to the master domain as the master covers 
the entire border of the subdomain. 

If several neighbours cover an overlapping part 
of the domain border, it is sufficient to link only one 
neighbour as other neighbours can be found by fol-
lowing the association and relation links of the 
neighbour. For the example in fig. 3, the domain a.B 
has the neighbours B, b.B and c.B. As B covers the 
complete boundary, only this neighbourhood link is 
necessary. In the case of b.B, a neighbourhood link 
to a.B and c.B is necessary. 

In the Nimbus framework, we implemented an 
algorithm that searches the neighbours automati-
cally. During the start-up phase of a location server, 
it searches for associated domains. After that, the 
server checks for uncovered sections of the border 
and actively searches domains that cover these sec-
tions. In addition, servers becoming unavailable due 
to, e.g., network problems are automatically recog-
nized and replaced by other neighbours. 

Of course, there are more links conceivable 
between domains. We could, e.g. link two domains, 
if they are connected by a street or a subway line. 
We can store such links as meta data in a domain 
record, but they do not have any influence on the 
infrastructure. For the operations described later, 
relations, associations and neighbourhood links are 
sufficient. 

3.2 The Runtime Infrastructure 

Fig. 4 shows the distributed infrastructure which 
consists of three segments: 

Figure 4: The infrastructure 

The positioning segment contains the positioning 
systems, e.g., indoor positioning systems, satellite 
navigation systems or systems based on cell phone 
networks. The runtime system accesses the posi-
tioning systems through position drivers which al-
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low the change of positioning systems even at run-
time. As many positioning systems provide local 
positioning data, we may need the help of mapping 
servers to transform local locations to global ones. 
Each mapping server is responsible for a specific 
positioning system, e.g., a mapping server inside a 
building may be responsible for the indoor posi-
tioning inside this building. A lookup procedure 
allows the mobile client to find the appropriate map-
ping server for a specific location, called the local 
mapping server (LMS). 

The user segment contains the mobile nodes with 
a runtime system and the mobile part of the location-
based service. We developed a lightweight runtime 
system for the mobile nodes. We shift heavy duty 
tasks to the servers, thus the computational power of 
PDAs or mobile phones is sufficient. 

The server segment contains the location servers 
that store the domain data. Each location server is 
responsible for a specific domain and all subdo-
mains, for which no other location server exists. 
When a mobile node moves to a specific location, it 
automatically looks up an appropriate location 
server for the new domain, called the local location 
server (LLS). The LLS is the representative of the 
infrastructure for a mobile node. As mobile users are 
distributed among different location servers, this 
infrastructure is highly scalable. It can be observed 
that our system does not overload top-level servers. 

We use a lightweight toolkit to process polygo-
nal data (Vivid Solutions, 2003). The toolkit handles 
all geometric operations in the runtime memory and 
can quickly check, if a point is inside or outside a 
polygon. We store domain information using XML 
files in which the most important entry is the poly-
gon specifying the area d.c. We can conveniently 
edit these XML files with the help of a graphical 
domain editor. 

The entire system is self-organizing. A discovery 
procedure presented in (Roth, 2003a) connects the 
server to its domain master and looks up associated 
servers and neighbours. 

3.3 Resolution Operations 

One goal of our approach is to provide uniform 
location information, which is independent from the 
actual positioning system. For each position, we 
want to provide both physical as well as semantic 
locations, even though typical positioning systems 
only offer one type. GPS e.g. offers physical loca-
tions, whereas some indoor positioning systems 
directly produce semantic location output. Having 
both types, the application can choose the appropri-
ate type (or even both types) for the specific operat-

ing condition. We distinguish two resolution opera-
tions: 
– Location resolution: Given a physical location p. 

What domains di contain p? (semantic resolu-
tion). And in turn: Given a semantic location by 
its name n. What is the physical extension d.c of 
the domain d with this name? (physical resolu-
tion) 

– Proximity resolution: Given a physical location 
p. What domains di are inside a certain circle 
around p.  
 
The first kind of resolution is an operation with 

two directions, both concerning the mobile user’s 
current location. We could either ask for the physical 
or semantic location, depending on the location data 
provided by the positioning system. 

The physical resolution is simple, as we only 
have to look up the appropriate domain and return 
d.c. The more complex operation is the semantic 
resolution, as multiple hierarchies and domains may 
be involved. The algorithm can be outlined as fol-
lows: 

 
Look up an arbitrary domain d0 with ( )0dp ∆∈  
names← {d0.name} 
for all d~d0 do  
      if ( )dp ∆∈  
          names← names∪ {d.name} 
return names 
 
If we have an arbitrary domain which fulfils the 

first condition, we efficiently can loop through the 
associated domains. 

3.4 Proximity 

The algorithm described above allows the user to 
find information about his/her current physical and 
semantic location. However, those do not provide 
information about the proximity of the current loca-
tion. Questions like "Where are the closest restau-
rants?" cannot be answered. Therefore, an additional 
proximity algorithm has been defined. 

The basic idea of this algorithm is to search all 
local domains and their neighbours in order to find 
semantic domains that answer the question. The al-
gorithm is required to perform this search automati-
cally and efficiently. The following definitions are 
used: 

A match is a semantic domain that answers the 
question. It is assumed that the test can be performed 
by a filter using the semantic name of the domain. 
This requires that all questions are given in form of a 
regular expression that can be compared to the 
domain name. Assuming a hierarchical structure of 
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domains describing restaurants with the master 
domain restaurant.com, the question mentioned 
before can be written as "Where are the closest 
domains matching *.restaurant.com ?". 

The distance of a semantic domain to the current 
position of the mobile node is defined as the smallest 
physical distance between the current position and 
any point inside the area of the domain. We are 
aware of other notions of distance. E.g. the distance 
to a domain using a train may significantly differ 
from our distance. At this point however, we assume 
that distances can be computed by simply looking at 
the domain area d.c. Other distances may use meta 
data stored inside domain records. 

One assumption is that the complete area is cov-
ered with domains, i.e., there is no location that 
would not have a local location server. In addition, it 
is also assumed that the questions include a search 
limitation on the number of matches and/or on the 
maximal search distance in order to prevent denial-
of-service attacks and erroneous requests from 
causing a high load on the servers. 

The algorithm uses the following strategy:  
1. Set the list of domains to search (D) to contain 

only the local semantic domain. 
2. Beginning of a loop over all domains that have 

not yet been searched. Iterate the following 
points using the domain with the smallest dis-
tance as current domain. 

3. Query the location server of the current domain 
for all its neighbours, subdomains, and associ-
ated domains. 

4. Remove those domains that have been searched 
already from the returned list. 

5. Add all remaining domains to the list D of do-
mains to search. 

6. Apply the filter to the remaining domains. Those 
domains that fulfil the requirement of the filter 
are matches. In case of a match, the master do-
mains of the domain are also tested by the filter. 

7. Determine the distance d of the closest domain 
in D. 

8. If the required number of matches with a dis-
tance smaller than d has been found, the algo-
rithm can terminate successfully. 

9. If the distance d is larger than the search distance 
limit, the algorithm can terminate with an error 
message. 

10. Start the next iteration of the loop in step 2. 
 
Step 3 requires access to other location servers 

across a network. Thus, this step needs a consider-
able amount of time compared to other steps. The 
algorithm ensures that network queries are reduced 
to a minimum (see section 3.6). 

3.5 Proof of Correctness 

In the following, a proof of correctness is sum-
marized. The complete formalism and proof cannot 
be shown due to space considerations but is avail-
able from the authors. 

A proof has to show that the algorithm termi-
nates and produces the correct result. As the matches 
are found in an iterative procedure, it has to be 
shown that all domains are checked during the itera-
tions and that the matches are found such that the 
condition in step 8 returns the correct result. These 
three items will be demonstrated below. 

Termination: The algorithm will iterate over the 
local domains until either the condition in step 8 or 
step 9 is fulfilled. Especially, it is not possible that 
the list of domains to search runs empty as each 
point is covered by a local location server and, there-
fore, each domain can be reached from every other 
domain by a path of neighbours, associated domains, 
or subdomains. 

In order to show the termination of the algo-
rithm, it is sufficient to demonstrate that one of the 
conditions is reached in every case. This is true for 
step 9. As the number of domains per unit of area is 
finite, at some point, all domains within the search 
radius have been reached and the next domain to 
search is outside this limit. 

Finding all domains: As described in the previ-
ous paragraph, there is a path between every pair of 
domains. It can be demonstrated by induction on the 
distance from the local domain that the algorithm 
follows the possible paths in a breadth first search. 
Thus, all domains are searched in the order of their 
distance from the local domain. 

Correctness of the results: As shown above, all 
domains are searched. Therefore, all matches are 
found. As the order of searching is done by distance 
from the current domain, all matches with a distance 
smaller than the distance of the current domain to 
the local domain have been found. Therefore, the 
condition in step 8 ensures that no other matches 
closer than those returned exist. 

3.6 Scalability and Simulation 

It is important to understand the behaviour of the 
algorithm in the case of a large number of domains 
or a large number of requests. 

In order to estimate the latter, the number of que-
ries to remote location servers for each request is 
studied. It is assumed that the number of semantic 
domains covering each point is approximately con-
stant as is the average size of those domains, i.e., the 
number of domains per unit area f is a constant. 
Then, for a search which ends at a distance r, the 
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algorithm has to search 2rf ⋅⋅π  domains. This 
number of queries is minimal for a decentralized 
environment. The size of the queries has been opti-
mized such that all necessary information is trans-
ported with as little overhead as possible. Assuming 
an average length of the semantic domain name of 
50 characters, the size of one query will be approxi-
mately 58 bytes for the request and for the answer 
10 bytes plus 86 bytes for each neighbour returned. 
Please note that this does not take into account the 
overhead due to the TCP/IP protocol. 

Similarly, the memory usage in the mobile node 
has been optimized. An entry in the list of matches 
or domains to search is approximately 66 bytes. The 
number of entries in the list can be estimated using 
the same arguments that were used for the band-
width. At a specific search distance r, all domains 
with a distance smaller than r have been searched. 
Therefore, those are no longer in the list of domains 
to search. Searching those domains has added new 
domains to the list that are directly neighbouring the 
searched domains, i.e., they have a distance that is 
larger than the current search distance by up to the 
size of the domains searched. Assuming an average 
domain size of r∆ , the list contains approximately 

))(( 22 rrrf −∆+⋅⋅π )2( 2rrrf ∆+⋅∆⋅⋅= π  do-
mains.  

A simulation of the behaviour in a realistic envi-
ronment with several differently sized domains in 
several hierarchies has been performed as a large 
scale test. The location server definitions have been 
extracted from the TIGER/Line (U.S. Census Bu-
reau, 2000) dataset from the U.S. Census Bureau. 
This dataset provides area definitions for semantic 
locations, such as political borders (state, county, 
etc.), school districts, shopping centre, parks, rivers, 
etc. From this data set, a subset of about 1300 loca-
tions in the San Francisco Bay Area has been used to 
create configuration files for the location servers.  

Table 1 gives an overview of the variety and 
amount of configuration files created. As the crea-
tion has been automated, the configuration files for 
all of the United States can be created which would 
include 3232 counties and over 50,000 subdivisions. 

In several simulation runs, a selection of the 
location servers has been used to validate the algo-
rithm and determine the number of queries and the 
size of the lists in the mobile node. For our simula-
tions we used five Linux computers inside a LAN 
with up to 1.2 GHz CPUs and up to 512 MB RAM, 
each of which stored a huge number of domains. 
This however conflicts with our original idea of 
decentralized data storage. On the one hand, we 
could not measure long distance network transac-
tions, and on the other hand we overloaded single 
servers. Especially the high memory load caused by 
the number of server processes significantly reduced 

the performance. Due to the limited size of the com-
puting power available for the simulation, no final 
conclusion can be drawn on the real performance in 
a completely decentralized environment. With the 
simulations, however, we verified the algorithms 
and its implementations. The results further confirm 
the estimates given above for the bandwidth and 
memory requirements. 

3.7 Extensions 

Several extensions of the algorithm are planed. On 
the side of the user interaction, the algorithm can be 
setup such that matches are returned to the user 
immediately. This would allow the users to stop a 
search once a successful match is found or to con-
tinue beyond the original search limit if no matching 
domain is reached.  

The use of call-back filters will allow the use of 
information other than the semantic domain name 
for describing the filter.  

Bauer et al. (2002) proposed additional symbolic 
links to express topological aspects or to express 
proximity, which may be different from geometric 
distance. Based on this idea, adding neighbourhood 
links according to, for example, bus routes connect-
ing different domains could lead to a distance meas-
ures such as travel time. However, those links can no 
longer be established by the algorithm but have to be 
added to the location server configuration files. 

 
Table 1: Overview of the type and number of the domain 

definitions extracted from the TIGER/Line files 
Semantic Name Number & Descript. 

county.ca.us 4 Counties in California 
name.county.ca.us 14 Subdivisions of counties 
name.place.ca.us 67 Place (e.g. city) 
name.amusement-center.com 6 Amusement centres 
name.apartment.com 28 Apartment complexes 
name.shopping-center.com 277 Shopping centres 
name.airport.transport.com 7 Airports 
name.train-station.transport.com 1 Train station 
name.winery.com 4 Wineries 
name.library.com 90 Libraries 
name.elementary.district.school.edu 46 Elementary school district 
name.secondary.district.school.edu 9 Secondary school district 
name.unified.district.school.edu 15 Unified school district 
name.individual.school.edu 174 Schools 
name.golf-course.geo 22 Golf courses 
name.island.geo 8 Islands 
name.lake.geo 178 Lakes 
name.river.geo 28 Rivers 
name.park.geo 271 Parks 
name.center.gov 4 Government service centres 
name.medical.org 6 Hospitals 
name.institutions.religious.org 6 Churches  
name.cemetery.religious.org 33 Cemeteries 
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4 CONCLUSION AND FUTURE 
WORK 

In this article we introduced resolution operations 
which provide unique location data independent of 
the underlying positioning systems. We took into 
account the distributed storage of location data in a 
decentralized federation of location servers. 

Developers of location-based services and appli-
cations can use the Nimbus framework as a platform 
and do not have to deal with position capturing and 
resolution. As the corresponding infrastructure is 
self-organizing and decentralized, it is highly acces-
sible and scalable. 

The framework provides methods to find all 
semantic domains at the current position. In addi-
tion, proximity searches of the type "Where is the 
closest restaurant?" are also supported. The data for 
those searches is inferred from the semantic domain 
name. This allows the Nimbus framework to answer 
those queries without a central database or compli-
cated configurations on the server side. The algo-
rithm is open and easily extendable to more compli-
cated queries. 

Finally, the whole system has been implemented 
and tested using several hundred location server con-
figurations. A tool has been developed that allows 
the automated creation of the XML configuration 
files using the TIGER/Line dataset published by the 
U.S. Census Board for the United States. Tests 
established the scalability and correctness of the 
algorithms. 
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