
LETTER TO THE EDITOR1

In their recent article [1], Al-Ahmad and Steegmans elaborate on a variant of inheritance they
call specialization inheritance and its implementation through new OOPL features. To moti-
vate their approach, they resort to a popular example involving rectangles and squares, which
in the past has led to lengthy discussions (cf, eg, [2]).

In their recent book, D’Souza and Wills, regular columnists to this Journal, state:

It is now widely accepted good practice that nearly every class should either be an ab-
stract class (prohibited from having instances but possibly with a partial implementa-
tion) or a final class (prohibited from having extensions). [3]

I do not know why they say this, but let us, for the moment at least, subscribe to this point of
view.

Following the quoted principle, the class hierarchy of Figure 1 should be transformed to that
of Figure 2. Clearly, this leads to significantly more classes and therefore seems to counteract
the idea of code reuse, the primary objective of Al-Ahmad and Steegmans. However, as it will
turn out, it paves the way for an implementation that is elegant, conceptually sound, and readi-
ly realized. Let us see.

ClosedFigure
 Quadrangle
 Parallelogram
 Rectangle
 Square
 Ellipse
 Circle

ClosedFigure
 Quadrangle
 Parallelogram
 Rectangle
 Square
 NonSquareRectangle
 NonRectangularParallelogram
 OtherQuadrangle
 Ellipse
 Circle
 NonCircularEllipse
 OtherClosedFigure

Figure 1: Class hierarchy used
as an example in [1];
subclasses indented

Figure 2: Same as Figure 1 with
necessary final (leaf) classes added;

abstract classes in italics

Because the intrinsic regularity of the more specialized subclasses of closed figures lets them
make do with fewer instance variables than their more general ancestors, it is a good idea to
start designing the classes bottom up. Therefore, we assign one instance variable, a, which is
to denote the length of one side, to class Square, and two instance variables, a and b, to class
NonSquareRectangle which are to hold the different side lengths of the instances of all other
rectangles.

Quite obviously, Square and NonSquareRectangle share the instance variable a, which can be
factored out to Rectangle. Note that leaving b in NonSquareRectangle saves us from having
to drop it from the definition of Square, which is a major concern in the work of Al-Ahmad
and Steegmans. However, it also leaves us with a class hierarchy with which no access to side
b is possible for non-square rectangles assigned to a variable of type Rectangle.

The remedy is simple. We just add virtual access methods to side b in class Rectangle, and im-
plement them as access to b in class NonSquareRectangle and as access to a in class Square.
Doing so is conceptually sound as squares are indeed rectangles that have four sides all of

1 appeared in: Journal of Object-Oriented Programming 12:2 (May 1999) 8–9.

which are of equal length (access to sides c and d would, presumably, be required by inheri-
tance from class Quadrangle). At the same time it allows us to define and implement class-
typical operations, including Surface, in class Rectangle without any need for overriding in its
subclasses. This may be considered elegant.

Accessing instance variables through access functions is generally considered good practice. It
is enforced in Smalltalk and suggested by special language constructs in Delphi (in the form of
properties) and Java (through interfaces, which do not declare instance variables). Virtual ac-
cess methods are also the key to the solution offered by Al-Ahmad and Steegmans; however,
their adhering to the class hierarchy of Figure 1 forces them to introduce new language con-
structs that will not be easy to establish. By contrast, the approach presented here should be
readily implementable in any OOPL.

While some conceptual aspects worthy of consideration could be added [2], a few other points
made by Al-Ahmad and Steegmans need clarification.

It is enforced, either statically through compile-time errors or dynamically through run-
time errors, by every OOPL I know about (and by any theory of OOP, for that matter)
that all instances compatible with a certain type obey the protocol specified by that type,
ie, respond to the messages listed in the declaration of the type. While there are compel-
ling theoretical reasons for this [4], it also has an important practical implication: it en-
sures safe extensibility of programs. In C++, types are implicitly defined by classes, and
the instances assignment compatible with a type are the instances of the defining class
and all its subclasses (principle of substitutability). Java goes one step further and adds
separate type definitions, called interfaces, that classes may choose to implement inde-
pendent of the class hierarchy. The suppression of operations in subtypes, however, is a
highly questionable desideratum.
It is generally agreed that the extension of every subtype (ie, the set of instances that are
assignment compatible with that type; note the overloading of the term extension) is a
subset of the extensions of all its supertypes [4, 5]. This guarantees the substitutability of
instances of subtypes for instances of its supertypes; it is the principle behind inheritance.
That the intension (ie, the specification or declaration) of one subtype is an extension (in
the sense that it adds more code) of that of its supertype, while the intension of another
subtype is a restriction (in the sense that is restricts the types of members), is an entirely
different pair of shoes. It is even possible that the declaration of a subtype is both and
extension and a restriction of the declaration of its supertype [4]. Therefore, in the con-
text of subtyping the distinction between extension inheritance and specialization inheri-
tance is conceptually meaningless (even though it may have some implementational
import).
While the type of 3D points is indeed an extension of the type of 2D points in the spirit
of [6], it should not be considered a subtype, simply because semantically the set of 3D
points is not a subset of the set of 2D points. Any OOD making this kind of assumption
is likely to run into serious trouble (because substitutability is not enforced by the se-
mantics of the types).

Personally, I consider the design principle quoted at the beginning of this letter, especially if
combined with single inheritance, extremely helpful, basically because

it makes class hierarchies represent conceptually clean, strict partitions of the problem
domain (taxonomies); and
it provides the skeleton for practically appealing implementations, even under the per-
spective of code reuse.

•

References
[1] W Al-Ahmad, E Steegmans “Improving support for specialization inheritance” Journal of

Object-Oriented Programming 11:8 (1999) 29–36.
[2] JA Grosberg “Comment on objects considered harmful” Communications of the ACM 36:1

(1993) 113–114.
[3] DF D’Souza, AC Wills Objects, Components and Frameworks with UML (Addison-Wesley

1998) 146.
[4] P Wegner “The object-oriented classification paradigm” in: P Shriver, P Wegner (eds) Research

Directions in Object-Oriented Programming (MIT Press 1987) 479–560.
[5] DM Papurt “Generalization and polymorphism” Report on Object Analysis & Design 2:5 (1996)

13–16.
[6] N Wirth “Type extensions” ACM Transactions of Programming Languages and Systems 10:2

(1988) 204–214.

Address for correspondence:

Dr. Friedrich Steimann
Institut für Rechnergestützte Wissensverarbeitung
Universität Hannover
Lange Laube 3
30159 Hannover
Germany

steimann@acm.org

