
The Family Pattern *

Friedrich Steimann
KBS, Universität Hannover

Lange Laube 3, 30159 Hannover, Germany
steimann@acm.org

Abstract: Families are groups of classes that are related by genus, that is, by having one
common ancestor. Typical examples of families are numbers, collections and geometrical
shapes, which are usually realized as subhierarchies of a global class hierarchy. The
Family pattern adds virtual instance creation to these subhierarchies and suggests that
certain operations on family members should be implemented as factories returning in-
stances of the appropriate type. Thus, the pattern ensures that clients of the family are al-
ways provided with instances that best suit their needs.

When studying the current literature on object-oriented design one cannot help but get the im-
pression that class hierarchies, deep ones especially, have seriously fallen into disrepute.1 This
is a little surprising because since the time of Aristotle class hierarchies have served to struc-
ture our view of the world, and they have served their purpose well.2 The recent resurgence of
interest in ontology in the general context of modeling3 underlines the apparent indispensability
of type subsumption hierarchies in all knowledge structuring efforts.

Object-oriented design deals with creating software models of the real world; therefore, class
hierarchies should have their rightful place in such models. The Family pattern describes a use
of class hierarchies that is conceptually clean and practically foolproof, independent of the
depth of the hierarchy and the number of classes involved.

Motivation

Certain types are naturally abstract, i.e., there are no instances of these types that are not in-
stances of one of their concrete subtypes. For example, the instances of type Number must be
instances of Real , Integer , or of any other concrete subtype of Number. Together, these
types form families in the sense that they all are related by a common ancestor, the root of the
family or paterfamilias, which specifies the properties shared by all its descendants. It is a
natural, but not necessary, condition that only the leaf classes of families have instances; in
biology, for example, there is no mammal that is not an individual of one concrete species.
Likewise, every instance of class Party must either be a Person or an Organization .4

Usually, every type of the family has unique properties that distinguish it from its relatives. (In
fact, the differences are the only reasons to specify subtypes.) And yet, there are many situa-
tions in which a client need not see nor care about (unless it desires to) the distinction between
the different types — it simply requires that the instance it uses behaves as expected, that is,
conforms to the interface specified by the abstract type, the root of the family. Such situations
arise

when the client deliberately wants to remain unspecific about the concrete type of the in-
stance it resorts to (e.g., if it wants to speak of a party without saying whether it is actu-
ally a person or an organization); or
if the instance is to undergo a series of transformations the outcome of which, although
guaranteed to fall in the same family, can be of varying type.

Note that the former does not require that the root of a family such as Party should have in-
stances of its own; rather, a person as well as an organization will do wherever a party is re-
quired (principle of substitutability). Examples of the latter occur when using a hierarchy of
geometrical shapes (consisting of rectangles, squares, circles etc.) that undergo operations

* to appear in: Journal of Object-Oriented Programming (2001).

such as stretching and shearing; numbers (complex, real, rational, integer and natural)
combined by the usual arithmetic operators; and collections (set, bag, sequence, ordered se-
quence etc.) which can be sorted, concatenated, and so forth.

An example

Numeric constraint satisfaction problems (NCSPs) involve variables the exact values of which
are unknown, but are constrained by conditions (that, together with the variables, constitute
the NCSP). Rather than being bound to a concrete value, a variable of a NCSP is therefore as-
sociated with a set of possible values (called its range restriction), which is usually a subset of
the set of reals. Typically, these subsets are intervals, but attempts to solve a NCSP through
repeated application of interval-manipulating operations may lead to restrictions that are non-
contiguous5. An analysis of the problem leads to a class diagram like the one shown in Figure
1; the hierarchy rooted in the SubsetOfReal class is the SubsetOfReal family, and class
Variable is a client of this family.

Figure 1: Class diagram of the SubsetOfReal family and its use by a client (in UML). LTE means less than
or equal, i.e. the interval form negative infinity to an upper bound; GTE is defined accordingly.

Instance creation. Suppose the range of a variable must be restricted to the interval .[−1, 1]
Such an interval is obtained by a call to a suitable constructor,

SubsetOfReal.interval(-1, 1)

returning an instance of class ClosedInterval . The call
Interval.interval(-1, 1)

should have the same effect since all SubsetOfReal.interval would do is call Inter-
val.interval and return its result (Figure 2). The decisive difference is that in the former
case, the client need not know about the existence of class Interval (or Clo-
sedInterval , for that matter) — the principle of substitutability entails that all subclasses
can remain hidden behind SubsetOfReal as long as it declares all the required operations.
Note that constructors are virtual6 since their return type may vary. For example,

Interval.interval(NEGATIVE_INFINITY, 1)

would return an instance of class LTE (less than or equal), which would also be obtained by
calling

LTE.lTE(1)

(Figure 2). MultiInterval , which is the catch-rest class of the family, does not have a
public constructor of its own; its instances are created as a result of operations performed on
other classes' instances.

SubsetOfReal

MultInterval Interval EmptySet

SetOfReals LTE GTE ClosedInterval Singleton

Variable

F STEIMANN: THE FAMILY PATTERN

2

Figure 2: Creator methods for the SubsetOfReal family (in JAVA)

Operators as factories. In the course of the solution of a NCSP, the ranges of the variables
are further restricted, usually by repeatedly intersecting them with other ranges. However, this
may entail a change of the range's type. For example, intersecting the LTE with the(−∞, 1]
GTE results in the ClosedInterval and, when subsequently intersected with[−1,∞) [−1, 1]

, in the Singleton . This poses two conditions on the implementation. First, in[1, 2] {1}
object-oriented programming languages that do not allow dynamic reclassification (the migra-
tion of an instance from one class to another), the intersection method must return a new in-
stance of the appropriate type which replaces the variable's original range. Second, this type
cannot be predicted statically, because it is not only determined by the types of the operation's
operands, but also by their values. Therefore, the implementation of intersection must be that
of a factory.7

Table 1 shows the signatures of the overloaded methods (including possible return types) that
are to be implemented for the union and intersection operations of the SubsetOfReal fami-
ly. In a JAVA implementation, every cell corresponds to one signature, the return type being the
least common supertype of the cell's entries. Note that the inherent regularities (both operators
are commutative; the set of reals and the empty set are neutral with respect to intersection/u-
nion; etc.) allow a reduction in the (otherwise combinatorial) number of signatures to be
declared.

public abstract class SubsetOfReal {
 ...
 public static Interval interval(double lower, double upper) {
 return Interval.interval(lower, upper);
 }
 ...
}

public abstract class Interval extends SubsetOfReal {
 ...
 public static Interval interval(double lower, double upper) {
 ...
 if (lower == Double.NEGATIVE_INFINITY)
 return LTE.lTE(upper);
 ...
 // else
 return ClosedInterval.closedInterval(lower, upper);
 }
 ...
}

public final class LTE extends Interval {
 ...
 public static LTE lTE(double upper) {
 return new LTE(upper);
 }
 ...
}

public final class ClosedInterval extends Interval {
 ...
 public static ClosedInterval closedInterval(double lower, double upper) {
 return new ClosedInterval(lower, upper);
 }
 ...
}

F STEIMANN: THE FAMILY PATTERN

3

Table 1: Overloading of union and intersection operators and their possible return types (R = SetOfReals ,
M = MultiInterval , L = LTE, G = GTE, C = ClosedInterval , S = Singleton , E = EmptySet).

union E S C G L M R

R R R R R R R R R R

M M R, M R, M, L, G, C R, M, G R, M, L R, M, L, G M, L, G, C, S, E M M

L L M, L M, L R, M L L M, L, C, S, E L L

G G M, G M, G G G C, S, E M, G, C, S, E G G

C C M, C M, C C, S, E C, S, E C, S, E M, C, S, E C C

S S M, S S, E S, E S, E S, E S, E S S

E E E E E E E E E E

E S C G L M R intersection

For domains such as numbers the fact that operations leave the states of their operands un-
changed and instead return other instances is natural, since all instances are pre-existing and
have no state. Typical examples of this are the Boolean and Number families from the
SMALLTALK class hierarchy, excerpts of which are listed in Figure 3.

Object subclass: #Boolean

Boolean methods

isBoolean
 ^true

Number subclass: #Integer

Integer methods

/ aNumber
 | numerator denominator gcd |
 aNumber class == Float
 ifTrue: [^self asFloat / aNumber].
 numerator := self * aNumber denominator.
 (denominator := aNumber numerator) < 0
 ifTrue: [
 denominator := 0 - denominator.
 numerator := 0 - numerator].
 (gcd := numerator gcd: denominator) = denominator
 ifTrue: [^numerator // gcd]
 ifFalse: [
 ^Fraction
 numerator: numerator // gcd
 denominator: denominator // gcd]

Boolean subclass: #False

False methods

& aBoolean
 ^false

eqv: aBoolean
 ^aBoolean not

not
 ^true

| aBoolean
 ^aBoolean

Boolean subclass: #True

True methods

& aBoolean
 ^aBoolean

eqv: aBoolean
 ^aBoolean

not
 ^false

| aBoolean
 ^true

Figure 3: Excerpts of the Boolean and Number families from the SMALLTALK
8 class hierarchy. Note that the

result of division defined in class Integer can have three different types: Float , Integer , and Fraction .

In other domains, however, operations are typically envoked to alter the state of an instance
while keeping its identity. For example, the stretching of a rectangle that is a design element in
a CAD document should retain the rectangle's identity, even if it so becomes a square. Imple-
menting the different shapes as a GeometricalShape family (with Rectangle and
Square as subclasses) seems natural, but leads directly to the instance migration (also called
transmutation1) problem. Here, an additional class, DesignElement , can be introduced that
mirrors the interface of SubsetOfReal . Each instance of this class holds an instance of Geo-
metricalShape and delegates all geometrical transformations to this instance.9 The CAD
document can then be made up of design elements rather than geometrical shapes.

Where is the pattern?

The Family pattern is a complete subhierarchy (a class and all its descendants) that, for most
cases, remains hidden behind the abstraction provided by the root of the hierarchy, the pater-
familias. The root declares all family-typical operations including instance creation for all con-
crete subclasses — it specifies the most general interface to the family that should be sufficient
for all ordinary uses. More intimate knowledge of the subtree is necessary only when more
specialized services are needed which are introduced by some subdivision of the family. In all

F STEIMANN: THE FAMILY PATTERN

4

other cases, the client can rely on the paterfamilias to pick the member that serves its purpose
best.

Instance creation is provided by virtual constructors defined with the root, and the concrete
type of the created instance is determined by the constructor and the parameters of construc-
tion. All operations on the family's instances specified in the interface of the root are closed in
the sense that the result is guaranteed to be a member of the family; yet it can be of varying
type. Therefore, the family pattern frequently co-occurs with the envelope/letter idiom6 and
delegation1.

A family can comprise subfamilies. For example, the SubsetOfReal family of Figure 1 sub-
sumes the Interval family. A client needing an interval (and not any other type of subset)
can directly turn to class Interval . However, Interval is not closed under the union and
intersection operations, so that in the given example it is only of limited use.

Families offer different implementations of the same abstract data type. Therefore, the pattern
is most useful when subtypes differ for representational or computational, not conceptual is-
sues. Examples in this vein are the selection of a user interface depending on the number of
data items to be presented, and the choice of the Fourier transform best suited to process the
given data.10 Yet there are many uses of the pattern in which the concrete types of the family
differ conceptually. For example, the Collection family contains ordered and unordered se-
quences, and the concatenation of two ordered sequences is again a sequence, but not neces-
sarily an ordered one. Similarly, the association of two persons is an organization, as is that of
a person and an organization and the merger of two organizations.

Discussion
Two points are worthy of mention. First, one may argue that a suitable representation of
multi-intervals (which are the most general of all forms of subsets of reals) is sufficient to cov-
er all concrete classes of the SubsetOfReal family, thereby reducing the number of classes
from nine to one and the number of operator implementations (for union and intersection) ac-
cordingly. However, since this class would have to cover all, special and general cases, its im-
plementation will most likely be clumsier and, on average, computationally more expensive. In
fact, in an effort to reduce the drawbacks of a single class implementation one might even end
up implementing Table 1 as a set of nested switch statements. The Family pattern, on the other
hand, breaks down the complexity of the problem into manageable chunks and distributes the
code over different classes, each providing its own, optimized data structure thus allowing the
code to be further simplified. The implementation of the Boolean type in SMALLTALK (Figure
3) is an illuminating, albeit trivial, example of this.

The second point is rather subtle. Purists might argue that SetOfReals should not be a sub-
class of SubsetOfReal , since the set of reals is really the superset of every subset of the
reals and subclasses should stand for subsets, not supersets, of what their superclasses stand
for11. However, while the class SubsetOfReal represents the set of all possible subsets of
the set of reals (including the set of reals itself), all other classes of the family represent subsets
thereof. In particular, the classes SetOfReals and EmptySet represent singletons since they
have only one element (instance), namely the set of reals and the empty set, respectively. Thus,
SetOfReals must be a sublcass of SubsetOfReal .

F STEIMANN: THE FAMILY PATTERN

5

1 P Coad, M Mayfield Java Design: Building Better Apps & Applets 2nd Edition (Yourdon Press, 1999).
2 JF Sowa: Conceptual Structures: Information Processing in Mind an Machine (Addison-Wesley, 1984).
3 W Swartout, A Tate “Ontologies” special section in IEEE Intelligent Systems (January/February 1999).
4 M Fowler Analysis Patterns: Reusable Object Models (Addison-Wesley, Menlo Park 1997).
5 E Hyvönen: “Constraint reasoning based on interval arithmetic: the tolerance propagation approach”

Artificial Intelligence 58 (1992) 71–112.
6 JO Coplien Advanced C++ Programming Styles and Idioms (Addison-Wesley, Massachusetts 1992).
7 F Steimann “Abstract class hierarchies, factories, and stable designs” Communications of the ACM (in

press).
8 Smalltalk Express (freely available for download on the Internet).
9 the envelope/letter idiom as described by Coplien6; cf. also delegation in JAVA

1.
10 JW Cooper: “Using design patterns” Communications of the ACM 41:6 (1998) 65–68.
11 DM Papurt “Generalization and polymorphism” Report on Object Analysis & Design 2:5 (1996) 13–16.

F STEIMANN: THE FAMILY PATTERN

6

