
Interfaces are a prominent OO programming concept, since they
allow the decoupling of specification and implementation. Roles,
on the other hand, are a popular OO modeling concept. For exam-
ple, UML has rolenames, classifier roles, association roles, and
association end roles. Although roles and interfaces appear un-
related at first glance, it is shown that they have much in com-
mon—in fact, with a few changes in definition, the two concepts
can be merged into one.

It has been noted over and over that certain classes found in
OO designs are not really classes, but roles. Typical examples
are Customer, Employee, Passenger, etc. (roles of persons)

and Product, Commodity, Asset, etc. (roles of things). Roles,
unlike classes, have something dynamic about them; for example,
through the course of its lifetime, an instance of class Person
may successively become a student, an employee, and a retiree.
Also, unlike with classes, belonging to (or playing, to stick with
the role metaphor) several roles simultaneously is not unusual
for the instances of certain classes: a person may simultaneously
be a customer, a supplier, an employee, and a stockholder, per-
haps a parent, and many other things too.

It has been criticized that mainstream OO programming lan-
guages lack the possibility of dynamic and multiple classification.
However, this is not quite true. In fact, it is untrue, depending on
how classification is defined. If it is defined as an object being an
instance of a class, then dynamic classification (i. e., the change
of classes after the instance has been created) is not possible in
statically typed programming languages like C++ and Java, and
multiple classification is limited to the object’s being an instance
of a certain class and all its superclasses. If, on the other hand,
classification of an object is defined as that object belonging to
the dynamic extent of a certain type, i.e., as being assigned to a
variable of that type, then classification is both multiple and dy-
namic: multiple, because in languages such as Java instances of a
class can not only be assigned to variables declared of this class
and its superclasses, but also to variables declared of the interfaces
the class implements; and dynamic, because the object joins and
leaves the dynamic extents of types (the “classes,” in the sense of
classification) by means of assignment and substitution. The only
restriction on dynamicity is that it must be statically enabled by the
type (class and interface) declarations of a program. Such a re-
striction makes sense since dynamic classification is subject to cer-
tain natural, static conditions. For example, a piece of equipment
should not be classified as an animate, no matter how dynamic
dynamic classification is.

The Unified Modeling Language (UML) does not commit it-
self to either static or dynamic nor single or multiple classifica-

tion. Nowhere in the UML specification does this become as clear
as in the context of collaborations: a classifier role is a classifier
like a class or interface, but “since the only requirement on con-
forming instances is that they must offer operations according to
the classifier role, as well as support attribute links correspond-
ing to the attributes specified by the classifier role, and links cor-
responding to the association roles connected to the classifier role,
they may be instances of any classifier meeting this requirement.”1

In other words, a classifier role allows any object to fill its place in
a collaboration no matter what class it is an instance of, if only
this object conforms to what is required by the role. Classifica-
tion by a classifier role is multiple since it does not depend on the
(static) class of the instance classified, and dynamic (or transient)
in the sense above: it takes place only when an instance assumes a
role in a collaboration.2

This suggests that roles, like classes, classify objects, but unlike
with class-based classification, role classification is multiple and,
depending on definition, dynamic. It also suggests that roles are only
partial specifications of the objects playing them. These objects
can usually play several roles and accordingly have many partial
specifications that all add to the total specification of the classes they
are an instance of. Finally, it suggests that a role can be played by
instances of different classes that are not related by inheritance
and, in particular, that role playing is independent of implemen-
tation. Now if all this is really the case, then the properties of roles
are the very properties of interfaces (interfaces as types, in the
sense of Java and UML), and roles and interfaces are largely the
same concept.

ROLES AND INTERFACES IN OOP

In the introduction of their seminal book on design patterns,
Gamma put forward the “program to an interface, not an imple-
mentation” principle that they paraphrase as follows: “Don’t de-
clare variables to be instances of particular concrete classes. In-
stead, commit only to an interface defined by an abstract class.”3

The authors note that this principle is a common theme of the
design patterns they describe; others have later observed that most
classes involved in the patterns are not really classes, but roles.4

A suggestion similar to that of Gamma is made by D’Souza
and Wills in their Role Decoupling pattern: “Declare every
variable and parameter with an abstract type written for that
purpose.”5 The rationale behind this recommendation is that only
a few classes utilizing other classes (via instance variables) or col-
laborating with them (in operations) need access to all of the
other classes’ functionality. Rather, the access can be restricted
to the features actually required, and this restriction is best real-
ized by declaring variables and formal parameters as interfaces

Friedrich Steimann

Role = Interface: A Merger of Concepts

www.joopmag.com October/November 2001 Journal of Object-Oriented Programming 23

jop10SteimannV1.qrk 11/16/01 9:15 AM Page 23

rather than classes. Doing so results in the decoupling of classes;
it is picked up by UML in the form of interface specifiers (see
below) placed at association ends. However, unlike UML and
Gamma, D’Souza and Wills explicitly refer to the decoupling
interfaces as roles.

The “program to an interface, not an implementation”3 prin-
ciple is quite old. By separating the interface specifications of ab-
stract data types from their implementations, CLU (a language
from the 70’s) allows the abstract data types (called clusters) of a
program to be compiled separately and still be statically checked
for type correctness. What is rather new, however, is the idea that
interfaces might be only partial specifications of classes, specifi-
cations that highlight one particular aspect or usage of a class, and
that roles are the appropriate conceptual abstraction for this.6

Even though it may not be reasonable to introduce a new in-
terface for every variable in use, there are good reasons to divide the
total interface of a class into several (possibly overlapping) facets.
One is that substitutability of the supplier class (the one whose in-
stances are assigned to the variable) depends on its use. It is the
particular usage of the class that rules over which other classes’ in-
stances can step in to replace those of the original supplier. Con-
sequently, all and only these classes (together with the original sup-
plier class) should be comprised under one interface, which should
be well distinguished from interfaces resulting from uses of the
class, and comprising other substitutive classes. For instance, when
it comes to making a decision, a person may be replaced by an Ar-
tificial Intelligence (AI) program (both playing the Decision-
MakingAgent role), and when it comes to signing a contract, a per-
son may be replaced by an organization (both playing the Contractor
role). DecisionMakingAgent and Contractor are interfaces or
roles of Person, and a variable’s declaration as being of one or the
other type depends on the particular use of that variable. (In case
the variable is used for both purposes, perhaps there should be a
common superinterface of the two.) There is a broad span between
having one interface per class (to separate interface and imple-
mentation) and having one per variable with that class as a supplier;
as always, the golden mean lies somewhere in between and de-
pends on the particular problem. As a rule of thumb, designers
may be guided by testing whether the interface they are about to in-
troduce conceptually is a proper role of the problem domain.

Other authors also advocate the program-to-an-interface strat-
egy, but have a different understanding of roles. For example,
whereas Passenger is typically recognized as a role and Person as
its role-player class, Passenger may itself be viewed as a class hav-
ing instances of its own.7 A passenger is then represented by a pair
of instances, one of Passenger and one of Person. Request to a
person as a passenger must be directed to the Passenger instance,
while requests to a passenger as a person must be directed to the Per-
son instance. Persons and passengers can delegate tasks to each
other, but if one is to substitute for the other, they must both im-
plement the same interface. Although this interface can be the
role’s, interfaces and roles are not the same concepts.

Still others define a pattern of roles and role models and sug-
gest it mainly as a solution to the aforementioned current OO pro-

gramming languages lack of support for dynamic and multiple
classification.8 As in the Person/Passenger example above, the pat-
tern separates the role from the class that takes the role, the role
model, and represents both as instantiable classes. In addition,
role classes can be arranged in a hierarchy (the role hierarchy) and
serve as role models for other roles. However, since patterns typi-
cally consist of roles,4 modeling roles as patterns is prone to be cir-
cular. Role and role model are themselves roles (of classes); and
the fact that a role can be the role model of other roles means this
class plays both roles (role and role model).

ROLES AND INTERFACES IN UML

In the wake of Java, interfaces have become a prominent OO
programming concept. It even appears that interfaces are
recognized as the key contribution of Java as a general-purpose
programming language. However, to ensure that interfaces are
properly designed into OO programs from the beginning, a suit-
able conceptual abstraction that blends well with other OO mod-
eling concepts is needed. Roles, it seems, are such an abstrac-
tion, and although roles and interfaces each have their place in
OO modeling, one may argue that the two concepts should re-
ally be only one.

The interfaces of UML are largely the interfaces of Java. Roles,
on the other hand, are a different concept in UML: They ap-
pear as rolenames naming the places of relationships (the associ-

ation ends in UML jargon) and as collaboration roles representing
the participants of a collaboration (interaction). These two no-
tions are inherited from the ER diagram and OO methods such
as OORAM,9 respectively, and are mostly independent of each
other.

Figure 1 shows an excerpt of UML’s metamodel as com-
piled from the original specification.1 For the sake of concise-
ness, classifiers other than Class and Interface are omitted;
the complete list can be found in Rumbaugh.2 It must be noted,
however, that much of UML’s complexity (and much of its im-
precision) is due to this generalization and the resultant gener-
icity; therefore, the correctness of the following and all other ar-
gumentation critically depends on what is under the classifier
term. Also notice that AssociationClass, the common sub-
class of Association and Class has been omitted; although a
handy modeling concept, it entails certain consistency prob-

24 Journal of Object-Oriented Programming October/November 2001 www.joopmag.com

R O L E = I N T E R F A C E : A M E R G E R O F C O N C E P T S

GeneralizableElement Generalization

Association

AssociationRole

AssociationEnd

AssociationEndRole

Class Interface

Classifier

ClassifierRole

1 child generalization *

specialization *1 parent

1 type

1 type

0..1 base 0..1 base

2..*

2..*

1..*

base * specification

*

*

**
* *

Figure 1. An excerpt of the abstract syntax forming the structural part
of the UML metamodel.

jop10SteimannV1.qrk 11/16/01 9:15 AM Page 24

lems that are not dealt with here.
Quite obviously, numerous constraints are necessary to restrict

the possible instantiations of this metamodel to those that make
sense. In particular, it must ensure that certain types of classifiers
do not appear in certain contexts; for instance, it must be ex-
cluded that a classifier role specifies another classifier role as its
base, or that an association mixes classes and classifier roles. Of
course this is not a real problem, but a number of other things
deserve attention.

• The rolename is not an independent concept, but manifests
itself in the name attribute of AssociationEnd (not shown),
which captures, among other things, multiplicity and naviga-
bility information of an association end.

• While an association end itself is not a role in UML, Associ-
ationEnd, as well as Association and Classifier, have spe-
cializations that are Roles. Of these, only AssociationEndRole
has an (inherited) attribute that is referred to as a rolename.

• Each association end can specify one or more classifiers as in-

terface specifiers (mapped to the specification pseudo-attribute;
see Figure 1), which restrict access to the instances of the clas-
sifier across the association. In a way, these interface specifiers
parallel the specification of base classifiers with a classifier role;
but despite the symmetric structure of the metamodel, this
parallelism is unapparent. Whereas an association end has
two ways (namely the type and the specification pseudo-at-
tribute) to constrain the set of instances that can engage in an
association, an association end role, which is by definition a
restriction of its base association end, has three: two via its
base (base.type and base.specification) and one via its as-
sociated classifier role (type.base). A fourth, via the interface
specifiers that would be inherited from AssociationEnd
(specification.base), is dropped, presumably because it is
considered colliding with specifying base classifiers. How-
ever, inconsistencies between the remaining three paths are
possible and must be avoided in order that some instances
can actually play the role.

• Interfaces have no specific use in the UML metamodel — in-
stead, the more general Classifier (including classes) is con-
sistently (ab) used to specify interfaces (as interface specifiers
and as the bases of collaboration roles) where the use of the
Interface concept is in place.

It seems that roles add much complexity to UML, but without
roles, UML, like most of its precursors, is not expressive enough
to address certain modeling problems. Different occurrences of
the same class in one association or collaboration must be distin-
guished, and roles are the natural concept to do so. Collabora-
tions, but also associations, can have alternative classes connect
to one association end; in such cases, an ad hoc specification com-
prising only the allowed classes is preferable over the specification
of a generalization (an abstract class) introduced only for that pur-
pose. Also, in a collaboration only certain aspects of the objects
involved are actually required, so specifying a particular class would

be overly specific. Indeed, to maintain the genericity of the model,
the use of objects in a collaboration should be explicitly restricted
to the aspects needed, and instances of different classes should be
allowed to substitute for each other as long as they conform to the
role specification set by the collaboration. In essence, it appears
that program-to-an-interface is also a valid maxim for OO mod-
eling; and classifier roles in collaborations, thus interface specifiers
at association ends. The question is: Is the current UML meta-
model the best implementation of this maxim?

THE MERGER

As it turns out, much of the confusion surrounding the role of
roles in UML can be avoided by making a few fundamental com-
mitments. These are:

1. The metaclasses Interface and ClassifierRole are merged into
a new metaclass Role. The restrictions regarding interfaces in
UML (that they cannot have attributes or occur in other places
than the target ends of directed associations) are dropped.
Class and Role are strictly separated—while classes can be in-
stantiated (unless of course they are abstract), roles can not.
Also, classes and roles are generalized separately.

2. The association between classifier roles and their base classi-
fiers is replaced by a new relationship, named populates, that
relates classes with the roles their instances can play. (It is con-
venient to speak of a class as populating a role and of an in-
stance as playing a role. It is important that these are distin-
guished: populating corresponds to the subclass relationship
among classes, while playing correseponds to the instance-of
relationship of an instance to its class. The diction in the lit-
erature is often ambiguous in this regard.)

3. Association ends are required to connect to roles exclusively.
Because roles are interfaces and subroles can combine several
interfaces, both pseudo-attributes type and specification are
replaced by one new relationship, fills, associating each asso-
ciation end with one role. The classes whose instances actually
participate in an association are specified only indirectly, via
the populates relationship between classes and roles. Associ-
ation ends need not be given a rolename; if they are, this name
must equal the connected role’s. Every role must be unique
within an association, i. e., no two association ends of one as-
sociation must specify the same role.

4. AssociationEndRole, AssociationRole, and the generaliza-
tion of associations are replaced by association overloading. For
this purpose, a new metaclass, Signature, is introduced whose
instances stand between an association and its (overloaded) as-
sociation ends. Thus, rather than giving rise to the concept of
association roles, an association restricted in the context of a
collaboration entails a new instance of Signature, comprising
new association ends, each connected to a role defined by the
collaboration.

The so-changed UML metamodel is shown in Figure 2. First and
foremost, it reflects the suggested conceptual equivalence of in-

www.joopmag.com October/November 2001 Journal of Object-Oriented Programming 25

R O L E = I N T E R F A C E : A M E R G E R O F C O N C E P T S

jop10SteimannV1.qrk 11/16/01 9:15 AM Page 25

terfaces and roles. In particular, interface specifiers and classifier
roles (specifying interfaces indirectly via their base classifiers)
are no longer treated as different concepts, and UML’s indiffer-
ence with regard to a classifier’s being a class or an interface is
lifted. The association roles and association end roles of UML
are not roles in the usual sense (but they share superficial prop-
erties with classifier roles, such as being slots in collaborations and
having bases); calling them roles is a peculiarity of UML, and
not calling them so (due to their abolition) is not likely to be
considered a loss.

As a side effect, the suggested changes come with a reduction in
the number of modeling concepts, which by itself has a certain
value. The only new concept, Signature, should be familiar to
both OO programmers and formalists; particularly the latter will
have missed it in the UML specification. However, replacing as-
sociation roles, association end roles, and association generalization
by a single concept, namely overloading, may appear inapt. Are
association roles and association end roles fully covered by the
overloading of associations? And what has association generaliza-
tion got to do with it? A closer look at the UML specification gives
the answer. Given that “association roles specify a particular us-
age of an association in a specific collaboration,” the “constraints
expressed by the association ends are not necessarily required to be
fulfilled in the specified usage.”1 For instance: “The multiplicity of
the association end may be reduced in the collaboration, i.e., the up-
per and the lower bounds of the association end roles may be lower
than those of the corresponding base association end, as it might be
that only a subset of the associated instances participate in the col-
laboration instance.”1 In other words, the extent of an association
role is a subset of the extent of its base association.

The UML specification continues: “Similarly, an association
may be traversed in some, but perhaps not all, of the allowed di-
rections in the specific collaboration, i.e., the isNavigable property
of an association end role may be false even if that property of the
base association end is true. [...] The changeability and ordering
of an association end may be strengthened in an association-end role,
i.e., in a particular usage the end is used in a more restricted way than
is defined by the association.”1 But this is precisely what the spe-
cialization of an association amounts to: “As with any generaliza-
tion relationship, the child element must add to the intent (defin-
ing rules) of the parent and must subset the extent (set of instances)
of the parent. Adding to the intent means adding additional con-
straints. A child association is more constrained than its parent.”2

Disallowing navigation is more constrained than leaving navi-
gability open (that is, allowing it), and being sorted is more con-
strained than not being sorted (it is implied by an additional
condition, that the elements are ordered).

It seems that association roles are fully covered by the spe-
cialization of their base associations. If an association role does

not have a base, then it is not a restriction of an association and
may be replaced by a plain association (perhaps with its scope lim-
ited to the defining collaboration). The difference between as-
sociation specialization and association overloading (which is
not defined in UML) is that association specialization is gener-
ally less constrained than overloading and, less importantly, that
the specialization of an association may be assigned a different
name. Without going into the technical details, these differences
are not likely to play a role in practice, since both association
roles and association specializations are rarely renamed and the
constraints with regard to overloading are usually automatically
met, as suggested by Figure 3.

A final note on the representation of generalization in Fig-
ure 2. UML introduces Generalization as an instantiable meta-
class (see Figure 1). In order to avoid inconsistencies, it must be
declared for all generalizable elements what is inherited down
each generalization relationship (instance of Generalization). The
changed metamodel takes a simpler approach: it represents gen-
eralization as an (overloaded) association of the metamodel.
Note that generalizes is of the same order as populates, while
all instances of Association are of a lower order. This way, no pre-
cautions avoiding inconsistencies and paradoxes need to be taken.

WHAT THE MERGER ENTAILS

The merger of role and interface results not only in a reduction
of concepts, it also gives interfaces a more prominent status in
OO modeling, a status they have long earned in OO design and
programming. However, while the changed metamodel may
indeed be considered a simplification, it is the modeling lan-
guage’s notation rather than its abstract syntax that must stand
the test of practicability. More specifically: not the metamodel,
but the diagrams drawn by the modeler must be compact, in-
telligible, and unambiguous. A closer look at the implications
of the changes for the UML diagrams and notation is thus in
place.

The class diagram will most visibly be affected by the changes.
Interfaces, now termed roles, will be seen more frequently since
all associations must end at roles. The rolenames at the associa-
tion ends, if present, should disappear; their role is taken over by
the names of the roles connected to the ends. Self (circular) as-
sociations should also disappear, because each role must be
unique within an association. Let us look at a couple of examples.

Figure 4(a) shows a simple class diagram. In most cases, it

R O L E = I N T E R F A C E : A M E R G E R O F C O N C E P T S

www.joopmag.com October/November 2001 Journal of Object-Oriented Programming 29

*

*
* *

*
*

* *
Class Role

fillspopulates

2..* 1..*

generalizes generalizes

AssociationEnd Signature Association

Figure 2. The new metamodel.

Producer

Office Document

Factory ConsumerProduct

Product
produces

produces

produces

Figure 3. The specialization of an association in UML. This type of
diagram is also characteristic of association overloading.

jop10SteimannV1.qrk 11/16/01 9:15 AM Page 29

would be considered an example of poor design since it models
roles as classes; note that the class names would make perfect role-
names for the association ends. Remodeling the class diagram ac-
cording to the changed metamodel leads to a class diagram like the
one shown in Figure 4(b). To make the distinction between roles
and classes clearer, the use of circles for roles (as provided for in-
terfaces by the UML specification1) is preferable. The populates
relationship is depicted as an implements dependency (dashed
arrow with closed hollow arrowhead).

Class diagrams like that of Figure 4(a) are seen less and less fre-
quently seen in OO models; the inappropriateness of represent-
ing roles through classes is only too apparent (unless the role
model pattern is used; see “Discussion,” p.31). Instead, the base
classes (the ones populating the roles) are viewed as central to a
class diagram, and the roles are put in the rolenames of the con-
nected association ends. Figure 5(a) is a typical example of this,
where all association ends have (unique) rolenames. However, as-
sociation ends are not roles, and although rolenames facilitate
reading, they add nothing to the structure of a model.

Figure 5(b) contrasts this with a class diagram that has the
added structure that conforms to the changed metamodel. The
two look very different at first glance, but closer inspection re-
veals that there is a one-to-one correspondence if only the role-
name of an association end is interpreted as the name of an im-
plicit role the class near it implements. Thus, with a little
redefinition (and a corresponding adaptation of the mapping
rules) the conventional class diagram notation can be kept with
the new metamodel.10

Although a class diagram with explicit roles looks more
crowded, it has certain advantages. First, it allows it that differ-
ent classes without a common superclass to take the same place
of an association, simply by populating the same role. For in-
stance, the role Retailer in Figure 4(b) could be equally populated
by class Store; the information can be added by inserting the
class in parallel to Person. Second, if interface specifiers re-
stricting the access to a class through an association should be
needed, they can be specified by detailing the corresponding role
definition. Last but not least, making roles explicit emphasizes the
plug points of a model, which are not usually apparent from a
role-less class diagram. However, the concomitant loss of con-
nectivity in class diagrams like the one in Figure 5(b) makes in-
tuitive understanding of the model more difficult, and may thus

be considered too high a price for the visibility of decoupling
and the resultant modularity. In these cases, it is good to know
that—under the changed metamodel—a class diagram such as
Figure 5(a) is formally equivalent to one with explicit roles, hence
supporting decoupling without sacrificing readability.

UML also specifies an object diagram that is rarely used but
also affected by the change of the metamodel. Since roles have no
instances of their own, but recruit them from the classes popu-
lating them, all links (the instances of the associations) between
objects would be expected to end at these objects. However, to re-
flect that an object can only be referred to via the roles it plays,
it is appropriate that the links end at role symbols connected to
the object. Although UML’s lollipop notation is not reserved for
the instance level, it is here that its intuitive expressiveness un-
folds. The roles an instance plays are indicated by the circles con-
nected to it. The collaboration diagram of Figure 6 gives an im-
pression of what object diagrams with roles may look like.

The next major diagram type affected by the change of the
metamodel is the collaboration diagram. In UML, there are two
types of collaboration diagrams: one at the instance level and a
lesser-known one at the specification level. The former is basi-
cally an object diagram enhanced by sequenced method calls.
That it is also an instance of a collaboration diagram at specification
level is reflected by the classifier role names that may trail the ob-
jects’ names. According to the change of the metamodel, however,

R O L E = I N T E R F A C E : A M E R G E R O F C O N C E P T S

30 Journal of Object-Oriented Programming October/November 2001 www.joopmag.com

Retailer

Producer Product

(a)

buys

produces

Person

Factory
Consumer

Product

(b)

buys

produces

producer product

Retailer

Figure 4. A class diagram with classes representing roles (a) and its
transcription (b), according to the metamodel of Figure 2. Roles are
drawn as circles, and the populates relation as dashed arrows.

Staff Person Course
0..1

0..1

0..1

staff

staff member

student tutor

lecturer

participant taken course

given course

student * 0..1 tutor

member * participant

given course *

taken course *

1 lecturer

(a)

(b)

Person

Staff

Course

*

*

*

**

1

Figure 5. Alternative class diagrams. (a) is in conventional style us-
ing rolenames to label association ends, while (b) has a separate role
for every association end. The example is taken from “A Formal Ap-
proach to Collaborations in the Unified Modeling Language.”10

__

__

__

student

participant

1: teachers()

1.1*[i:=..n]:
lecturer()

1.i.1:name()

taken course

given courselecturer

Figure 6. A collaboration diagram with all objects accessed via roles.
Objects remain anonymous and are typed only by their roles. This en-
sures maximum flexibility.

jop10SteimannV1.qrk 11/16/01 9:15 AM Page 30

classifier roles are ordinary roles the instances play, so no extra
notation is needed. A collaboration diagram at instance level
drawn accordingly is shown in Figure 6; in that the (anony-
mous) objects carry no class information conforms to the UML
specification of classifier roles (see above) and is in the spirit of
plugability.

Collaboration diagrams at the instance level are often con-
sidered alternative representations of sequence diagrams. How-
ever, since sequence diagrams have only one lifeline per object
that, due to the limitations of paper, can only be approached
from two sides, roles will have to be added on a call-by-call ba-
sis or dropped all together.

The effects of the change in the metamodel on collabora-
tion diagrams at the specification level are bigger. While drop-
ping association roles and association end roles has no visible
influence on the representation of collaborations (they are de-
picted as associations and association ends), the classifier roles
are replaced by roles, and their bases (if specified) by the classes
populating them. However, the roles replacing the classifier
roles are not alone; they are complemented by the roles intro-
duced by the association ends (see Figure 5). Thus, two inter-
pretations of a collaboration diagram like the one in Figure 7 are
possible: either the roles attached to the association ends are
overridden by the ones corresponding to the classifier roles, or
the roles induced by the classifier roles are declared subroles
of those at the association ends. The former is a case of associ-
ation overloading (the restriction of associations to the needs
of a collaboration), while the latter is a case of association in-
heritance (from superrole to subrole). Note that, one way or an-
other, the translated collaboration diagram does not differ syn-
tactically from a class diagram. This is not indicative of a loss
in expressive power, but unveils that collaboration diagrams
like Figure 7 are not so much interaction diagrams, but an at-
tempt to add more detail to the class diagram of Figure 5(a), de-
tail that can only be specified through the use of roles (see “Dis-
cussion”). However, because roles are now an integral part of
class diagrams, collaboration diagrams at the specification level
(such as in Figure 7) without interaction-specific information
(method calls, etc.) do not constitute a diagram type in its own
right.11

DISCUSSION

Definitions of the role concept abound in the literature.11 Many
deviate from what has been presented here. In fact, the dis-
covery of roles as a modeling concept usually provokes a stereo-
typical reaction: Why not model roles as subclasses, multiple
roles as their intersection classes, and let the role-playing in-
stances dynamically migrate between the extents of these classes?
Indeed, this seems a natural solution, particularly since the
roles seem to be more specific than the classes contributing the
role players and because the roles’ extents (the sets of their in-
stances) appear to be subsets of those of the classes. But even if
instance migration were made possible in next-generation pro-
gramming languages and the hassle of declaring the necessary

(combinatorial) number of intersection classes were willingly
gone through, one would still be presented with a flawed im-
plementation of the role concept, as the following considerations
show.

Every person can, in principle, be a student, an employee, or
whatever roles a person can assume at some time in their life.
Therefore, roles do not restrict the extents of the populating
classes. Rather, because a role like Customer can not only be
played by persons, but also by organizations (without one be-
ing a subtype of the other), the extents of roles are supersets
of those of the populating classes. Besides, if Customer were a
subtype of Person and Organization, it would be empty, since
the two are disjoint. Roles are not subtypes, but supertypes; for a
deeper discussion, see “On the Representation of Roles in Ob-
ject-Oriented and Conceptual Modeling.”11

Another popular concept of the roles of an object is that of
coordinate or adjunct instances, one per role. With this ap-
proach it is easy to let roles play roles, and to let each role have
its own state. However, it suffers from a serious conceptual in-
adequacy: an object and that object in a role are different in-
stances and thus have different (object) identifiers. This conflicts
with a fundamental assumption of data modeling—that one
object of reality should be represented by one object in the
model, which in turn was one of the primary reasons for the in-
troduction of roles in the first place.12 But the objection is not
limited to the conceptual level, it also has practical implica-
tions. At the very least it requires that all roles have knowledge
of the objects they are played by, and that tests for object iden-
tity among roles are delegated to the known role players. Al-
though modeling roles as adjunct instances is not completely out
of place, with current OO programming languages it has the
character of a pattern (like that described by Renouf and Hen-
derson-Sellers8), and is not a native programming language
construct.

Independently of all pragmatic considerations, there are strong
conceptual arguments in favor of the merging of roles and inter-
faces. For instance, Guarino13 presents a definition that differen-
tiates roles from natural types by the following two conditions:

1. An instance that belongs to a natural type at any point in time
must always belong to that type, under all circumstances and at

R O L E = I N T E R F A C E : A M E R G E R O F C O N C E P T S

www.joopmag.com October/November 2001 Journal of Object-Oriented Programming 31

/Teacher:Person

:Course:Staff

/Student:Person
member tutor

staff

lecturer

given course taken course

participant
student

* *

* *

*

1

1

1

Figure 7. A collaboration diagram at specification level refining the
class diagram of Figure 5 (a). It translates to a class diagram with roles
like that of Figure 5 (b) (see text). The example is taken from “A For-
mal Approach to Collaborations in the Unified Modeling Language,”10

and “OMG Unified Modeling Language Specification.”1

jop10SteimannV1.qrk 11/16/01 9:15 AM Page 31

all times. Otherwise, it invariably loses its identity. For roles,
this is characteristically not so.

2. A role is characterized by the fact that its instances, the role
players, are necessarily related (by another whole/part-relation)
to other instances. A son is only a son if some other individ-
ual is the father, and a student is only a student if she enrolls
in a subject. The instances of a natural type, on the other
hand, are instances of that type qua being, not per related-
ness to some other instance; a person is a person indepen-
dently of the existence of any other individual.

Of course, these definitions are not absolute: what is a role in one
context may be a natural type in another. However, although on-
tologically motivated, they fit the software reality of classes as nat-
ural types and interfaces as roles. As for the first condition, an
instance cannot change its class without losing its identity, but
it can take up and drop roles (by being assigned to variables of
the corresponding interfaces) as needed. A variable on the other
hand, be it an instance variable or a formal parameter, is always
an expression of relatedness, so requiring that all variables should
be declared as interfaces (or roles) complies well with the second
condition from above.

Of course, there are also downsides to the proposed merger. First
and foremost, the requirement that all associations must end at roles
will inevitably cause an inflation of names. This is particularly dis-
turbing if the names are artificial in character (and the concepts they
name close to meaningless), because a model is meant to be a pic-
ture of reality, not a complication. There will surely be classes that
have only one role, and if this role completely specifies the class,
it is difficult to see why there should be two names. One remedy
would be to restrict role modeling to the “big” associations and col-
laborations (the higher levels of abstraction, or analysis) of a sys-
tem; but if you pick up a recent book on OO design and pro-
gramming, you will find that interfaces are used very generously,
without caring about an inflation of types.5,7

Another problem is that defining roles as interfaces does not
cover everything one might expect from the role concept. For in-
stance, in certain situations it might be desirable that an object has
a separate state for each role it plays, even for different occur-
rences in the same role. A person has a different salary and office
phone number per job, but implementing the Employee inter-
face only entails the existence of one state upon which behavior
depends. In these cases, modeling roles as adjunct instances would
seem more appropriate but, on the other hand, salary is really an
attribute of the job, not of the employee, and the phone number
is an attribute of the workplace.

A third problem is that the implementation of classes popu-
lating many roles, such as Person, will become very large. Al-
though several workarounds are thinkable,14 one should not for-
get that natural persons are complex entities and that roles
structure the interface of such entities in a natural way. Besides,
the change of state of an instance in one role often affects other
roles, a dependency that can be implemented as a side effect if
everything happens in one place.

A number of issues remain. For example, it must be checked
how much of the UML metamodel’s genericity can be retained un-
der the given redefinition. Does the metamodel of Figure 2 also
work for use cases and other classifiers? Even if this is not the
case, one may ask whether concepts as diverse as use cases and
classes can be comprised under one abstraction that can be used
consistently across all purposes. I doubt it.

CONCLUSION

Equating interfaces with roles gives a proven OO programming and
design construct a meaningful conceptual representation. With a
few additional commitments, the number of elementary model-
ing concepts can be considerably reduced, resulting in a simpler
metamodel structure on one side and in a clearer separation be-
tween structure and interaction diagrams on the other. �

REFERENCES

1. OMG Unified Modeling Language Specification Version 1.3. June 1999. See
www.omg.org.

2. Rumbaugh, J., I. Jacobsen, and G. Booch. The Unified Modeling Language
Reference Manual, Addison-Wesley, Reading, MA, 1998.

3. Gamma, E., et al. Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley, Reading, MA, 1995.

4. Buschmann, F. “Falsche Annahmen (Teil 2),” OBJEKTspektrum, 84-85, April
1998.

5. D’Souza, D.F. and A.C. Wills. Objects, Components and Frameworks with UML:
The Catalysis Approach, Addison-Wesley, Reading, MA, 1999.

6. Firesmith, D.G. and B. Henderson-Sellers. “Upgrading OML to version 1.1: Part
2—Additional Concepts and Notation," JOOP 11(15): 61–67, Sept. 1998.

7. Coad, P., et al. Java Design: Building Better Apps and Applets 2nd ed., Pren-
tice Hall, Upper Saddle River, NJ, 1999.

8. Renouf, D.W. and B. Henderson-Sellers. “Incorporating Roles into MOSES”
Proceedings of the 15th International Conference on Technology of Object-
Oriented Languages and Systems: Tools 15, C. Mingins and B. Meyer, Eds.,
71-82, Prentice Hall, Englewood Cliffs, NJ, 1995.

9. Reenskaug, T., P. Wold, and O. A. Lehene. Working with Objects—The OOram
Software Engineering Method, Addison-Wesley/Manning, 1996.

10. Steimann, F. “A Radical Revision of UML’s Role Concept,” UML 2000. Pro-
ceedings of the 3rd International Conference, A. Evans, S. Kent, and B. Selic,
Eds., 194-209, Springer, 2000.

11. Övergaard, G. “A Formal Approach to Collaborations in the Unified Modeling
Language,” UML ’99 LNCS 1723, Springer, 1999.

12. Steimann, F. “On the Representation of Roles in Object-Oriented and Concep-
tual Modeling,” Data & Knowledge Engineering, 35(1):83–106, 2000.

13. Bachman, C. W. and M. Daya. “The Role Concept in Data Models," Proceed-
ings of the 3rd International Conference on Very Large Databases, 464–447,1977.

14. Guarino, N. “Concepts, Attributes and Arbitrary Relations: Some Linguistic and
Ontological Criteria for Structuring Knowledge Bases,” Data & Knowledge En-
gineering, 249–261, Aug.1992.

15. Fowler, M. “Dealing with Roles,” Supplement to Analysis Patterns: Reusable
Object Models, Addison-Wesley, Reading, MA, 1996.

Friedrich Steimann is a Lecturer in Applied Informatics at the Universität Han-
nover in Hannover, Germany. He has specialized in Computational Linguistics,
Medical Informatics, Software Engineering, and has been involved in commercial
software projects of all sizes. His current work focuses on OO software modeling.
He may be reached at steimann@acm.org.

R O L E = I N T E R F A C E : A M E R G E R O F C O N C E P T S

32 Journal of Object-Oriented Programming October/November 2001 www.joopmag.com

jop10SteimannV1.qrk 11/16/01 9:15 AM Page 32

