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Abstract. We suggest a framework for UML diagram validation and execution that takes advan-

tage of some of the practical restrictions induced by diagrammatic representations (as compared to

Turing equivalent programming languages) by exploiting possible gains in decidability. In particu-

lar, within our framework we can prove that an object interaction comes to an end, or that one ac-

tion is always performed before another. Even more appealingly, we can compute efficiently

whether two models are equivalent (aiding in the redesign or refactoring of a model), and what the

differences between two models are. The framework employs a simple modelling object language

(called MOL) for which we present formal syntax and semantics. A first generation of tools has

been implemented that allows us to collect experience with our approach, guiding its further devel-

opment.
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1 Introduction

Two major strains of UML’s further advancement are followed rather vigorously: making it precise,

and making it executable. Quite obviously, the former is a prerequisite for the latter: a language lack-

ing precise semantics cannot be executable or, put positively, any executable variant of UML must

necessarily be precise. On the other hand, making UML precise does not automatically mean that the

result is executable: much theoretical work has been invested in translating UML to some other for-

malism that, although coming with proper (mostly denotational) semantics, is equally non-executable

(see [32] for a collection). This is in contrast to the needs of the UML user community which, al-

though agreeing to the need for precision on theoretical grounds, is much more interested in an execu-

table UML, allowing models to be validated directly against user requirements, substituting for the of-

ten expensive prototyping.
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Rather than trying to turn UML into a full-fledged (graphical) programming language, we note that

modelling is not programming; in particular, that diagrammatic models have some properties that are

very different from general programs, and that these differences put UML (as well as other graphical

modelling languages) in a different class than general purpose programming languages. To be able to

exploit these particular properties, we define a special programming language, and provide a mapping

from a subset of UML diagrams to this language. This mapping not only enables the execution of

models, but also allows the proof of certain properties and their transfer back to the original models.

The remainder of this paper is organized as follows. After presenting the rationale of our work, we

discuss what we have observed as the limitations of graphical modelling. Based on these observations

we define the core of our executable language as the target of mapping certain UML diagrams, and

specify its formal syntax and semantics. Next, we discuss the theoretical properties of this language,

which justify its design. The translation of UML diagrams to programs is then demonstrated by pre-

senting a set of sample diagrams and corresponding code. Some comments on the design process of

the formal framework and the tools we created so far are to give an idea of where we are headed. A

discussion and the placement of our work in a larger context conclude our contribution.

2 Rationale

Analogous to the validation of software, validation of object models means checking them against the

customers’ requirements. To paraphrase an old slogan of software engineering, model validation en-

sures that one is building the right model, as opposed to ensuring that one is building the model right

(the latter being called verification) [16]. Unlike verification, validation invariably involves the cus-

tomer and requires her or his understanding of what is being modelled. Even though UML diagram

types have generally been designed to be intelligible, at least to the technically trained, the more re-

vealing a model is to be, the more complex it becomes. In fact, interpreting a diagram is not necessar-

ily simpler than reading a piece of code (and its creation is just as error-prone): the validation of a

model is an intellectual act, and the ill-performance of it places any software project at substantial

risk.

Validation of a model greatly benefits from executing it, from “seeing what it does”. Validating a

model through executing it benefits from the fact that the objects and links in models are limited to

fairly small numbers, and that their interaction specifications are only exemplary in character: unlike a

complete program, a model seems to be explorable in full. But even if the number of possible differ-

ent “runs” of a model remains too large for a human validator, it will typically not be for the auto-

matic proof of certain desired properties, particularly not if efficient algorithms are applicable.

While the type-level specifications of UML diagrams generally describe infinite structures, the in-

stance level which is the basis for behavioural specifications, is finite in character. For instance, UML
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interaction diagrams specify the collaboration of a finite set of (possibly unnamed, i.e., anonymous)

objects. In fact, as will be argued in more detail below even multiobjects can be considered as a single

object since all objects they represent share the same structure (which is why they can be represented

by a single symbol in the diagram). Thus, the interpretation of any behavioural specification involves

only a finite number of states.

Statecharts (complementing interaction specifications by the behaviour of individual objects) are

finite by definition: firstly, they model the behaviour of a single (albeit anonymous) object, and sec-

ondly, because the number of states is per definition finite, they too require no infinite semantic do-

main. All in all, it appears that object-oriented modelling can do with a finite (and generally also

rather limited) number of objects and states. This is in sharp contrast to object-oriented programming,

in which the number of objects has no theoretical bound. Therefore models have stronger formal

properties than general programs; therefore our conclusion that modelling is not programming.

In order to be able to exploit the observed properties of modelling, we have to select a semantic for-

malism which shares these properties. Because there is a strong natural relationship between certain

diagram types of UML (in particular class, object, and interaction diagrams) and object-oriented pro-

gramming, our work is greatly facilitated by mapping UML diagrams to programs in a special Model-

ling Object Language. By designing this language—called MOL hereafter—to be as primitive as pos-

sible, we avoid tying the interpretation of UML diagrams to language peculiarities (such as a specific

type system, call bindings, etc.). This of course comes at the price of splitting the definition of the se-

mantics of UML between the definition of the semantics of MOL and the definition of the required

model compiler. On the other hand, it allows us to cleanly separate between the general properties of

object-oriented modelling and the many-facedness of UML with its numerous possibilities for intro-

ducing extensions and alternative meanings; it allows the easy introduction of alternative mappings

from diagrams to programs.

3 Practical limitations of drawings

Our work is based on a number of assumptions. First, we assume that modelling is not programming,

i.e., that the purpose of a model is different from that of a program. In particular, we assume that mod-

els are not used to compute functions, be it numeric (such as factorials) or symbolic (such as text

processing). Instead, we assume that functions, if needed, are specified outside the model and can be

used as modelling primitives. The model itself specifies the possible interactions (communication) be-

tween the user and the objects of a system, and the changes in the object (or data) structure these in-

teractions produce. We are well aware of the fact that any state transformation can be regarded as a

function (from the current state and the triggering input to the next state); that indeed the state transi-



4

tion function is a function, but this function is special in that it is recursively applied to itself, with the

end of the computation being controlled by user (or outside system) interaction.

The other key assumption we make is that there are practical constraints for drawings that do not

equally apply to written specifications such as programs. Although we acknowledge that graphical

and textual languages are equivalent in principle, we maintain that drawings are used to provide over-

view, especially through making the connections between different parts of a system visible (the in-

evitable lines in the ubiquitous lines and boxes diagrams), whereas textual specifications emphasize

modularity, i.e., tend to form small clusters of specification (such as axioms, rules, or subroutines)

which can freely be combined into larger ones. Indeed, the connectedness of drawings comes at the

price of genericity: while a box can be a placeholder, i.e., stand for any object satisfying certain con-

ditions, an attached line invariably connects the object to another (even if the objects are not named).

Because connectedness is transitive, the lines in a diagram often impose more state than wanted, re-

quiring alternative diagrams or special notations if variability is needed. Annotations like {xor} and

{new} constraints or «create» and «delete» stereotypes may provide some relief, but their coordina-

tion (if more than one such constraint or stereotype occurs in the same diagram) is difficult and con-

fusing. The connectedness of a diagram and resultant overspecification is best counteracted by reduc-

ing its size (the number of connected elements shown on a single diagram), but increasing the modu-

larity of drawings to levels comparable to that of textual specifications makes them lose their over-

view character, counteracting their very purpose.

Resultant from the reduced genericity of drawings is indeed a reduced number of captured states

which, under certain conditions, can even be confined to a finite (and usually also fairly small) num-

ber. We shall take a look at the necessary preconditions in some more detail.

3.1 Instance level, type level, and the world between

As suggested by the Meta-Object Facility (MOF) [30], the UML standard tries to make a clear distinc-

tion between specifications on the instance and on the type level. The class diagram for instance is a

static structure specification on the type level, whereas the object diagram is one on the instance level.

The distinction is less clear for interaction diagrams, which can be specified on the instance and on

the specification level: the latter is not called type level presumably because the creators of UML felt

that collaboration roles (as classifiers) were somewhere between the type and the instance level.

In general, specifications on the type level are generic since they involve whole sets of objects,

whereas those on the instance level are concrete, involving only identifiable individual objects. The

genericity of the type level is bound to the notion of type, which is mathematically defined as a predi-

cate deciding whether a given object is an instance of that type or not. This includes relationships,

which are interpreted as types of higher than unary arity [41]. Because the sole use of types leads to
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combinatorial explosion and accordingly underspecified models, additional standard predicates (such

as multiplicities, navigability, etc.) have been added to the syntactic repertoire of the type level, con-

straining the number of possible instantiations of a type-level specification. Mathematically, however,

these constraints cannot be expressed through sets (the types) alone; they require variables ranging

over the instances of a type. In fact, even the semantics of a very simple class diagram cannot be ex-

pressed without resorting to variables: does the fact that type A is related to type B via association r

mean that all instances of A are related to all instances of B all the time? Certainly not, but expressing

what it really means invariably involves variables.

On closer inspection, one discovers that instance level specifications are not free of variables, ei-

ther: in an object diagram for example, objects may remain anonymous, in which case they must be

considered placeholders for concrete objects. Therefore, we do not distinguish between type and in-

stance level specifications, but—following mathematical logic—between non-ground and ground

specifications, depending on whether the specifications do or do not contain variables.1 In this vein, a

class diagram is a non-ground specification whose variables are constrained by types (and, possibly,

also other expressions), whereas an object diagram with named objects is ground. Interaction dia-

grams on the instance level are also ground (if all objects are named), but those on the specification

level are characteristically non-ground: their classifier roles are variables whose values are con-

strained to possess the links and methods shown in the diagram (with type constraints being optional).

Non-ground specifications can be instantiated to yield ground specifications. Since in object-

oriented terms, instantiation is an explicit act that is itself the subject of modelling, we require that for

the instantiation of a non-ground diagram (instantiation here denoting the assignment of concrete ob-

jects to placeholders) all objects must pre-exist. For reasons given below, this includes those whose

placeholders are annotated for explicit object creation. Since object structures are injected into a

model through ground diagrams, the number of possible instantiations of a non-ground diagram is

limited. Note that repeated object creation for the same placeholder would require this to be a mul-

tiobject, but again, since all objects comprised under the multiobject share the same structure (as ex-

pressed by the structural embedding of the multiobject in the diagram), they can be considered as one.

3.2 The open world assumption of modelling

The state of an object-oriented system is defined as the combined state of its objects, plus the program

pointer(s) and call stack(s). The state of an object is determined by its attributes and the links it has to

1 As a matter of fact, type information is nothing but a special constraint on variables; a result from first order logics shows

that many-sorted logics is no more expressive than its uni-sorted ancestor, since a typed variable declaration x:T can al-

ways be transformed to expressions involving the corresponding type predicate T(x). The insight that the formal parameter

and return types of methods are just special pre- and post-conditions is based on the same considerations.
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other objects. Since we will interpret links as pointers and an object has no knowledge of its incoming

pointers, the latter do not contribute to an object’s state. To simplify matters, we will regard attributes

as notational shortcuts that can always be translated to links to other objects (including immutable or

value objects) if needed.

Given this definition of state, every ground diagram makes a set of statements about the involved

objects’ states plus, depending on the diagram type, what can happen to them once they are in the

given states. It can be read as: “if the objects are in the given state, the following may happen”. (In

case of static diagrams the statement reduces to “the objects may be in the given states”.) Every non-

ground diagram that can be obtained from a ground one by replacing objects with placeholders (vari-

ables) transfers the same statement to sets of objects, which are constrained to being able to adopt the

shown states. Type information may contribute to these constraints.

Now a model is an abstraction, meaning that it does not show everything. While this is particularly

true for single diagrams (whose nature it is to show only specific views of the system being mod-

elled), it usually also holds for the set of all diagrams provided. Therefore, that something is not

drawn does not mean that it is not there (unless of course stated otherwise). For instance, a diagram

may show two objects that are not linked, even though a link may in fact exist (albeit it is of no inter-

est in the particular diagram). Therefore, diagrams must generally be assumed to show projections of

the involved objects states, where each such projection may in fact stand for infinitely many different

states, all sharing the same projection. We refer to the fact that a diagram only shows what is there,

not what is not there as the open world assumption of modelling; it allows a finite state model to rep-

resent a real system with infinitely many states.

That the open world assumption is necessary for modelling derives from the fact that for a complete

system specification, objects of different diagrams must be linked somehow. In order to be able to

show excerpts in the form of single diagrams or views, some of the links must be broken, i.e., not

shown. Typically, diagrams will contain central objects (all relevant links of which are shown) and

peripheral objects (the links of which are shown on other diagrams).2 This is important, since the un-

shown links of peripheral objects introduce variability even for ground diagrams. In particular, each

peripheral object is a potential variation point (see below).

The fact that the open world assumption of modelling applies equally to ground and to non-ground

diagrams has an important implication for the latter, i.e., diagrams containing placeholders. Since

what is shown always pertains to all possible assignments, the actual objects taking the places of the

placeholders may vary only in the state (i.e., attributes and links) not shown. However, since this state

2 Note that the distinction between central and peripheral objects cannot be based on a single diagram, since the unshown

links of peripheral objects must be considered as insignificant to the modelled aspect as those unshown of the central ob-

jects. Whether or not an object is peripheral is only determined by whether or not it is involved in the continuation of the

diagram in others, as discussed in Section 3.3.



7

is not shown, the possible variation must be considered irrelevant for the modelled aspect. Therefore,

non-ground diagrams differ from ground diagrams only in the respect that the actual objects (values of

the placeholders) are not named—the structural constraints expressed (the “if” part of the statements)

and the possible variability are the same. There is however an increase in the variation induced by the

continuation of peripheral objects, as will be argued next.

3.3 Continuation, recursion, and infinity

In ground diagrams, all objects are named. A ground diagram can be continued in another if names of

objects coincide (the names serving as so-called co-references). The state constraints of each diagram

then overlay each other. If alternative diagrams with identical objects exist, continuation introduces

variability even to ground specifications; a diagram can be continued by any one of the offered alter-

natives. Since the state specifications of the different diagrams combine to form a larger one, the mod-

elled state space grows combinatorially with the number of alternative continuations. Continuation

can even introduce circles: such is the case for example if one diagram is continued in a second which

is continued in a third which in turn is continued in the first. However, continuation of ground dia-

grams cannot lead to an infinite number of states, because the set of such diagrams is always finite, as

is the number of objects contained in them.

In ground diagrams peripheral objects are named and continuation of a diagram in others is

uniquely determined by these names. For non-ground diagrams, however, and in the absence of co-

references between variables continuation constraints are only implicit in the specified state spaces

(including the types, if provided) of placeholders. In fact, the type of a placeholder is all that remains

to join different diagrams if a peripheral object has no additional state specification, e.g. if it has in-

coming links only. Note that role names (or classifier roles as employed in collaboration diagrams)

are of no help, since the roles of an object (or placeholder thereof) in different diagrams are typically

different. Therefore, the number of diagrams that can be connected is usually much larger for non-

ground than for ground diagrams; in fact, if a diagram can be connected to itself, it can even generate

infinite structures, as the following considerations show.

Figure 1 a) shows a non-ground collaboration diagram with five variables. Note that the variables

are distinguished only by their location, not by their labels; for any linearization (transformation into

textual form), they must be given unique names. Also note that the diagram contains a somewhat un-

usual specification of a conditional (branching): generalization arrows indicate that the central com-

ponent placeholder can be either a leaf or itself a composite. An {xor} constraint could have been

used instead, but would not have exploited the subtyping of Component.
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Figure 1. Non-ground specification of a recursive structure (COMPOSITE PATTERN) and its traversal as a collabo-

ration diagram. a) Explicit recursion of one level. b) Implicit infinite recursion only. c) Its termination.

The diagram of Figure 1 a) describes a variant of the COMPOSITE PATTERN [17], which is a recursive

structure, which is mirrored by the fact that it can continue itself. In fact, there are two possible self

continuations: one regards the rightmost component and the leftmost composite placeholder as pe-

ripheral objects or continuation points, while the other regards each composite/component-pair (to-

gether with their links) as a continuation point. The former continuation most likely does not express

what is meant, though, since it implies that only every second component can be a leaf; yet there is

nothing in the diagram that excludes this possible continuation. In fact, as will be argued below recur-

sive continuation of diagrams is often the source of modelling bugs and therefore to be treated with

caution.

The explicit variation in Figure 1 a) can be eliminated by dividing it into two separate diagrams. In

fact, Figure 1 a) can itself be regarded as the continuation of two smaller diagrams, namely Figure 1

b) and c). However, while Figure 1 a) shows an explicit one-level structural recursion by repeating

(parts of) the same structure within the same diagram, the same can only implicitly be derived from

Figure 1 b) and c), namely through searching for possible continuations in the pool of all diagrams.

While the explicit structural recursion must be finite (because it must fit on one diagram), the implicit

is typically not, leading to infinite structures.

Generally, we maintain that in modelling significant structure introduced by the continuation of a

diagram is unintended and likely to be the source of modelling bugs. The continuation of UML meta-

model diagrams performed in [39] and the flaws thus discovered may be considered representative of

the problem. Considering that structural recursion introduced through diagram self continuation is—

except perhaps for rare cases—not necessary to grasp the structure of a system (at least not for valida-
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tion purposes), it should be flagged a potential modelling error rather than being accepted as a valid

means of expression.3

3.4 Implications

Assuming that the open world assumption of modelling holds, i.e., that all unshown differences in

state (that is, all unshown links) are insignificant to the modelled problem, we can draw the following

conclusions:

1. A single ground diagram represents a finite number of states (precisely one state in absence of

constraints or stereotypes introducing variability).

2. The set of states that can be generated by the continuation of ground diagrams is also finite.

This follows from 1 and the fact that continuation of ground diagrams can introduce no struc-

tural recursion (only cyclic structures).

3. A single non-ground diagram can represent as many different (sub)states of a system as there

are possible instantiations (variable assignments). The number of possible instantiations of a

single diagram is limited by the number of objects in a model, which is finite. Recall that

{new} constraints or «create» stereotypes create only one new object per instantiation, given

that the instances of multiobjects all share the same state and can therefore be regarded as one.

4. Continuation of non-ground diagrams can lead to an infinite number of states if the same dia-

gram is instantiated repeatedly with both same and new objects (such that the same objects in

different instantiations mark continuation, whereas the introduction of new objects avoids cy-

cles). However, considering that aspects of interest are usually modelled in one diagram each,

repeating the same aspect infinitely through structural recursion does not add to what the

model is to express. Since it bears the danger of introducing errors, it should be avoided.

It follows that except for rare cases, models specify only a finite number of possible states, covering

the potential infinity of the modelled system through the fact that each modelled state is a projection

of an unlimited number of real states. This has important implications for our further reasoning.

3 In a way, modularity and self-continuation of the diagrams of a model correspond to paragraphs and their ending in “and

so forth” in written specifications: they explain in sufficient explicitness the structure of interest and leave the possible

continuation implicit, because nothing new is to be learnt from it. For instance, Figure 1 a) shows all significant aspects of

the pattern in one diagram, and nothing of significance is learnt from a possible continuation. This is different for Figure 1

b) and c), which only jointly express the structure to be modelled.
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4 UML-A and the definition of MOL

UML in its entirety is not a single language, but a whole family of languages, in particular one that is

open to extensions. Coming to grips with UML semantics is therefore inherently difficult; in fact, one

can even argue the meaning of UML is defined by its use, granting it the status of a natural (rather

than a formal) language.

In a comment on the presentation of UML’s next major release, UML 2.0, Dennis de Champeaux

wrote:

»The entirety of UML is not required for dealing with problem understanding. A subset of UML—

call it UML-A (for UML OO Analysis)—should be used to “rewrite” the unformalized require-

ments document into a formal version, without committing to how the system would operate. UML-

A should be simple enough that the sponsor helps validate that the model captures the intent ex-

pressed by the requirements; for example, the sponsor should be able to confirm that use cases for-

mulated in plain English (and optionally captured in diagrams) are faithfully represented in inter-

action diagrams and scenario diagrams.« [10]

We pick up de Champeaux’s argument and try a first definition of such a language UML-A, one that

keeps the major properties and most of the appearance of UML, and at the same time allows us to

fully exploit what we have observed above. Currently, this UML-A covers use case diagrams, class

diagrams, object diagrams, and interaction diagrams (with a focus on collaboration diagrams). State-

charts have been excluded so far, since the problem of relating their abstract states to the concrete

states of an object (as reflected in the links the object has) is as yet unsolved ([39]; cf. Discussion).

Our current definition of UML-A is constrained by two fundamental conditions:

1. all diagrams of a model must be integrateable into a single system specification, and

2. the specification must be executable.

Deviating from the usual procedure of language design we therefore take an unusual approach and

start with the definition of our chosen semantic formalism, MOL, for which we maintain that it is suf-

ficiently expressive for software modelling, given the assumptions of Section 3. We then define

UML-A as that subset of UML that easily maps to our semantic formalism, and furnish it with certain

extensions supporting model integration.

There is a wealth of formalisms that can serve as the target of a semantic mapping for UML. For

our purpose of model validation through execution, we are looking for one that is executable and

whose execution model mirrors as much of UML’s intended semantics as possible, so that the map-

ping becomes straightforward. In fact, stepwise execution of a model should be reflected in model

animation, i.e., in the animated graphical display of methods exchanged and the structure altered, as

suggested in [42]. Since behaviour specification in UML is heavily influenced by the semantics of ob-

ject-oriented programming (with objects exchanging messages and changing their state in response), a
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primitive (and free of peculiarities such as certain binding conventions) object-oriented programming

language seems an obvious choice. We have designed our modelling object language MOL to be just

that.

We are well aware of the fact that UML semantics is intentionally left open so that there are as

many different semantics as there are different uses of the language, yet it must be clear that any ex-

ecutable formalism can only have one semantics—only which one is subject to debate. In this vein,

the one we chose and present here must only be seen as a first suggestion—the discussion is still open

and our work may evolve in a different direction as our experience grows. Yet, as will be detailed in

Section 5, our current choice is not without advantages.

4.1 Language elements

Objects. In MOL all data elements are objects. Each object has a name by which it is represented in

the program text and which identifies the object uniquely.4 This is owed to the fact that in a model an

object is represented by a unique graphical element; it is in contrast to general object-oriented pro-

gramming, in which object names (pointers) are stored in variables, but do not themselves appear in

the program text.

The creation of a new object is an explicit act, in MOL introduced by the keyword new followed by

the name of the new object. Of repeated new statements with the same name, only the first is effective.

This means that object creation repeated in loops (multiobjects) creates only one object. Created ob-

jects are destroyed through the keyword delete followed by the name of the object. Again, repeated

deletion of the same object remains ineffective. Since objects can be the values of attributes and vari-

ables, deletion of an object can make these attributes and variables undefined.

Attributes. Even though suggested differently by the semantics of class diagrams, the data model of

object-oriented modelling is inherently navigational and not relational. Therefore, in MOL all interre-

lations between objects are represented through attributes.

An attribute maps an object to another, called the attribute value of the object. The attribute value

of an object is represented as object1.attribute1[]. New values can be assigned to an attribute by

using the assignment operator, :=.

In object-oriented models, attributes can have a multiplicity greater than one (or, more prominently,

an object can be linked to several others by way of the same association). This is usually interpreted

4 It follows that the number of dynamically created objects in a program is always finite, since it cannot be larger than the

number of names. This is in contrast to most object-oriented programming languages, which allow unnamed objects to be

created and subsequently be referred to through variables. One might consider lifting this restriction for future versions of

MOL, but first it is necessary to find an alternative mechanism for restricting the number of objects in a system.
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as the attribute being set-valued. However, since the set holding the values is itself an object, this rep-

resentation introduces a level of indirection not justified by the modelling language: whether an at-

tribute or association end is of 0..1, 1, *, or of any other multiplicity is a matter of degree, not a fun-

damental difference. Therefore, we regard single-valued attributes as special cases of many-valued at-

tributes and, generally, attributes as binary functions, where the first argument is the object being at-

tributed (the owner of the attribute), and the second is a qualifier of the attribution. In MOL, ob-

ject1.attribute1[object2] stands for object1’s value of attribute1 qualified by object2.

MOL’s attributes therefore naturally account for associative arrays with normal (integer) arrays as

their special cases.

Prior to any assignment, the value of an attribute (qualified or not) is undefined. Sometimes it is

necessary to un-define a previously defined attribute value. This is particularly the case for qualified

attributes representing a collection of objects, when an object is to be removed from that collection.

For these cases, the un-assign statement object1.attribute1[object2] :- is provided.

MOL is untyped, so that attributes are defined on a per object basis. There is no mechanism of dec-

laration and/or inheritance, and thus also no condition of illegal access. Due to the special properties

of MOL discussed in the next section, access to undefined attributes can be caught prior to program

execution.

Variables. As usual, MOL offers variables as named placeholders for objects. Variables need not be

declared before they can be used; they are introduced on the fly.

Variables are assigned values through the assignment operator :=. Before its first assignment, the

value of a variable is undefined; an un-assignment of a variable resets its value (to undefined).

Control flow. In MOL, all statements are executed sequentially. Branching and loops are enabled by

the while statement, which loops through a sequence of statements as long as a given condition is sat-

isfied. Since MOL has no built-in data types, the only possible conditions are tests for identity (==)

and non-identity (<>) of two objects.

While the while control structure is sufficient to write arbitrary programs, pure while programs are

difficult to read. Even though MOL is designed as an intermediate language not intended for source

level programming, for the sake of our examples (and simplicity of mapping rules) we add the usual

branching and loop control structures (which can be introduced as needed). Also, we add the possibil-

ity of iterating through the qualified attributes of an object; the housekeeping necessary to realize this

feature (basically keeping track of the used qualifier objects) can be expressed in MOL, so that the

expressiveness of the language is not affected.

Besides branching and looping, MOL allows the calling of subroutines, called procedures.
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Programs and procedures. A MOL program is a set of procedures, where each procedure is a se-

quence of statements. A procedure has at least one parameter, the receiver, which is implicit and re-

ferred to as self from within the procedure. All parameters are treated as variables whose scope is

restricted to the procedure (local variables). All other variables used in a procedure are global. Ob-

jects created in a procedure are introduced to the whole program, i.e., to all other procedures.

Since MOL is untyped, procedures are not associated with particular classes of objects. In fact, any

procedure can be called on any object, and therefore cannot make any presumptions on the defined-

ness of attributes (see above). Also, procedures – like attributes – are not inherited.

MOL is a procedural language. In particular, it does not have notions of events, message passing, or

even concurrency. This restriction facilitates much of our theoretical reasoning carried out in the next

section; it may be lifted in future versions of our work.

I/O and user interaction. Interpreted as a program, a model is special in that its communication with

the outside world can be reduced to the communication with those evaluating the model, which will

be its designers and their clients. Since the only user interaction that can be modelled in UML is that

with an actor, it suffices that the executed model takes simple input (i.e., prompts the user to enter an

object name which is then stored in a variable) from an input device, and displays its trace (or just

certain states; analogous to the spy mechanism in PROLOG interpreters) on an output device. Note that

by means of input no new names can be introduced to a program; nor can objects be created (or de-

leted).

Import of data types. Certain homogeneous sets of objects and functions defined on them—

collectively known as data types—are naturally found in many modelling domains. Because it cannot

be the purpose of modelling to define these objects or their functions, the objects may be assumed to

be pre-existing and should not be created or destroyed by a program; likewise the functions are prede-

fined and not modelled as object interactions. Data types are imported; by importing, their elements

become valid object names and functions of the importing MOL program.

Data types need not be closed; for instance, a data type with the integers from 0 to 20 as its objects

and addition as its function is acceptable; addition is then undefined for sums greater than 20. Note

that data types do not introduce types to MOL through the back door; all objects of an imported data

type become objects of the program on equal footing with those introduced by the program; functions

imported with a data type are generally partial (in that they are not defined for all objects). To avoid

infinite domains (and hence the loss of the properties of MOL described in Section 5), the objects of

generic data types (such as number) must be limited to finite enumerations.
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4.2 The syntax of MOL

The syntax of MOL is given by the following set of EBNF rules

Program  ::= { Import | Procedure }. 

Import  ::= "import" DataType ".". 

Procedure  ::= "procedure" ProcedureName "(" Parameters ")" Body ".". 

Parameters  ::= [ VariableName { "," VariableName } ]. 

Body  ::= Statement | Statement ";" Body. 

Statement  ::= "new" ObjectName | "delete" ObjectName | Assignment  

  | Unassignment | Input | WhileLoop | ProcedureCall. 

Assignment  ::= Alias ":=" Referent. 

Unassignment  ::= Alias ":-". 

Referent  ::= ObjectName | Alias | “self”. 

Alias  ::= VariableName  

  | Referent { "." AttributeName "[" [ Referent ] "]" }  

  | Referent { ".” FunctionName "(" Qualifiers ")" }. 

Qualifiers  ::= [ Referent { "," Referent } ].  

Input ::= "?" Alias. 

WhileLoop  ::= "while" Condition "do" "{" Body "}". 

Condition  ::= Referent "==" Referent | Referent "<>" Referent. 

ProcedureCall ::= [ Referent "." ] ProcedureName "(" Qualifiers ")". 

where DataType, ProcedureName, FunctionName, VariableName, and AttributeName are identifiers;

ObjectName stands for arbitrary contiguous (i.e., not white-space separated) strings, including num-

bers.

4.3 Operational semantics of MOL

All referents in a MOL program are evaluated to object names. A referent that is an object name

needs not be evaluated (it evaluates to itself). A referent that is a variable evaluates to the name of the

object that is the value of the variable. A referent of the form <referent1>.attribute1[] evaluates

to the unqualified attribute value of attribute1 applied to the object referenced by <referent1>,

which is evaluated recursively. Accordingly, a referent of the form <refer-

ent1>.attribute1[<referent2>] evaluates to the attribute value of attribute1 applied to the ob-

ject referenced by <referent1>, qualified by <referent2>, which are both evaluated recursively.

Lastly, a referent of the form <referent1>.function1(<referent2>) is evaluated by first evaluating

<referent1> and <referent2> and then fetching the function value of function1 as applied to the

results of evaluation from the data type to which the object name of <referent1> belongs.

A condition of the form <name1> == <name2> where <name1> and <name2> stand for object names,

evaluates to true if and only if <name1> and <name2> are identical. A condition of the form <refer-

ent1> == <referent2> evaluates to true if and only if the referents evaluate to identical object

names.
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Assignment of a variable is interpreted as usual, i.e., immediately after executing v1 := o1, v1 =

o1 (where = is metasyntactical equality) and the conditions v1 == o1 and o1 == v1 evaluate to true.

Assignment of an attribute is interpreted accordingly, i.e., immediately after executing o1.a[] := o2,

o1.a[] = o2. Assignments with a qualifying object, i.e., assignments of the form o1.a[o3] := o4

leave the attribute values for all other qualifying objects unaffected. In particular, after the above as-

signment still o1.a[] = o2.

A sequence of statements of the form S1; S2 is interpreted as the execution of first S1 and then S2.

A while statement of the form while <C> do <B> end where <C> is a condition and <B> is a block of

statements means that as long as <C> evaluates to true, <B> is repeatedly executed (re-evaluating <C>

after each execution).

A procedure call is executed by first evaluating the referents (actual parameters) of the call, if any,

and assigning them to the variables (formal parameters) of the procedure head and then executing the

statements in the procedure body.

The import of a data type introduces all names known by the data type to the set of object names

known to a program. Note that the data type needs not define these names extensionally; it merely has

to offer a procedure deciding whether a given identifier is a name of an object of the data type. There-

fore, each data type can decide whether an object name represents an object covered by the data type;

also, it can deliver the function values for all functions defined by the data type. The interface of a

data type as seen from the standpoint of specifying the operational semantics of MOL consists of two

operations: knows(aName) and evaluate(aFunction, ParameterList).

4.4 Denotational semantics of MOL

Because of the simple design of MOL, its denotational semantics is straightforward and defined as

usual: objects are mapped to constants from some semantic domain, attributes are mapped to func-

tions, and so on.

5 Theoretical properties of MOL

MOL has variables, assignment, a sequential execution order, the while control structure, and stan-

dard input/output conventions. Had it also an arbitrarily large range of integers, it would be equivalent

to the while-language [24, 34] and thus Turing equivalent, meaning that any computable function

could be computed in MOL. However, in modelling we are not interested in the computation of func-

tions, but in the design of the interplay of a structured set of objects (mostly non-numerical) and its ef-

fects in terms of changes in structure (or state). Consequently, MOL goes beyond the while-language

by introducing general objects (not only integers) and providing for their interconnection via attrib-
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utes. On the other hand, it restricts the number of objects to the number of names in a program. As a

consequence, MOL is not Turing equivalent.

5.1 Computational power

Although the restrictions in MOL may appear unnecessary at first glance, they buy us certain formal

properties of models that are actually very useful in a modelling context, namely they make many

questions decidable (mostly even with efficient algorithms) that for general computability notions

such as Turing machines or while-programs (as well as for a number of restricted models, e.g. loop-

programs) are undecidable.

To examine the computational power of MOL, we first consider the restriction of the language that

does not allow procedure calls. A state of such a MOL program P is given by values for all attributes

and variables, plus a program counter. Since the number of objects created during execution of P is

finite as well as the number of attributes and values, we conclude that the number N of states of P is

finite. More precisely, let n denote the number of objects in P; let s be the number of statements in P;

let v be the number of variables in P; let Att be the set of attributes in P, and for f ∈ Att let ar(f) denote

the arity of f (here limited to 2, since every attribute is a function of an object plus, optionally, one

qualifier). Then the number N of states is bounded above by s · nv · ∏f ∈ Att nar(f).

Now execution of P can directly be simulated by a deterministic finite automaton M: The state set

of M is the set of states of P. The input alphabet of M is the set of objects in P. Execution of an as-

signment, unassignment, new or delete statement translates directly to a state change of M (only modi-

fying the (un-)assigned variable or attribute value), without consuming an input symbol (this is, in

automata-theoretic terms, an ε-move). The input statement translates to a state change that modifies

only the value of the read variable. The while statement is resolved in the known manner.

If we now allow procedure calls but disallow (direct or indirect) recursion, we see that, though

every procedure call introduces new local variables, the number of active variables is finite at every

state of the execution of P and thus, we still enjoy the property that the number of states is finite. We

conclude that, again, such a program can be translated to a finite automaton. The number of states N

then is the same as above multiplied by a constant, the number of nested procedure calls that can be

active at the same time, which is bounded by the number of procedures in P.

Finally, if we consider MOL programs without further restrictions, i.e., allowing arbitrary proce-

dure calls, it is clear that the number of variables that are active at a time is unbounded, because in

general we can no longer bound the recursion depth of an execution of P. The number N of states thus

can no longer be bounded as above, but depends on the possible recursion depth which, in turn, de-

pends on the input from the user. To simulate P, we now need the power of deterministic pushdown-

automata [21, pp. 246ff]. Program P is translated into such an automaton M as above, with the addi-
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tional rule that for procedure calls, all local variables are saved on the stack and restored upon return

from the called procedure. All other MOL statements lead to the same state changes as described

above for programs without procedure calls.

We remark that the just given simulation results also hold vice versa since, easily, every finite

automaton can be simulated by a non-recursive MOL program with only one procedure and every

pushdown-automaton can be simulated by a MOL program with procedure calls. Hence, the computa-

tional power of MOL is exactly that of finite automata or pushdown automata, depending on the ab-

sence or presence of recursion.

5.2 Reachability properties

Today’s large applications are best viewed as cohorts of (possibly remotely located) interacting ob-

jects, exchanging information and relying on each other’s services. The question in modelling is then

not so much whether a given (overall) function is computable, but more the verification of protocols,

i.e., whether the objects cooperate as intended by the model specification, and whether the coopera-

tion comes to an end (so that the result can be delivered). In theoretical computer science, this is

known as the halting problem. The question if a MOL program P halts given a fixed input sequence

reduces to the question if the corresponding automaton reaches a certain state (or any of a certain set

of states). Stated differently, P does not halt if the corresponding computation of M is caught in an ε-

loop. This is a graph reachability problem and can be solved efficiently using, e. g., Dijkstra’s algo-

rithm that has a run-time of O(N2), where N is the number of nodes of the graph [15, pp. 13–15], i.e.,

the number of states of the MOL program as calculated above.

Further reachability type questions can be answered again in time O(N2) using the same algorithm,

e.g., if a certain state will ever be reached, or if a certain state will always be reached before a second

state (for instance, if an object is created or a variable is initialized before it is used). The latter in par-

ticular grants us the freedom to live without null or nil as a special value, usually needed to turn

undefined into a defined condition.

5.3 Equivalence of models

Modelling is a dynamic activity that, in real projects, never ends. As models evolve, they become

muddled up so that, in order to maintain their clarity, they have to be refactored. Since it is the nature

of a refactoring that it leaves the observable behaviour of the refactored artefact unaffected, refactor-

ing a model means that the model before and after the refactoring must be equivalent [44]. An auto-

matic equivalence check is thus highly desirable.
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The above described connections to different types of automata provide such a check: Say that two

automata M1 and M2 (either finite automata or pushdown-automata) are equivalent if for every input

sequence, both M1 and M2 end in an accepting state or both end in a rejecting state. It is known that

equivalence of deterministic finite automata can be checked in time O(N2), where N is the number of

states in the given automata. Concerning deterministic pushdown automata, G. Sénizergues has only

recently shown that equivalence is decidable [35]. However, he does not give an explicit time-bound

of the decision algorithm. That there is an algorithm that has a primitive-recursive time-bound was

shown in [43]; this means in other words that the algorithm can be implemented using loop-programs.

The just mentioned notion of equivalence of automata translates to MOL programs in the following

way: Two MOL programs are equivalent if for every sequence of input symbols, both end halting or

both do not (yet) end halting. This notion of equivalence may be sufficient for certain restricted areas,

but in general something more involved is needed. As argued in the preceding sections, in object-

oriented models an interaction with the user will lead to some final object structure, i.e., some set of

existing objects with interrelations (in the form of attributes) between objects. Thus, the interaction

with the user should be considered as input, and the produced object structure should be considered as

result of the computation. Two models or two MOL programs should be considered equivalent if for

every input sequence they produce the same object structure. On the level of automata, this corre-

sponds to token automata, i.e., usual (finite or pushdown) automata that produce a symbol from an

output alphabet in the end of their computation, i.e., in their final states. The well-known equivalence

test for finite automata can be adapted to yield an equivalence test for token automata: one only has to

differentiate between final states that produce different output symbols (see [18]). The run-time of the

extended algorithm is again O(N2) for automata with N states.

We have implemented this kind of equivalence check in our tool set (see Section 7). Our prover is

thus able to decide if two given UML models are equivalent in the sense that the same interaction

with the user results in the same object structure.

A third, stricter notion of equivalence would require that for every input sequence, the two exam-

ined MOL programs produce the same trace. On the level of automata, two programs might be defined

to be equivalent if for all inputs they lead to the same traces. This has to be modelled by transducers

(automata with output), i.e. finite transducers and deterministic pushdown transducers. We only men-

tion in passing that also in this setting, equivalence remains decidable [26, 36], in the case of finite

transducers with a decision algorithm with run-time O(N2) [4].

The need for checking the equivalence of two models may also arise in the early phase of model

construction, if different alternatives for the solution of a modelling problem are to be explored.

While equivalence of models is an interesting question, the automatic identification of the (semantic)

difference between two models may be even more interesting. The theory of formal languages pro-

vides an answer for the special case of diagrams leading to MOL programs without recursion—thus,
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again, we deal with finite automata. Given two finite automata M1 and M2, it is possible to determine

efficiently the set of all words for which M1 and M2 yield different outputs; formally this is the sym-

metric difference L(M1) ∆ L(M2), where L(Mi) is the set of words accepted by Mi, i = 1, 2, and for any

sets S, T, S ∆ T = (S ∩ ¬T) ∪ (T ∩ ¬S).

In fact, L(M1) ∆ L(M2) is known to be always a regular set [21, pp. 131ff]. A corresponding finite

automaton that accepts exactly these words can be constructed in time O(N1 · N2 · n), where Ni is the

number of states of Mi, i = 1, 2, and n is the number of input symbols (in the MOL context: the num-

ber of objects). This follows from the facts that an automaton for L(M1) ∪ L(M2) can be constructed in

time O(N1 · N2 · n) [45, p. 117] and that an automaton for ¬L(M1) can be constructed in time O(N1)

[45, p. 117]. Thus, given an input sequence w, if w is handled differently in two UML models, i.e.,

leads to different outputs of M1 and M2, can be decided in time O(N1 · N2 · n). Note that the complex-

ity bound does not depend on the length of the input to the automaton, |w|, that is in our

context, the length of the interaction with the user.

5.4 Efficiency considerations

The previous subsections showed that a number of problems become decidable for MOL programs

that in general and even in the case of restricted computation models (such as loop-programs) are un-

decidable. Note that the equivalence check for nondeterministic pushdown automata is already unde-

cidable [21, p. 407f]; hence the constructs in the MOL in a sense touch the border of what can be

done in principle.

To appreciate the practical usefulness of our approach it is important to know that for MOL pro-

grams that are non-recursive (and object interactions are typically non-recursive) the given algorithms

are very efficient: they have a run-time bounded by a polynomial (of small degree, mostly linear or

quadratic) in the number of states, which in turn is kept small typically since the number of objects of

a UML model is small (in the order of a few hundreds).

6 Mapping UML-A diagrams to MOL programs

Single diagrams show certain views of a system. Although these views need not generally be isolated

from each other, their integration is usually left to the creativity of the reader, without strict binding

rules (comparable to those of a linker linking different modules of a program) being given. If the auto-

matic integration of different diagrams into a single program is the goal (as is in our case), such bind-

ing rules are indispensable; they must be part of the language specification.

It follows that UML-A cannot be a pure subset of UML, because UML lacks such rules. What we

propose instead is a graphical modelling language that is derived from UML, with its ambiguity taken
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out and certain elements of co-reference (which are required for giving models a program semantics)

added. All this comes of course at the price of flexibility. However, making UML-A so general that

the existing UML definition can be built on it should compensate for this.

6.1 Use case diagrams

Use case diagrams specify interactions between outside actors and the modelled system. The outside

actor corresponds to a role of a user (be it human or another system); during model validation, this

role may be assumed to be filled by a validator, i.e., a stakeholder of the model. Although actors are

outside the modelled system, their roles are not: the system associates with each role a set of services

it has to offer, and the runtime of model execution must make provisions for a user to log on in one of

the offered roles and select associated services for validation.

Figure 2. A use case diagram and its translation to MOL code (simplified). The procedure is called by the run-

time system of the MOL interpreter after a user has logged on in the role of a customer and selected the use case

for validation (execution). The requested user input and nested procedure call have been derived from informa-

tion provided in the collaboration diagram of Figure 5.

The system itself (in a use case diagram depicted as a box surrounding the use cases) is an abstraction

offering the services provided by its components. As indicated by our use of the term component, we

interpret the underlying abstraction principle as that of composition; in fact, we assume that there is

some (abstract; cf. [40]) class that represents the system, whose instances are composites made up of

others. Thus, should there be a class symbol in some other diagram that has the same name as the sys-

tem, we interpret this as a sign of co-reference, i.e., that class and system are the same entity, offering

the same functions. Should such a class be lacking, a use case can still be resolved, assuming that the

abstract system has been decomposed into collaborating objects without further notice.

Since use cases represent the functions of a system, we interpret them as methods. Consequently,

our model compiler tries to bind use cases to methods of the same name, preferably those defined in a

class with the system’s name. If no such class exists, it is checked whether there is an interaction dia-

gram with an initial method of the use case’s name. If it does not exist, the use case remains uninter-

preted. If it does, the compiler extracts the parameters of the linked method and inserts input state-

ments letting the user select objects (as actual parameters) in response to activating a use case. De-
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pendencies among use cases give hints on the call dependency of the corresponding methods; the

compiler could check their consistency with the expansion of a use case in an interaction diagram, but

due to the fuzziness of UML’s various use case expansion mechanisms it does not currently do so.

In a way, the set of all use case diagrams of a model represents the menu system of the system be-

ing modelled; this menu system is then specific to the role in which a user has logged on. It can ac-

commodate both interpreted and uninterpreted system functions.

6.2 Class diagrams

A class diagram captures structural (type and other) constraints all states and scenarios of a model

must comply with. While these constraints can direct and control the translation process from UML-A

diagrams to MOL programs, they do not themselves end up in MOL statements: they are either used

by the compiler to generate decision tables (for instance to resolve the dynamic binding of procedure

calls), result in constraints that are enforced during the execution of a model (e.g., multiplicities), or

are simply compiled away (e.g., after it has been proven that a model is statically type correct). Since

enforcing type constraints requires commitment to a certain type system (which is lacking in the UML

standard), we perform only the most fundamental checks; we argue that this is in line with the spirit of

UML, which uses types mostly for data modelling (the class diagram is really a derivative of the en-

tity-relationship diagram, and collaboration diagrams use a very loose form of types) and not for mak-

ing a model safe. Indeed, as noted in [31], untyped languages are preferred during the early, prototyp-

ing stages of system development, whereas strict typing is usually only appreciated at later stages, be-

cause of their potential to introduce correctness and efficiency.

Figure 3. Class diagram of an ATM.

In our current implementation of the compiler, class diagrams are used only to guide the translation

process [20]. Future versions will include the insertion of invariants such as multiplicities in the gen-

erated MOL code.
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6.3 Object diagrams

With class diagrams being compiled away, object diagrams are responsible for injecting object struc-

tures into a model. Such object structures are needed as the starting points for use cases; hardly any

use case will start from scratch by creating the objects it needs explicitly. Object diagrams can also

serve to specify the outcome of a use case; as such, they must be interpreted as postconditions for the

corresponding operation.

Since all methods operate on object structures, execution of a method as specified in a collaboration

diagram (see below) requires a set of objects interlinked to reflect the associations required for the

collaboration. Unless the collaboration diagram is ground, such a structure must be created prior to

execution (as creation is not part of the collaboration), and this is done by the modeller providing ob-

ject diagrams. Since there may be several alternative object diagrams suiting a single collaboration

diagram, the compiler only needs to check the availability of such diagrams, and can leave the choice

to the user at runtime. Should there be no such diagrams, the corresponding method cannot be exe-

cuted. It is however possible that a suitable object structure is created dynamically (as the result of

some other use case or method), so that the compiler does not need to check the availability of fitting

object diagrams at all; it follows that a use case may remain unexecutable, due to the unavailability of

a suitable object structure. To avoid these issues, we currently assign (through a corresponding stereo-

type and tagged values checked by the model compiler) to each use case one object diagram serving

as its initialization (not shown in Figure 2).

An object diagram is translated as follows. All named objects are translated to a new statement fol-

lowed by the object’s name. Note that if the object already exists (because it has been created through

the execution of another object diagram), repeated creation remains without consequences.

A pair of objects (o1, o2) connected by a link l maps to

• an assignment of the form o1.l[] := o2 if l is directed from o1 to o2 and the only link with

name l starting from o1; or

• an assignment of the form o1.l[o2] := o2 if l is directed from o1 to o2 and there are several

(unqualified) links with name l starting from o1.

If the link is bidirectional, the opposite directions are mapped accordingly.
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Figure 4. Object diagram specifying an initial structure for the use case of Figure 2. Class names have been omit-

ted for the sake of brevity. The second pin is provided so that the user can make a false input.

Because of the open world assumption of modelling, that a link is not shown does not mean that it is

not there. This is particularly true for the peripheral objects of a diagram, whose specification may be

continued in another. However, the fact that an object occurs in several object diagrams (co-

referenced) does not necessarily imply that the corresponding generative MOL code is also executed;

instead, different object diagrams might describe different constellations at different times. As men-

tioned above, we currently solve this problem by tying exactly one object diagram to each use case

diagram; future versions of our work might allow the definition of different scenarios (with all dia-

grams of a single scenario complementing each other) and have the user select a scenario dynami-

cally, providing the initial system state for a use case to be executed.

6.4 Sequence diagrams

Whereas use case diagrams can, but need not show the decomposition of a method, it is the purpose of

a sequence diagram to show how an operation is performed by breaking it down to others. However, a

sequence diagram is more than a function tree or a flowchart: it associates with each operation a pos-

sibly different object (either a named one or a placeholder). This is in contrast to the use case dia-

gram, in which the enclosing object, the system, is the same for all use cases. In fact, as has been

noted elsewhere, the sequence diagram integrates functional with structural decomposition [39]: along

with the operation specified, the whole (the system) is decomposed into a set of collaborating objects.

Therefore, the sequence diagram is central to model integration.

Unlike for the related collaboration diagrams, the focus of sequence diagrams is on showing the

flow of interactions between objects. If interaction corresponds to method calling, sequential interac-

tion corresponds to a sequence of method calls. Branching and loops, which may also be expressed in

a sequence diagram, are translated to the corresponding MOL control structures. Asynchronous com-

munication and active objects however must be mapped to parallel processing, an issue not considered

here (cf. Section 4.1); the necessary synchronization of processes would confront modelling with low

level issues from which it tries to abstract, contradicting its very purpose.

A sequence diagram is bound to a use case if the initiating method of the sequence diagram

matches to the operation name of the use case, and if the invoking actors are compatible. Note that

this includes the case that the same operation is specified differently for different actors; the use case
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must then either specify all actors, or comprise them under a suitable generalization. It is important to

note that the system and the class of the object offering the operation need not match: since the system

is considered an abstraction of its components, which are collaborating objects, the sequence diagram

shows the collaboration, regarding the system as an abstract instance, i.e., an instance that disappears

upon zooming into the model [39].

6.5 Collaboration diagrams

Collaboration diagrams add to sequence diagrams the links between objects (or their placeholders)

necessary to exchange messages. These links express the knowledge objects have of each other, ini-

tially and as it changes during the course (and as the effect) of the collaboration. The sequencing of

method sends is captured in the numbering of calls; control structures and their mapping to MOL are

analogous to that of sequence diagrams, as is everything else.

Collaboration diagrams can be specified on the instance and on the specification level. Specifica-

tions on the instance level are based on object diagrams; they add to them the message sends, plus

stereotypes or constraints hinting at newly created and deleted objects and links. They can be consid-

ered instantiations of diagrams on the specification level, in which objects are represented through

placeholders.

Ground collaboration diagrams show the collaboration for specific objects, suggesting that the

same operation would result in a different collaboration for others. Although such alternative collabo-

rations can be provided to cover alternative paths of performing the same operation, one usually

strives for generic descriptions covering as many different instantiations as possible. Such generic de-

scriptions invariably involve placeholders—they are made possible by collaboration diagrams on the

specification level. Note how this closely corresponds to the use of variables in programs: the more

variables it contains, the more compact the specification gets, and variables can be eliminated by roll-

ing out the code in their scope. In fact, collaborations on the specification level closely correspond to

procedures of a MOL program; this will be exploited in the translation process.

In order for a collaboration diagram to be executable, the following conditions must be satisfied. It

must specify an entry point, either in the form of an actor calling a method or some other ingoing mes-

sage call not issued by an object of the diagram. If the method is called by an actor, method and actor

must correspond to a use case and an actor of the same type (or a supertype thereof), respectively, in a

use case diagram. Before the operation can begin, an object structure matching the initial structure of

the collaboration diagram must be identified. This structure should either be provided and/or selected

by the user (who, in the role of the actor, started the operation) or resultant from the execution of a

previous operation. Note that the object structures must comprise the links required by nested opera-

tions, i.e., by operations specified in different collaboration diagrams, but invoked by the original col-
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laboration. Because of the weak typing of collaboration diagrams and their connection to class dia-

grams, we assume it suffices that a correctly typed object diagram exists; no additional type checks

are performed by the compiler.

:Terminal :Account :Balance

1: check balance 1.1: check balance

Customer

:Transaction

:Pin

1.1.1: [pin == pin[]] {new}
{new}

{new}

:Terminal :Account :Balance

1: check balance 1.1: check balance

Customer

:Transaction

:Pin

1.1.1: [pin == pin[]] {new}
{new}

{new}

procedure Terminal_check_balance(account, pin)
self.accounts[account].Account_check_balance(pin)

.
procedure Account_check_balance(pin)
if pin == self.pin[] then {

new transaction;
self.transactions[transaction] := transaction;
transaction.balance[] := self.balance[];
transaction.account[] := self

}
.

procedure Terminal_check_balance(account, pin)
self.accounts[account].Account_check_balance(pin)

.
procedure Account_check_balance(pin)
if pin == self.pin[] then {

new transaction;
self.transactions[transaction] := transaction;
transaction.balance[] := self.balance[];
transaction.account[] := self

}
.

Figure 5. Collaboration diagram showing the interaction between customer, terminal, and account. If entered and

stored pin are identical, a new transaction object is created and linked to the account and balance. Parameters and

receiver of the initial call are extracted and inserted as inputs to the translation of the use case of Figure 2. Note

that the navigability of the new links must be derived from the class diagram (Figure 3).

Figure 5 shows the collaboration diagram for the use case of Figure 2 and its translation to MOL code.

The translation is straightforward: it creates two procedures, one associated to class Terminal, the

other to Account. There is no result returned to the customer; according to our understanding, the

changed object structure is the output of the executed model (recall that MOL has no output state-

ment). Note the overloading and its resolution through the renaming of methods. Since objects are un-

typed, MOL in its initial version has no notion of dynamic binding.

6.6 Statecharts

As noted elsewhere [39], the states of a statechart are only loosely linked to the states of an object as

expressed by its attribute values and by its links. In fact, since MOL has no notion of state separate

from the linking of objects through attributes, translation of statecharts to MOL programs is impossi-

ble as long as this mapping remains unspecified. Note, however, that certain proposals of executable

UML address this problem by attaching procedures to the entry actions of a state, and by accessing

(possibly changing) attribute values and links in these procedures [25]. However, this convention does

not ensure that different states of the statechart are reflected in different attribute values and links of

the object: an empty entry action for example leaves the values unaltered.
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6.7 Activity diagrams

If interpreted as an object-oriented variant of flowcharts, the translation of activity diagrams to MOL

programs should be straightforward. For instance, decisions map to branches, subactivity states map

to procedure calls, and a whole activity diagram maps to the body of a procedure. Action states and

call states would map to primitive operations, but since the only primitive operation of MOL is as-

signment, they may alternatively entail user interaction of some kind (e.g., printing the name of the

state on the console so that the user knows which state is being “executed”). Object flows map to pa-

rameters of procedures, signal sending to asynchronous procedure invocation.

Because the exact meaning of activity diagrams is difficult to grasp from the standard and it ap-

pears that in practice they are used rather liberally, we defer precise translation rules to a later stage,

speculating that the formal semantics of activity diagrams could well be influenced by the precise

definition of translation rules to MOL programs.

7 Tool support, process model of language design, and example of use

Language design is inherently difficult. Linguistics teaches us that it is less of a creative than an evo-

lutionary process: like with natural languages, the success of any artificial language depends on its us-

ability, and if the language fails to adapt to the users’ needs, it will not be used.

The usability of formal languages critically depends on the existence of tools realizing their defini-

tion. If such tools lack, the formal language will quickly be used informally, subjecting it to the much

criticized ambiguity of natural language, which it was to avoid. In fact, only tools watching over the

strict use of the language can tell us whether it is adequate for the chosen purpose, and which its flaws

are. This insight guides our development process for UML-A.

7.1 The iMOL Framework

We have developed and implemented a first version of a model compiler (from UML-A to MOL)

translating the XMI output of a commercial UML editor to MOL programs [20] (see Figure 6). The

compiler enforces certain annotations to models that guide model integration; it also has some other

peculiarities not discussed here.

MOL programs can be entered, executed, and debugged in an integrated development environment

called iMOL [5]. iMOL can start the model compiler and take over its output; it also incorporates the

runtime functionality of model execution, i.e., the menu system and all other routines necessary for

user interaction (such as selecting objects as actual parameters).
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Figure 6. Tool support for the evaluation of UML-A and MOL.

Rather than being part of the model compiler, iMOL is designed as a stand-alone tool that allows us

to explore MOL in practice and learn about its deficiencies. Changes to MOL are first integrated in

iMOL and tried out in isolation; only if the changes make sense (and if they affect the translation

process from UML-A or its definition), we move them to the model compiler. We chose this reverse

engineering approach because we reckon that we have a rather good understanding of what makes a

program, but are yet unaware of many of the subtler model integration problems.

The animation unit of iMOL allows interactive graphical model execution and serves as the user in-

terface for model validation. It has been complemented by an off-line visual renderer automatically

transforming program traces (obtained via iMOL’s debug interface) into high end 3D animations that

can be used as teaching material or as proposals to project management [38]. A screenshot from the

ATM example as used in Section 6 is shown in Figure 7.

Figure 7. Snapshot from a high-quality animation automatically generated from the execution of the model of

the ATM example [38]
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The prover unit currently implements the equivalence test of token automata described in Section 5,

i.e., the prover is capable to determine if two given models are equivalent in the sense that for every

possible interaction with the user they produce the same object structure [1]. To give an impression of

its capabilities, we have modelled two alternative solutions to a standard problem from the logic do-

main. The two versions stand for a single model before and after a rather complex refactoring. The re-

sults can of course be transferred to any other domain, but examples of less academic refactorings will

typically require a broader setting than can be reproduced here.

7.2 iMOL at Work

A common problem of mathematical logic is to decide whether a given set of Boolean clauses is satis-

fiable, i.e., whether or not there exists a set of variable assignments that lets each clause in the set

evaluate to true. Since a clause is a set of literals (negated or non-negated Boolean variables) joined

by disjunction, it suffices that one literal of each clause evaluates to true. The problem is of general

interest because any formula stated in propositional logic can be transformed into such clause form. In

theoretical computer science, the problem is known as SAT and is the prototypical (and also histori-

cally first) NP-complete problem.

For our example, we consider a set with three clauses, C1 through C3, with a total of six literals, L1

through L6, such that

C1 = {L1, L2}, C2 = {L3, L4}, C3 = {L5, L6}.

The odd numbered literals are all bound to one atom (Boolean variable), A, whereas the even-

numbered literals are bound to another, named B. User input determines which of the literals are ne-

gated, and which are not.

Figure 8. Class diagram of the SAT problem.

Figure 8 presents a class diagram of the given problem. Boolean and Number are imported data types

with predefined functions. Figure 10 shows the object diagram representing the initial configuration,

i.e., the construction of the clause set. The negated links of the literals are still undefined; corre-

sponding objects (true or false) must be selected by the user as input once the use case solve is

selected for execution. Note that, deviating from Section 6.1, the input variables are not determined

by the formal parameters of the initial method, but are marked explicitly (by question marks in the

model); this is to make the initiating procedure independent from the initial configuration, which de-

Problem
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termines the number of literals and thus, also, the number of inputs. Quite clearly, the number of ob-

jects in the example is finite, the example thus satisfying the finiteness requirement of our formal

framework.

The solution of the SAT problem is triggered by calling the solve() procedure. That solve is an

entry procedure selectable by the user of iMOL is defined by the use case diagram shown in Figure 9.

The representedClass constraint tags the use case solve to class Problem, which has a corre-

sponding method. The MOL compiler takes this information to generate two default objects, user

and system, and to call the initialisation method generated from the initial object diagram (Figure 10)

on system.

Figure 9. Use case diagram declaring an initiating method decomposed by a corresponding implementation in

class Problem.

Figure 10. Initial object diagram. Links to numbers and truth values are represented as attributes, which is a

shorthand notation for links (cf. Sections3.2 and 4.1).

An obvious solution to the SAT problem is shown in Figure 11. It evaluates the clause set for each

possible assignment of truth values to the atoms A and B. For this purpose, a few additional (unquali-

clauses = 3
atoms = 2

system : Problem

literals = 2
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literals = 2

C2 : Clause

literals = 2
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negated = ?

L2 : Literal
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negated = ?
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fied) attributes (links) are needed; these are solved (for the problem and the clauses) and finished

(for the problem).
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Figure 11. Collaboration diagram of Version 1. A message with a {new} constraint establishes a new link to the

receiver object. It represents an assignment.

The solution procedure is straightforward: a clause evaluates to true if and only if the value of one of

its literals’ atoms is true and the literal is not negated, or if the literal is negated and the atom’s value

is false (i.e., literal.atom[].value[] <> literal.negated[]). This condition is checked for

all clauses in the problem, with the evaluation accumulated in clause.solved and prob-

lem.solved, respectively. The procedure generating the truth assignments, next(), is recursive and

therefore not modelled here (cf. discussion in Section 3.3); its MOL implementation is included in

Figure 13. Once a solution has been found, problem.finished is set to true and the procedure ter-

minates.

The idea of the second, refactored solution to the SAT problem is that in order to satisfy a clause

set, it suffices to select one literal from each clause such that all selected literals can simultaneously

(i.e., under the same variable assignment) evaluate to true. This is the case if and only if the selection

is free of contradictions, i.e., contains no negated and non-negated literal of the same atom. The algo-

rithm thus cycles through all possibilities of choosing either the first or the second literal from each

clause, and then tests for a contradiction in each pair. Interestingly, the search for a solution does not

touch atoms A or B; also, it does not need to memorize the solved state of individual clauses, but in-

stead has to keep track of the literals it visits in each clause. Thus, it needs different helper attributes

(pair and try).
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Figure 12 presents the collaboration diagram for the alternative solution procedure. It requires a

slightly modified initial state, which has been omitted here for the sake of brevity (the necessary

changes can be deduced from Figure 13). Its equivalence (as regards observable behaviour, i.e., ef-

fect) with that of Figure 11 is unobvious, so that a formal proof would seem desirable. With iMOL,

such a proof can be delivered by translating the models into MOL programs and checking these for

equivalence. The MOL code corresponding to the two models is shown in Figure 13; as with Version

1, the next() procedure generating all selections is recursive and has not been worked out in the col-

laboration diagram.

Starting iMOL’s equivalence check on the two programs unveils a practical problem with our ap-

proach. Due to the untypedness of objects and variables, the user can assign any object to the input

variables, even though only true and false are meaningful. While this does not affect equivalence,

practically it means that the corresponding test has to check all, including meaningless, inputs. Even

though the cost of equivalence testing is only quadratic in the number of states (Section 5.3), the num-

ber of states grows — in the worst case — exponentially with the number of objects (base) and the

number of variables and attributes (exponent) (Section 5.1). While the program flow usually con-

strains this growth dramatically (only objects that can actually be assigned to a variable lead to new

states), user input is generally unconstrained. Thus, the 17 objects of Figure 10 and its 6 inputs boost

up the number of states by a factor of approx. 24 million (as compared to a factor of 64 if only Boo-

lean inputs were allowed). This growth would be naturally cut back by typing, but for reasons given

above MOL is untyped. As a workaround, the following helper procedure

procedure input(literal) 
    literal.negated[] := false; 
    ? input; 
    if input == true then 
        {literal.negated[] := true}; 
    input :-. 

ensuring that the input is always meaningful does the same: it reduces the number of states from a th-

eoretical maximum of approx 3.4 billion to 8934 for Version 1 and from approx. 2.6 billion to 6822

for Version 2. Of course, explicit validity checks of this kind are precisely what we were trying to

avoid for modelling by not including null or nil values; the good news is that guarding input vari-

ables as above is all that needs to be done to reduce complexity: typing of all variables and objects

would not reduce complexity further [1].
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Figure 12. Collaboration diagram of Version 2.
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import Boolean. 
import Number. 
 
procedure start_Problem_solve() 
  new A; new B;  
  new C1; new C2; new C3; 
  new L1; new L2; new L3; 
  new L4; new L5; new L6; 
  system.atom[1] := A; 
  system.atom[2] := B; 
  system.atoms[] := 2; 
  system.clause[1] := C1; 
  system.clause[2] := C2; 
  system.clause[3] := C3; 
  system.clauses[] := 3; 
  C1.literal[1] := L1; 
  C1.literal[2] := L2; 
  C2.literal[1] := L3; 
  C2.literal[2] := L4; 
  C3.literal[1] := L5; 
  C3.literal[2] := L6; 
  L1.atom[] := A; 
  ? L1.negated[]; 
  L2.atom[] := B; 
  ? L2.negated[]; 
  L3.atom[] := A; 
  ? L3.negated[]; 
  L4.atom[] := B; 
  ? L4.negated[]; 
  L5.atom[] := A; 
  ? L5.negated[]; 
  L6.atom[] := B; 
  ? L6.negated[]; 
  A.value[] := false; 
  B.value[] := false; 
  system.Problem_solve(). 
 
procedure Problem_solve() 
  self.finished[] := false; 
  while self.finished[] == false do 
    {self.Problem_eval()}. 
 
procedure Problem_eval() 
  self.solved[] := true; 
  foreach clause in self.clause do 
    {self.clause[clause].Clause_eval()}; 
  if self.solved[] == true then 
    {self.finished[] := true}; 
  self.Problem_next(). 
 
procedure Clause_eval() 
  self.solved[] := false; 
  foreach literal in self.literal do 

{self.literal[literal].Literal_eval(self)}; 
  if self.solved[] == false then 
    {system.solved[] := false}; 
  self.solved[] :-. 
 
procedure Literal_eval(clause) 
  if self.negated[] <> self.atom[].value[]  

then 
    {clause.solved[] := true}. 
 
procedure Problem_next() 
  self.Problem_nextIter(self.atoms[]). 
 
procedure Problem_nextIter(i) 
  self.atom[i].value[] := 

 self.atom[i].value[].not(); 
  if self.atom[i].value[] == false then 
    {self.Problem_nextIterHelp(i)}. 
 
procedure Problem_nextIterHelp(d) 
  if d == 1 then 
    {self.finished[] := true}; 
  if d <> 1 then 
    {self.Problem_nextIter(d.sub(1))}.

import Boolean. 
import Number. 
 
procedure start_Problem_solve() 
  new A; new B;  
  new C1; new C2; new C3; 
  new L1; new L2; new L3; 
  new L4; new L5; new L6; 
  system.atom[1] := A; 
  system.atom[2] := B; 
  system.atoms[] := 2; 
  system.clause[1] := C1; 
  system.clause[2] := C2; 
  system.clause[3] := C3; 
  system.clauses[] := 3; 
  C1.literal[1] := L1; 
  C1.literal[2] := L2; 
  C2.literal[1] := L3; 
  C2.literal[2] := L4; 
  C3.literal[1] := L5; 
  C3.literal[2] := L6; 
  L1.atom[] := A; 
  ? L1.negated[]; 
  L2.atom[] := B; 
  ? L2.negated[]; 
  L3.atom[] := A; 
  ? L3.negated[]; 
  L4.atom[] := B; 
  ? L4.negated[]; 
  L5.atom[] := A; 
  ? L5.negated[]; 
  L6.atom[] := B; 
  ? L6.negated[]; 
  C1.try[] := 1; 
  C2.try[] := 1; 
  C3.try[] := 1; 
  C1.pair[] := C2; 
  C2.pair[] := C3; 
  C3.pair[] := C1; 
  system.Problem_solve(). 
 
procedure Problem_solve() 
  self.finished[] := false; 
  while self.finished[] == false do 
    {self.Problem_eval()}. 
 
procedure Problem_eval() 
  self.solved[] := true; 
  foreach c in self.clause do 
    {if self.clause[c].try[] == 

 self.clause[c].pair[].try[] then 
      {self.clause[c].Clause_try( 

self.clause[c].pair[])}}; 
  if self.solved[] == true then 
    {self.finished[] := true}; 
  self.Problem_next(). 
 
procedure Clause_try(pair) 
  if self.literal[self.try[]].negated[] <> 
pair.literal[pair.try[]].negated[] then 
    {system.solved[] := false}. 
 
procedure Problem_next() 
  self.Problem_nextIter(self.clauses[]). 
 
procedure Problem_nextIter(i) 
  self.clause[i].try[] := 
self.clause[i].try[].add(1); 
  if self.clause[i].try[] ==  

self.atoms[].add(1) then 
    {self.Problem_nextIterHelp(i)}. 
 
procedure Problem_nextIterHelp(d) 
  self.clause[d].try[] := 1; 
  if d <> 1 then 
    {self.Problem_nextIter(d.sub(1))}; 
  if d == 1 then 
    {self.finished[] := true}. 
 

Figure 13. Left column: MOL program generated from Version 1; right column: same for Version 2

As it turns out, iMOL’s equivalence check shows that Version 1 and Version 2 of the model are not

equivalent. Closer inspection reveals that this is so because Version 1 delivers an actual solution in
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terms of truth values (the objects true and false) assigned (or linked) to the atoms A and B, whereas

Version 2 leaves the initial object structure unaltered, i.e., truth values unassigned. This difference is

reflected in the final states the corresponding automata reach: as detailed in Section 5, the states cor-

respond directly to variable assignments in MOL and to object structures (object diagrams) in UML-

A. Fortunately, the difference in observable behaviour of the two models, which is a side effect of the

underlying algorithms, is easily removed by explicitly unassigning variable values in Version 1 as the

final step before model termination (a kind of finalization), and by cleaning up the helper attributes of

Version 2 accordingly. The code that needs to be added is shown in Figure 14; after adding it, the

models are indeed proven equivalent.

procedure start_Problem_solve(user) 
    … 
    self.Problem_solve(); 
    A.value[] :-; 
    B.value[] :-. 
 
procedure Clause_eval(self) 
    … 
    self.solved[] :-.

procedure start_Problem_solve(user) 
    … 
    self.Problem_solve(); 
    C1.pair[] :-; 
    C2.pair[] :-; 
    C3.pair[] :-; 
    C1.try[] :-; 
    C2.try[] :-; 
    C3.try[] :-.

Figure 14. Code unassigning helper attributes, needed to make models fully equivalent. Left: Version 1; right:

version 2.

A final note on time and space efficiency: the iMOL automaton generation takes less than 4 minutes

and approx. 350 MByte of main memory (half of which is needed for the presentation of the resultant

automaton) on a PC with Windows 2000 and Pentium III mobile processor (1133 MHz) for Version 1

(with 9437 states), and approx. 2.5 minutes (270 MByte) for Version 2 (7206 states). The equivalence

check takes approximately four hours and needs 240 MByte of RAM, most of which is required by

the internal representation of the checked automata. Profiling shows that much time is spent in gar-

bage collection; so far, iMOL is a pure research prototype and has not been optimized for size or

speed.

8 Discussion

8.1 Applicability

Quite clearly, the definition of UML-A and its translation to MOL make sense only if executability of

a model is desired. If on the other hand UML is to be employed as a pure specification language,

without at the same time intending to provide a model of an implementation meeting the specification,

executability may appear unneeded, and all limitations made to achieve it wasted. Such would typi-

cally be the case when specifying interfaces, for example for frameworks or component libraries.

However, executability can still be handy in these cases, for instance to validate a specification, or to

check compliance with it.
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8.2 Language design

From a programmer’s perspective, some of MOL’s properties may appear debatable. For instance, the

absence of null or nil as a special object (indicating the undefinedness of a variable or attribute) en-

tails that a program may behave arbitrarily (including immediate termination in an error state) once an

undefined value is encountered. On the other hand, this frees the modeller from checking for un-

definedness of values, a task that would spoil the structure of every model. Since the theoretical prop-

erties of MOL allow the automated proof that any variable (or attribute) has a value before its being

used, this feature of MOL should be seen an advantage rather than a deficiency.

Another peculiarity of MOL is that it has no dynamic binding. This may appear unusual for a lan-

guage that is designed for object-oriented modelling, but is a tribute to the fact that dynamically

bound procedure calls make programs difficult to trace, counteracting the idea of model validation

through execution. Besides, UML’s dispatch policy is undefined [11], with most users assuming the

(usually single) dispatch mechanism of their favourite programming language. A consensus on this

topic is certainly desirable.

One true deficiency of our definition of MOL as the target language for object-oriented model exe-

cution is its lack of an asynchronous communication mechanism and of active objects. Although the

introduction of messages as first class objects, a message passing mechanism, and parallel processes

would be an obvious remedy, we would not want to spoil modelling with the necessary synchroniza-

tion issues. Besides, it is still unclear to us how parallelism would affect the expressiveness of the for-

malism; more work needs to be invested here.

8.3 OCL and Action Semantics

UML as a graphical language suffers from a certain clumsiness when it comes to expressing less than

trivial things. The designers of the language are well aware of this circumstance and have therefore

complemented the graphical notation with a language for expressing constraints (the object constraint

language OCL) and a framework for specifying behaviour through atomic actions (the so-called action

semantics5). Both extensions caricature the idea of graphical modelling to the extent that they require

translation of the parts of the diagrams they apply to into a textual form before they can be used to add

information inexpressible in the graphical part of UML. For instance, in order to be able to navigate

an association, this association must be mapped to an attribute (the dot notation) first. Users of these

languages must therefore be able to translate UML diagrams to some linearized form (or at least be

able to read this form), which begs the question why it was not used in the first place.

5 Note that the term action semantics is originally occupied by the formal languages community [27], where it has a different
meaning (and one not useful for the discussion in this context at that).
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Be it as it may, the addition of these two formalisms extends the expressiveness of UML at least to

that of the more powerful of the two; any restriction made in our prior reasoning, especially as con-

cerns finiteness of the state space of a model, can therefore—in principle at least—be circumvented.

However, since we expect OCL to be used to add constraints to an otherwise underconstrained model,

a model with OCL rules will not have more states than the same without; hence, if a model is finite,

adding OCL rules cannot make it infinite. Although we might consider adding (excerpts of) OCL to

our framework at a later stage, we can safely ignore it for the discussion of our current work.

Action semantics has been introduced to UML only in its last version before 2.0, version 1.5 [30].

It comprises primitive operations for the creation and destruction of objects and links between them,

assignment of values (objects) to attributes and variables, iterators for the convenient dereferencing of

many-valued attributes and to-many associations, operations for the issuing of signals etc. In particu-

lar, as opposed to MOL’s being navigational, UML’s action semantics is explicitly committed to the

relational data model.

Action semantics actions are grouped into procedures which can be tied to the states of a statechart.

According to [25], these procedures are executed upon entry of a state. Because a state has no knowl-

edge of the transition that led to it (and its triggering event for that matter), the same procedure is exe-

cuted independently of which event actually led to the state. Consequently, in the examples shown in

[25], all transitions leading to the same state are labelled with the same events, making the statecharts

degenerate. As a result, it seems that the statecharts used in UML’s action semantics are ordinary

flowcharts in disguise (with standardized branching, the branch condition being the occurrence of an

event), but without the call of subroutines. To compensate for this deficiency, procedures can contain

arbitrary code, so that UML diagrams with action semantics are Turing equivalent. In fact, modelling

with action semantics as proposed in [25] more or less means scattering object-oriented code around

diagrams, again begging the question why action semantics does not replace for UML completely.

With its navigational interpretation of UML (based on attributes rather than associations), MOL cap-

tures much of the essence of statecharts with actions, which is nicely reflected in the fact that MOL

programs are translated to finite automata, in which states are defined by attribute and variable as-

signments (Section 5). However, these states lack the abstraction usually associated with statecharts,

as can be told by their sheer number (see Section 7).

8.4 Model Checking

Model checking is widely used today to automatically verify properties of finite state systems (e.g.,

switching circuits or communication protocols) [9]. The properties are specified mostly in linear tem-

poral logic (LTL), and systems are modeled by deterministic finite automata (or Büchi automata). Al-
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gorithms developed in formal language theory are then used to determine efficiently whether the sys-

tem satisfies its given specification.

This idea has also been pursued in the context of UML (e.g., [6, 37]). The popular model checker

SPIN [22] is used in all these approaches, in which UML diagrams are translated into PROMELA pro-

grams (PROMELA being the system description language used by SPIN). The model checker is then

invoked to check deadlock freeness, test system invariants, and check temporal claims.

Typical properties that can be specified by LTL formulas and verified by model checkers are of the

form “something good always happens” or “something bad never happens” [6]. In formal language

theory terms, LTL is of the same expressive power as first-order logic with successor, and both logics

can specify exactly the aperiodic (or, star-free) languages, a subset of the recognizable (regular) lan-

guages. In particular, what cannot be formulated in LTL is equivalence of systems, where two systems

are said to be equivalent if for all input sequences they produce the same outputs (cf. Section 5.3).

Our modelling object language MOL on the other hand was designed so that certain computational

problems including the equivalence problem (as well as all properties definable in LTL) become effi-

ciently decidable. In fact, we have implemented an efficient algorithm that can decide in time propor-

tional to O(N2) whether two given MOL programs (as compiled from UML diagrams) are equivalent

in the sense that the same communication with a user (i.e., an actor) produces in both models the same

object structure, that is, the same sets of existing objects with the same interrelations between objects

[1]. This property (of equivalence of models) is not definable by an LTL-formula, hence we gain de-

cidability over systems based on PROMELA/SPIN. On the other hand, we have not (yet) implemented

a check of arbitrary properties formulated by the user in terms of LTL-formulas; hence SPIN is more

flexible than our system here.

8.5 Other related work

It is common practice to tie the specification of semantics to the UML metamodel (e.g., [14, 12, 33]).

This has the advantage that the UML specification remains self-contained, in particular, that its syntax

and semantics are specified in one place. On the other hand, the self-containment of the UML defini-

tion makes it circular, and every change of the UML concrete syntax entails a rewrite of the defini-

tion, because the metalanguage changes with it [39]. Besides, practical attempts to use the UML meta-

model for semantics specification suffer from its unwieldiness and often require adaptations that are

not easy to establish. For instance, in [12] it is suggested to extend the UML meta model into a model

interpreter by adding so-called meta operations. Operational semantics are specified by means of col-

laboration diagrams formalized as graph transformation rules, mapping the state (coded as an object

graph) before an operation to the state after the operation. The expressive power of the formalism ap-

pears not to be limited; results comparable to ours have not been discussed.
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The modelling language ALLOY is a small (“minimal”) language allowing the description and ma-

nipulation of object structures [23]. ALLOY is based on Z; it is strongly typed and offers additional

constraints to further restrict the possible state space. ALLOY comes with strong tool support, allow-

ing the explorative development of models and evaluation of language design. However, ALLOY is

not designed to model object interactions, which we deem fundamental to object-oriented modelling.

With his abstract state machines (ASMs) Gurevich has extended finite automata by a notion of

state that is bound to variable assignments [19]. ASMs are Turing equivalent and can be employed for

program specification, supposedly on arbitrary levels of abstraction. Even though the variable assign-

ments of a state roughly correspond to the state of an object as determined by the links it has to other

objects, it appears that ASMs are only sporadically used to integrate statecharts with the rest of UML.

ASMs have been extended into the textual modelling language ASML. ASML has many properties

of procedural programming languages; its primary innovation appears to be that it allows the combi-

nation of statements into atomic steps marking a transition from one state to the next. Because of its

programming language syntax and the lack of a suitable graphical notation, however, ASML specifi-

cations will be unintelligible to most customers, making them unsuitable for validation purposes.

Ober has formalized large parts of UML as ASMs [29], but despite the obvious formal relatedness

has excluded statecharts (because of their enormous complexity; personal communication). Börger et

al. separately mapped UML statecharts [2] and activity diagrams [3] to ASMs, avoiding the diagram

integration problem. More recently, Cavarra et al. have provided a mapping of UML static structure

diagrams to initial ASM signatures [7] and developed a simulator for UML models based upon this

mapping [8].

As mentioned above, ASMs in general are computationally as powerful as unrestricted Turing ma-

chines; hence the equivalence problem or reachability questions such as the halting problem are unde-

cidable in this model. ASMs are therefore not suitable for our purpose: we want to exploit a lack of

expressiveness in graphical modelling language to gain decidability of these questions.

With their MINERVA system Campbell et al. created a visual round-trip tool allowing the validation

of class and state diagrams by means of a model checker [6]. Although their system appears to include

animated visualization of collaborations, it targets at generating proofs primarily for embedded sys-

tems. Embedded systems are also the target of HUGO [37], a system for checking the consistency of

dynamic specifications in the form of UML statecharts and collaboration diagrams. It uses PROMELA

and the model checker SPIN as its target formalisms (cf. above). However, model checking does not

lend itself to model validation through animation (i.e., execution and observing its behaviour); we sus-

pect that the constraints that need to be proven cannot be formulated by the majority of UML users.



39

9 Conclusion

We have presented a framework for an executable and ultimately also validatable subset of UML by

providing operational semantics that maintains some of the practical restrictions graphical object-

oriented models possess when compared to object-oriented programs. Within this framework we can

simulate modelled object interactions and the structural changes they imply, and at the same time

prove certain interesting properties of the model, e.g., whether or not an interaction comes to an end,

and whether two models are equivalent (or else what the differences between these models are). Al-

though much work needs to be done, we believe that our approach is a worthwhile contribution to-

wards model-driven architecting of software systems.
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