
Controlling Accessibility in Agile Projects with the Access
Modifier Modifier

Philipp Bouillon

Tensegrity Software GmbH
Im Mediapark 6a

D-50670 Köln
Philipp.Bouillon@tensegrity.de

Eric Großkinsky

LG Programmiersysteme
Fernuniversität in Hagen

D-58084 Hagen
egrosskinsky@online.de

Friedrich Steimann

LG Programmiersysteme
Fernuniversität in Hagen

D-58084 Hagen
steimann@acm.org

Abstract. Access modifiers like public and private let the programmer control
the accessibility of class members. Restricted accessibility supports encapsula-
tion, i.e., the hiding of implementation details behind the interface of a class.
However, what is an implementation detail and what makes the interface of a
class is often subject to change: especially in an agile setting (with absence of
an upfront design dictating accessibility levels), the interface of a class evolves
much like its implementation, settling only towards the finalization of a project.
However, while insufficient accessibility is reported by the compiler, excessive
accessibility is not, the effect being that massively refactored programs usually
end up with larger interfaces than necessary. With our ACCESS MODIFIER MODI-
FIER tool, we allow programmers to increase and keep accessibility at higher
levels during the development phase, and reduce it only once the required ac-
cess has stabilized. Fixed design decisions (such as a published API) can be
designated by corresponding annotations, making them immune to changes
through our tool. Evaluating the ACCESS MODIFIER MODIFIER on a number of
internal packages taken from the JAVA open source community, we found that
accessibility was excessive in 32% of cases on average.

Keywords. Design, Encapsulation, Agile software development, Refactoring,
Tool support.

1 Introduction

In languages like JAVA supporting information hiding [19] through access modifiers
such as private and public, any attempt to reference an insufficiently accessible class
member results in a compile-time error [9]. By contrast, excessive accessibility does
not — instead, it is often tacitly assumed that higher than required accessibility, or
even accessibility without any access from within the program, is granted intention-
ally, i.e., that it reflects the designed interface (or API) of a class. However, in pro-
gramming practice, in agile settings especially, the design of interfaces changes as
part of the refactoring of code, and changes to accessibility are driven by what is nec-
essary rather than what is superfluous, usually leading to the phenomenon that high
levels of accessibility that are no longer needed are nevertheless maintained. While
this may seem an inexcusable lack of discipline, we conjecture that it is also due to a

2 Philipp Bouillon, Eric Großkinsky, and Friedrich Steimann

lack of information: the maintainer of a class is not necessarily aware of all its clients
and the access they require, so that reducing accessibility is a trial and error process.
What would be needed instead is some kind of warning indicating where accessibility
is unnecessarily high.

In JAVA, access modifiers do not only control accessibility of program elements,
they also contribute to the semantics of a program. In particular, accessibility has an
effect on dynamic binding and also on static method resolution under overloading and
hiding [9]. Seemingly innocuous changes of access modifiers may therefore silently
change the meaning of a program, so that tools preventing such unintended changes
should be highly welcome.

To address these problems, we have devised a new tool, called ACCESS MODIFIER
MODIFIER (AMM), that helps the programmer control the accessibility of class mem-
bers. We have implemented this tool as a plug-in to the ECLIPSE Java Development
Tools (JDT), and evaluated it by automatically applying it to several internal packages
of large and well-known projects. The tool and a brief guide to its use are available
for download at http://www.fernuni-hagen.de/ps/prjs/AMM2/.

The contribution of this paper is fourfold:
1. We define the notions of sufficient and excessive accessibility of class members.
2. We investigate the conditions under which excessive accessibility levels can be

changed without changing program semantics.
3. We describe the implementation of a tool that helps control the accessibility of

class members.
4. We present empirical evidence that our tool support for accessibility changes, re-

ductions especially, is useful in practice.
The remainder of this paper is organized as follows. In Section 2, we take a quick
look at how programmers set accessibility of class members in practice, and derive
from their behaviour desirable tool support. In the sections that follow, we address our
four contribution listed above. We conclude by discussing our approach and by com-
paring it to related work.

2 Motivation

In JAVA, accessibility levels of class members control the interfaces of classes and
packages. As long as the design has not stabilized, these interfaces are subject to
change. Changes may require an increase in accessibility, or may allow a decrease; in
the first case, action by the developer is mandatory (otherwise the program will not
compile), in the second, it is optional. In both cases, the changes are initiated by add-
ing or removing dependencies in some remote place (different class or package) and
therefore require the parallel editing of two source code locations (files), disrupting
the work flow in an untoward way.

Under these conditions, programmers usually experience a certain tension between
the goals “ease of coding” and “achieving maximum encapsulation”. The poles of this
tension are succinctly described by the following, opposing approaches:
1. Create Publicly Privatize Later This is the liberal approach pursued by develop-

ers striving for maximum flexibility during development: all methods of a class are

Controlling Accessibility in Agile Projects with the Access Modifier Modifier 3

inherited to its subclasses and can be accessed freely by other classes. While this
design may be viewed as needlessly bloating the interface of a class, it saves the
developers from anticipating adequate accessibility levels. At the same time, public
accessibility facilitates unit testing which, depending on the testing framework
used, requires public access to the methods under test. On the other hand, without
additional API documentation it leaves users of the so-designed classes ignorant of
which methods they can rely on (the stable, or published [6] interface) and which
are subject to change without notice. Privatizing members later is possible, but dif-
ficult (see below); in particular, care must be taken that this does not change pro-
gram semantics (see Section 4).

2. Create Privately Publish Later This is the cautious approach pursued by pro-
grammers caring about information hiding, acknowledging the fact that “it’s easy
to widen accessibility, but more difficult to reduce the accessibility of a feature in
working code.” [2] It leaves no doubt concerning the required accessibility of a
member: if it is higher than private, then this is so because it is actually needed, not
because someone speculated that it might be needed in the future [2]. However,
even these developers must face the fact that as the design changes, a member may
be left with excessive accessibility, and the resulting problem is the same as that
for the first approach. Also, when it turns out that the accessibility must be in-
creased, they cannot be sure that this change does not affect program semantics.

Both approaches are extreme and in programming practice, a mixture of both will
likely occur. However, each approach is representative of one practical programming
problem that we would like to address with our AMM:
1. For creating publicly and privatizing later, an indication that informs the developer

of member declarations whose accessibility level is higher than required by design
during and in particular at the end of development would be helpful. This accessi-
bility should be reducible to the minimum required level using a corresponding mi-
cro-refactoring offered to the programmer (in ECLIPSE in the guise of a so-called
Quick Fix). In doing so, the tool should be aware of whether the reduction is at all
possible without changing program semantics. It should also be able to accept that
a given member is part of the API, so that accessibility should not be reduced, or
only criticized as being too high.

2. For creating privately and publishing later, when access to a member with insuffi-
cient accessibility is needed, the developer should be allowed to increase its acces-
sibility without having to switch to its declaration site. This is already possible in
ECLIPSE, although only via the detour of using the inaccessible member, thus forc-
ing a compile-time error which can then be removed via the offered Quick Fix in-
creasing accessibility as required. However, it would be more convenient were the
developer allowed to inspect the hidden members and select from those (in the
same manner so-called Content Assist works for accessible members), having the
selected member’s accessibility adapted before using it.1 Again, the AMM tool
should guarantee that this does not change program semantics, this time by not of-
fering members whose accessibility level must be maintained.

1 To whom this appears as sabotaging the very purpose of modularization (or information hid-

ing [19]), be reminded that the strategy is “create privately, publish later”. In agile develop-
ment, corresponding design changes are a matter of fact. Cf. Section 7.

4 Philipp Bouillon, Eric Großkinsky, and Friedrich Steimann

The privatization functionality described above can also be useful when a project has
been tested and is now to be released, so that the test suites are removed, allowing ac-
cessibility of methods previously required to be public solely for the sake of testing to
be reduced. For this purpose, an automated execution of all suggested accessibility
reductions is desirable.

3 Sufficient and Excessive Accessibility

Before elaborating on how the above goals can be achieved, an analysis of the prob-
lem is necessary. For this, we begin with a definition of the terms of sufficient and
excessive accessibility.

Sufficient (or its converse, insufficient) and necessary (or its converse, excessive)
accessibility are determined by the access control rules of the language, and by the
mutual use dependencies of program elements organized in modules. JAVA has four
accessibility levels named public, protected, default (deriving form the fact that it has
no corresponding access modifier keyword; also called package local), and private,
and two module constructs (module in the sense that something can be hidden inside
it), namely class and package. Dependency is divided into uses (or call) dependency
and inheritance (subclassing). Public accessibility of the members of a class lets them
being depended upon by any other class, protected by all its subclasses and any class
in the same package, default by any class in the same package, and private only by the
owning class. These simple rules suffice to detect access violations, i.e., attempts to
access class members declared to be out of reach (i.e., inaccessible, sometimes also be
referred to as invisible, although this term is defined differently in the JAVA language
specification [9]). If no access violations occur, the accessibility of all members is suf-
ficient. It may however be excessive, namely when it is sufficient, but higher than

Figure 1. A class member’s accessibility status is either insufficient, or necessary and suffi-
cient, or excessive. While accessibility must be sufficient for a program to compile, excessive
levels of accessibility are accepted. In absence of an API (i.e., for closed, monolithic pro-
grams), the necessary and sufficient accessibility level (depicted by the dot) of each program
element is uniquely determined by the program and can be derived by means of a whole-
program analysis.

min maxnecessary & sufficient

insufficient excessive

accessibility

Controlling Accessibility in Agile Projects with the Access Modifier Modifier 5

necessary, so that accessibility of members can be reduced without becoming insuffi-
cient.2 Figure 1 illustrates the situation.

To distinguish sufficient and excessive accessibility (defined by use) from the ac-
cessibility expressed by access modifiers (public etc., defined by declaration), we re-
fer to the former as status and to the latter as level of accessibility (but omit this dis-
tinction if it is not clear from the context). The status of accessibility is a property of
the level of accessibility and as such (indirectly) a property of a class member, even
though insufficient accessibility is usually ascribed to concrete uses of a class member
and not to the class member itself. Because in JAVA, the clients of a class member are
not known to that member or its owning class (this is different, e.g., for EIFFEL, which
has a dedicated export [17]), all accessibility states must be determined globally, i.e.,
by an analysis of the whole program.3 There is however an important difference be-
tween the accessibility states sufficient and excessive with respect to the development
process, i.e., with respect to adding and removing dependencies on class members
during development:
• When adding a new or removing an existing dependency, (preservation of) suffi-

cient accessibility can always be checked locally, i.e., solely by determining the
position of the calling or subclassing class relative to the class depended upon in
the package structure and in the class hierarchy.

• By contrast, non-excessive accessibility is harder to maintain. In particular, it can-
not be checked locally: as shown in Figure 2, adding or removing a dependency
may or may not affect the excessiveness of accessibility, and which is actually the
case is not determined by the now using, or no longer using, class alone.
It is important to understand that accessibility status is determined by the actual

use of (or dependency on) class members in a project, while accessibility level deter-
mines their actual usability. This inversion of relationship is reflected in the imple-
mentation of our AMM tool, which needs to set up inverse data structures (see Sec-
tion 5).

3.1 Accessibility Status and APIs

Things are less clear-cut when projects are analysed that are designed for use by oth-
ers or open for extension (such as libraries or frameworks). In such projects, neces-
sary and sufficient accessibility levels are not only determined by the actual (present)
dependencies, but also by the designed interface to the external world, which is often
referred to as the Application Programming Interface (API). Members of the API may
be required to be declared public even if not being accessed from within the project it-
self, or protected even without the existence of project-internal subclasses. In these

2 In mathematical logic, a condition can be necessary (i.e., not excessive), but not sufficient.

We do not consider this case here — a program with insufficient accessibility is incorrect
(does not compile) and therefore outside the scope of this paper.

3 Note that compilers commonly do not perform whole program analyses, but check suffi-
ciency of accessibility per use. Insufficient accessibility is then marked as an error of the use
site (attempted access violation) and not of the inaccessible class member. This reflects the
viewpoint that the language should enforce information hiding. The scope of this paper is
however slightly different.

6 Philipp Bouillon, Eric Großkinsky, and Friedrich Steimann

cases, accessibility of a class member is excessive only if the member is not part of
the API, even if there is no actual dependency within the project requiring the given
accessibility.

Unfortunately, JAVA has no linguistic means to express what is part of the API —
the meaning of public or protected accessibility is unspecific in that use of the corre-
sponding access modifiers cannot distinguish internally required from externally re-
quired accessibility [6]. It follows that if the API is not otherwise formally docu-
mented (e.g., through javadoc tags), it is impossible to decide mechanically whether a
member’s accessibility is excessive. To make up for JAVA’s inability to distinguish
API form internally required accessibility levels, some development teams have
adopted the Eclipse Naming Conventions to designate packages whose public and
protected methods are supposed to be not part of the API:

All packages that are part of the platform implementation but contain no API
that should be exposed to ISVs [Independent Software Vendors] are considered
internal implementation packages. All implementation packages should be
flagged as internal, with the tag occurring just after the major package name.
ISVs will be told that all packages marked internal are out of bounds. (A simple
text search for ".internal." detects suspicious reference in source files; likewise,
"/internal/" is suspicious in .class files). [4]

package same;
class Called {
 private void m() {…} // insufficient accessibility
 public void n() {…} // sufficient and excessive accessibility
 public void p() {…} // necessary and sufficient accessibility
}

package same;
class Caller {
 …
 Called o = …
 o.m(); // compile-time error
 o.n(); // OK
 o.p(); // OK
 …
}

package other;
import same.Called;
class Caller {
 …
 Called o = …
 o.p(); // OK
 …
}

Figure 2. Insufficient, necessary and sufficient, and excessive accessibility of members of a
serving class, determined by two client classes, one in the same, one in another package. When
adding access to n() in other.Caller, it is not decidable locally whether its status of accessibility
changes from excessive to necessary and sufficient (it does, actually). Vice versa, when remov-
ing access to p(), it is unclear whether status of p() changes from necessary and sufficient to ex-
cessive (it does again). Note that insufficient accessibility is usually marked at the call site
(through a corresponding compile-time error), while excessive accessibility can only be as-
cribed to the called (or, rather, not called) site (cf. Footnote 3).

Controlling Accessibility in Agile Projects with the Access Modifier Modifier 7

 and also:
Packages with [the .internal] prefix are implementation packages for use within
the given module. Types and fields that are accessible within these packages
MUST NOT be used outside the module itself. Some runtime environments may
enforce this reduced accessibility scope. [8]
Instead of marking packages as internal, we will introduce an annotation that tags

class members as being part of the API, so that our tool never classifies their accessi-
bility as excessive. However, we will make use of the “internal” naming convention
in the evaluation of our approach (Section 6).

3.2 Accessibility Status and Subtyping

Subtyping dictates that accessibility of methods overridden in subtypes must not be
lower than that in their supertypes (so that the cancellation of members by making
them inaccessible is made impossible). While this is required by the principle of sub-
stitutability [16], it tends to get in the way when subclassing is done primarily for the
sake of inheritance; often, then, many inherited class members are unneeded, so that
their accessibility is factually excessive (and required only by the possibility of substi-
tution, which may never take place). In this case, replacing inheritance with forward-
ing or delegation [12] is indicated.

However, it is possible that the necessary accessibility of a member overridden in a
subclass is higher than that in its superclass. This is for instance the case when a client
of the subclass requires public access, whereas for the superclass protected access suf-
fices. When this additional client is moved to the same package as the subclass, the
accessibility can be lowered to protected. If the accessibility required from the mem-
ber in the superclass is then changed to default, the accessibility of both can be re-
duced simultaneously to this level.

Things are reversed when an increase of accessibility for a superclass’s method is
required. If its subclasses override the method with same (former) accessibility level,
the increase in the superclass is not allowed unless the subclasses are changed with it.
In these cases, increasing visibility of the whole hierarchy may be indicated.

Note that in JAVA, the same rules apply to static methods, for which hiding re-
places overriding [9, § 8.4.8]: the access modifier of a hiding method must provide at
least as much access as the hidden method, or a compile-time error occurs.

3.3 Interface Implementation

JAVA has a special type construct, named interface, whose members are implicitly
public. Interfaces can be subtyped by classes, in which case the class must implement
all methods declared by the interface. As with subclassing and overriding, visibility of
implemented methods must not be reduced — in this case, it must remain public.

Things are slightly complicated by the fact that interface implementation intro-
duces the possibility of multiple subtyping, i.e., that a class can have more than one
direct supertype (a superclass and one or more interfaces). This leads to the constella-

8 Philipp Bouillon, Eric Großkinsky, and Friedrich Steimann

tion shown in Figure 3, in which visibility of m in A cannot be reduced, but not be-
cause A implements I, but because a subclass of it does.

3.4 Anonymous Subclasses

JAVA allows anonymous subclasses which can override methods just like ordinary
subclasses. Their existence therefore has to be considered when searching for exces-
siveness of accessibility, and also when checking for a possible increase of accessibil-
ity in a superclass (see Section 3.2). A somewhat unexpected constraint results from
anonymous subclasses not overriding methods: upon occurrence of the expression

new C(){}.m()

in a program, accessibility of m() in C cannot be reduced beyond what is required by
the (location of the) expression.

4 Accessibility and Program Semantics

Access modifiers not only control the accessibility of class members by their clients,
they also play a role when selecting from a number of competing member definitions.
When the members are methods, this selection process is called binding. JAVA distin-
guishes static and dynamic binding; each will be considered separately.

4.1 Dynamic Binding: Overriding with Open Recursion

As discussed in Section 3.2, the accessibility of overriding and overridden methods
depends on each other in that the accessibility of the overriding method in the sub-
class must be at least that of the overridden method in the superclass. One might be
led to believe that accessibility of the methods can be changed freely as long as this
constraint is satisfied. However, this is not the case.

class A {
 public void m() {…}
}

interface I {
 void m();
}

class B extends A implements I {
 …
}

Figure 3. Indirect accessibility constraint imposed by a subclass implementing an interface.

Controlling Accessibility in Agile Projects with the Access Modifier Modifier 9

Subclassing comes with an interesting twist to uses-dependency: while methods
defined in the superclass can be called from the subclass and its clients, they can also
call methods defined in the subclass, namely via overriding and open recursion [20]
(the mechanism behind the TEMPLATE METHOD pattern [7]). For overriding, the over-
ridden method must be declared at least default if the subclass, the superclass and all
intermediate classes are in the same package, and at least protected otherwise.

Now consider the code from Figure 4. It satisfies the condition that accessibility of
n() is no less in Sub than it is in Super. Changing accessibility of n() in Super to pri-
vate does not violate this condition. However, it changes program semantics: exe-
cuted on an instance of class Sub, m() now calls n() in Super instead of in Sub — the
dynamic binding has silently been removed. Vice versa, assuming that n() had been
declared private in Super in the first place, increasing its accessibility to default, pro-
tected or public would also change semantics, this time by introducing a dynamic
binding that was previously absent. In JAVA, access modifiers do not only decide over
whether a program is correct (in that it respects the declared interfaces and thus in-
formation hiding), they also have an effect on program semantics.

With JAVA 5, this problem has partly been fixed by introducing the @Override an-
notation, which issues a compile-time error if a so-tagged method does not actually
override. So if in Figure 4, n() in Sub were tagged with @Override, accessibility of n()
in Super could not be lowered to the degree that it is no longer overridden (here pri-
vate). The problem would have been completely fixed if the JAVA 5 compiler had re-
quired all overriding methods to be so tagged: in this case, increasing accessibility of
n() in Super from private to some higher level would reject the definition of n() in Sub
as lacking the @Override annotation. Note that C# has a required keyword override
for overriding methods, which fully solves the problem; for JAVA, the ECLIPSE JDT
offer a compiler switch whose selection makes the @Override annotation mandatory

class Super {
 public void m() {
 n();
 }

 public void n() {// private possible, but changes semantics
 System.out.println("Super.n");
 }
}

class Sub extends Super {
 public void n() {
 System.out.println("Sub.n");
 }
}

class Client {
 public static void main(String[] args) {
 Sub o = new Sub();
 o.m();
 }
}

Figure 4. Overriding and open recursion prohibiting reduction of accessibility: if accessibility
of n() in Super is reduced to private, the overridden version is Sub is no longer called.

10 Philipp Bouillon, Eric Großkinsky, and Friedrich Steimann

for overriding methods. In absence of either, an additional constraint for changing ac-
cessibility of methods is that it must not introduce or remove a dynamic binding.4

4.2 Static Binding: Overloading and the Most Specific Method

A second problem that is related to subtyping, but does not involve dynamic binding,
occurs when determining the most specific method in a set of overloaded method dec-
larations. In JAVA, when a method call matches several of a set of overloaded meth-
ods (i.e., methods available for the same class or interface with identical name and ar-
ity, but different parameter types), the most specific one is chosen ([9], § 15.12.2). If
this most specific method is made inaccessible by reducing its accessibility, no com-
pile-time error will result if a uniquely determined, less specific one can be linked in-
stead. However, this static binding to a different method also changes the semantics of
the program; Figure 5 gives an example of the problem.

The problem is somewhat worsened by the fact that as of JAVA 5, primitive and
their wrapper types are mutually assignment compatible. The details of the resulting
problems are discussed in [10]. Issues around variable parameter numbers (a new fea-
ture of JAVA 5) are not considered, neither here nor in [10].

A rather unexpected problem may occur when an up cast is used to disambiguate
an otherwise ambiguous method call. If accessibility of the method that causes the
ambiguity is reduced, the type cast becomes unnecessary, which may lead to a com-
pile-time warning, or even error, with certain compilers.

4 Unlike in [12], we do not check here for actual occurrence of open recursion, but only for

presence of overriding. This makes the required analysis significantly simpler.

class Super {…}

class Sub extends Super {…}

class Server {

 public void m(Super o) {
 System.out.println("m(Super)");
 }

 public void m(Sub o) {// private possible, but changes semantics
 System.out.println("m(Sub)");
 }
}

class Client {
 void callMSub() {
 Sub o = new Sub();
 Server s = new Server();
 s.m(o);
 }
}

Figure 5. Overloading prohibiting adjustment of accessibility: if accessibility of m(Sub) is re-
duced to private, m(Super) is called instead.

Controlling Accessibility in Agile Projects with the Access Modifier Modifier 11

5 The Access Modifier Modifier Tool

To make the support described in Section 2 under the conditions of Sections 3 and 4
available to the programmer, we have implemented the AMM as a plug-in to
ECLIPSE’s JAVA Development Tools (JDT). The plug-in implements the JDT’s builder
extension point and is activated whenever the JDT have performed their own build.

The AMM integrates seamlessly with the JDT’s standard user interface in that it
• adds a new type of warning equipped with two possible Quick Fixes (one for re-

ducing accessibility, one for introducing an @API annotation) and in that it
• extends the existing Content Assist with the possibility to show as yet inaccessible

members, associating an automatic increase of accessibility with their selection.
However, despite the possibility to reuse the user interface, the actual implementation
of the tool meant considerable work from scratch. The reasons for this must be sought
among the following.

When a class is compiled by the JDT, the compiler checks all references to other
classes’ members for their accessibility. If a member is inaccessible from the class,
the corresponding reference (not the member declaration!) is marked as illegal. This
can be done in a local manner, i.e., without considering other than the referencing and
the referenced class (plus perhaps its superclasses). Sufficient accessibility of a refer-
enced member (as its accessibility status; cf. Section 3) can be deduced from a com-
piling program, i.e., from a program that contains no illegal references to that mem-
ber. Also, upon change of a reference (by adding, removing, or moving it to a differ-
ent location) sufficiency of accessibility of a class member can be updated based on
the change alone, irrespective of all other references: higher demands will lead to an
error), while lower demands leave sufficiency untouched.

Things are quite different for the accessibility status taken care of by the AMM,
namely excessive accessibility. From a legal reference to another class’s member, or
even from the fact that all references are legal with respect to the accessibility rules of
JAVA, it cannot be deduced whether accessibility status is necessary and sufficient, or
excessive (cf. Figure 1). Even worse, when a reference is added, removed, or moved
to a different location, the change’s effect on accessibility status is unpredictable
without knowing the requirements of all other references. The AMM tool therefore
requires significant additional data structures.

5.1 Full Build

For a full build, the AMM traverses the abstract syntax tree (AST) of all open projects
in the workspace that depend on the project for which accessibility is to be controlled
(and for which the full build has been triggered), and collects all calls to methods of
this project. The set of methods can be further restricted by setting a corresponding
package filter; such a restriction, for instance to internal packages (cf. Section 3.1), is
often useful and has in fact been exploited in our evaluation of the AMM (Section 6).
The call dependencies collected in this manner are stored in two hash tables, one —
named Callees — keeping the set of methods called by each method, the other —
named Callers — the set of types from which each method is called. The necessary
and sufficient accessibility level can then be computed for each method as the maxi-

12 Philipp Bouillon, Eric Großkinsky, and Friedrich Steimann

mum accessibility level required from the types stored in Callers, subject to the re-
strictions discussed in Sections 3 and 4, which are checked as described in [10]. After
the build has completed and the computed warnings have been issued and the corre-
sponding markers have been set (see Figure 6), the hash tables are stored on disk for
later use by incremental builds.

5.2 Incremental Build

An incremental build is triggered by a change in one compilation unit (CU). The JDT
notify the AMM builder of this change, who can then commence its action.

In a first step, the AMM builder updates the callees (as stored in Callee) of all
methods contained in the changed CU (including added and deleted methods), and
also the calling types of each newly called or no longer called method (as stored in
Callers). In the second step, it visits all updated callee methods determined in the first
step. Each of these methods is looked up in Callers to compute the new necessary and
sufficient accessibility (again as the maximum of the accessibility levels as required
by each calling type). The AMM builder then proceeds checking the preconditions for
changeability of accessibility as described above, and updates warnings and markers
correspondingly.

5.3 Reducing Accessibility or Adding an @API Annotation

The warnings computed by the AMM tool are displayed in the JDT’s problem view,
as shown in Figure 6. Corresponding Quick Fixes allow the reduction of visibility
without opening the editor of the class hosting the member in question, or alterna-
tively the insertion of an @API annotation. A second Quick Fix offered in the Prob-
lems view reduces accessibility according to all selected warnings at once (not
shown).

Figure 6. Warning issued by the AMM tool, and quick fixes offered.

Controlling Accessibility in Agile Projects with the Access Modifier Modifier 13

5.4 Increasing Accessibility

Increasing accessibility with the AMM tool is integrated into the JDT’s Content As-
sist, by providing a plug-in for the corresponding extension point. This plug-in adds to
the standard Content Assist a page containing the members currently inaccessible
from the object reference on which it is invoked. Upon selection of the desired mem-
ber, the required increase of accessibility is checked against the preconditions listed in
Sections 3 and 4 and, if satisfied, the increase is performed. The selected member is
then automatically inserted in the code (the standard behaviour of Content Assist).

6 Evaluation

Designed to improve the consistency of source code, our AMM tool is not of the
breed that is indispensable for the on-time delivery of correct programs. In order for it
to be used, the imposed costs have to be carefully weighed against the expected bene-
fits. The following evaluation should provide a basis for such a trade-off.

6.1 Usefulness

We have evaluated the usefulness of our AMM tool by applying it to internal pack-
ages of several open source JAVA programs. Programs were selected based on the ex-
istence of packages clearly designated as internal5 and on the fact that the packages
and their enclosing projects were extensively covered by JUNIT tests. We collected
the numbers of possible reductions in accessibility indicated by the AMM tool, and
checked unchanged semantics of the packages and their dependents by executing the
unit tests after all suggested changes had been performed. The selected packages and
size of containing programs are listed in Table 1; the results of the evaluation are
given in Table 2.

5 This turned out to be very selective — only few projects actually do this.

Table 1. Projects used for evaluating our AMM tool (size is number of compilation units)

PROJECT FULL NAME AND
VERSION

SIZE SOURCE ANALYZED PACKAGES

JUNIT version 4.4 226 junit.org .internal*
SVNKIT version 1.1.4 687 svnkit.com org.smatesoft.svn.core.internal.*
ECLIPSE JDT core§

version 3.3.1.1
1132 eclipse.org .jdt.internal.*

HARMONY Apache Harmony
JDK version 5.0

6765 harmony.apache.org *.internal* w/o *.test* and *.nls

§ Size includes all JDT projects of Eclipse; accessibility reductions have been computed for the
org.eclipse.jdt.core project only.

14 Philipp Bouillon, Eric Großkinsky, and Friedrich Steimann

Overall, the relatively high numbers of possible reductions came as a surprise: al-
though we had hoped that our evaluation would demonstrate the usefulness of the
AMM tool, we did not expect unnecessary openness of internal packages to be that
high. On average, 32% of all access modifiers of methods in internal packages were
higher than required by their use of other packages. In particular, the relatively high
number of unnecessary public accessibilities (70% of all excessive accessibilities) ap-
pears troubling.

There are various possible explanations for this. One is that access to classes host-
ing the members in question is limited, eliminating the need for individual class mem-
ber access restriction. Another explanation is that internal packages have been de-
signed with future internal extensions in mind, so that members are intentionally
made accessible to other internal or non-internal project packages without already be-
ing used by these. One indication for this is the relatively high number of protected
members that could have been declared private; for instance, these make up for 41%
of all possible reductions in the internal packages of JUNIT. If this is actually the case,
and if the authors insist on offering this internal interface to future extensions, intro-
duction of a corresponding annotation would be in place (but see Section 7 for a dis-
cussion why we believe this is not necessary). A third explanation is that the internal
naming conventions described in Section 3.1 are not strictly adhered to. One indica-
tion for this is that we found “external API” comments for methods in the internal
packages of ECLIPSE’s JDT. The last explanation is that developers have been uncer-
tain about the accessibility status of their class members, and left accessibility on a
level “that worked”; this is where our AMM tool steps in.

The findings delivered by our AMM tool are not without systematic errors. First,
since its program analysis does not cover reflection, it is unable to detect and consider
reflective calls. In the case of JUNIT this introduced two erroneous accessibility reduc-
tions (both from public to default). Generally, since JUNIT calls the methods repre-
senting test cases reflectively, test packages should be excluded from accessibility re-
ductions. Note that this could be achieved automatically if the AMM treated the
@Test annotations of JUNIT 4 like @API annotations and so left test cases untouched.6

6 A similar problem occurred during testing the correctness of the AMM tool on the JDT core:

its test methods call some of the tested methods reflectively, which is not discovered by the
program analysis, thus causing failures. We therefore supplemented correctness tests of our
implementation using unit tests from other projects without such problems (but which did not
have packages designated as internal, which is why they were not included in our study).

Table 2. Results of the evaluation (see text)

PROJECT MEMBERS CHANGES FROM TO TOTAL GAIN
 OF INTERNAL public protected default
 PACKAGES protected default private default private private
JUNIT 131 2 8 9 1 15 4 37 28%
SVNKIT 3555 11 731 219 214 60 2 1237 35%
ECLIPSE 12780 431 1764 631 800 462 161 4249 33%
HARMONY 1805 25 199 67 12 9 17 330 18%
total 18271 470 2703 931 1027 546 184 5853 32%

Controlling Accessibility in Agile Projects with the Access Modifier Modifier 15

Second, possible reductions of groups of methods (a method and its overridings; cf.
Section 3.2) are not determined: if a method declared public that can be reduced to
protected or default is overridden, the overriding methods with accessibility levels
enforced by subtyping are not at the same time marked as reducible (because with the
superclass’s accessibility as is, they cannot). However, as soon as the accessibility of
the overridden method is reduced, the overriding methods will be marked by the
AMM as reducible. The so-induced reducibilities are immediately detected by the in-
cremental build process; they have been included in the numbers of Table 2.

Last but not least, the JUNIT test coverage we required introduced a certain system-
atic error, since it may be the case that members have been made accessible only for
the sake of testing, not because they are part of the designed API (cf. Section 2).
However, this error does not enhance our results — rather, without the unit tests the
overall sufficient accessibility could be even lower than what we are presenting here.7

6.2 Cost

Checking for excessive accessibility is not free, and if it is too expensive (in terms of
time or memory required), it will likely be of no real use. We have therefore measured
the requirements of our AMM tool; the results are compiled in Table 3. Note that
memory demands must be divided into what is needed for the actual analysis and
what is needed (as bookkeeping, or caching) for incremental builds; we have therefore
determined the maximum memory requirement during a full build and the residual
(after the build completed) separately. The maximum memory requirements for in-
cremental builds during their computation are always lower than those for the full
build. We did not attempt to measure incremental build time systematically, but our
experiments showed that it is tolerable in most cases.

Clearly, time and space requirements of our current implementation for full builds
are considerable (and unacceptable for large projects such as HARMONY). While we
expect that a lot can be gained from optimization (which we have not attempted so
far), it is also clear that a lot of overhead is imposed by ECLIPSE’s builder interface,
which required us to use explicit searches for types and methods, both imposing
heavy performance penalties. Integrating the AMM into ECLIPSE’s native JAVA build

7 On the other hand, in absence of @API annotations, unit tests may be considered as simulating

use by other clients.

Table 3. Spatial and temporal requirements of our AMM tool

PROJECT NO OF SPACE (MB) TIME (SEC)*
 CALLERS$ MAX RESIDUAL§ FULL AMM BUILD
JUNIT 45 167 0.45 4.5
SVNKIT 1735 231 4.83 100
ECLIPSE 5225 349 53.3 1,978
HARMONY 125 493 34.3 2,720

$ number of entries in the Callers hash table (see Section 5)
§ as stored on disk
* obtained on a contemporary PC with dual core CPU rated at 3 GHz

16 Philipp Bouillon, Eric Großkinsky, and Friedrich Steimann

process (so that it has access to the resolved parse tree) should speed it up considera-
bly.

The long time required for a full build of HARMONY (especially when considering
the comparatively small number of callers) must be ascribed to the collection and
analysis of uses of the class Object and other frequently extended classes (HARMONY
is a reimplementation of SUN’s JDK): numbers of overridings of methods of these
classes are literally in the thousands, so that precondition checking (which involves a
detection of overriding) using the JDT’s search facilities (cf. above) takes its toll.

7 Discussion

For the first version of our AMM tool (described in detail in [10]), we assumed a
much more process-oriented viewpoint and designed a system in which accessibility
levels could be changed collaboratively. According to this viewpoint, a developer
could “open” a class (i.e., all its members) for maximum accessibility, use the mem-
bers as desired, and later “close” it to the original accessibility levels. Openings and
closures could be stacked, and all changes were stored in annotations parameterized
with the author and time of action. This documented changed interface designs auto-
matically, and always allowed a rollback to the original design. By contrast, the cur-
rent version of the AMM tool does not record the accessibility levels it overrides, so
that in case a change in design is changed back, the original accessibility levels (and
the resulting interfaces) are unknown. However, assuming that accessibility was at the
lowest possible level (interfaces were minimal) prior to the first design change, this is
no problem, since the original level follows from the original design: reverting to the
original design lets the AMM tool compute the original accessibility levels (unless
@API annotations have been added or removed).

When we first devised the new AMM tool, we called the @API annotation @Sic
(Latin for “so”, meaning “so intended”). Technically the same, @Sic was more neutral
with respect to intent, i.e., its only expressed purpose was that the so tagged access
modifier should not be changed by the AMM. Therefore, @Sic could also rightfully be
used for designating internal interfaces, in particular for members whose accessibility
is higher than currently required by the project itself or its API, to indicate that the
project has been prepared for internal extension (for instance in future releases; cf. the
discussion of our findings in the case of JUNIT in Section 6.1). However, we maintain
that this would taint the annotation with problems it is trying to avoid: as design
changes, @Sic annotations must be added and removed, and if the latter is forgotten,
accessibility will become excessive again.8

8 One could argue that the same is true for the @API annotation; however, external interfaces

are more prominent than internal ones and thus also more carefully maintained. In particular,
the @API annotation can be used for other purposes as well, for instance for the generation of
documentation. If by all means desired, an @II annotation could be added to designate inter-
nal interfaces.

Controlling Accessibility in Agile Projects with the Access Modifier Modifier 17

7.1 Related work

Although clearly a practical problem, dealing with accessibility seems to have at-
tracted not much attention from the scientific community. One of the few exceptions
we are aware of is the work by Ardourel and Huchard [1], whose notion of access
graphs helps with finding fitting access levels on a more general, language-
independent level. Based on these access graphs, the authors offer various tools for
extracting, displaying, analysing, and editing access information, and also for generat-
ing the access modifiers for programs in a specific language. However, the functional-
ity of our AMM tool seems to have not been implemented.

Deriving necessary and sufficient accessibility from a program is related to, but
sufficiently different from, type inference [11, 18, 24]. In fact, languages like JAVA
mix type and accessibility information: while a type usually restricts the possible val-
ues of typed expressions and with it the operations that can be performed on them (or,
rather, on the objects they deliver), accessibility restricts the set of possible operations
(but not the values!) depending on where the expression occurs relative to the defini-
tion of the type. Thus, objects of the same type, or even the same object, may appear
to have different capabilities depending on by whom they are referenced, even if the
type of the reference is the same. This is orthogonal to access control through differ-
ently typed references (polymorphism): in JAVA, this would likely occur through con-
text-specific interfaces [21, 23].

Our work must not be confused with that on access rights analysis as for instance
performed by Larry Koved and co-workers [14, 15]. In JAVA, access rights (which are
a different concept than access control [9]) are granted by existence of permission ob-
jects, instances of subclasses of the special class Permission. The required access
rights cannot be checked statically, but must be computed using an analysis of control
and data flow. Irrespective of all differences, adequately setting access rights suffers
from the same problem of finding out what is necessary and sufficient: while insuffi-
cient access rights can be identified during testing (there is no static checking of ac-
cess rights), there is no guarantee that these satisfy the principle of least privilege.
Koved et al. have solved the problem using a context-sensitive, flow-sensitive inter-
procedural data flow analysis; as it turns out, their precision is much higher than can
be made use of by the JAVA security system with its relatively coarse granularity.
However, none of the results can be transferred to our approach, since JAVA’s access
control is static, ignoring all data flow.

The AMM can be viewed as a refactoring tool with built-in smell detector [5].
While the refactoring itself is trivial, smell detection and checking of preconditions
(i.e., excluding occasions in which changing accessibility would change program se-
mantics) is not; in particular, both require efficient implementations for the tool to be
usable.

In response to strong criticism of the aspect-oriented programming community’s
disrespect of traditional interfaces and modularization (see e.g. [22] for an overview),
it has been suggested that aspect-related interfaces are computed only once the system
has been composed [13]. In a way, our AMM tool is capable of doing precisely this
for traditional (i.e., non-aspect related) module (class) interfaces: if the Create Pub-
licly, Privatize Later (Section 2) approach is pursued, the project can start with no in-
terfaces at all, and the AMM can compute them once the project is completed. How-

18 Philipp Bouillon, Eric Großkinsky, and Friedrich Steimann

ever, this approach is only feasible if there is no a priori design, especially if there is
no need for a design that allows distribution of modules to different teams so that
these can work independently. The latter was of course Parnas’s original motivation
behind the conception of information hiding and modularity [19] — in fact, he makes
no secret of his opinion that language designers misunderstood what modularity is all
about [3]. Leaving internal control of accessibility to our AMM tool and using @API
annotations for the published interfaces separates language issues from the designers’
intent.

7.2 Future Work

There are several things we did not consider in this paper and the current implementa-
tion of the AMM. First and most importantly, we did not consider field members,
even though their accessibility states are interesting for the very same reasons as those
of methods. This decision was driven by our more general interest in interfaced-based
programming [21, 23], and the fact that interfaces do not publish field members.
However, consideration of field access should pose no theoretical problems, although
it means considerable extra work (due to different rules for accessibility under inheri-
tance).

Second, accessibility of classes could also be controlled through the AMM. Again,
we did not pursue this, which saved us from having to deal with a certain combinato-
rial complexity: if all members of a class drop below certain accessibility, and if there
exist no references to the class itself requiring higher accessibility, would it make mo-
re sense to lower the accessibility of the class instead of that of its members?

Last but not least, it is tempting to try and re-implement the AMM using a con-
straint satisfaction framework such as the ones described in [11, 24]. Besides being a
theoretical challenge (how does necessary and sufficient accessibility relate to an in-
ferred type?), it should be interesting to see if constraint solution strategies exist that
outperform our conventional implementation described in Section 5.

8 Conclusion

Evidence we have collected suggests that even in well-designed JAVA projects, acces-
sibility of class members often exceeds what is required by the access rules of the
language, or dictated by the API of the projects. Convinced that finding out and set-
ting the minimum required access level of a class member is a real problem for the
programmer, we have devised a tool that does this completely automatically. The tool
is based on a whole-program analysis which it performs and maintains as part of the
project build process, thereby allowing complete and omniscient control of accessibil-
ity. The costs associated with this tool, at least as it is currently implemented, are non-
negligible.

Controlling Accessibility in Agile Projects with the Access Modifier Modifier 19

References

1. G Ardourel, M Huchard “Access graphs: Another view on static access control for a better
understanding and use” Journal of Object Technology 1:5 (2002) 95–116.

2. Create Privately Publish Later
(http://c2.com/ppr/wiki/JavaIdioms/CreatePrivatelyPublishLater.html).

3. PT Devanbu, B Balzer, DS Batory, G Kiczales, J Launchbury, DL Parnas, PL Tarr “Modu-
larity in the new millenium: A panel summary” in: ICSE (2003) 723–724.

4. Eclipse Naming Conventions
(http://wiki.eclipse.org/Naming_Conventions#Internal_Implementation_Packages).

5. M Fowler Refactoring: Improving the Design of Existing Code (Addison-Wesley 1999).
6. M Fowler “Public versus published interfaces” IEEE Software 19:2 (2002) 18–19.
7. E Gamma, R Helm, R Johnson, J Vlissides Design Patterns – Elements of Reusable Soft-

ware (Addison-Wesley, 1995).
8. Package Naming Conventions Used in the Apache Harmony Class Library

(http://harmony.apache.org/subcomponents/classlibrary/pkgnaming.html).
9. J Gosling, B Joy, G Steele, G Bracha The Java Language Specification

 (http://java.sun.com/docs/books/jls/).
10. E Großkinsky Access Modifier Modifier: Ein Werkzeug zur Einstellung der Sichtbarkeit in

Java-Programmen (Master-Arbeit, Lehrgebiet Programmiersysteme, Fernuniversität in
Hagen, 2007).

11. H Kegel Constraint-basierte Typinferenz für Java 5 (Diplomarbeit, Fakultät für Mathe-
matik und Informatik, Fernuniversität in Hagen 2007).

12. H Kegel, F Steimann “Systematically refactoring inheritance to delegation in Java” in:
ICSE (2008).

13. G Kiczales, M Mezini “Aspect-oriented programming and modular reasoning” in: ICSE
(2005) 49–58.

14. L Koved, M Pistoia, A Kershenbaum “Access rights analysis for Java” in: OOPSLA (2002)
359–372.

15. G Leeman, A Kershenbaum, L Koved, D Reimer “Detecting unwanted synchronization in
Java programs” in: Conf. on Software Engineering and Applications (2004) 122–132.

16. B Liskov, JM Wing “A behavioral notion of subtyping” ACM Trans. Program. Lang. Syst.
16:6 (1994) 1811–1841.

17. B Meyer Object-Oriented Software Construction 2nd edition (Prentice Hall International,
1997).

18. J Palsberg, MI Schwartzbach “Object-oriented type inference” in: Proc. of OOPSLA (1991)
146–161.

19. DL Parnas “On the criteria to be used in decomposing systems into modules” Commun.
ACM 15:12 (1972) 1053–1058.

20. BC Pierce Types and Programming Languages (MIT Press 2002).
21. F Steimann, P Mayer “Patterns of interface-based programming” Journal of Object Tech-

nology 4:5 (2005) 75–94.
22. F Steimann: “The paradoxical success of aspect-oriented programming” in: OOPSLA

(2006) 481–497.
23. F Steimann “The Infer Type refactoring and its use for interface-based programming”

Journal of Object Technology 6:2 (2007) 67–89.
24. F Tip “Refactoring using type constraints” in: SAS (2007) 1–17.

