
ACM QUEUE December/January 2005-2006 45 more queue: www.acmqueue.com

Despite the considerable effort invested by industry and
academia in modeling standards such as UML (Unified
Modeling Language), software modeling has long played
a subordinate role in commercial software development.
Although modeling is generally perceived as state of the
art and thus as something that ought to be done, its
appreciation seems to pale along with the progression
from the early, more conceptual phases of a software
project to those where the actual handcrafting is done. As
a matter of fact, while models have been found useful for
documentation purposes and as rough sketches of imple-
mentations, their ultimate value has been severely limited
by their ambiguity and tendency to get out of sync with
the final code.

More recently, hopes that modeling might reach its
deserved place in the software engineering process have
been refueled by so-called MDD (model-driven develop-
ment) initiatives, most prominently advanced by IBM
and the OMG (Object Management Group).1 The under-
lying idea is to promote models to the primary artifacts

CODING
for the Code

Can models provide the DNA for software development?

FRIEDRICH STEIMANN, FERNUNIVERSITÄT IN HAGEN, AND
THOMAS KÜHNE, DARMSTADT UNIVERSITY OF TECHNOLOGY

46 December/January 2005-2006 ACM QUEUE rants: feedback@acmqueue.com

of software development, making executable code a pure
derivative. According to this development paradigm,
software is generated—with the aid of suitable transfor-
mations—from a compact description (the model) that
is more easily read and maintained by humans than any
other form of software specification in use today. Using a
metaphor from biology, such a model would be the con-
struction plan—the DNA—of software, and the transfor-
mations the ribosomes of the construction process.

Today, increasing numbers of success stories accom-
pany major releases of software development products
that claim to have made MDD a reality, and market
pressure will soon force even conservative CTOs to look
into this emerging technology. As a colleague recently
predicted: “In the future, there won’t be any program-
ming jobs in this country. Instead, we will make models
and ship them offshore, where programmers will turn
them into code.”

“False,” another colleague responded. “We won’t ship
the models, but transform them ourselves. However, we
will do it all automatically.” Take your choice.

In the following conversation, Dr. Con, known as a
harsh critic of today’s modeling languages and a skeptic
of the feasibility of MDD, and Dr. Pro, a believer in the
MDD vision, discuss whether MDD is flawed from the
beginning or represents the most promising new develop-
ment paradigm today.

GRAPHICAL VS. TEXTUAL: FORM OVER FUNCTION?
DR. CON MDD starts from a weak basis—graphical mod-
els—and aims at the highest possible goal: the delivery
of sound production-level code. We know that in theory
graphical and textual notations are equivalent (at least in
their expressive power), but in practice graphical nota-
tions are usually far more cumbersome than textual ones.
Admittedly, they aid comprehension if kept simple, but
they quickly get convoluted when it comes down to the
core of real problems. Why should something as weakly
developed as a graphical modeling language help solve a
problem all other approaches have failed to do?
DR. PRO Admittedly, textual languages have matured

longer, and in today’s practice still enjoy better tool sup-
port. On the other hand, you cannot deny that graphical
models excel in conveying static information: a two-
dimensional layout of the structure of a system is much
more easily understood than any linear form, in which
links (the lines) need to be resolved symbolically. As far
as the description of system dynamics, there is certainly
no point in having an iconic equivalent of all the tradi-
tional features of today’s programming languages. Yet,
surely there is value in expressing behavior in the form of
interaction (sequence and collaboration types) and state
diagrams. When it gets down to the nitty-gritty, small-
grain behavior, graphical notations tend to lose their
conciseness, but may be combined with textual behavior
descriptions, by having the former serve as navigation
aids to the latter.
DR. CON I was not thinking of all the features of today’s
programming languages, only the most fundamental ones.
Variables and assignment, for example, can only poorly
be expressed graphically, since altering a variable’s value
results in a change of the (dynamic) structure of a system,
meaning that lines would have to be redrawn. Statecharts
don’t really help with specifying possible state changes of
this kind, since graphical states are abstract (i.e., detached
from variable values and the links that exist between
objects). As a consequence, what we find in “visual” mod-
eling is people decorating states with so-called actions
that manipulate variable values, but that are more or less
Smalltalk blocks in disguise. The statecharts themselves
often are degenerate to the extent that all transitions to
one state are labeled with the same event—they are in
fact flow charts without loops and subroutine calls. This
is really one step back from structured programming.
DR. PRO Who says you need variable assignment in
modeling? Perhaps this is just too primitive a concept and
therefore should be eliminated from modeling altogether.
The real challenge is to find powerful transformations
that inject the low-level behavior code expressed by
means of variables and assignments to the final product,
allowing the modeler to stay abstract at all times. Low-
level behavior specification, by contrast, is the task of
transformation engineers. The modeler’s freedom might
thus be restricted to choosing from a fixed set of avail-
able low-level behaviors; nevertheless, the models are
abstract and precise at the same time. This shift—from
“programming” to “configuration,” from “handcrafting a
single piece of software” to “selecting a fitting piece from
an existing choice”—is a persistent trend in the history
of computer science when it comes to increasing the
productivity of software creation.

CODING
for the Code

ACM QUEUE December/January 2005-2006 47 more queue: www.acmqueue.com

DR. CON What if your desired behavior is not among the
choices offered? Then you are stuck.
DR. PRO The modeler will be stuck—not able to complete
the system on his or her own. It is the task of transforma-
tion engineers to provide any missing choices that the
modeler requests.2 As a matter of fact, MDD implies new
development roles and opens up the way for new devel-
opment paradigms.
DR. CON So it all comes down to a very high-level lan-
guage that—no matter whether graphical or textual—can
automatically be transformed to some lower-level,
deployable specification?
DR. PRO That’s right. The usual emphasis on graphical
models is not at the core of the MDD approach. What is
essential is the idea of using high-level descriptions that
are solution- or, if you wish, platform-independent. Ide-
ally, the high-level descriptions resemble analysis models
much more than solution-oriented design models.
DR. CON My analysis models are all lines and boxes, and
I suppose most others’ are, too. Since you seem to agree
that these kinds of models are an insufficient basis for
MDD, I would suppose that the M in its name is rather
misleading.

BEEN THERE, DONE THAT: WHY SHOULD IT WORK
THIS TIME AROUND?
DR. CON MDD is not the first attempt at making software
construction more productive—code-generation tools and
4GLs (fourth-generation languages), for example, have
been around for quite some time. Practice has shown,
however, that code generation provides only a first
approximation of the desired behavior. If it were powerful
enough, we would make the source of the code generator
a new programming language and turn the generator into
a native compiler, but it doesn’t work that way. Instead,
we need to make changes to the generated code, partly
because it is just one bit off what we need (and what we
need precisely cannot be generated), and partly because
there is code (e.g., an algorithm) that for good reason is
not generated (e.g., because the target language is much
better suited for expressing it than the source formalism
of the generator). No one would accept a programming
language that, in order to produce useful programs,
would require hand coding in assembler as an additional
exercise.
DR. PRO Some applications of code generation tremen-
dously increase the productivity of the people employing
it. It is just a matter of time before this kind of develop-
ment will be more or less commonplace. Point taken, we
still have to learn a number of lessons before we know

how to use the generation paradigm optimally. That
is why some of the issues you address are relevant, yet
not insurmountable. In the future we’ll learn to use, for
example, parameterization to tweak our transformations
so that they have exactly the desired effect and do not just
approximate it. We will also learn how best to balance

The Role of Models in
Software Development

The software industry adopted object orientation based on
the promised seamless integration of analysis, design, and
implementation, thereby removing the much-decried imped-
ance mismatch between the traditional software develop-
ment phases. The underlying premise was that the objects
discovered in a problem domain and the relationships
between them map to classes and their properties in the pro-
gram, with design and implementation classes merely refin-
ing and adding to those found during analysis as the project
matures. Although the idea of a purely incremental approach
was perhaps a little naïve, today every typical application
program has classes that represent (“model”) entities of the
problem domain with considerable fidelity.

With the adoption of UML (Unified Modeling Language)
as an industry standard, the primary artifacts of analysis and
design have become object-oriented models. This move-
ment has been supported by the availability of tools allowing
the systematic development and maintenance of graphical
representations. While most such tools also offer skeletal
code generation from designs, full round-trip engineering
of models and programs is still hampered by the difficulty of
mapping complex behavior and control to readable graphi-
cal representations.

MDD (model-driven development) avoids round-trip
problems by abandoning the reverse engineering attempt
(mapping programs to models) and instead concentrating
on the generation of complete programs from models.1 Such
a strategy requires the annotation of models with directives
steering the generation process. For MDD to work, however,
annotations and corresponding transformations must be
expressive enough to cover all the subtle details that distin-
guish a product’s success from its failure.

REFERENCE
1. Weis, T., Ulbrich, A., and Geihs, K. 2003. Model metamor-

phosis. IEEE Software 20(5): 46-51.

48 December/January 2005-2006 ACM QUEUE rants: feedback@acmqueue.com

the distribution of behavior in terms of expressing it in
the model and/or shifting it to the transformations. We
won’t generate algorithms from scratch. We will either
just select existing ones or compose new ones from build-
ing blocks that are known to work together. For example,
many sorting algorithms can be expressed by a general
approach that is just parameterized with two reduction
strategies.3 With respect to your last sentiment regarding
hand coding in assembler, I fully agree. This is not an
argument against MDD, though, since the modeler will
never have to get in touch with a low-level language. It is
the transformation engineer who might.
DR. CON History has shown that the kind of 4GLs to
which you seem to aspire work rather well in certain
specialized areas such as GUI construction or the games
industry, but in general have not (and probably never
will) supersede 3GLs. Despite the wide availability and
applicability of extremely powerful 4GLs, we all seem
to be using Java now, even though this means that we
spend most of our time writing the most stereotypical
source code. Why is this so? There must be some benefit
outweighing the expressive power offered by 4GLs.
DR. PRO First, this is a maturity problem. Models and
MDD will become more attractive once more sophis-
ticated tools are available, especially if their usability
surpasses that of the first-generation tools we have today.
Second, a problem with the 4GLs you mention is their
lack of openness and support by multiple vendors. In fact,
one benefit of MDD, especially within the framework of
standards such as the MOF (Meta Object Facility),4 is that
a variety of different tools can be jointly used to create
one piece of software, and that changes made with one
tool smoothly propagate to all others.
DR. CON So MDD is really giving a new edge to the 4GL
approaches?
DR. PRO It also includes 5GL ideals such as executable
specifications, which make validation and verification
much easier to realize. Models will thus be not only blue-
prints for code generation, but also the subject of quality
analysis methods and tools. Although the same informa-
tion is in principle also contained in low-level code, it is

practically inextractable since no current parser technol-
ogy can distinguish low-level realization from high-level
specification code,5 both of which are expressed using
the same, often ineffective language. So while MDD may
be advertised as a revolution in software engineering, it
is in large part really an evolution of previously existing
approaches, with a strong emphasis on unification.
DR. CON Perhaps it’s worth a try, but I wouldn’t hold my
breath until it works. I can’t see the technology necessary
to make computers guess what programmers want to say.

FROM ABSTRACT TO CONCRETE:
HOW TO CLOSE THE SEMANTIC GAP
DR. CON How much redundancy is in a program? Given
that the most trivial bug can alter program behavior to
the point of making it useless, I would assume not very
much. Now given that almost nothing of a produc-
tion-level program can be omitted or changed without
violating the specification, for MDD to work, the same
information that is represented by the program must be
captured by the model. This would imply one of the fol-
lowing:
• The modeling language in use is exceedingly more

expressive than any programming language known
today.

• Models are (nearly) as complicated as the programs they
produce.

• Only a few programs can be generated from models.
Assuming that the first is not the case and that the

second is not what we want, we must conclude the third.
In other words, if a model were significantly simpler than
the program it produces and if redundancy in a program
were low, then I would assume that there are far fewer
meaningful models than meaningful programs. This
implies that many useful programs cannot be generated.
After all, programming is a complex matter not because
our linguistic means are inappropriate, but because our
problems are extremely complex. How can we expect to
take out the complexity without losing precision?
DR. PRO You are right in observing that there is no noise
in programs. We cannot simply remove or alter pieces of
programs and expect them to still work. There is redun-
dancy, however, in that many high-level concepts are
repeatedly realized using lower-level features in the same
way. Instead of manually creating those repeated patterns
of code, we should just specify that we want that par-
ticular pattern applied wherever deemed appropriate. In
this sense, a modeling language drawing from many such
predefined realization patterns, which are enacted by
transformations, is indeed “exceedingly more expressive

CODING
for the Code

ACM QUEUE December/January 2005-2006 49 more queue: www.acmqueue.com

than any programming language known today.”6 That
is why your second implication, that models must be
“(nearly) as complicated as the programs they produce,”
does not follow from the use of MDD. Granted, during its
infancy MDD will have to live with your third sugges-
tion that “only a few programs can be generated from
models.” Even initially, however, few will equal very many,
and gradually one will become familiar with the boiler-
plate code of the currently too-complex applications, and
will then be able to capture it through standard transfor-
mations guided by model annotations. Regarding your
supposition that our linguistic means are sufficient: they
have not been in the past, so why should they be today?
DR. CON I question that you can express more with less.
What you are saying is basically that for any given total
of function points, there will be as many different models

as there are programs, so that mapping is not ambiguous.
This setting of knobs (the choice or parameterization of
transformations) should either not alter the functional-
ity or be part of the specification, hence, should also be
found in the model.
DR. PRO Exactly. The ambiguity of the mapping from
a model to a program, if any, is a result of a model not
needing to get bogged down in realization choices to
express the same number of function points as a program.
In fact, programs that implement realization patterns in
inefficient or even incorrect ways need not be generated
and therefore need not be expressible with models. In
addition, spelling out all the realization choices makes
it difficult to see the functionality for all the realization
of it; and they can be platform-dependent and hence
subject to change. The actual realization choices—adding

The history of computer languages has been one long quest
to increase programmers’ productivity. One of the first
known computing formalisms, the Turing machine, power-
ful as it was, was clearly the work of a theoretician: because
of its extremely limited symbol and instruction set, writing
programs was but an academic exercise. The first practically
useful computer languages were designed to directly instruct
physically existing machinery, without trying to abstract from
it. The second generation, so-called assembly languages,
started the process of relieving the programmer from work
a mechanical translator could be trusted with: memorizing
instruction-set codes and calculating jump distances were no
longer a burden on the programmer, but left to automation.
Later, programming languages were made to adapt to their
particular application domain: so-called high-level (or third-
generation) languages such as Fortran and Cobol offered
special language constructs for many special purposes,
resulting in shorter and/or better readable programs.

Ironically, only after the fourth generation of program-
ming languages offering even more macrolithic constructs,
the efficiency of absolute simplicity was rediscovered by a
wider audience. Although languages such as Prolog and Lisp
were perhaps a little bit too pure to be generally useful, the
minimalism of the Smalltalk language was brilliantly com-
pensated for by a library that, in conventional programming
terms, is indistinguishable from the language itself: even
primitive control structures such as branching and looping
are not built into the language, but added as library func-

tions. Together with a very high level of abstraction based
solely on the concepts of objects, variables, and message
sends, Smalltalk proved to be an excellent starting point for
the development and broad dissemination of innovative pro-
gramming paradigms such as the ample use of associative
memory (dictionaries) as both storage and control devices.
Its ability to support problem-specific language extensions is
still unrivaled in many regards. Not surprisingly, Smalltalk is
ranked among the most productive programming languages
in Software Productivity Research Inc.’s Programming Lan-
guages Table,1 surpassed only by special-purpose languages
such as SQL and Excel.

The modeling community could learn from the Small-
talk lesson and devise a modeling language that shares its
philosophy. It could be based on a minimal set of model-
ing primitives and support greater expressiveness through
extendable modeling libraries. The semantics of any model
in such a language would then be defined in terms of the
library elements it refers to. The direct executability of
models that follows should not be seen as an undue binding
to some particular realization technology, but as a chance
to validate both models and modeling language as early as
possible in their respective development processes. Then,
perhaps, one day the language productivity list will be led by
a modeling language.

REFERENCE
1. http://www.theadvisors.com/langcomparison.htm.

Modeling and Language Productivity

50 December/January 2005-2006 ACM QUEUE rants: feedback@acmqueue.com

realization preciseness to the abstract model—are partly
expressed within the model, using a so-called “marking
model,” and are partly expressed outside the model as
“setting of knobs” choices driving the transformation.
You may regard the latter as compiler options. Today’s
compilers also allow some choice of translation strategy
(e.g., optimize for code length or execution speed). Model
compilers will feature a lot more of these “knobs” since
many more solution-specific choices need to be made.
In summary, you may create all your different programs
from a combination of a model and various transforma-
tion choices.

THE NATURE OF TRANSFORMATIONS:
ENGINEERING OR ALCHEMY?
DR. CON I think you are mixing up two different kinds of
transformations. One goes from platform-independent to
platform-specific, the other goes from high-level (abstract)
to low-level (concrete). The former adds no real informa-
tion, whereas the latter has to invent something, or make
informed guesses. In fact, I would conjecture that plat-
form-independent to platform-specific transformation is
very much like applying a native compiler to source code,
or that the platform-independent code could run on a
virtual machine leveling all platform-specific differences.
Turning an abstract description into a more concrete
one, on the other hand, necessarily changes information
content: it is a creative process.
DR. PRO At first glance, the two kinds of transforma-
tions appear to be different. From an MDD perspective,
however, they can be unified. When a compiler translates
source code to byte or machine code, it adds information
as well. Yet the choices on what to add are so clear-cut
that the compiler can make them for you without your
advice. If the translation starts from something more
abstract than today’s source code—namely, a model—
there will be more options and choices. Each such choice
or option corresponds to a prethought realization pattern,
and it is the art of the model compiler to combine these
patterns into a functioning piece of software. Thus, it is
really the choice that corresponds to creativity (increases

information content), not the transformation (which just
mechanically implements the choice). Hence, the two
kinds of transformations are really not that different.
DR. CON You are basically implying that programming is
just about selecting a number of prefabricated behaviors
and then combining them. In practice, this is not the
case. Just recently I came across a very simple problem:
from a document consisting of a list of paragraphs, all
paragraphs marked with a given tag had to be printed
in their order of appearance; for two selected paragraphs
that were nonconsecutive in the original document, the
first sentence of the first and the last sentence of the last
intervening paragraph also had to be printed to indicate
the omission. Although the actual problem was in fact
a little trickier than that, the chances that the solution,
even of its simplified version, will be readily available in
any library are very low, as are the chances that this kind
of iterator will ever be needed again (which is why it isn’t
in the library in the first place). My experience tells me
that every non-foobar application comes with countless
idiosyncratic problems of this kind, and I would suspect
that all attempts to parameterize model elements or
transformations so that they can cover every conceivable
peculiarity to otherwise stereotypical patterns is doomed
to failure. Instead, I would conjecture that with today’s
programming languages, an optimum has been reached
in the trade-off between expressiveness and flexibility.
Indeed, only a few of the languages ranked above level
20—the level of Smalltalk and its ilk—in Capers Jones’
language productivity list7 could be considered general
purpose. For example, trying to formulate the above
selection procedure in SQL would certainly make me wish
I had started the project in assembler.
DR. PRO I agree that SQL would be a bad choice, but
then SQL is not UML and is not supported by predefined
and extendable model transformations either. Regarding
your once-in-a-lifetime problem whose solution will not
be found in a library, what makes you so certain that it is
not expressible by standard iterators with suitable param-
eterizations? Even if a particular problem cannot be cast
in terms of generic solutions, the transformation engineer
can always come to the rescue.
DR. CON So what you propose is really a model develop-
ment kit analogous to the JDK (Java Development Kit) or
.NET, and a coordination language that allows the model
engineer to put it all together?
DR. PRO If you want to call it MDK that’s fine with me
as long as you don’t confuse the approach with a simple
library usage paradigm. MDD is not about including
prefabricated parts; it is about applying boilerplate real-

CODING
for the Code

ACM QUEUE December/January 2005-2006 51 more queue: www.acmqueue.com

ization strategies automatically. It is about using a core
language whose expressiveness can be extended—for
example, by using annotations (marks) and associated
realization strategies. This way you are neither stuck with
some level of language expressiveness, nor do you end up
with never-ending featurism for a given language.
DR. CON It seems you are advocating an extensible
repertoire of modeling language constructs (various kinds
of classifiers, associations, calls, state transitions, etc.),
each coming with a set of transformations the modeler
can pick from. The transformations of a construct are all
functionally equivalent, but differ in the target platform
and nonfunctional properties such as efficiency. When-
ever I (as the modeler) miss either a language element or
transformation rule, I turn to a transformation engineer
to have it manufactured for me. Of course, all constructs
of the repertoire are designed to go together well—that is,
they can be combined freely.
DR. PRO You’ve got it!
DR. CON Nice vision, but to me it seems that the trans-
formations of MDD are a bit like the weaving of AOP
(aspect-oriented programming): either they don‘t achieve
much, or they involve a considerable amount of hocus-
pocus.
DR. PRO To quote Arthur C. Clarke, “Any sufficiently
advanced technology is indistinguishable from magic.”
Admittedly though, there are several challenges left for
the MDD community to tackle before it can deliver on all
promises made so far.

FINAL SPEECHES: WHAT IS THE VERDICT?
DR. CON Models have their greatest value for people
who cannot program. Unfortunately, this is not because
models are more expressive than programs (in the sense
that they are capable of expressing complex things in a
simple manner), but because they oversimplify. To make
a useful program (i.e., one that meets its users’ expecta-
tions) from a model, the model must be so complicated
that people who cannot program cannot understand
it, and people who can program would rather write a
program than draw the corresponding model. Even
though (over)simplification can be useful sometimes, it is
certainly not a sufficient basis for creating a satisfactory
end product.
DR. PRO Models are ideal for people who know what
they want, but are (and want to remain) unconcerned
with realization details. Hence, they are suitable even for
people who cannot spell out code (i.e., program). This is
fantastic since we need to stop wasting time and money
on reproducing boilerplate code and regular realiza-

tion patterns over and over again—all in an error-prone
fashion, often resulting in suboptimal solutions. This
does not imply the end of programming, since transfor-
mation engineers will still be needed to implement new
realization strategies. But, abstraction—as opposed to
(over)simplification—is definitely our only known means
to master the ever-growing demands on the construction
of complex software. Q

REFERENCES
1. OMG. 2003. MDA Guide V1.0.1 (June); http://doc.omg.

org/formal/03-06-01.
2. Weis, T., Ulbrich, A., and Geihs, K. 2003. Model meta-

morphosis. IEEE Software 20(5): 46-51.
3. Kershenbaum, A., Musser, D., and Stepanov, A. 1988.

Higher-Order Imperative Programming. Rensselaer Poly-
technic Institute Computer Science Department.

4. http://www.omg.org/technology/documents/formal/
mof.htm.

5. See reference 2.
6. France, R., Ghosh, S., Song, E., and Kim, D. 2003. A

Metamodeling approach to pattern-based model refac-
toring. IEEE Software 20(5): 52-58.

7. http://www.theadvisors.com/langcomparison.htm.

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

FRIEDRICH STEIMANN, alias Dr. Con, is a full professor
in informatics at the Fernuniversität in Hagen, Germany,
where he works in the areas of object-oriented development,
programmers’ productivity tools, and software modeling.
He received his diploma in informatics from the Universität
Karlsruhe, Germany (1991), his doctoral degree from the
Technische Universität Wien, Austria (1995), and his habilita-
tion from the Universität Hannover, Germany (2000). Before
returning to academia, he worked as a research engineer
for Alcatel and as a software consultant to various small
and mid-size companies. He can be reached via e-mail at
steimann@acm.org.
THOMAS KÜHNE, alias Dr. Pro, is an assistant professor at
the Darmstadt University of Technology. Prior to that he was
an acting professor at the University of Mannheim and a
lecturer at Staffordshire University (UK). His interests include
object technology, programming language design, compo-
nent architectures, and metamodeling. He received a Ph.D.
and M.Sc. from the Darmstadt University of Technology, Ger-
many, in 1998 and 1992, respectively. He can be reached at
kuehne@informatik.tu-darmstadt.de.
© 2005 ACM 1542-7730/05/1200 $5.00

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BaskervilleMT-BoldItalic
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CurlzMT
 /EdwardianScriptITC
 /EuroSans-Regular
 /HelveticaNeue-BlackCondObl
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-MediumCondObl
 /Impact
 /LucidaHandwriting-Italic
 /MonotypeSorts
 /NewsGothicBT-BoldCondensed
 /NewsGothicBT-ItalicCondensed
 /NewsGothicBT-Roman
 /NewsGothicBT-RomanCondensed
 /SymbolITCbyBT-Medium
 /SymbolITCbyBT-MediumItalic
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Wingdings
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 72
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 72
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 72
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [72 72]
 /PageSize [603.000 801.000]
>> setpagedevice

