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Abstract 

 
The security of cryptographic functions such as 

pseudo random number generators (PRNGs) can 

usually not be mathematically proven. Instead, 

statistical properties of the generator are commonly 

evaluated using standardized test batteries on a 

limited number of output values. This paper 

demonstrates that valuable additional information 

about the properties of the algorithm can be gathered 

by analyzing the state space. As the state space for 

practical use cases is usually huge, two approaches 

are presented to make this analysis manageable. 

Results for a practical application of these 

approaches to the algorithms AKARI and A5/1 are 

provided, giving new insights about the suitability of 

these PRNGs for security applications. 
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1. Introduction 
 

The growth of electronic communication over the 
last decades and the development of technologies like 
Radio Frequency Identification (RFID) has led to a 
large interest in data security. Sending sensitive 
information over communication channels that are 
accessible by attackers, e.g. the Internet or the air in 
case of radio transmission requires measures to secure 
the privacy as well as the integrity of the transmitted 
data. In order to achieve this, cryptographic protocols 
have been developed and standardized that make use 
of cryptographic base functions like symmetric or 
asymmetric encryption, hashing and pseudo random 
number generators (PRNGs). 

There are many standardized cryptographic 
functions that provide at least some confidence in their 
suitability for a given application, because they have 
resisted attacks and analysis over the years. These 
standardized functions are at least well tested and have 

usually been subject for a lot of scientific work trying 
to find any kinds of weaknesses before their 
standardization. But there are also occasions where the 
standards do not provide the right tools for an 
application. One example is the application on low cost 
RFID transmitters, which only allow a very low 
complexity of the algorithms due to the cost restraints 
(the cost is mostly driven by the required chip area [1]). 
In these cases, it might be required to use a non-
standardized algorithm. This implies the danger of 
choosing an algorithm that does not provide the 
necessary security.  

Besides the algorithms themselves also a couple of 
methods for the assessment of the suitability of 
cryptographic functions have been standardized. 
Examples for methods for assessing the security of 
PRNGs are the Marsaglia suite of Tests of 
Randomness [2], the Entacher collection of selected 
pseudorandom number generators [3] and the NIST 
test suite [4]. While these test batteries provide 
valuable information about the statistical properties of 
a given PRNG, they do not examine the complete state 
space of the algorithms. Instead their analysis is based 
on the statistical properties of a limited number of 
output values. Algorithms that do not meet the pass 
criteria of the test batteries are usually not suited for 
security applications, because the statistical properties 
might be exploited by an attacker to predict future 
generated output values. But algorithms that do pass 
the criteria do not necessarily provide high security. 
This fact is typically included as advice in the 
documentation of the test batteries, e.g. in the abstract 
of the NIST publication. Further examples for non-
statistical properties of PRNGS that are suitable for 
cryptographic purposes include Forward Secrecy and 
Backward Secrecy (high difficulty to calculate past or 
future generated outputs or states from a compromised 
current random number) [5].  

In order to fully assess the quality of a PRNG, the 
full state space needs to be examined. Unfortunately, 
this is not feasible for realistic use cases. While 
algorithms exist that have a state with the same size as 
the pseudo random number that is generated, this is not 
the common case. Typically, PRNGs make use of a 
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state that has a significantly greater size than the 
generated number. Examples for such PRNGs 
(PRNGs and stream ciphers can be considered equal in 
this context) are the A5/1 algorithm [6] with a state 
length of 64 bits for an output of a single pseudo 
random bit, or the AKARI algorithm with 64 bits [7]. 
Both of these algorithms have been designed 
specifically for the use in low cost RFID transmitters 
and have a low algorithmic complexity. The state 
space for both of these algorithms has a size of 264, 
which is a number of values that can neither be stored 
nor traversed in a reasonable amount of time. 

This paper presents different approaches to assess 
the security of such PRNGs with huge state spaces. 
After the general discussion of the approaches in 
Section 2, A5/1 and AKARI are examined as examples 
for real world cryptographic PRNGs in Section 3. 
While no solution can be given to reliably ensure the 
security of PRNG algorithms, the methods still prove 
to be valuable by detecting possible weaknesses that 
go beyond the standardized test batteries. The decision 
if these weaknesses render the algorithm inappropriate 
depends heavily on the given application. It might be 
that the weakness does generally not show up in the 
application, or that it can be avoided by a careful 
choice of start values or other parameters. 
Nevertheless, it is important to know these weaknesses 
so that it is possible to select the right algorithm for the 
right application. 

 

2. State space analysis methods 
 

Pseudo Random Number Generators are generally 
deterministic state transition functions f: M  M 
mapping a finite state space to itself as long as they do 
not receive new seed or entropy bits. Every output of 
the PRNG results in a state transition. This means that 
the generated sequences of pseudo random numbers 
are periodic. The output is deterministic and dependent 
on the state. Therefore, only the state is considered in 
the following. If a single state is interpreted as a node 
and the transition between a state and its unique 
successor state is interpreted as an edge, the result is a 
directed graph Gf = (V;E) with V:= M and E:={(x;f(x)) 
| x ϵ M}. The structure of the generated graph provides 
information about the behavior of the pseudo random 
generator. For non-bijective transition functions, the 
graph typically consists of several weakly connected 
components. Each of these components consists of one 
cycle and generally several trees with roots located on 
the cycle. Figure 1 depicts the structure of a 
component. 

Properties of the graph include the number and size 
of the connected components, length of the cycles and 
maximum depth of the trees. In order to identify all 
connected components of a graph, the complete state 
space would have to be analyzed, e.g. by a depth or 
breadth first search. Alternatively, only a part of the 
state space could be analyzed, accepting the fact that 

one or several components might be missed. A 
possibility to reduce the size of the entire state space, 
so that it can be analyzed completely, is to reduce the 
length of the state variables of the algorithm and 
accordingly the length of the period of the generated 
pseudo random numbers. In the following sections 
both approaches, the partial analysis of the state space 
and the reduction of the state space are discussed in 
more detail. 

 

Figure 1. A typical connected component of 
a state transition graph [8] 

 

2.1 Reducing the state space size 
 
One way to analyze the state space of a PRNG is to 

run a depth-first search on the directed graph [9]. As 
each node has exactly one outgoing edge, an iterative 
formulation is sufficient. Each path in the graph is first 
treated as a new component. If it meets a node from an 
already known component, the nodes in the path are 
re-labeled for that component. This allows finding all 
connected components, their sizes, and the size of their 
cycles. 

To reduce the required memory for large graphs, 
only a limited number of components plus a 
“remainder” component is allowed. Under the 
assumption that only some large components exist 
which are found first (see 2.3), the remainder 
component only comprises several small components, 
so that the inaccuracy is small. 

For the analysis of 30 components (plus a number 
for unlabeled components and a number for the 
common rest component) the storage of the component 
number needs 5 bit. For the A5/1 algorithm the state 
consists of three state variables with 19, 22 and 23 bits 
length. This results in a memory requirement of 264·5 
bit for the DFS analysis approach, or about 11.5·109 
GB, which is far too much even for the most powerful 
supercomputers. The same is true for the AKARI with 
its two 32-bit state variables also resulting in a 64-bit 
state. For algorithms with such large state spaces an 
additional approach is needed to reduce the memory 
requirements.  

One option is to reduce the word length of the 
algorithm under the assumption that the basic 

 



properties do not change too much. In the case of 
AKARI, instead of using 32-bit state variables one 
could e.g. use 16-bit state variables. This results in a 
state size of N = 2·16 bit = 32 bit or 2.6 GB, which is 
easily addressable on a modern PC.   

The question that remains unanswered is, in how 
far the analysis results for the algorithm running on a 
reduced word length can be transferred to a longer 
word length. While the practical analysis results 
presented in 3.1 indicate for the depth-first search that 
certain properties of the state graph seem to be 
identical for different word lengths, it is debatable if 
this is true for all cases. Obviously there are cases, in 
which the algorithm will behave completely 
differently, e.g. for rotating bit shifts that degenerate to 
no operations if the shift length is equal to the word 
length. 

 

2.2 Sampling the State Space 
 
An alternative way to analyze the state space of a 

large graph is to use a realistic word length and to 
sample the state space instead of analyzing it 
completely. Obviously this has the risk of missing a 
weakness of the state graph, as the sampling results in 
only a very small part of the state space being 
analyzed. For this reason, this approach is not suitable 
for positively approving the security of an algorithm. 
Instead it can be used to randomly find weaknesses, 
which might be sufficient to make an algorithm 
unsuited for a given use case. If random sampling of 
the state space shows a weakness, chances might be 
good that more instances of the same weakness exist 
in the state space.  

The approach described in 2.1 depends on the 
analysis of the complete state space, as every node of 
a cycle needs to be marked with a component number 
in order to be able to identify cycle lengths. While 
cycle lengths can be found before every node in the 
state space has been marked, the memory for all nodes 
needs to be allocated for this approach, to allow 
marking any node as visited. This prevents the analysis 
of component cycle lengths for realistic word lengths. 
In [10] a method is presented to avoid storing a number 
for every single node. The idea that was also used 
previously e.g. in [11], is to only store certain nodes 
while traversing the tree. If only the nodes at distances 
2n from the start value are stored (n=1, 2 …), the 
required memory usage is significantly reduced. For an 
analysis run starting at any given node and running for 
N steps until a cycle is detected, this means that a 
maximum of log2(N)-1 nodes need to be stored. This 
results in a low memory requirement even for 
extremely long runs. Still, the cycle at the end of a path 
can be detected if one of the stored nodes is reached 
again, and the cycle length can be computed. Figure 2 
shows the process of cycle detection. 

 

Figure 2. A cycle is detected [10] 
 
Storing the nodes in these increasingly higher 

distances means that other aspects of the tree structure 
are harder to determine. The root of a tree on a cycle 
can only be determined by performing a simultaneous 
run from the last node outside of the cycle M and a 
congruential node KN with the same distance to the 
node that has been identified to be on a cycle (see 
Figure 3). By comparing the nodes during this 
simultaneous run, the entry node E can be found, as 
this is the first node that the simultaneous runs reach at 
the same time. 

 

 
Figure 3. Finding the cycle entry point [10] 

 
This method allows performing an analysis on an 

arbitrary large state space. The memory required for 
the analysis is not only small, but also only 
logarithmically growing with the size of the state 
space. Still, the required time for the analysis prevents 
to examine the complete graph for realistic word 
lengths. But it allows taking arbitrary, randomly 
chosen start values and walking through the graph 
starting from these. This way, the state space is 
sampled and the resulting tree and cycle structure for 
these samples might provide valuable insights with 
respect to the security of the algorithm. Also, the sizes 
of the connected components can be guessed from the 
sampling within a confidence interval. 

 

2.3 Metrics for a "good" PRNG 
 
While information about the structure of a state 

transition tree provides valuable insight about the 
properties of a PRNG, this information needs to be 
evaluated somehow. The question how the structure 
looks like for a "good" PRNG and how for a "bad" one 
needs to be answered in order to be able to compare 
PRNGs reasonably. Obviously, it depends heavily on 

 

 



the application, what "good" and "bad" means and 
what the thresholds for such a classification are. 
Therefore, the definition of such criteria is out of the 
scope of this document, but some reasonable guidance 
is provided in the following. The properties that can 
easily be deducted from the structure analysis are: 

 number of components 

 cycle lengths of the components 

 size of the components 
It is desirable that a PRNG has a small number of 

components. The fewer components are present in the 
state structure, the larger can the components and their 
cycle lengths be. According to [12] the expected 
number of components for a randomly chosen non-
bijective state transition function for a set M with n 
elements is 1/2·log(n). For an invertible state transition 
function, the expected value is ln(n) [13]. For a "good" 
PRNG this value should be equal or less than the 
expected value. 

Furthermore, it is desirable that the number of 
nodes on a cycle (which is equivalent to the cycle 
length) is as large as possible. This results in a high 
number of steps until the states and the produced 
pseudo random numbers are repeated. According to 
[12] the expected cycle length for non-bijective state 
transition functions is sqrt(π·n/2). The largest cycle 
length should be about c1·sqrt(n) with c1 ≈ 0.78248. It 
follows that the expected size of the largest cycle is 
approximately 0.78248·sqrt(n). A "good" PRNG 
should probably have one cycle with at least an 
according size or larger. For bijective state transition 
functions the expected length of the largest cycle is (1-
1/e)·n=0.632· n. 

Finally, the number of nodes in any component 
(equivalent to the size of the component) should be as 
large as possible. Ideally the state structure consists of 
a single component containing all nodes of the graph. 
According to [12] the expected number of nodes of the 
largest component for a non-bijective state transition 
function is c2·n with c2≈0.75782·n. PRNGs with 
bijective state transition functions consist of cycles 
only [9] and therefore the cycle lengths are equal to the 
component sizes. 

 

3. Practical application 
 
Two PRNGs have been analyzed using the 

approaches described above in order to evaluate the 
benefit of an additional evaluation of properties of the 
state space structure. AKARI [7] is a low complexity 
PRNG with good statistical properties as demonstrated 
by the authors with results of the ENT, Diehard and 
NIST test batteries. A5/1 is the stream cipher used in 
GSM mobile phones. 

 

3.1 Analysis of AKARI-1 
 
AKARI in its variants AKARI-1 and AKARI-2, is 

a lightweight PRNG that has been designed by Pedro 

Peris López et al. specifically with a use on RFID 
transponders in mind. The design criteria were good 
statistical properties and suitability for security 
applications with the hardware limitations of RFID 
transponders taken into consideration. Further 
requirements were a tiny footprint, high throughput 
and a low power consumption. The approach taken 
was to combine a T-function as proposed in [14] with 
a non-linear filter function based on a composition of 
extremely light operands. The state consists of two 
state variables with a length of 32 bits resulting in a 
state length of 64 bits. The analysis results presented 
by the authors for the ENT, Diehard and NIST test 
batteries show promising results, leading to the 
conclusion that the algorithm is well suited for its 
intended use in security applications.  

The first approach was to analyze the state space of 
AKARI-1 for a reduced word length. Table 1 shows 
the result of the analysis for a word length of 14 bits 
respectively a state length of 28 bits: 30 components 
have been identified, all of them with the same size 
being identical to the cycle length. This clearly 
indicates that the algorithm is bijective, at least for this 
word length. 

 

Table 1. Analysis results of AKARI for 7 bit 
output 

Component 
Cycle 

Length 
Size Relative Size 

1 

2 

3 

4 

5 
… 

27 

28 
29 

30 

Rest 

16384 

16384 

16384 

16384 

16384 
… 

16384 

16384 
16384 

16384 

n/a 

16384 

16384 

16384 

16384 

16384 
… 

16384 

16384 
16384 

16384 

267943936 

0.0061% 

0.0061% 

0.0061% 

0.0061% 

0.0061% 
… 

0.0061% 

0.0061% 
0.0061% 

0.0061% 

99.8169% 

 
In order to verify if the algorithm behaves the same 

for the word length of 16 bit intended by the authors of 
AKARI, a sampled analysis was performed. The result 
showed that the cycle lengths of the sampled 
components for AKARI-1 are accordingly 
232=4294967296, so the behavior of the algorithm 
appears to be the same for this word length.  

Due to the bijectivity of AKARI, an inverse of the 
transition function might be derivable and thus 
backward security might be compromisable if an 
internal state is leaked. As a side note, the cycle lengths 
are far worse than what is proposed for a "good" 
PRNG in 2.3. Still, AKARI appears to be a good 
choice for cryptographic RFID use cases, as it easily 
passes the test batteries and shows reasonable cycle 
lengths. 

 

3.2 Analysis of A5/1 
 



The A5/1 stream cipher consists of three different 
irregularly clocked linear feedback shift registers 
(LFSRs) that are combined via a clock control. 
Whenever a register is clocked, the feedback bits (e.g. 
13, 16, 17, and 18 for R1) are XORed and inserted into 
bit 0 after a left shift. The feedback taps of the three 
LFSRs in the A5/1 stream cipher were chosen in a way 
that the registers have maximum length periods, i.e. all 
other possible states of a register will be generated 
before a state will be generated for the second time.  

To determine which register is clocked in each 
iteration of the A5/1 stream cipher, each register has a 
bit position marked as the clock tap (C1, C2 and C3) 
and a majority clock function takes these three bits as 
arguments. A register is clocked if its clock bit equals 
the majority value of the three clock bits. That means 
that either two or all three registers are clocked at the 
same time in each iteration. The values of the three 
clock bits form eight different combinations. For each 
clock bit there are two combinations where this bit 
differs from the other two causing it not to be clocked. 
Therefore, a single register is clocked in three out of 
four cases [8]. 

In the case of A5/1 the analysis approach with a 
reduced state length was not evaluated. Due to the 
asymmetric structure of the algorithm with its three 
registers of different length it seemed unclear, how the 
length could be reduced in a reasonable way. 
Therefore, only a sampled analysis with 3000 
randomly chosen start values was performed. In the 
analysis of the A5/1 nearly all of the randomly chosen 
start values were part of an individual component of 
the state transition graph. Table 2 shows the analysis 
values for some of the identified components and the 
average of all analyzed values. 

The analysis result shows a mostly consistent result 
over all components. All identified components have a 
reasonable cycle length, although it is still far worse 
than the criteria given in Section 2.3). Additionally, the 
maximum height of the tree that was found for the 
given start values is shown in the table. The 
components seem to be rather small, because for a 
component with a notable fraction of the nodes (e.g. 
0.1% of the nodes, although this is much smaller than 
the expected largest component in a randomly chosen 
transition function) one would expect at least 3 start 
values from this component. 

Only a small part of the state space of A5/1 has 
been sampled, so this result does not necessarily apply 
to the major part of the state space. Still, it can be 
concluded that due to the limited cycle length the 
algorithm is not suitable for applications requiring a 
large number of pseudo random numbers. 

 
 
 

Table 2. Analysis results of A5/1 after 3000 
start values 

Component Cycle Length Tree Height 

1 

2 

3 
4 

5 

6 
7 

8 

9 
10 

11 

12 
13 

14 
15 

16 

17 

18 

19 

20 
... 

Average 

11185723 

78294094 

257249966 
11184282 

33553192 

22369661 
44738889 

33554075 

55924149 
11184672 

22371100 

22369676 
11185515 

178959545 
33553145 

11184719 

55924079 

67108060 

55923432 

22369569 
… 

35396755 

87232350   

11141730   

5058705    
94273308   

11932929   

116796486  
133192933  

213048501  

84497440   
5124288    

65284466   

1153416    
247669895  

9097123    
65218605   

79567731   

112327672  

463350246  

3736262    

133299868 
… 

101931457 

 
 

4. Improvement by parameter 
switching 

 
In some cases, it might be desirable to modify a 

given PRNG algorithm with low impact on the 
algorithm itself. Any modification of the algorithm 
needs a careful analysis of the new properties and 
creates a risk that a new weakness is introduced. One 
way to minimize this risk is to keep the algorithm as it 
is and only switch to a different parameterization of the 
algorithm at certain points in time. This allows 
“breaking out” of a cycle of the original algorithm and 
can increase the cycle length. Figure 4 illustrates this 
mechanism, with B being the break out point.  

 

Figure 4. Break out of a cycle 
 
One advantage of this approach is, that the 

algorithm that is applied stays the same and therefore 
no additional implementation is needed apart from the 
switching logic. This means that for a hardware 
implementation, the chip area stays nearly the same 
and the impact on the productions cost is small. 
Furthermore, the impact on the speed of the PRNG is 
minimal, as only the switching logic is added, which is 
typically much less complex than an PRNG algorithm 
implementation. 

 



Different strategies for switching to the second 
parametrization are imaginable. Two simple 
approaches are to apply the break-out algorithm: 

 once after a certain number N of PRNG 
numbers 

 alternating between the two algorithms 
every N calls 

In the following, these two approaches are 
evaluated for A5/1 as an example for a real world 
algorithm. 

 

4.1 Application on A5/1 
 
One of the weaknesses of A5/1 that have been 

identified in Section 3.2 is the comparably low typical 
cycle length. This might be a problem for applications 
in which many pseudo random numbers are needed.  
For such applications, increasing the cycle length of 
A5/1 will improve the suitability of this algorithm. 

A5/1 does not use a key that allows a 
parameterization of the algorithm. One way to 
parametrize it, is the selection of the feedback taps, as 
shown in [6]. The work groups different feedback tap 
selections into two different classes: combinations that 
behave similar to the original tapping bits, and 
combinations that show a statistically worse behavior 
of the algorithm. According to the work, A5/1 
generally exhibits a large state space structure 
independency of the selection of the feedback tapping 
bits. A large number of randomly selected feedback 
taps is analyzed in the work and shows a comparable 
behavior to the original selection of feedback taps. 

 For the following analysis, a random selection of 
feedback taps with similar behavior to the original 
algorithm was selected from [15] as alternative 
parameterization. This was done in order to impact the 
behavior of the algorithm as little as possible. For the 
breakout algorithm, instead of the original feedback 
taps tapR1 = 0x072000, tapR2 = 0x300000 and tapR3 
= 0x700080 the following values have been used:  

 tapR1 = 0x69BB6 

 tapR2 = 0x22B545 

 tapR3 = 0x6FFA53. 
The results for this parametrizations are shown as 

example in the following. Other tapping bit selections 
have been analyzed in addition, showing identical 
results. 

 

4.2 Single break out call   
  
The minimum cycle length from Table 2 is 

11184282. To avoid entering such a cycle, it seems 
reasonable to call the break out algorithm before the 
cycle can be completed. For the analysis, a break out 
after 223 = 8388608 calls is chosen as an arbitrary value 
smaller than the minimum cycle length.  

Although the analysis program was run for an 
extensive amount of time, it was not able to find a 
single cycle. This means that the cycle lengths of the 

modified algorithm are much longer than the ones of 
the original algorithm. In order to get a measureable 
result nevertheless, in the following the analysis was 
limited to a search of 109 steps. For all start values, this 
limit was reached, meaning that the cycles lengths are 
greater than 109 (see Table 3). This is a significant 
improvement compared to the original algorithm. 

 

Table 3. Results for single break out after 223 
calls 

Component Cycle Length Tree Height 

1 

2 
3 

4 

5 

... 

Average 

>1000000000 

>1000000000 
>1000000000 

>1000000000 

>1000000000 

… 

>1000000000 

Unknown 

Unknown 
Unknown 

Unknown 

Unknown 

… 

Unknown 

 

4.3 Alternating parametrization 
 
The same analysis was run an A5/1 with alternating 

parametrization. After every 223 calls, the 
parametrization was switched to the alternative one for 
the next 223 calls. Then the parametrization was 
switched back to the original one and so on. Table 4 
shows the results, which are identical to the results of 
the single break out method. The alternating approach 
is coming at a slightly higher complexity than the 
single break out approach, as an additional state 
information must be maintained that stores the 
currently applied variant of the parameters. For the 
single break out method, this state information is not 
needed. The impact on complexity is probably 
practically negligible, but nevertheless the single break 
out approach is probably slightly preferable out of this 
reason.   

 

Table 4. Result for alternating algorithm after 
223 Calls 

Component Cycle Length Tree Height 

1 
2 

3 

4 
5 

... 

Average 

>1000000000 
>1000000000 

>1000000000 

>1000000000 
>1000000000 

… 

>1000000000 

Unknown 
Unknown 

Unknown 

Unknown 
Unknown 

… 

Unknown 

 

5. Conclusion 
 
Drawing conclusions about the security of 

cryptographic functions from analysis data is difficult. 
As it is typically not possible to prove the security 
mathematically, the available data can only be used to 
give hints on a usability of the algorithm for a certain 
use case. A single type of analysis is usually not 
sufficient, instead several types of analysis should be 
performed to increase the confidence in the properties 
of an algorithm.  



For PRNGs a range of standardized test batteries 
exists that provides valuable information about the 
statistical properties. But additional structural analysis 
of the state space can add more information that 
increases the knowledge about the algorithm. 
Especially properties like cycle length, number of 
components or component size have an impact on the 
usability for a cryptographic application. These 
properties cannot easily be determined due to the large 
state space of such algorithms. The reduction of the 
word length or sampling of the state space can make 
this analysis manageable.  

The results of this analysis performed on A5/1 and 
AKARI-1 as examples for real world cryptographic 
functions indicate that both approaches can give 
valuable information. For AKARI-1 both approaches 
hint to the fact that AKARI-1 is a bijective function. 
For A5/1 the sampled state space approach shows that 
the cycle lengths of the components appear to be 
smaller than ideally could be the case for an algorithm 
with the given state space size. This does not 
necessarily disqualify A5/1 for security related 
applications, but shows that for these applications a 
careful selection of a suitable algorithm is needed (in 
GSM, only a few hundred bits are used after each 
seeding).  

A simple switching method that can improve the 
state space structure of a given PRNG is introduced. 
The practical application of this method to the A5/1 
algorithm shows a significant increase of the cycle 
lengths and might be a promising way to improve the 
behavior with a low impact on the complexity of the 
implementation. The scope of this work is limited to 
the impact of this method to the state space structure 
and does not include any analysis of the generated 
output values of the PRNG.  

Therefore, as future work it needs to be analyzed, 
if the modification of the original algorithms has an 
impact on the statistical properties of the generated 
output values. This can e.g. be verified by running 
standardized test suites and comparing the result to the 
original algorithms. Furthermore, other methods of 
switching could be investigated, including the use of a 
completely different algorithm for the break out. 
Another area of investigation is the approach on when 
to use the break out mechanism. Instead of applying it 
after a fixed number of calls, the selection could be 
based on properties of the internal state or the output 
of the algorithm. Furthermore, it might be worthwhile 
to evaluate the impact of higher numbers of 
parametrizations to switch between, instead of two. 
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