
Analysis of PRNGs with Large State Spaces and Structural Improvements

Gabriele Spenger, Jörg Keller

Faculty of Mathematics and Computer Science

FernUniversität in Hagen

58084 Hagen, Germany

gabriele@spenger.org, joerg.keller@fernuni-hagen.de

Abstract

The security of cryptographic functions such as

pseudo random number generators (PRNGs) can

usually not be mathematically proven. Instead,

statistical properties of the generator are commonly

evaluated using standardized test batteries on a

limited number of output values. This paper

demonstrates that valuable additional information

about the properties of the algorithm can be gathered

by analyzing the state space. As the state space for

practical use cases is usually huge, two approaches

are presented to make this analysis manageable.

Results for a practical application of these

approaches to the algorithms AKARI and A5/1 are

provided, giving new insights about the suitability of

these PRNGs for security applications.

Key words: PRNG; Security; AKARI; A5/1;

Improvement

1. Introduction

The growth of electronic communication over the
last decades and the development of technologies like
Radio Frequency Identification (RFID) has led to a
large interest in data security. Sending sensitive
information over communication channels that are
accessible by attackers, e.g. the Internet or the air in
case of radio transmission requires measures to secure
the privacy as well as the integrity of the transmitted
data. In order to achieve this, cryptographic protocols
have been developed and standardized that make use
of cryptographic base functions like symmetric or
asymmetric encryption, hashing and pseudo random
number generators (PRNGs).

There are many standardized cryptographic
functions that provide at least some confidence in their
suitability for a given application, because they have
resisted attacks and analysis over the years. These
standardized functions are at least well tested and have

usually been subject for a lot of scientific work trying
to find any kinds of weaknesses before their
standardization. But there are also occasions where the
standards do not provide the right tools for an
application. One example is the application on low cost
RFID transmitters, which only allow a very low
complexity of the algorithms due to the cost restraints
(the cost is mostly driven by the required chip area [1]).
In these cases, it might be required to use a non-
standardized algorithm. This implies the danger of
choosing an algorithm that does not provide the
necessary security.

Besides the algorithms themselves also a couple of
methods for the assessment of the suitability of
cryptographic functions have been standardized.
Examples for methods for assessing the security of
PRNGs are the Marsaglia suite of Tests of
Randomness [2], the Entacher collection of selected
pseudorandom number generators [3] and the NIST
test suite [4]. While these test batteries provide
valuable information about the statistical properties of
a given PRNG, they do not examine the complete state
space of the algorithms. Instead their analysis is based
on the statistical properties of a limited number of
output values. Algorithms that do not meet the pass
criteria of the test batteries are usually not suited for
security applications, because the statistical properties
might be exploited by an attacker to predict future
generated output values. But algorithms that do pass
the criteria do not necessarily provide high security.
This fact is typically included as advice in the
documentation of the test batteries, e.g. in the abstract
of the NIST publication. Further examples for non-
statistical properties of PRNGS that are suitable for
cryptographic purposes include Forward Secrecy and
Backward Secrecy (high difficulty to calculate past or
future generated outputs or states from a compromised
current random number) [5].

In order to fully assess the quality of a PRNG, the
full state space needs to be examined. Unfortunately,
this is not feasible for realistic use cases. While
algorithms exist that have a state with the same size as
the pseudo random number that is generated, this is not
the common case. Typically, PRNGs make use of a

mailto:gabriele@spenger.org

state that has a significantly greater size than the
generated number. Examples for such PRNGs
(PRNGs and stream ciphers can be considered equal in
this context) are the A5/1 algorithm [6] with a state
length of 64 bits for an output of a single pseudo
random bit, or the AKARI algorithm with 64 bits [7].
Both of these algorithms have been designed
specifically for the use in low cost RFID transmitters
and have a low algorithmic complexity. The state
space for both of these algorithms has a size of 264,
which is a number of values that can neither be stored
nor traversed in a reasonable amount of time.

This paper presents different approaches to assess
the security of such PRNGs with huge state spaces.
After the general discussion of the approaches in
Section 2, A5/1 and AKARI are examined as examples
for real world cryptographic PRNGs in Section 3.
While no solution can be given to reliably ensure the
security of PRNG algorithms, the methods still prove
to be valuable by detecting possible weaknesses that
go beyond the standardized test batteries. The decision
if these weaknesses render the algorithm inappropriate
depends heavily on the given application. It might be
that the weakness does generally not show up in the
application, or that it can be avoided by a careful
choice of start values or other parameters.
Nevertheless, it is important to know these weaknesses
so that it is possible to select the right algorithm for the
right application.

2. State space analysis methods

Pseudo Random Number Generators are generally
deterministic state transition functions f: M M
mapping a finite state space to itself as long as they do
not receive new seed or entropy bits. Every output of
the PRNG results in a state transition. This means that
the generated sequences of pseudo random numbers
are periodic. The output is deterministic and dependent
on the state. Therefore, only the state is considered in
the following. If a single state is interpreted as a node
and the transition between a state and its unique
successor state is interpreted as an edge, the result is a
directed graph Gf = (V;E) with V:= M and E:={(x;f(x))
| x ϵ M}. The structure of the generated graph provides
information about the behavior of the pseudo random
generator. For non-bijective transition functions, the
graph typically consists of several weakly connected
components. Each of these components consists of one
cycle and generally several trees with roots located on
the cycle. Figure 1 depicts the structure of a
component.

Properties of the graph include the number and size
of the connected components, length of the cycles and
maximum depth of the trees. In order to identify all
connected components of a graph, the complete state
space would have to be analyzed, e.g. by a depth or
breadth first search. Alternatively, only a part of the
state space could be analyzed, accepting the fact that

one or several components might be missed. A
possibility to reduce the size of the entire state space,
so that it can be analyzed completely, is to reduce the
length of the state variables of the algorithm and
accordingly the length of the period of the generated
pseudo random numbers. In the following sections
both approaches, the partial analysis of the state space
and the reduction of the state space are discussed in
more detail.

Figure 1. A typical connected component of
a state transition graph [8]

2.1 Reducing the state space size

One way to analyze the state space of a PRNG is to

run a depth-first search on the directed graph [9]. As
each node has exactly one outgoing edge, an iterative
formulation is sufficient. Each path in the graph is first
treated as a new component. If it meets a node from an
already known component, the nodes in the path are
re-labeled for that component. This allows finding all
connected components, their sizes, and the size of their
cycles.

To reduce the required memory for large graphs,
only a limited number of components plus a
“remainder” component is allowed. Under the
assumption that only some large components exist
which are found first (see 2.3), the remainder
component only comprises several small components,
so that the inaccuracy is small.

For the analysis of 30 components (plus a number
for unlabeled components and a number for the
common rest component) the storage of the component
number needs 5 bit. For the A5/1 algorithm the state
consists of three state variables with 19, 22 and 23 bits
length. This results in a memory requirement of 264·5
bit for the DFS analysis approach, or about 11.5·109
GB, which is far too much even for the most powerful
supercomputers. The same is true for the AKARI with
its two 32-bit state variables also resulting in a 64-bit
state. For algorithms with such large state spaces an
additional approach is needed to reduce the memory
requirements.

One option is to reduce the word length of the
algorithm under the assumption that the basic

properties do not change too much. In the case of
AKARI, instead of using 32-bit state variables one
could e.g. use 16-bit state variables. This results in a
state size of N = 2·16 bit = 32 bit or 2.6 GB, which is
easily addressable on a modern PC.

The question that remains unanswered is, in how
far the analysis results for the algorithm running on a
reduced word length can be transferred to a longer
word length. While the practical analysis results
presented in 3.1 indicate for the depth-first search that
certain properties of the state graph seem to be
identical for different word lengths, it is debatable if
this is true for all cases. Obviously there are cases, in
which the algorithm will behave completely
differently, e.g. for rotating bit shifts that degenerate to
no operations if the shift length is equal to the word
length.

2.2 Sampling the State Space

An alternative way to analyze the state space of a

large graph is to use a realistic word length and to
sample the state space instead of analyzing it
completely. Obviously this has the risk of missing a
weakness of the state graph, as the sampling results in
only a very small part of the state space being
analyzed. For this reason, this approach is not suitable
for positively approving the security of an algorithm.
Instead it can be used to randomly find weaknesses,
which might be sufficient to make an algorithm
unsuited for a given use case. If random sampling of
the state space shows a weakness, chances might be
good that more instances of the same weakness exist
in the state space.

The approach described in 2.1 depends on the
analysis of the complete state space, as every node of
a cycle needs to be marked with a component number
in order to be able to identify cycle lengths. While
cycle lengths can be found before every node in the
state space has been marked, the memory for all nodes
needs to be allocated for this approach, to allow
marking any node as visited. This prevents the analysis
of component cycle lengths for realistic word lengths.
In [10] a method is presented to avoid storing a number
for every single node. The idea that was also used
previously e.g. in [11], is to only store certain nodes
while traversing the tree. If only the nodes at distances
2n from the start value are stored (n=1, 2 …), the
required memory usage is significantly reduced. For an
analysis run starting at any given node and running for
N steps until a cycle is detected, this means that a
maximum of log2(N)-1 nodes need to be stored. This
results in a low memory requirement even for
extremely long runs. Still, the cycle at the end of a path
can be detected if one of the stored nodes is reached
again, and the cycle length can be computed. Figure 2
shows the process of cycle detection.

Figure 2. A cycle is detected [10]

Storing the nodes in these increasingly higher

distances means that other aspects of the tree structure
are harder to determine. The root of a tree on a cycle
can only be determined by performing a simultaneous
run from the last node outside of the cycle M and a
congruential node KN with the same distance to the
node that has been identified to be on a cycle (see
Figure 3). By comparing the nodes during this
simultaneous run, the entry node E can be found, as
this is the first node that the simultaneous runs reach at
the same time.

Figure 3. Finding the cycle entry point [10]

This method allows performing an analysis on an

arbitrary large state space. The memory required for
the analysis is not only small, but also only
logarithmically growing with the size of the state
space. Still, the required time for the analysis prevents
to examine the complete graph for realistic word
lengths. But it allows taking arbitrary, randomly
chosen start values and walking through the graph
starting from these. This way, the state space is
sampled and the resulting tree and cycle structure for
these samples might provide valuable insights with
respect to the security of the algorithm. Also, the sizes
of the connected components can be guessed from the
sampling within a confidence interval.

2.3 Metrics for a "good" PRNG

While information about the structure of a state

transition tree provides valuable insight about the
properties of a PRNG, this information needs to be
evaluated somehow. The question how the structure
looks like for a "good" PRNG and how for a "bad" one
needs to be answered in order to be able to compare
PRNGs reasonably. Obviously, it depends heavily on

the application, what "good" and "bad" means and
what the thresholds for such a classification are.
Therefore, the definition of such criteria is out of the
scope of this document, but some reasonable guidance
is provided in the following. The properties that can
easily be deducted from the structure analysis are:

 number of components

 cycle lengths of the components

 size of the components
It is desirable that a PRNG has a small number of

components. The fewer components are present in the
state structure, the larger can the components and their
cycle lengths be. According to [12] the expected
number of components for a randomly chosen non-
bijective state transition function for a set M with n
elements is 1/2·log(n). For an invertible state transition
function, the expected value is ln(n) [13]. For a "good"
PRNG this value should be equal or less than the
expected value.

Furthermore, it is desirable that the number of
nodes on a cycle (which is equivalent to the cycle
length) is as large as possible. This results in a high
number of steps until the states and the produced
pseudo random numbers are repeated. According to
[12] the expected cycle length for non-bijective state
transition functions is sqrt(π·n/2). The largest cycle
length should be about c1·sqrt(n) with c1 ≈ 0.78248. It
follows that the expected size of the largest cycle is
approximately 0.78248·sqrt(n). A "good" PRNG
should probably have one cycle with at least an
according size or larger. For bijective state transition
functions the expected length of the largest cycle is (1-
1/e)·n=0.632· n.

Finally, the number of nodes in any component
(equivalent to the size of the component) should be as
large as possible. Ideally the state structure consists of
a single component containing all nodes of the graph.
According to [12] the expected number of nodes of the
largest component for a non-bijective state transition
function is c2·n with c2≈0.75782·n. PRNGs with
bijective state transition functions consist of cycles
only [9] and therefore the cycle lengths are equal to the
component sizes.

3. Practical application

Two PRNGs have been analyzed using the

approaches described above in order to evaluate the
benefit of an additional evaluation of properties of the
state space structure. AKARI [7] is a low complexity
PRNG with good statistical properties as demonstrated
by the authors with results of the ENT, Diehard and
NIST test batteries. A5/1 is the stream cipher used in
GSM mobile phones.

3.1 Analysis of AKARI-1

AKARI in its variants AKARI-1 and AKARI-2, is

a lightweight PRNG that has been designed by Pedro

Peris López et al. specifically with a use on RFID
transponders in mind. The design criteria were good
statistical properties and suitability for security
applications with the hardware limitations of RFID
transponders taken into consideration. Further
requirements were a tiny footprint, high throughput
and a low power consumption. The approach taken
was to combine a T-function as proposed in [14] with
a non-linear filter function based on a composition of
extremely light operands. The state consists of two
state variables with a length of 32 bits resulting in a
state length of 64 bits. The analysis results presented
by the authors for the ENT, Diehard and NIST test
batteries show promising results, leading to the
conclusion that the algorithm is well suited for its
intended use in security applications.

The first approach was to analyze the state space of
AKARI-1 for a reduced word length. Table 1 shows
the result of the analysis for a word length of 14 bits
respectively a state length of 28 bits: 30 components
have been identified, all of them with the same size
being identical to the cycle length. This clearly
indicates that the algorithm is bijective, at least for this
word length.

Table 1. Analysis results of AKARI for 7 bit
output

Component
Cycle

Length
Size Relative Size

1

2

3

4

5
…

27

28
29

30

Rest

16384

16384

16384

16384

16384
…

16384

16384
16384

16384

n/a

16384

16384

16384

16384

16384
…

16384

16384
16384

16384

267943936

0.0061%

0.0061%

0.0061%

0.0061%

0.0061%
…

0.0061%

0.0061%
0.0061%

0.0061%

99.8169%

In order to verify if the algorithm behaves the same

for the word length of 16 bit intended by the authors of
AKARI, a sampled analysis was performed. The result
showed that the cycle lengths of the sampled
components for AKARI-1 are accordingly
232=4294967296, so the behavior of the algorithm
appears to be the same for this word length.

Due to the bijectivity of AKARI, an inverse of the
transition function might be derivable and thus
backward security might be compromisable if an
internal state is leaked. As a side note, the cycle lengths
are far worse than what is proposed for a "good"
PRNG in 2.3. Still, AKARI appears to be a good
choice for cryptographic RFID use cases, as it easily
passes the test batteries and shows reasonable cycle
lengths.

3.2 Analysis of A5/1

The A5/1 stream cipher consists of three different
irregularly clocked linear feedback shift registers
(LFSRs) that are combined via a clock control.
Whenever a register is clocked, the feedback bits (e.g.
13, 16, 17, and 18 for R1) are XORed and inserted into
bit 0 after a left shift. The feedback taps of the three
LFSRs in the A5/1 stream cipher were chosen in a way
that the registers have maximum length periods, i.e. all
other possible states of a register will be generated
before a state will be generated for the second time.

To determine which register is clocked in each
iteration of the A5/1 stream cipher, each register has a
bit position marked as the clock tap (C1, C2 and C3)
and a majority clock function takes these three bits as
arguments. A register is clocked if its clock bit equals
the majority value of the three clock bits. That means
that either two or all three registers are clocked at the
same time in each iteration. The values of the three
clock bits form eight different combinations. For each
clock bit there are two combinations where this bit
differs from the other two causing it not to be clocked.
Therefore, a single register is clocked in three out of
four cases [8].

In the case of A5/1 the analysis approach with a
reduced state length was not evaluated. Due to the
asymmetric structure of the algorithm with its three
registers of different length it seemed unclear, how the
length could be reduced in a reasonable way.
Therefore, only a sampled analysis with 3000
randomly chosen start values was performed. In the
analysis of the A5/1 nearly all of the randomly chosen
start values were part of an individual component of
the state transition graph. Table 2 shows the analysis
values for some of the identified components and the
average of all analyzed values.

The analysis result shows a mostly consistent result
over all components. All identified components have a
reasonable cycle length, although it is still far worse
than the criteria given in Section 2.3). Additionally, the
maximum height of the tree that was found for the
given start values is shown in the table. The
components seem to be rather small, because for a
component with a notable fraction of the nodes (e.g.
0.1% of the nodes, although this is much smaller than
the expected largest component in a randomly chosen
transition function) one would expect at least 3 start
values from this component.

Only a small part of the state space of A5/1 has
been sampled, so this result does not necessarily apply
to the major part of the state space. Still, it can be
concluded that due to the limited cycle length the
algorithm is not suitable for applications requiring a
large number of pseudo random numbers.

Table 2. Analysis results of A5/1 after 3000
start values

Component Cycle Length Tree Height

1

2

3
4

5

6
7

8

9
10

11

12
13

14
15

16

17

18

19

20
...

Average

11185723

78294094

257249966
11184282

33553192

22369661
44738889

33554075

55924149
11184672

22371100

22369676
11185515

178959545
33553145

11184719

55924079

67108060

55923432

22369569
…

35396755

87232350

11141730

5058705
94273308

11932929

116796486
133192933

213048501

84497440
5124288

65284466

1153416
247669895

9097123
65218605

79567731

112327672

463350246

3736262

133299868
…

101931457

4. Improvement by parameter
switching

In some cases, it might be desirable to modify a

given PRNG algorithm with low impact on the
algorithm itself. Any modification of the algorithm
needs a careful analysis of the new properties and
creates a risk that a new weakness is introduced. One
way to minimize this risk is to keep the algorithm as it
is and only switch to a different parameterization of the
algorithm at certain points in time. This allows
“breaking out” of a cycle of the original algorithm and
can increase the cycle length. Figure 4 illustrates this
mechanism, with B being the break out point.

Figure 4. Break out of a cycle

One advantage of this approach is, that the

algorithm that is applied stays the same and therefore
no additional implementation is needed apart from the
switching logic. This means that for a hardware
implementation, the chip area stays nearly the same
and the impact on the productions cost is small.
Furthermore, the impact on the speed of the PRNG is
minimal, as only the switching logic is added, which is
typically much less complex than an PRNG algorithm
implementation.

Different strategies for switching to the second
parametrization are imaginable. Two simple
approaches are to apply the break-out algorithm:

 once after a certain number N of PRNG
numbers

 alternating between the two algorithms
every N calls

In the following, these two approaches are
evaluated for A5/1 as an example for a real world
algorithm.

4.1 Application on A5/1

One of the weaknesses of A5/1 that have been

identified in Section 3.2 is the comparably low typical
cycle length. This might be a problem for applications
in which many pseudo random numbers are needed.
For such applications, increasing the cycle length of
A5/1 will improve the suitability of this algorithm.

A5/1 does not use a key that allows a
parameterization of the algorithm. One way to
parametrize it, is the selection of the feedback taps, as
shown in [6]. The work groups different feedback tap
selections into two different classes: combinations that
behave similar to the original tapping bits, and
combinations that show a statistically worse behavior
of the algorithm. According to the work, A5/1
generally exhibits a large state space structure
independency of the selection of the feedback tapping
bits. A large number of randomly selected feedback
taps is analyzed in the work and shows a comparable
behavior to the original selection of feedback taps.

 For the following analysis, a random selection of
feedback taps with similar behavior to the original
algorithm was selected from [15] as alternative
parameterization. This was done in order to impact the
behavior of the algorithm as little as possible. For the
breakout algorithm, instead of the original feedback
taps tapR1 = 0x072000, tapR2 = 0x300000 and tapR3
= 0x700080 the following values have been used:

 tapR1 = 0x69BB6

 tapR2 = 0x22B545

 tapR3 = 0x6FFA53.
The results for this parametrizations are shown as

example in the following. Other tapping bit selections
have been analyzed in addition, showing identical
results.

4.2 Single break out call

The minimum cycle length from Table 2 is

11184282. To avoid entering such a cycle, it seems
reasonable to call the break out algorithm before the
cycle can be completed. For the analysis, a break out
after 223 = 8388608 calls is chosen as an arbitrary value
smaller than the minimum cycle length.

Although the analysis program was run for an
extensive amount of time, it was not able to find a
single cycle. This means that the cycle lengths of the

modified algorithm are much longer than the ones of
the original algorithm. In order to get a measureable
result nevertheless, in the following the analysis was
limited to a search of 109 steps. For all start values, this
limit was reached, meaning that the cycles lengths are
greater than 109 (see Table 3). This is a significant
improvement compared to the original algorithm.

Table 3. Results for single break out after 223
calls

Component Cycle Length Tree Height

1

2
3

4

5

...

Average

>1000000000

>1000000000
>1000000000

>1000000000

>1000000000

…

>1000000000

Unknown

Unknown
Unknown

Unknown

Unknown

…

Unknown

4.3 Alternating parametrization

The same analysis was run an A5/1 with alternating

parametrization. After every 223 calls, the
parametrization was switched to the alternative one for
the next 223 calls. Then the parametrization was
switched back to the original one and so on. Table 4
shows the results, which are identical to the results of
the single break out method. The alternating approach
is coming at a slightly higher complexity than the
single break out approach, as an additional state
information must be maintained that stores the
currently applied variant of the parameters. For the
single break out method, this state information is not
needed. The impact on complexity is probably
practically negligible, but nevertheless the single break
out approach is probably slightly preferable out of this
reason.

Table 4. Result for alternating algorithm after
223 Calls

Component Cycle Length Tree Height

1
2

3

4
5

...

Average

>1000000000
>1000000000

>1000000000

>1000000000
>1000000000

…

>1000000000

Unknown
Unknown

Unknown

Unknown
Unknown

…

Unknown

5. Conclusion

Drawing conclusions about the security of

cryptographic functions from analysis data is difficult.
As it is typically not possible to prove the security
mathematically, the available data can only be used to
give hints on a usability of the algorithm for a certain
use case. A single type of analysis is usually not
sufficient, instead several types of analysis should be
performed to increase the confidence in the properties
of an algorithm.

For PRNGs a range of standardized test batteries
exists that provides valuable information about the
statistical properties. But additional structural analysis
of the state space can add more information that
increases the knowledge about the algorithm.
Especially properties like cycle length, number of
components or component size have an impact on the
usability for a cryptographic application. These
properties cannot easily be determined due to the large
state space of such algorithms. The reduction of the
word length or sampling of the state space can make
this analysis manageable.

The results of this analysis performed on A5/1 and
AKARI-1 as examples for real world cryptographic
functions indicate that both approaches can give
valuable information. For AKARI-1 both approaches
hint to the fact that AKARI-1 is a bijective function.
For A5/1 the sampled state space approach shows that
the cycle lengths of the components appear to be
smaller than ideally could be the case for an algorithm
with the given state space size. This does not
necessarily disqualify A5/1 for security related
applications, but shows that for these applications a
careful selection of a suitable algorithm is needed (in
GSM, only a few hundred bits are used after each
seeding).

A simple switching method that can improve the
state space structure of a given PRNG is introduced.
The practical application of this method to the A5/1
algorithm shows a significant increase of the cycle
lengths and might be a promising way to improve the
behavior with a low impact on the complexity of the
implementation. The scope of this work is limited to
the impact of this method to the state space structure
and does not include any analysis of the generated
output values of the PRNG.

Therefore, as future work it needs to be analyzed,
if the modification of the original algorithms has an
impact on the statistical properties of the generated
output values. This can e.g. be verified by running
standardized test suites and comparing the result to the
original algorithms. Furthermore, other methods of
switching could be investigated, including the use of a
completely different algorithm for the break out.
Another area of investigation is the approach on when
to use the break out mechanism. Instead of applying it
after a fixed number of calls, the selection could be
based on properties of the internal state or the output
of the algorithm. Furthermore, it might be worthwhile
to evaluate the impact of higher numbers of
parametrizations to switch between, instead of two.

6. References

[1] A. Y. Poschmann, “Lightweight cryptography: Cryptography

engineering for a pervasive world,” Dissertation, Ruhr-
Universität, Bochum, 2009.

[2] G. Marsaglia, “The marsaglia random number cdrom
including the diehard battery of tests of randomness,” 1995.
[Online]. Available: http://www.stat.fsu.edu/pub/diehard/

[3] K. Entacher, “A collection of selected pseudorandom number
generators with linear structures,” ACPC-Austrian Center for
Parallel Computation, Tech. Rep., 1997.

[4] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, and E.
Barker,“Statistical test suite for random and pseudorandom
number generators for cryptographic applications: Special
publication 800-22, revision 1a,” 2010. [Online]. Available:
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP8002
2rev1a.pdf

[5] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone,
Handbook of Applied Cryptography. CRC Press, 1996.

[6] J. Golic, “Cryptanalysis of alleged a5 stream cipher,” in
Advances in Cryptology — EUROCRYPT ’97, ser. Lecture
Notes in Computer Science, W. Fumy, Ed. Springer Berlin
Heidelberg, 1997, vol. 1233, pp. 239–255. [Online].
Available: http://dx.doi.org/10.1007/3-540-69053-0 17

[7] H. Martin, E. S. Millan, L. Entrena, P. P. Lopez, and J. C. H.
Castro, “Akari-x: A pseudorandom number generator for
secure lightweight systems,” 11th IEEE International On-
Line Testing Symposium, vol. 0, pp. 228–233, 2011.

[8] A. Beckmann, J. Fedorowicz, J. Keller, and U. Meyer, “A
structural analysis of the a5/1 state transition graph,” in First
Workshop on GRAPH Inspection and Traversal Engineering,
ser. Electronic Proceedings in Theoretical Computer Science,
vol. 99. Open Publishing Association, 2012, pp. 5–19.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms (3. ed.). MIT Press, 2009.
[Online]. Available:
http://mitpress.mit.edu/books/introduction-algorithms

[10] J. Keller, “Efficient sampling of the structure of crypto
generators’ state transition graphs,” in EC2ND 2006. Springer
London, 2007, pp. 3–12. [Online]. Available:
http://dx.doi.org/10.1007/978-1-84628-750-3 1

[11] J. Keller, “Parallel exploration of the structure of random
functions,” in Proceedings of the 6th Workshop Parallele
Systeme und Algorithmen (PASA) in conjunction with the
International Conference on Architecture of Computing
Systems, ARCS. VDE, 2002.

[12] P. Flajolet and A. M. Odlyzko, “Random mapping statistics,”
in Advances in Cryptology. Springer Verlag, 1990, pp. 329–
354.

[13] R. Sedgewick and P. Flajolet, An Introduction to the Analysis
of Algorithms. Reading and Mass. and USA: Addison-
Wesley, 1996.

[14] A. Klimov and A. Shamir, “A new class of invertible
mappings,” in Proceedings Cryptographic Hardware and
Embedded Systems (CHES), Volume 2523 of the series
Lecture Notes in Computer Science, pp 470-483, 2003

[15] J.-P. Ismer, “Zyklenstruktur des A5/1 Zustandsgraphen bei
veränderten Schieberegistern,” Abschlussarbeit im
Studiengang Bachelor in Informatik, FernUniversität in
Hagen, 2014.

http://www.stat.fsu.edu/pub/diehard/
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP80022rev1a.pdf
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP80022rev1a.pdf

