
Parallel-External Computation of the Cycle Structure of Invertible
Cryptographic Functions

Andreas Beckmann
Martin-Luther-Universität Halle-Wittenberg

Institut für Informatik
06099 Halle (Saale), Germany

andreas.beckmann@informatik.uni-halle.de

Jörg Keller
FernUniversität in Hagen
LG Parallelität und VLSI
58084 Hagen, Germany

joerg.keller@fernuni-hagen.de

Abstract

We present an algorithm to compute the cycle structure
of large directed graphs where each node has exactly one
outgoing edge. Such graphs appear as state diagrams of
finite state machines such as pseudo-random number gen-
erators in cryptography. The size of the graphs necessitates
that the adjacency list is kept on hard disks. Our algorithm
uses multiple processing units, so that a parallel storage
system has to be employed to store the graph. We present ex-
perimental results for randomly chosen graphs, and for the
graph of the A5/1 generator used in GSM mobile phones.

Keywords: parallel storage systems, parallel graph algo-
rithms, cryptography

1. Introduction

Generators for pseudo-random numbers and stream ci-
phers can be modeled as deterministic finite state machines,
that receive no more input once they are initialized to a cer-
tain state by an init vector or key value. Their state transi-
tion graphs are simple: each node has exactly one outgoing
edge, each weakly connected component consists of one cy-
cle and a number of trees, directed towards their roots, the
roots being on the cycle. The edges are given via the state
transition function. The analysis of such graphs may reveal
weaknesses, such as short periods with non-negligible seed
probability, or predictable sequences. By their very nature,
such investigations cannot be done analytically but must be
done experimentally. Yet, the sheer size of the state space
(typically 264 and beyond) prevents a construction of the
graph in memory. Previous algorithms (see e.g. [5]) have
attempted to explore those graphs partly by following paths
through the graphs, although with limited success.

Our first contribution is a parallel-external algorithm that
reduces such a graph, given on a parallel storage system,
until it fits into the main memory of a parallel computer.
We also give algorithms to compute the cycle structure for
the reduced graph in memory. For graphs of a size too large
to store the edges on hard disks, we investigate graphs with
a certain property: one can identify a small subset of the
nodes such that each cycle contains at least one node of the
subset. A prominent example of this kind of graph is the
graph of the A5/1 stream cipher generator, used in GSM
mobile phones to encrypt data between the mobile phone
and the base station. Thus, to explore the cycle structure,
we can restrict ourselves to construct the graph of the subset
nodes in a preprocessing phase. This graph is still large, but
should fit into a parallel storage system with a capacity of
less than 1 terabyte. We explore this graph by the parallel-
external algorithm.

We apply our algorithms to randomly chosen graphs, and
to the graph of the A5/1 stream cipher generator. We thus
have derived the first algorithm able to completely explore
the A5/1 cycle structure. Still, the construction of the graph
of subset nodes takes about 6 months on a 32-processor
cluster, and only one third of the work is done yet. Our
preliminary results indicate that the weakly connected com-
ponents of the A5/1 graph are shallow, in contrast to ran-
domly chosen graphs, so that our reduction algorithm needs
fewer rounds than expected.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the relevant notation, background informa-
tion, and the multi-step approach to reduce and explore the
graphs. In Section 3 we develop our algorithms, and in Sec-
tion 4 we apply them to the A5/1 stream cipher generator.
In Section 5 we present our experimental results. Section 6
concludes.

2. Notation and Background Information

Let R be a large but finite set of size n, and let
f : R → R be an arbitrary function. We consider f given
as an oracle: we give x to the oracle, and get f(x) in re-
turn, in constant time. In practice, f is either realized by
a piece of code that is unknown to us, or as an array hold-
ing f(0) to f(n − 1). If there is also an oracle to return
f−1(y) = {x | f(x) = y} when given y, we call f effi-
ciently invertible. Note that this is always the case if f is
given as an array. An example function is the state tran-
sition function of the A5/1 key stream generator in mobile
phones.

In order to be able to talk about the structure of a
function, we define the graph induced by f as GR,f =
(V = R,E = {(x, f(x)) | x ∈ R}). If f is given as
an array, this array then forms the adjacency list of GR,f .
The induced graph is a directed graph that consists of one
or more weakly connected components (wCC). Each wCC
consists of one cycle, and one or more trees, which are di-
rected towards their roots. The roots are those nodes on the
cycle with an indegree of at least 2.

We are interested in the number and lengths of the cycles,
and also in the sizes of the wCCs. The cycles form the peri-
ods of the generator whose state transition function induces
the graph, and the size of a wCC relative to the graph size
gives the probability that the generator is initialized to use a
certain period. Furthermore, Flajolet and Odlyzko [3] have
analyzed average case properties of graphs induced by ran-
domly chosen functions, which they call random mappings.
If the particular graph deviates notably from those average
values, this may hint towards (cryptographic) weaknesses
of the generator behind.

There is a clear difference between the two possibilities
how f is realized: if f is given by an unknown piece of
code, we may turn it into an array representation (as long
as that fits into memory or on disk), while the opposite is
not possible. If f is given as code, we are able to formu-
late sequential and parallel algorithms [5, 6] with memory
consumption much smaller than n, that compute the cycle
and wCC structures of Gf , even if n is so large that an array
representation would not fit into memory or on disk. How-
ever, those algorithms tend to be not very efficient. If f is
given as an array, we need at least enough memory to hold
the array. If n is too large to store it in main memory, we
need to store it on hard disks. Obviously, one cannot handle
the case where f is given as an array but does not fit onto
disks. Yet, it is questionable how such a case should arise.

As our application has a very large n, it demands a multi-
step approach:

Step 1: We start with a code-representation of f . By
restricting ourselves to graphs with an additional
property yet to be defined, we are able reduce the

graph Gf to a smaller one that is given as an array-
representation, and that fits onto hard disks.

Step 2: We employ an external-parallel algorithm to fur-
ther compact the graph until it fits into the main mem-
ory. We do this by repeatedly removing the leaves of
the graph.

Step 3: We explore the cycle structure of the remaining
graph internally.

Should it happen that the graph is reduced to a collection
of cycles before it fits into the main memory, we are able to
employ an efficient parallel-external algorithm for so-called
permutations [2]. Yet the probability for this to happen is
small, as we can expect that the cycle lengths sum up to
Θ(
√

n) nodes. As one can normally expect that hard disk
size n is less than the square of main memory size m, m will
be larger than

√
n.

Note that during the reductions, the cycle length infor-
mation is maintained exactly, and the component size infor-
mation is maintained approximately. Note further that the
additional property is only exploited in the first step. The
second and third step algorithms work for arbitrary graphs.

We first state some simple bounds about the complexity
of computing the graph structure of GR,f , if enough mem-
ory is available (step 3).

Lemma 1 With a memory consumption of O(n) words, the
structure of GR,f can be computed in time O(n). If f is
efficiently invertible, n bits suffice.

Proof: We allocate an array a of n words, which we
initialize to zero. We start at a node x with a[x] = 0, and
follow the unique path from x through the graph GR,f , by
repeatedly executing x = f(x). At each node x we visit,
we set a[x] = 1. We stop when we reach a node x with
a[x] 6= 0. This is exactly the case when we have gone round
the cycle of the weakly connected component where x re-
sides. We compute the cycle length and the cycle leader1 by
going round the cycle once more, and thus also know how
far the node x is from its tree root. Thus we have discov-
ered a new wCC. Now we pick another node x that is still
unvisited, and follow the path with setting a[] = 2, until we
reach a node u that is already visited. If a[u] = 2, then we
have again found a new wCC. If a[u] < 2, we have reached
a known wCC, and go again along the path, this time set-
ting a[] = a[u]. This is repeated until all nodes are visited.
Then a contains for each node, the index of its wCC.

If f is efficiently invertible, the array a only consists of
bits. We follow the first path. When we have detected the
cycle, we determine all tree roots on the cycle, which are the
nodes x on the cycle with |f−1(x)| ≥ 2. Then, for each tree

1The node on the cycle with lowest number, which uniquely identifies
the cycle and the wCC.

root, we completely explore the tree with the help of f−1 in
linear time, and mark the tree nodes as visited. Note that we
have to treat the root node x separately, because the set of
its predecessors f−1(x) also contains a predecessor on the
cycle, which must be ignored in the tree exploration. Thus,
the complete wCC is visited. We search for another node
(in another wCC) that is unvisited, and repeat this scheme,
until all nodes are visited.

In both schemes, each edge is only traversed a constant
number of times, and thus the time to execute the algorithms
is O(n).

There also exist parallel algorithms to compute the wCCs
of such graphs [4], so that step 3 of our multi-step approach
is already solved.

3. Parallel-External Algorithms

3.1. Algorithm for Step 2

We now consider the case where f is given as an array
that will not fit into main memory. It will be stored as a
file on the hard disk as an adjacency list, i.e. as a number
of pairs (x, f(x)). From the relation between disk sizes and
main memory sizes m, we safely deduce that n < m2.

We consider the file with the adjacency list to be sorted
according to the first entries of the tuples. If not, we apply
an external parallel sorting algorithm. Our goal is to contin-
ually reduce the size of this graph by cutting off the leaves,
until the list is short enough to fit into the main memory, so
that we can resort to one of the algorithms shown before.

If the graph has the properties of a random graph [3] we
can expect that p0 = n/e graph nodes are leaves, and we
can expect to achieve a reduction by a factor of (1−1/e) in
the first step. Let us denote by Ri the subset of nodes con-
taining those nodes with a maximum distance of at least i
from some graph leaf. Thus, R0 is the set R of all nodes,
R1 contains all nodes except leaves, and so on. There is
some imax such that Ri = Rimax for all i ≥ imax, those
sets contain the nodes on the cycles. Obviously,

R = R0 ⊇ R1 ⊇ · · · ⊇ Rimax
= Rimax+1 = · · ·

and Ri+1 \Ri is the set of nodes being removed in round i
of the algorithm. For random graphs, we expect imax =
O(
√

n), as this is the expected depth of the largest tree, with
a constant between 1 and 2. Also, the probability of a node
not being in Ri+1 is

pi+1 = e−1+pi

with p0 = 0 [3, Thm. 2], so that the reduction factor
(1−pi+1)/(1−pi) gradually increases towards 1, until only
the cycles remain. Yet for small i, i.e. in the first rounds of
the reduction, we can expect a reasonable reduction: for the

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

ln
(|

R
i|)

/l
n
(n

)

i/sqrt(n)

sizes of Ri (n=1000000)
sqrt(n)

Figure 1. Analytical sizes of sets Ri, for n =
106.

first 5 reductions, it will be at most 0.86, for the next 5 re-
ductions, it will be at most 0.92. Figure 1 depicts the sizes
of Ri in relation to n, logarithmically scaled, so that it ap-
proaches 0.5 if |Ri| approaches

√
n. The steps are measured

relatively to
√

n as we expect the number of steps imax to
be less than 2

√
n.

If the graph is non-random, then two things may happen:
either the components are more shallow than in a random
graph, i.e. the trees are not as deep, and we can peel off
many more leaves in each round. It may also happen, if a
tree consists of a list of nodes, that only one leaf is cut off in
each round, and we would need n−m rounds to reduce to
m nodes. In that case, one should think of something else.

When we remove a leaf x, we store this information in
the leaf’s successor node f(x). Thus, we provide each node
with information about the size and the depth of the subtree
of ancestors already reduced. Initially, this information is
zero, so it can be generated during the first step.

In order to realize a leaf-cutting step, we apply an exter-
nal sort algorithm to the adjacency list to sort it according
to the second tuple entries into a second file, i.e. we receive
a list (y, f−1(y)), sorted according to y. This list can be
read from the disk block by block. Because of the sorting,
we find all values of y for which no entry is present. Those
are the y with no preimage, i.e. the leaves in the graph. We
also read the adjacency list block by block and write it back
to the file, after we have removed the edges starting from
leaves. The targets of those edges, i.e. the successors of the
leaves, are stored in a third file, together with their subtree
information. This file is externally sorted afterwards. Then
this file and the adjacency list are read again, and kind of
merged: for each entry in the third file, the subtree informa-
tion of the same node is updated in the adjacency list.

External sort of n items that reside on a disk having page

size b items with a processing unit having a memory that
can hold m items can be achieved in time O(n log n) for
internal processing and O(n/b log n) page accesses. Exter-
nal sort can be efficiently parallelized if each disk can be
reached from each processing unit, i.e. if a parallel storage
system is available. Thus we obtain the following Lemma.

Lemma 2 Each reduction step needs O(n log n) internal
processing time and O(n/b log n) accesses to disk pages of
size b.

3.2. Algorithm for Step 1

We now present an algorithm for the case of a code repre-
sentation of function f , and for very large n. This algorithm
works only for a subset of possible functions f : we must be
able to specify a function-specific node propertyP such that
each cycle contains at least one node with this property. We
should also be able to efficiently test whether a graph node
has property P and to generate graph nodes with this prop-
erty. Let C be the subset of all nodes with property P , the
set of the candidates. It is always possible to specify such
a property: if we choose a property that is true for every
node x, e.g. 0 ≤ x ≤ n− 1, then each cycle obviously con-
tains such a node. More exactly, it consists only of those
nodes, and C = {0, . . . , n− 1}.

In order to be advantageous, the number of nodes with
property P should be notably smaller than n. Typically,
a considerable fraction of the candidates will still reside in
trees of GR,f and not on cycles. As the candidates are nodes
of the graph GR,f , they have the property that from each
candidate u there is a unique path of length l(u) to another
candidate v = g(u). Thus, the set C ⊆ R of the candidates
together with the function g : C → C induces a graph GC,g

where the edges have lengths, i.e. the edge (u, g(u)) has
length l(u).

A nice property of the graph GC,g is

Lemma 3 The wCCs and cycles in GC,g correspond one-
to-one to the cycles in GR,f , and corresponding cycles have
identical lengths.

Thus, if we can compute the candidate graph efficiently,
i.e. faster than solving the cycle structure problem on GR,f

directly, we are able to reduce the problem of comput-
ing the cycle lengths for f to a smaller problem of size
n′ = |C| < n, which in turn can be solved by the algo-
rithm of the previous subsection. The difference between
the original and the reduced problem is that f is represented
as a piece of code while g is represented as an adjacency list.
Also, this method cannot be applied recursively. If we were
able to formulate a second candidate set C ′ with property
P ′ in GC,g , we could and should have applied property P ′

directly on the original graph GR,f .

If the candidate nodes have the additional property of
being about evenly distributed among all nodes, then the
sizes of the wCCs in GC,g relative to each other give an
approximation of the ratio of the sizes of the corresponding
wCCs in GR,f . A similar approximation is obtained for the
tree depths in GR,f .

In order to compute the candidate graph, we first gen-
erate all candidates in O(n′) time. How this can be done
depends on the application. An example is given in the next
section. Then, we start at each candidate u and follow the
path until we reach v = g(u). If the maximum indegree of
a candidate u in GC,g is k, then each edge in GR,f is tra-
versed at most k times, and thus we need at most kn time.
Most of the time however, the paths will be largely disjunct,
so that the computation takes time O(n). The algorithm is
given in the following pseudo-code:

foreach u in C
v := u;
l := 0;
repeat v := f(v); l := l+1 until v in C
add (u, v, l) to G_C,g

The computation of the candidate graph can be easily
parallelized: as f is realized with a piece of code, each
processing unit in a multiprocessor or cluster computer can
evaluate f . Each processing unit is assigned a number of
candidates u1, . . . for which it is to follow the paths from ui

to vi = g(ui). If the assignment is done in blocks of fixed
size, load balancing can be achieved in an easy way. One
processing unit works as a master, and as soon as a process-
ing unit has worked its block, it asks the master for a new
block. Each processing unit writes the generated edges of
the candidate graph to a file. When all processing units are
done, the files can be merged into one.

Lemma 4 If the candidate graph has a size of n′, then it
can be computed with O(n) time of internal processing, and
O(n′/b) accesses to disk pages of size b. Both can be opti-
mally parallelized.

4. Application to A5/1

The A5/1 algorithm is a stream generator used to encrypt
speech data between a GSM mobile phone and a base sta-
tion. It has a 64 bit state which is distributed over three lin-
ear feedback shift registers (LFSR), as given in Figure 2 [1].
Each LFSR i realizes a cycle of length 2li − 1, containing
all states except zero. Here, li is the length of LFSR i. We
assume that the registers are never initialized to zero. The
clock taps (C1, C2, C3) of the registers are used to compute
a majority on their values, and only those registers agree-
ing with the majority are clocked. This means that in each
clock cycle, at least two of the registers are clocked, and

0818 13

C1
R1

01021

C2
R2

01022 7

C3
R3

Figure 2. A5/1 stream cipher generator.

each register is clocked in 3 out of 4 cases. The A5/1 can
be efficiently inverted.

When considering the cycle structure of A5/1, we can
make the following assumption: each cycle must contain
every non-zero state of R3 at least once. This is clear, as
the register R3 can remain without clock for at most 19 cy-
cles, because otherwise the register R1 would have to con-
tain only 1s, which would lead to a feedback of zero in order
to avoid a cycle on 1. . . 1, or only zeroes, which is excluded.
Hence the cycle length is a multiple of 223 − 1 R3 clocks.
As R3 is clocked in 3 out of 4 cases on average, this will
normally take a multiple of (4/3) · (223 − 1) clock cycles.

We consider an arbitrary non-zero value of R3,
e.g. 1 . . . 1, and define the property P of a state u as fol-
lows: when in state u, the register R3 must have this value,
the state u has a predecessor, and the predecessor state has
a different value of R3. Each cycle thus contains at least
one state with property P , it is easy to generate all states
with this property, and it is easy to check whether a state
has this property. The number of states with that particu-
lar value of R3 is (222 − 1) · (219 − 1) < 241, one fourth
of them being leaves, and one fourth of them having a pre-
decessor with the same value in R3, so that the number of
candidates is less than 240. As the distances between candi-
dates is (4/3) ·(223−1), the effort to compute the candidate
graph is less than 263, and can be reduced by parallelization.

Additionally, we can use the facts that A5/1 can be ef-
ficiently inverted, that many of the candidate nodes are
leaves, and that the wCCs of A5/1 tend to be shallow. We
can find the leaves by starting at candidate nodes and ex-
plore the A5/1 graph in inverse direction. If the candidate
node is the root of a tree of non-candidates, then we know it
is a leaf. In order to improve runtime, we do only a depth-
restricted exploration, and remove only those leaves that can
be found fast. The determination of the threshold depth re-
quires some care. For the A5/1, a threshold of 8,800 was
found to be sufficient. All leaves in the candidate graph

thus revealed can be removed if we are mainly interested
in the number of wCCs and the cycle lengths. Our exper-
iments (see next section) revealed that about 99.6% of the
candidate nodes encountered were found to be leaves in the
candidate graph of the A5/1.

The effort can be further reduced by taking into account
that there are implementations that allow to perform several
clock cycles in one computation. This is possible as the
clock and feedback taps are not lower than bit 7, and thus
feedback does not influence clocking or feedback for at least
8 clock cycles.

With both improvements, our computational effort is
about 255 evaluations of the state transition function which
is feasible on a large parallel machine or with the help of
special purpose hardware.

Now we have reduced the problem to an external prob-
lem of size 240. As a hard disk today contains 250 gigabyte,
i.e. about 238 bytes, the problem can be stored on 128 hard
disks, assuming that we need 16 byte to store an edge, and
that we need to store two files. Taking into account that
we can remove many leaves when generating the candidate
graph of the A5/1, the problem reduces to about a size of
232 and is likely to fit onto a single hard disk.

As we will be able to store 229 edges in a 4 gigabyte main
memory, we will need a reduction factor of 8 to reduce the
external problem to an internal problem. If we achieve a re-
duction in the A5/1 candidate graph which is at least com-
parable to that of random graphs (the experiments suggest
it will be better), then we need 10 rounds of the algorithm
for step 2. This means that we have found the first algo-
rithm to explore the cycle structure of the A5/1 algorithm
completely. The computation will take about 6 months on a
32-processor cluster. We expect the results to improve our
knowledge about the security of and possible attacks against
this algorithm.

5. Experimental Results

We have implemented the algorithms for all three steps
to be run on cluster computers with the Linux operating sys-
tem. Here we report on results for steps 1 and 2.

First, we ran the algorithm for step 2 on random graphs.
We chose graphs of several sizes: n = 105, 3 · 105, 106,
3 · 106, 107, 5 · 107. Figure 3 depicts how the graph size
shrinks with the rounds of the algorithm, for 10 graphs with
n = 105 and n = 107, respectively. The scaling is identical
to the one in Figure 1, as this scaling allows to compare re-
sults for several n in one figure. Although the results vary,
which is to be expected as the variance in the behavior of
random graphs is quite large, they match the analytical re-
sult quite well. This reduction would at least be expected
for the A5/1 as well.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

ln
(|

R
i|)

/l
n

(n
)

i/sqrt(n)

sizes of Ri (n=100000)
sizes of Ri (n=10000000)

sqrt(n)

Figure 3. Experimental and analytical sizes of sets Ri of random graphs.

Next, we constructed reduced versions of the A5/1 gen-
erator, with 232, 236, and 240 states respectively. For each
of those, we computed the candidate graphs, and reduced
those to their cycles. These reduced A5/1 generators are
expected to have structural properties similar to the graph
of the A5/1 generator. Studying these allows evaluation of
different optimizations and discovery of new properties that
hopefully apply to the full A5/1, too.

Figure 4 depicts the reduction of this graph, which is
much faster than the corresponding analytical curve from
Figure 1, which is also drawn. The lower curves depict the
influence of the initial removal of candidate graph leaves
during the construction of that graph, with two different
thresholds. They show that there is an initial advantage,
which is very valuable if only a few reduction steps are to
be performed! One would need to zoom into the figure to
quantify the advantage. Figure 5 depicts optimized curves
for all three reduced versions. We see that the curves closely
match, and that sizes below

√
n are reached much faster

than for random graphs.
Figure 6 depicts the results for the A5/1 graph as far it

is computed at the present moment. We have tested about
3.63 · 1011 candidates, of which most have been identified
by inverse exploration to be leaves, so that a graph of about
1.33 · 109 nodes has remained and is reduced. We see that
already for small values of i, its reduction is strong, so that
it can be reduced much faster than a random graph.

As to parallelization, we feel from our preliminary ex-

periments that the algorithm can be perfectly parallelized.
Currently, the overall runtime is dominated by step 1 which
spends most of its time without any I/O, only using the first
level caches. We predict a runtime of about 6 months on a
32-processor cluster. So far we have constructed about one
third of the candidate graph. Already, we have discovered
more than 100,000 wCCs, which is much more than the ap-
proximately 100 wCCs that one would expect for a random
graph of this size.

6. Conclusion

We have presented several parallel algorithms to explore
the cycle structure of graphs induced by functions, differ-
ing by which graph sizes they can handle with either main
memory or disk space, and by which function representa-
tion they can work with. We have applied those algorithms
to the task of exploring the cycle structure of the state tran-
sition graph of the A5/1 stream cipher generator. Thus, we
have presented the first algorithm to completely explore the
cycle structure of the A5/1. Our experiments, as far as they
have progressed, indicate that the A5/1 graph strongly de-
viates from a random graph. Future developments will try
to develop better algorithms for step 2, that do not only cut
off leaves, so that a certain rate of reduction is guaranteed.
Also, we want to complete the analysis of the A5/1 graph.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

ln
(|

R
i|)

/l
n
(n

)

i/sqrt(n)

sizes of Ri (n=523008)
sqrt(n)

A5-32bit (n=523008)
A5-32bit (n’=174294)
A5-32bit (n’’=53656)

Figure 4. Candidate graphs of the reduced A5/1 generator with 232 states.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

ln
(|

R
i|)

/l
n
(n

)

i/sqrt(n)

sizes of Ri (n=523008)
sqrt(n)

A5-32bit (n=523008)
A5-36bit (n=4191232)
A5-40bit (n’=244267)

Figure 5. Optimized reductions for the candidate graphs of three reduced A5/1 generators.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2e-05 4e-05 6e-05 8e-05 0.0001

ln
(|

R
i|)

/l
n

(n
)

i/sqrt(n)

sizes of Ri (n=1099509268480)
sqrt(n)

A5/1 candidate graph

Figure 6. Experimental results for parts of the A5/1 candidate graph.

References

[1] A. Birykov, A. Shamir, and D. Wagner. Real time crypt-
analysis of a5/1 on a pc. In Presented at the Fast
Software Encryption Workshop, Apr. 2000. Available at
http://cryptome.org/a51-bsw.htm.

[2] L. Boursas and J. Keller. Implementation and evaluation of
a parallel-external algorithm for cycle structure computation
on a pc-cluster. In U. Brinkschulte, J. Becker, D. Fey, K.-E.
Großpietsch, C. Hochberger, E. Maehle, and T. A. Runkler,
editors, ARCS Workshops, volume 41 of LNI, pages 348–357.
GI, 2004.

[3] P. Flajolet and A. M. Odlyzko. Random mapping statistics.
In Proc. EUROCRYPT’89, pages 329–354. Springer LNCS,
1990.

[4] Y. Han and R. A. Wagner. An efficient and fast parallel-
connected component algorithm. Journal of the ACM,
37(3):626–642, 1990.

[5] J. Heichler, J. Keller, and J. F. Sibeyn. Parallel storage al-
location for intermediate results during exploration of ran-
dom mappings. In Proc. 20. Workshop Parallel-Algorithmen,
-Rechnerstrukturen und -Systemsoftware (PARS ’05), pages
126–134, 2005.

[6] J. Keller. Parallel exploration of the structure of random func-
tions. In Proc. 6th Workshop on Parallel Systems and Algo-
rithms (PASA 2002), pages 233–236. VDE Verlag, 2002.

